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INTRODUCTION

Problems of ROS generation and the mechanisms
of their metabolism regulation (generation and scav�
enging) are an object of intense interest during last
decades due to the important role they play through�
out the life of the cell, from division to death [1]. One
of the most debated questions in biology and biomed�
icine are those associated with the dual function of
ROS generated by cells under different types of stress.
On the one hand, this is related to the elucidation of
mechanisms of organism pathology developing
because of oxidative stress arising from the disturbance
in the cell redox balance, i.e., excessive ROS release
and their damaging action on all key cell structures,
including membranes, proteins, and DNA. On the
other hand, this is determined by a possibility of ROS
participation in the signal transduction, in particular

by the functioning of signaling pathways triggered by
ROS originated from mitochondria [1–3]. It is clear
that such investigations require using of a relatively
rapid and highly specific method for quantification of
ROS generation. However, this task is greatly compli�
cated by the low intracellular concentrations of ROS,
transient character of their changes, and a relatively
short of their life time, as well as the presence in the cells
and some organelles sufficiently effective antioxidant
defense systems [1, 4]. In this connection, the search
and optimization of methods for adequate evaluation of
the rates of ROS generation and rapid changes in their
intracellular concentrations remain actual.

It is known that widely applied fluorescent dyes from
the class of dichlorofluoresceins (DCF) suffer from
serious failings, which are considered in detail in a
number of recent reviews [5, 6]. Currently, one of the
relatively new and most highly sensitive fluorogenic
indicators for ROS determining in vitro is Amplex Red
(AR), whose oxidation by Н2О2 with the stoichiometry
1 : 1 is catalyzed by horseradish peroxidase (HP). Spec�
trally distinguish product of this reaction, resorufin, can
be identified either by fluorescence or absorption [7]. It
should be noted that, although this test�system is widely
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used for determining the rates of ROS release in animal
mitochondria [8–12], its application in similar studies
carried out on plant organelles are rare [2].

The objective of this work was to determine the
rates of hydrogen peroxide generation in dependence
on metabolic state of mitochondria isolated from
wheat seedlings using AR as an indicator. Another
important task was to elucidate a possibility of applica�
tion of ETC terminal oxidase inhibitors, in particular
those of alternative cyanide�resistant oxidase (AOX),
for studying their effects on ROS release by plant
mitochondria, using this test�system. 

MATERIALS AND METHODS

Plant material. Experiments were performed with
etiolated seedlings of winter wheat (Triticum aesti�
vum L., cv. Mironovskaya 808) grown hydroponically
on tap water at 23–24°C for 3 days. Elite seeds were
kindly presented by Acad. B.I. Sandukhadze (Mos�
cow Agricultural Research Institute, Nemchinovka,
Moscow oblast).

Isolation of mitochondria. Mitochondria isolation
and the control of their functional activity were con�
ducted as described by us in detail earlier [13]. Briefly,
shoots (coleoptiles with embryonic leaves) were
homogenized in isolation medium (1 : 6) containing
0.3 M sucrose, 18 mM potassium�phosphate buffer
(pH 7.9), 1 mM MgCl2, 5 mM EDTA, 5 mM dithio�
threitol, and 0.1% FA�free BSA. Mitochondria isolated
by differential centrifugation were resuspended in the
small volume of medium containing 0.3 M sucrose,
18 mM potassium�phosphate buffer (pH 7.2), and
0.1% BSA and placed on ice during the entire period of
experiment.

Oxygen uptake by mitochondria was measured in
reaction medium: 0.3 M sucrose, 18 mM potassium�
phosphate buffer (pH 7.2), 1 mM MgCl2, 5 mM EDTA,
and 0.1% BSA at 25°C using the Clark�type electrode
(Hansatech Instruments, England). The rates of mito�
chondrial respiration in the presence of 10 mM malate
and 10 mM glutamate were on average 120–130 and
35–40 nmol O2/(mg protein min) in state 3 (after add�
ing 200 µM ADP) and state 4 (after its exhausting in
the process of phosphorylation), respectively. Coeffi�
cients of respiratory control and ADP/O ratio accord�
ing to Chance [14] were on average 3.5 and 3.0, respec�
tively. During the long period isolated mitochondria
were capable of rapid and stable generation of the trans�
membrane potential on the inner membrane (Δψm),
followed using Safranin O [13].

ROS generation by mitochondria was tested imme�
diately after organelle isolation using AR (N�acetyl�
3,7�dihydroxyphenoxazin) in combination with
horseradish peroxidase (HP). Measurements were
carried out in reaction medium containing 0.3 M
sucrose, 18 mM potassium�phosphate buffer
(pH 7.2), 1 mM MgCl2, 5 mM EDTA, 0.1% BSA,
5 mM malate, 5 mM glutamate, and 0.15–0.2 mg/mL

of mitochondrial protein. The ratios of components in
the test�system were chosen empirically; in most cases
it was 10 mM AR and 1–10 units HP/mL. The forma�
tion of resorufin, the product of AR interaction with
H2O2, was recorded spectrophotometrically following
the change in the differential absorption (ΔА573–595)
with the Hitachi�557 spectrophotometer [10]. The
intensity of resorufin fluorescence was measured with
the Hitachi�850 spectrofluorimeter (excitation wave�
length – 564 nm, emission wavelength – 587 nm) [2].
In the case of another indicator application, e.g.,
H2DCFDA (dichlorodihydrofluorescein diacetate),
fluorescence of its deacetylated and oxidized product,
DCF, was excited by the light with the wavelength of
480 nm and recorded at 552 nm [7, 15, 16]. At the end
of each measurement, the sensitivity of these test�sys�
tems was checked by the addition of 50–100 nM
freshly prepared H2O2.

The content of mitochondrial protein in samples was
determined by the method of Lowry et al. [17] using
BSA as a standard.

Reagents. The high quality KCN, КН2РО4, and
other salts were produced in Russia; sucrose, sub�
strates, nucleotides, peroxidase, EDTA, BSA, alame�
thicin, H2DCFDA were purchased from Sigma
(United States); Ampex Red was from Invitrogen
(United States).

Statistics. Experiments were performed in 3–4 rep�
licates with 2–3 recordings. Figures represent the
results of typical experiments.

RESULTS

As it is known, potential possibilities of any test�
system are determined by its sensitivity and specificity.
Hence, first of all it was necessary to test the influence
of Н2О2 and other used reagents on the behavior of
AR�based test�system per se, namely, fluores�
cence/absorption of resorufin in the reaction mixture
without mitochondria to exclude side effects. Figure 1
shows that hydrogen peroxide addition to the reaction
medium was accompanied by a rapid and almost pro�
portional to its concentration increase in the absorp�
tion signal of resorufin, thus allowing the reliable eval�
uation of resorufin concentration below 45–50 nM,
which is in agreement with characteristics mentioned
in literature [5–7]. But the addition of KCN (the
inhibitor of cytochrome oxidase) to the reaction mix�
ture resulted in a visible decrease in a test�system sen�
sitivity, as it was evident from the slowing�down of the
kinetics of resorufin absorption signal induced by a
subsequent hydrogen peroxide addition, and also from
the expressed loss of its dependence on the Н2О2 con�
centration (Fig. 1). Thus, this fact should be taken into
account at the interpretation of obtained results,
because an observed sharp drop in the level of ROS
generation may be erroneously interpreted as a result
of blocking the main cytochrome pathway of electron
transport and activation of alternative oxidase (AOX)
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under these conditions. As compared with KCN, the
addition to the reaction mixture of most often used
AOX inhibitors, such as 1 mM salicylhydroxamic acid
(SHAM) or 1 µM propyl gallate (data not shown),
induced a more rapid inactivation of the ROS�detect�
ing system; this effect is evident in the presence of
mitochondria (Fig. 2) and without them (not shown).
Figure 2 also shows that equivalent amounts of the sol�
vent of these inhibitors, dimethylsulfoxide (DMSO),
did not influence the sensitivity of the test�system
checked by the subsequent Н2О2 addition. 

Significant side effects of SHAM were also
observed at the attempt to elucidate the influence of
AOX functioning on the rates of ROS release mito�
chondria using another indicator – dichlorodihydrof�
luorescein diacetate, whose deacetylated form
(Н2DCF) is able in the presence of peroxidase and
hydrogen peroxide to be oxidized to the fluorescent
product DCF [5–7]. It was found that the response to
the addition of SHAM of the test�system per se, i.e.,
in the absence of mitochondria in the reaction mix�
ture, was dramatic fluorescence increase, which imi�
tated quasi appearance of high Н2О2 concentration in
medium (Fig. 3). Non�specificity of this response evi�
dently follows from the fact that it develops on back�

ground of complete loss of test�system sensitivity to
Н2О2 (Fig. 3). Also we suppose that the initial fluores�
cence of this test�system observed in our experiments
is determined by the presence of some amount of
deacetylated form of the dye because there was no
response to the second addition of hydrogen peroxide
(Fig. 3). Undoubtedly, the noted above, side, non�spe�
cific effects of the ETC blockers on the behavior of
test�systems under study deserve special attention
because they severely limit their ability to identify the
relationship between the rate of ROS generation by
mitochondria and changes of the ETC terminal oxi�
dase activity under the influence of the respective
inhibitors.

The experiments with AR probe showed that the
rates of mitochondria�generated Н2О2 release (VROS)
under oxidation of malate in the presence of glutamate
were approximately 110 pmol Н2О2/(mg protein min)
(Fig. 4). The transition of mitochondria from meta�
bolic state 3 (after addition of ADP) into state 4 (after
exhausting of added ADP in the process of phosphory�
lation) was accompanied by the increase in VROS more
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Fig. 1. Dependence of the resorufin absorption signal on
the H2O2 concentration in reaction medium without
mitochondria, and the effect of 1 mM KCN on this signal.
Other conditions are described in the Materials and Meth�
ods section.
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Fig. 2. Dependence of resorufin fluorescence on the H2O2
concentration in reaction medium in the presence of
wheat mitochondria (Mt), and the effect of 1 mM SHAM
on the signal. SHAM and its solvent DMSO were added in
equivalent amount (2 μL/mL).
Other conditions are described in the Materials and Meth�
ods section.
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than 70% (Fig. 4). Furthermore, it was found that the
real rates of ROS generation in wheat mitochondria
were much higher than those of their accumulation
outside organelles, which were revealed using the anti�
biotic alamethicin increasing the inner membrane
permeability for small hydrophilic molecules, includ�

ing ROS [18]. Thus, the addition of 25 µg/mL of
alamethicin to mitochondria induced an increase in
the VROS approximately by 50% (Fig. 4); in this case,
test�system sensitivity to Н2О2 was well preserved after
organelle incubation in the presence of this antibiotic
for more than 30 min (Fig. 4).

DISCUSSION

It is well known that ROS�detecting systems on the
basis of fluorescent dyes widely applied in modern bio�
logical and biomedical studies are rather sensitive and
permit determination of the levels of different ROS,
hydrogen peroxide in particular, in both intact tissues
and cells and in isolated organelles, including mito�
chondria. However, accumulating information on
non�specific reactions, in which the system compo�
nents may enter, requires a great caution in interpret�
ing the results [10, 11, 19, 20]. There are data indicat�
ing clearly the artifact character of direct interaction
of SHAM with H2DCFDA, able to lead to a large
increase in the fluorescence of the solution even under
anaerobic conditions, which was interpreted as an
esterase�like action of this AOX inhibitor [19].

In our experiments, it was also found that the addi�
tion of SHAM to H2DCFDA + HP resulted in a sub�
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Fig. 3. Dependence of the DCF fluorescent signal on the
presence of 200 nM H2O2 in medium, and the effect of
1 mM SHAM on the signal.
Other conditions are described in the Materials and Meth�
ods section.
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Fig. 4. Kinetics of hydrogen peroxide release from wheat
mitochondria (Mt) during malate and glutamate oxidation
in different metabolic states, and the influence of 25 μg/mL
alamethicin on this process. 
Figures above the curve designate the rates of H2O2 accu�
mulation in the reaction medium (pmol/(mg protein
min). Other conditions are described in the Materials and
Methods section.
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stantial increase of reaction mixture fluorescence and
further in a complete loss of indicator sensitivity to
hydrogen peroxide (Fig. 3). In recent publication of
El�Khoury et al. [11], the possibility of direct interac�
tion of another AOX inhibitor propyl gallate with the
AR�based ROS�sensing system was indicated. In this
connection the work of Maxwell et al. [20] should be
noted, where transgenic tobacco lines with genetically
changed level of AOX expression and activity were
used to elucidate the influence of AOX activity on
ROS generation by mitochondria and preventing pos�
sible side effects of SHAM on Н2DCFDA.

The analysis of literature data and our own results
indicate that the classical inhibitors of the terminal
oxidases of plant mitochondria can affect substantially
the ROS�detecting systems by both the inactivation of
peroxidase or due to the direct interaction with the
indicators. This is evidently indicated also by a consid�
erable increase in the fluorescence of DCF after
SHAM addition to isolated pea mitochondria, which
was erroneously interpreted as substantial activation of
ROS generation due to AOX inhibition because there
was no control of H2DCFDA + HP sensitivity to ROS
in the presence of SHAM [15]. And vice versa, the
absence of corresponding signal of this indicator in the
presence of KCN was ascribed to the decrease in VROS
as a result of cytochrome pathway inhibition and cou�
pling AOX activation [21]. Similar results of experi�
ments performed on mitochondria isolated from
wheat seedlings [16] might be also erroneously inter�
preted as the activation of ROS generation because of
AOX blockage, although in these experiments not
SHAM but another derivative of hydroxamates , ben�
zohydroxamic acid, was used. But similar affinity of
HP for both hydroxamic acids was demonstrated ear�
lier [22]. Thus, literature data and our results obtained
with analogous test�systems (Figs.1–3) indicate sub�
stantial difficulties arising during the application of the
inhibitory analysis to isolated plant mitochondria for
obtaining reliable experimental evidence for AOX
antioxidant role. 

The application of the AR�based system for the
determination of ROS generation rate (VROS) in mito�
chondria isolated from etiolated wheat seedlings
(Fig. 4) showed that its values on the whole are compa�
rable with those obtained for other plant and animal
objects [2, 10, 12, 15]. Thus, in the work [15] cited
above, the rates of ROS release by mitochondria iso�
lated from etiolated pea seedlings during succinate oxi�
dation were 130–150 pmol H2O2/(mg protein min). At
the same time, the presented in the literature values of
VROS varies widely, by tens times, even in organelles iso�
lated from similar objects. For example, VROS values
obtained by application of H2DCFDA + HP for mito�
chondria from etiolated pea seedlings also oxidizing
succinate were above 1.3 nmol Н2О2/(mg protein min)
[23]. In some recent publications, it was shown that
animal mitochondria, in particular organelles of rat
and porcine cardiac muscle cells, were characterized

by VROS being not higher than 100–200 pmol
Н2О2/(min mg protein), which in turn corresponded
to 0.1–0.2% from overall respiration rates at 37°C [10,
12]. In the detailed work of other authors [24], it was
shown the high substrate and organ specificity of ROS
generation in mitochondria, the rates of which varied
from 0.1% (state 3) to 3% (state 4) from the rates or
those of respiration.

Our calculations of VROS for mitochondria from tis�
sues of winter wheat seedlings oxidizing malate
showed that its values were approximately 0.1 and
0.5% for state 3 and 4 conditions, respectively. It is not
excluded that this 5�fold difference can be determined
by an increase in the mitochondrial membrane poten�
tial in state 4 approximately by 30% (Fig. 4, see also
[13]). According to the available literature data, the
stimulation of ROS generation determined by the
increase in Δψm can be prevented by triggering the
mechanism of “mild uncoupling” [25] based on the
activation of the energy�dissipating systems favoring
the maintenance of the lower Δψm [8, 25]. In this con�
nection, one of the possible reasons of the relatively
low rates of ROS generation by wheat mitochondria
are a high constitutive activity of AOX, which depend�
ing on the used substrate of oxidation can achieve 30–
50% of the rates of total respiration [13]. On the other
hand, the relatively low measured values of VROS may
be a consequence of the fact that they reflect the rates
of ROS release from mitochondria but not the true
rates of their generation inside organelles, as it is evi�
denced from the results of experiments with alamethi�
cin. Using this antibiotic the substantial difference was
revealed between the rates of ROS emission and gen�
eration in the matrix, indicating that VROS is markedly
limited by the permeability of mitochondrial inner
membrane for Н2О2 (Fig. 4), which has been observed
earlier also for animal mitochondria [18, 26].

Based on the obtained results, it has been concluded
that new highly sensitive ROS�detecting systems on the
basis of fluorogenic indicators, AR primarily, can be
applied for the determination of the rates of hydrogen
peroxide generation in plant mitochondria in vitro in
dependence of their functional state. The application of
the antibiotic alamethicin showed that the rates of
Н2О2 accumulation in the incubation medium mea�
sured by this method do not really reflect true and much
higher rates of its generation in mitochondria. Found
on revealed in this study pronounced side effects of the
classic inhibitors of the terminal oxidases of ETC in
plant mitochondria on the behavior of the studied test�
systems associated with the loss of test�system sensitiv�
ity to ROS, allow a conclusion that the eliciting of
AOX antioxidant role is considerably complicated and,
apparently, requires the use of other approaches.
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