

методы и математическое моделирование

Ю.Н. Прошин

кафедра теоретической физики Казанского государственного университета

yurii.proshin@ksu.ru

2004-2011, Казань

Орг. замечания и литература

Потоковые лекции - первые 9 недель (18 часов)

Практические занятия по кафедрам (еще 9 недель - 18 ч.)

ЭКЗАМЕН или ЗАЧЕТ?

Коллоквиум!!!

Орг. замечания и литература

Рекомендуемая литература

- 1. Гулд X., Тобочник Я. Компьютерное моделирование в физике. Т. 1-2, 1990, М.: Мир. (аб., ч.з. 9)
- 2. Прошин Ю.Н., Еремин И.М. Вычислительная физика (практический курс), 2009, Казанский университет, 180 с. (аб., ч.з. 9)
- 3. Форсайт Дж., Малькольм М., Моулер К. Машинные методы математических вычислений, 1980, М.: Мир. (аб., ч.з. 9)
- 4. Каханер Д., Моулер К., Нэш С. Численные методы и программное обеспечение, 2001, М.: Мир. (аб., ч.з. 9)
- 5. Сборник задач по математике Ч. 4. (Под. ред.Ефимова А.В.) 1990, М.: Наука. (аб., ч.з. 9)
- 6. Коткин Г.Л., Черкасский В.С. Компьютерное моделирование физических процессов с использованием MatLab, 2001, Новосибирск: НГУ
- 7. Поршнев С. В. Компьютерное моделирование физических процессов в пакете MATLAB. М.: Горячая линия Телеком, 592 с., 2003
- 8. Деминов Р.Г., Сайкин С.К., Прошин Ю.Н. Вычислительные методы в теоретической физике. 2000, Казань: КГУ. (ч.з. 9, каф. т.ф.) Ю.Н. Прошин ЧМММ. Лекция 1

Зачем физику компьютер?

- "Общечеловеческие" цели и желания
- "Общенаучные" цели
- "Физические" цели

Зачем физику компьютер??

- "Общечеловеческие" цели и желания
 - Интернет (общение, поиск информации, заработок, ...)
 - Обучение (языки, предметы, ...)
 - Словари, переводчики, базы данных, справочники, энциклопедии, книги, ...
 - Развлечения (игры, видео, фото, музыка, ...)
 - **—Разное (???)**

Зачем физику компьютер???

- "Общенаучные" цели
 - Презентации (PowerPoint, Acrobat, ...)
 - Набор и правка статей (WinWord, LaTeX, OpenOffice...)
 - Научная графика (Origin, Grapher, Excel, ...)
 - —"<mark>Рисовалки" (</mark>Corel Draw, Corel Photopaint, Photoshop,...)
 - Спец. рисовалки (ChemDraw, ...)
 - Дигитайзеры "оцифровка" кривых (Grafula, ...)

Зачем физику компьютер????

- "Физические" цели
 - Управление экспериментом {в реальном времени}
 - Аналитические вычисления {символьные преобразования} (Maple, Mathematica, Derive, MathCad, Matlab,...)
 - Численный анализ (Fortran, Pascal-Delphi, C,...; Matlab, MathCad, Maple, Mathematica, ...)
 - Моделирование (Matlab: Maple, MathCad, Mathematica: Fortran, C, Pascal-Delphi, спец. программы и пакеты ...)

Программное обеспечение. Для работы...

Таких систем - пропасть. Но для эрцгерцога, наверное, купили что-нибудь этакое особенное.

Гашек "Похождения бравого солдата Швейка"

Зачем физику компьютер????

Таких систем – пропасть. Но для эрцгерцога, наверное, купили что-нибудь этакое особенное.

Йозеф Швейк

- "Физические" цели
 - Управление экспериментом {в реальном времени}
 - Аналитические вычисления {символьные преобразования} (Maple, Mathematica, Derive, MathCad, Matlab,...)
 - <u>Численный анализ</u> (Fortran, Pascal-Delphi, C,...; Matlab, MathCad, Maple, Mathematica, ...)
 - <mark>Моделирование (</mark>Matlab; Maple, MathCad, Mathematica; Fortran, C, Pascal-Delphi,...)

Зачем физику компьютер????

Таких систем – пропасть. Но для эрцгерцога, наверное, купили что-нибудь этакое особенное.

Йозеф Швейк

- "Физические" цели
 - Управление экспериментом {в реальном времени}
 - Аналитические вычисления {символьные преобразования}
 - **Численный анализ**
 - Моделирование

Численный анализ?? Простой пример

Численное решение СЛАУ (систем линейных алгебраических уравнений)

Простой пример:

$$\begin{cases} 2u - v = 5\\ 3u + v = 100 \end{cases}$$

$\begin{cases} 2u - v = 5 \\ 3u + v = 100 \end{cases} \begin{cases} u + v + w = 5 \\ 3u + v = 15 \\ u - 2v - w = 0 \end{cases}$

Решение в Maple

> solve({2*u-v=5, 3*u+v=100});

$${u = 21, w = 37}$$

> solve({u+v+w=5, 3*u+v=15, u-2*v-w=0});

$${u = 4, w = -2, v = 3}$$

Вывод: можно легко решить и без компьютера!

Вывод: и опять можно решить без компьютера!

Численный анализ. НеПростой пример

Численное решение СЛАУ (с большим количеством уравнений)

$$\sum_{j=1}^{N}a_{1j}x_{j}=b_{1}$$
 (часто встречается $\sum_{j=1}^{N}a_{2j}x_{j}=b_{2}$, $\sum_{j=1}^{N}a_{2j}x_{j}=b_{2}$, $N\sim 10^{n}$, где $n\geq 2$...

"Нормальный" пример (часто встречается в физике и технике)

$$a_{ij}, b_i - \text{const}; \quad i, j = 1, 2, ..., N$$
 $N \sim 10^n, \text{ где } n \geq 2$

 $\sum_{i=1}^{N} a_{Nj} x_j = b_N$

Решение в MatLab

>> tic;a=rand(1000,1000); b=rand(1000,1);x=a\b;toc elapsed_time = 1.0620

Вывод: невозможно решить без компьютера за допустимое время!

Численный анализ. Методы

```
Численное
            решение СЛАУ (систем линейных алгебраических уравнений)
- - "" -ое дифференцирование
 - "" -ые интегрирование и суммирование
. - "" -ая
            интерполяция
- - "" -ая аппроксимация (МНК - метод наименьших квадратов) =>LSM
- - "" -ое нахождение собственных значений
- - "" -0e
            решение НлАУ (нелинейных алгебраических уравнений)
 - "" -oe
            решение ОДУ (обыкновеных дифференциальных уравнений)
            =>ODE
            решение ДУвЧП (дифференциальных уравнений в частных
            прозводных) =>PDE
 - "" -ая оптимизация
- - "" -ое решение интегральных уравнений
- - "" - Oe \Box \Box \Box \Box \Box (быстрое преобразование \Boxурье) =>FFT
статистическая обработка эксперимента,
                                               и т.п., и т.д., и др., ...
```

Ю.Н. Прошин ЧМММ. Лекция 1

Численный анализ

Численные методы описаны и реализованы

в книгах и учебниках по численному анализу;

```
в банках алгоритмов - NAG, IMSL, ... {языки программирования Фортран, Си в виде (под)программ};
```

в математических пакетах (MatLab, Maple, Mathematica, Origin, MathCad, ...) в виде функций

Зачем физику компьютер????

Таких систем – пропасть. Но для эрцгерцога, наверное, купили что-нибудь этакое особенное.

Йозеф Швейк

- "Физические" цели
 - Управление экспериментом {в реальном времени}
 - Аналитические вычисления {символьные преобразования}
 - Численный анализ
 - Моделирование

Численное моделирование. Пример

Компьютерное моделирование => в <u>программу</u> закладываются основные законы (свойства, правила) задачи (модели).

Задача:

- Пусть каждому студенту на курсе из 100 человек выдается по 100 долларов.
- Профессор, который также начинает с 100 долларами в кармане, выбирает случайным образом студента и бросает монету.
- Если выпадает "решка", профессор дает студенту 2 доллара; в противном случае студент дает профессору 2 доллара.
- Ни профессору, ни студенту не разрешается делать долги.

Вопросы:

- Какова вероятность того, что у студента будет п долларов?
- Какова вероятность того, что у профессора будет т долларов?
- Одинаковы ли эти две вероятности?

Численное моделирование. Пример

Задача:

- Студенту => 100 долларов. Профессору => 100 долларов Вопросы:
- Какова вероятность того, что у студента имеется *п* долларов?
- Какова вероятность того, что у профессора имеется та долларов?
- Одинаковы ли эти две вероятности?

Как искать ответы:

- эксперимент?
- аналитические методы?
- правила игры => в программу для компьютера => промоделировать большое число обменов и вычислить вероятности

"Что будет, если...?"

Например, как бы изменились вероятности, если бы обмен производился по 1 доллару, а не по 2? Или по 0.5? Или...? И т.д.

Численное моделирование. Пример

Задача:

- Студенту => 100 долларов. Профессору => 100 долларов Вопросы:
- Какова вероятность того, что у студента имеется *п* долларов?
- Какова вероятность того, что у профессора имеется *т* долларов?
- Одинаковы ли эти две вероятности?

Как искать ответы:

- эксперимент?
- аналитические методы?
- правила игры => в программу для компьютера => промоделировать большое число обменов и вычислить вероятности

Если заменить игроков другими объектами (например, под деньгами понимать энергию) и слегка изменить правила игры, указанный тип моделирования может найти применение в задачах магнетизма и физики частиц

Численное моделирование и реальный эксперимент

Использование компьютеров дли моделирования в течение последних 25 лет помогло открыть новые упрощающие физические принципы. Гулд, Тобочник

Лабораторный эксперимент

Образец

Физический прибор

Калибровка

Измерение

Анализ данных

Вычислительный эксперимент

Модель

Программа для компьютера

Тестирование программы

Расчет

Анализ данных

Общие замечания при решении задач на ЭВМ.

Постановка задачи и ее уточнение, анализ простейших моделей и ключевых факторов, пробное исследование, построение расчетной модели и обсчет задачи, обработка результатов и...


И с высокой вероятностью исследователя ждет повторение данного цикла или некоторых его частей: постановка, анализ, исследование, обработка и т. д.

Украл, выпил - в тюрьму! Украл, выпил - в тюрьму! Романтика!

Доцент, "Джентльмены удачи"

Главной целью расчета является все же

понимание, а не число

Ю.Н. Прошин ЧМММ. Лекция 1

Численное моделирование

Методы численного моделирования описаны и реализованы

в книгах и учебниках по моделированию;

в специализированных программах, написанных на Фортране, Си, Дельфи (Паскале),... для конкретных целей (квантовая химия, фракталы, кватовомеханические методы Монте-Карло, механика...)

в математических пакетах (MatLab, Maple, Mathematica, Origin, MathCad, других CAD'ax, ...)

{B MatLab есть спец. пакет Simulink для создания моделей }

Примерное содержание курса

Алгоритмы, методы и неприятности

Некоторые методы и задачи Метод Монте Карло, Суммирование по решетке, Решение СЛАУ и ДифУр-й, Задача Изинга, ...

Нелинейность, Бифуркации, Хаос ...

Обзор программного обеспечения

Подготовка публикаций (статьи) (постеры) (диссертации)

(LaTeX vs WinWord) (PowerPoint)

Internet, где, как и что искать...

и можно ли всё найти?

Численный анализ. Суммирование по решетке

Расчет постоянной Маделунга

Энергия кулоновского взаимодействие в ионном кристалле отдельного иона со всеми остальными

$$M_i = \sum_j \frac{q_i q_j}{R_{ij}} = q_i \sum_j \frac{q_j}{R_{ij}}$$

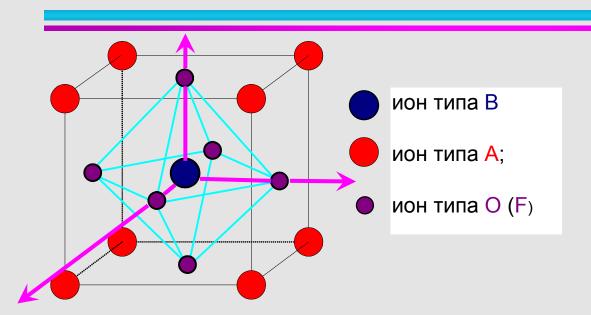
Здесь q_i - заряд i-го иона, $R_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ - расстояние между i-м и j-м ионами. Для вычисления решеточной суммы будем использовать методы Эвьена и Эвальда [Займан Дж. Принципы твердого тела. М., Наука, 1975].

Суммирование по решетке. Кристалл перовскита *АВО*₃

Параметры кубической решетки **перовскита** для разных кристаллов (a - постоянная решетки при $T = 298 \mathrm{K}$).

Кристалл	KMgF ₃	KNiF ₃	KCoF ₃	KFeF ₃	KMnF ₃
а (Å) с точностью ±0.001 Å	3.960	4.014	4.069	4.121	4.190

Координаты атомов в элементарной ячейке:


B
$$(0, 0, 0); q_B = 2e;$$

A
$$(a/2, a/2, a/2)$$
, $(a/2, a/2, -a/2)$, $(a/2, -a/2, a/2)$, $(-a/2, a/2, a/2)$, $(a/2, -a/2, -a/2)$, $(-a/2, a/2, -a/2)$, $(-a/2, a/2, -a/2)$, $(-a/2, -a/2, -a/2)$; $\mathbf{q}_{\mathbf{A}} = \mathbf{1}\mathbf{e}$;

O(F) $(a/2, 0, 0), (0, a/2, 0), (0, 0, a/2), (-a/2, 0, 0), (0, -a/2, 0), (0, 0, -a/2); \mathbf{q_0} = -1\mathbf{e}.$

Суммирование по решетке. Постоянная Маделунга

Задача:

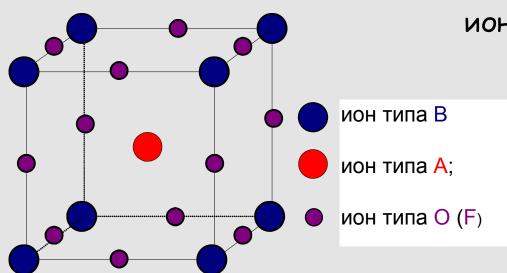
Рассчитать M_i для ионов типа ${\sf B}$.

$$M_i = q_i \sum_j \frac{q_j}{R_{ij}}$$

Координаты атомов в элементарной ячейке:

B
$$(0, 0, 0); q_B = 2e;$$

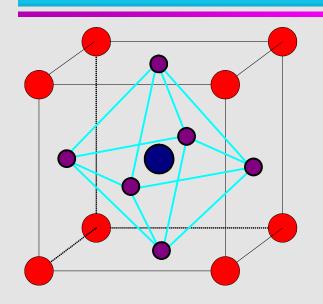
A
$$(a/2, a/2, a/2), (a/2, a/2, -a/2), (a/2, -a/2, a/2), (-a/2, a/2, a/2), (a/2, -a/2, -a/2), (-a/2, a/2, -a/2), (-a/2, -a/2), (-a/2, -a/2), (-a/2, -a/2); $\mathbf{q}_{\mathbf{A}} = \mathbf{1}\mathbf{e}$;$$


O(F)
$$(a/2, 0, 0), (0, a/2, 0), (0, 0, a/2), (-a/2, 0, 0), (0, -a/2, 0), (0, 0, -a/2); \mathbf{q_0} = -1\mathbf{e}.$$

Суммирование по решетке. Постоянная Маделунга

Задача:

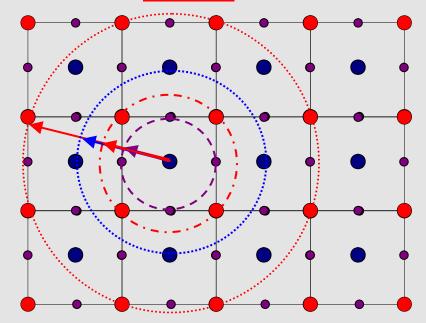
Рассчитать M_i для ионов типа \mathbf{A} .



$$M_i = q_i \sum_j \frac{q_j}{R_{ij}}$$

$$A(0, 0, 0); q_A = 1e;$$

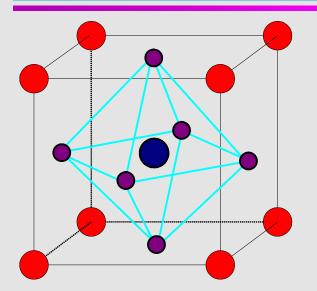
- B $(a/2, a/2, a/2), (a/2, a/2, -a/2), (a/2, -a/2, a/2), (-a/2, a/2, a/2), (a/2, -a/2, -a/2), (-a/2, a/2, -a/2), (-a/2, -a/2), (-a/2, -a/2), (-a/2, -a/2); <math>\mathbf{q}_{\mathbf{B}} = \mathbf{2}\mathbf{e}$;
- O(F) (a/2, a/2, 0), (0, a/2, a/2), (a/2, 0, a/2), (-a/2, a/2, 0), (a/2, -a/2, 0), (a/2, 0, -a/2), (-a/2, 0, a/2), (0, a/2, -a/2), (0, -a/2, a/2), (-a/2, 0, -a/2); $\boldsymbol{q}_{0} = -1e.$


Суммирование по решетке. Проблема сходимости

- ион типа B: +2*e*
- ион типа А: +е
- **О** ион типа O(F): -*e*

$$M_i = q_i \sum_j \frac{q_j}{R_{ij}}$$

Ряд сходится **ОЧЕНЬ** медленно



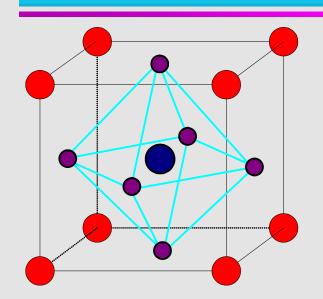
$$\sum_{j} \frac{q_{j}}{R_{ii}} \sim e \sum_{R} \frac{R}{R} \sim e \sum_{R} 1$$

для плоскости

Суммирование по решетке. Проблема сходимости

- **1** ион типа В: +2*e*
- ион типа А: +е
- **О** ион типа O(F): -*e*

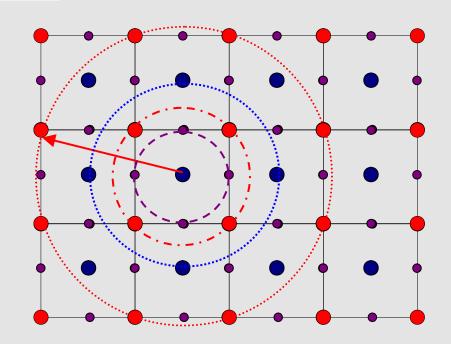
$$M_i = q_i \sum_j \frac{q_j}{R_{ij}}$$

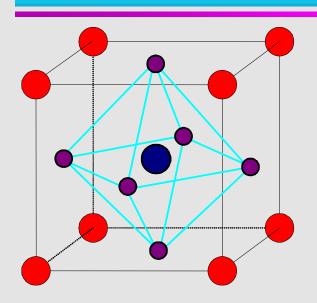

Ряд сходится **ОЧЕНЬ** медленно

$$\sum_{j} \frac{q_{j}}{R_{ij}} \sim e \sum_{R} \frac{R^{2}}{R} \sim e \sum_{R} R$$

$$\sum_{j} \frac{q_{j}}{R_{ij}} \sim e \sum_{R} (\pm) \frac{R^{2}}{R} \sim e \sum_{R} (\pm) R$$

для объема

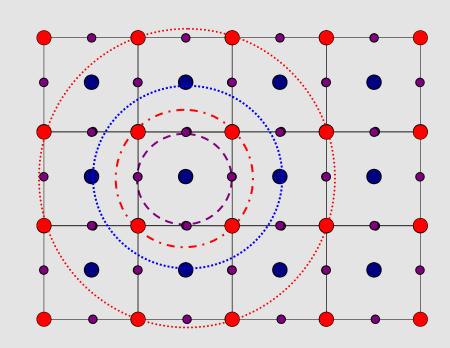

- **В** ион типа В: +2*e*
- ион типа А: +е
 - **О** ион типа O(F): -*e*

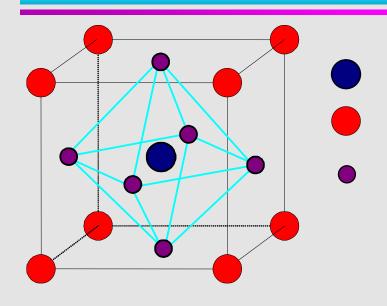

суммирование по электро**нейтральным** "комплексам":

идея Эвьена

$$\sum_{j} \frac{q_{j}}{R_{ij}} \sim e \sum_{R} (\pm) \frac{R^{2}}{R^{3}} \sim e \sum_{R} (\pm) R^{-1}$$

суммирование по мультиполям!!!



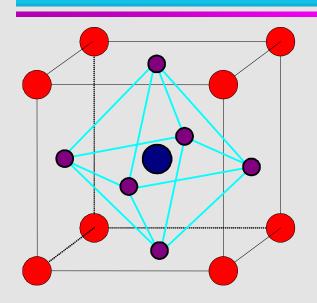

- ион типа В: +2e Эфф. заряд 2|e/
- igoplus ион типа A: +e Эфф. заряд |e|/8
- ион типа O(F): -e Эфф. заряд -/e//2

суммирование по электро**нейтральным** "комплексам":

идея Эвьена

суммирование по электро**нейтральным** "комплексам":

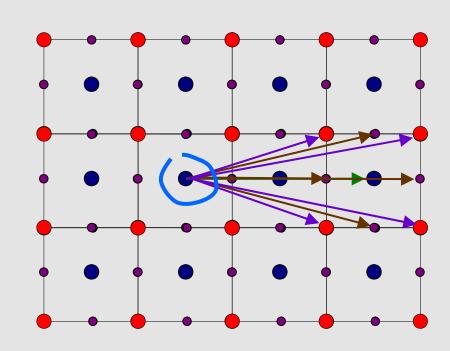
идея Эвьена

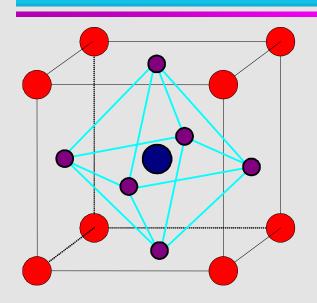

$$Q = \sum_{j=1}^{15} q_j = 8 \cdot q_A^{9\phi\phi} + 6 \cdot q_O^{9\phi\phi} + q_B^{9\phi\phi} =$$

$$= \left\{ 8 \cdot \left(\frac{1}{8}\right) + 6 \cdot \left(-\frac{1}{2}\right) + 2 \right\} e \equiv 0$$

- ион типа В: +2e Эфф. заряд 2|e/
- ион типа A: +e Эфф. заряд /e//8
- ион типа O(F): -e Эфф. заряд -/e//2

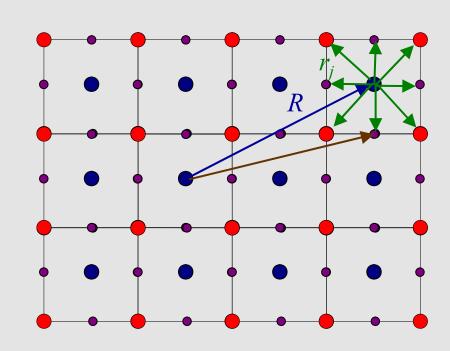
суммирование по элементарной ячейке:



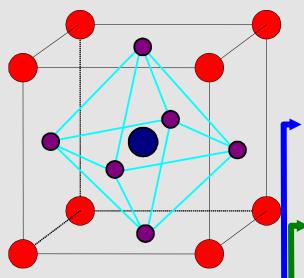

- \bullet ион типа В: +2e Эфф. заряд 2|e|
- igoplus ион типа A: +e Эфф. заряд |e|/8
- ион типа O(F): -е Эфф. заряд -/e//2

суммирование по электро**нейтральным** "комплексам":

идея Эвьена



- \bullet ион типа В: +2e Эфф. 3аряд 2|e|
- ион типа A: +e Эфф. заряд /e//8
- ион типа O(F): -e Эфф. заряд -/e//2


суммирование по электро**нейтральным** "комплексам":

идея Эвьена

Суммирование по решетке. Метод Эвьена. Алгоритм

ион типа В: +2eЭфф. заряд 2|e/

ион типа A: +eЭфф. заряд /e//8

ион типа O(F): -еЭфф. заряд -lel/2

1. ввод обезразмеренных координат (x_j, y_j, z_j) и эфф. зарядов (q_j) всех 15 ионов элементарной ячейки. S=0

2. Суммирование (циклы) по центрам элементарных ячеек $\mathbf{R}(X,Y,Z)$ (пространственные координаты X,Y,Z меняются от -N до N)

3. Внутренний цикл по элементарной ячейке -> по ионам (j=1-15) с "дробными" зарядами

4.
$$Rij = [(X - x_j)^2 + (Y - y_j)^2 + (Z - z_j)^2]^{1/2}$$

5. Если $Rij \neq 0$, то

накопление суммы $S = S + q_j/Rij$

6. Повтор цикла 3

7. Повтор циклов 2

8. Нахождение обезразмеренной постоянной Маделунга $M = q_i * S$

Общие замечания при решении задач на ЭВМ.

- Что известно об исходной задаче? (Основные свойства, учет симметрии,...) Входные данные, интервал их изменения и как эти изменения могут повлиять на ход решения? Каков приблизительно результат решения, как должен выглядеть предполагаемый ответ?
- Как добиться результата? Выбор способа (аналитическое исследование или численный анализ) и методов решения задачи, необходимого инструмента (программного продукта).

 Наилучший метод приводит к верному результату за кратчайшее время.

 Проверка полученных на каждом шаге решения результатов (программирование, корректность полученных величин, проверка модели или метода на известных результатах).
- Сколько усилий потребует решение поставленной задачи? (количество необходимого времени для освоения пакета, программирования и отладки, затрат машинного времени на решение задачи) Когда будут получены окончательные результаты?

Хеминг Р. В. Численные методы. М.: Наука, 1972.

Конец 1 лекции

- Вопросы
- Пожелания
- Замечания
- ?

