Pazbop oomMallHuX.
| |OTOKWM 1 MOTOKW.

[1pakTnka 39 - AnpaT XacbsHOB

O O T OTOTOO O -

ORI RO O TP oo

SOLID - review

Single responsibility
principle

Open/closed principle

Liskov substitution principle

Interface segregation
principle

Dependency inversion
principle

Pa3oop koga, Stream AP

HTO NponcxoagnT?

Map<String, Integer> words = new HashMap<>();
wordSequence.stream()
filter(element -> Pattern.compile('[a-aA-A]
+").matcher(element).matches())
.map(String::toLowerCase)
forEach(element -> {
if (words.containsKey(element))
words.put(element, words.get(element) + 1);
else
words.put(element, 1);

Y710 nenaem?

Stream.generate(() -> random.nextint(100))
1imit(30)

filter(digit -> digit >= 0 && digit < 12)
forEach(digit ->
map.putlfAbsent(random.nextint(100), digit));

Kakaa 3ana4a’?

while (words.size() > 1){
words.stream().forEach(o -> {
if(o.length() > 0)symb.add(o.charAt(0));});
Map characters = new HashMap();
symb.stream()
.collect(Collectors.groupingBy(key -> key))
forkach((k,v) -> characters.put(k, v.size()));
symb.clear();

result += characters.entrySet()
Stream()
max(Map.Entry.comparingByValue()).toString().charAt(9);

word = word.stream()
.map(o -> o.substring(1, o.length()))
filter(o -> o.length() > 0)
.collect(Collectors.toList());

HTO nponcxoanT’?

list.stream()
map(w->w.length()<4?
w.toUpperCase():w.contains('e’)&w.contains('B")?w:")
forkach(system.out::printin);

HacTparBaeMbI NMpeanKaT
014 CbI/IJ'IpraL\,I/II/I

Predicate<Employee> isRich = (employee -> employee.getMoney()>1000);
Predicate<Employee> isHappy = (employee ->
employee.getState().equals(*happy"));
Predicate<Employee> isCompetent = (employee ->
employee.getKnowledge().equals("high"));
Predicate<Employee> predicate;
switch (condition){
case 'money":
predicate = isRich:;
break;
case 'state’:
predicate = isHappy:;
break;
case 'knowledge”:
predicate = isCompetent;
break;
default:
predicate = (employee -> false);

}

return predicate;}}

Vlcnoib30BaTh J1erko:

String[] strings =list.stream()
filter(switcher("state").and(switcher("money"))
or(switcher("knowledge").and(switcher("money"))
or(switcher("state").negate().and(switcher('"knowledge')))))
map(Employee::getName)
toArray(String[]::new);

Concurrency

| lpMep
public class LiftOff implements Runnable{
orotected int countbown = 10;
orivate static int taskCount = O;
orivate final int id = taskCount++;
oublic LiftOff(){}
oublic LiftOff(int countDown){
this.countDown = countDown;
}

public String status(){
return "# +id+"("+ (countDown>07?countDown+"), ":"Lift Off!11)");
}

public void run(){
while(countDown-->0){
System.out.print(status());
Thread.yield();

b1

| lpMMEpP BbINOHEHWS

public class MainThread {
public static void main(String[] args {
System.out.printin("Waiting for lift off...");
Thread t = new Thread(new LiftOff());
t.start();

j
j

Waiting for lift off... #0(9), #0(8), #0(7), #0(6), #0(5), #0(4),
#0(3), #0(2), #0(1), #O(Lift Off!!)

HEeCKOJIbKO NMOTOKOB

oublic class MoreThreads {
public static void main(String[] args){
System.out.printin("Waiting for lift offs...");
Thread t;
for(int i=0; i<5; 1++){
t = new Thread(new LiftOff());
t.start();

1)

Waiting for lift offs... #1(9), #1(8), #1(7), #1(6), #1(5), #1(4), #1(3),
#1(2), #1(1), #1(Lift Off111) #2(9), #2(8), #2(7), #2(6), #2(5), #2(4),
#2(3), #2(2), #2(1), #2(Lift OFf!11) #3(9), #3(8), #3(7), #3(6), #3(5),
#3(4), #3(3), #3(2), #3(1), #3(Lift OFff!11) #4(9), #4(8), #4(7), #4(6),
#4(3), #4(4), #0(9), #4(3), #0(8), #4(2), #0(7), #4(1), #0(6), #0(5),
#4(Lift Off111)#0(4), #0(3), #0(2), #0(1), #0(Lift Off!!!)

VicnonHnTenu

° PGKOI\/IGH,EI,yeTCﬂ NCIOJ1b30BaTb BMECTO MOAMOIo Cos3aaHn4A

00BbEeKTOB Thread:
e YCKOPSAOT paboTy C MOTOKaMM 3a CHET MCMNOSIb30BaHWS MYJ10B:

e CachedThreadPool — HOBbLIV MOTOK 019 KaXKOOW 3a0a4K;
 FixedThreadPool — purkcunpoBaHHOE KOJIMHYECTBO MNMOTOKOB;

e SingleThreadExecutor — ooHOBPEMEHHO UCMONTHAET
eOVHCTBEHHbIV MOTOK; ECNIM TakoMy UCMOJHUTENO NepeaaeTcs

bonee oOHOW 3a4a4mM, OHWM CTaBATCS B OYeEPEdDb.
e BbidoB MeToaa shutdown() MCNOMHUTENA MPEKPAaLLAeT rnepenady

eMy HOBbIX 3aa4.

CachedThreadPool

oublic class CachedThreadPool {

oublic static void mam(Strmg[] args)f
-xecutorService es = Executors.newCachedThreadPool();
for(int 1 = O; i1<5; 1++){

es.execute(new LiftOff());

}

es.shutdown();

})

#0(9), #3(9), #2(9), #1(9), #1(8), #2(8), #1(7), #2(7), #1(6), #2(6), #1(5),
#2(5), #1(4), #2(4), #1(3), #2(3), #1(2), #2(2), #1(1), #2(1), #1(Lift
Off!1N)#2(Lift Off!11)#0(8), #0(7), #0(6), #3(8), #3(7), #4(9), #0(5), #0(4),
#3(6), #4(8), #0(3), #3(5), #4(7), #0(2), #0(1), #3(4), #4(6), #0(Lift
Off!11)#3(3), #4(5), #4(4), #3(2), #4(3), #4(2), #3(1), #4(1), #4(Lift
Off!!1)#3(Lift Off!!")

Fixed I hreadPool

oublic class FixedThreadPool {
public static void main(String[] args){
ExecutorService es = Executors.newkixedThreadPool(2);
for(inti = 0; i<5; 1++){
es.execute(new LIiftOff());

}

es.shutdown();

)

#0(9), #0(8), #0(7), #0(6), #0(5), #0(4), #1(9), #1(8), #1(7), #1(6), #1(5), #1(4),
#1(3), #0(3), #1(2), #1(1), #0(2), #0(1), #0(Lift OFf111)#1(Lift OFf!11) #2(9),
#3(9), #2(8), #2(7), #3(8), #3(7), #2(6), #2(5), #3(6), #3(5), #2(4), #2(3), #3(4),
#3(3), #2(2), #2(1), #3(2), #3(1), #2(Lift Off!1")#4(9), #4(8), #4(7), #4(6), #4(5)
#4(4), #4(3), #4(2), #4(1), #4(Lift OFf!11)#3(Lift OFf!11)

SingleThreadExecutor

public class SingleThreadExecutor {
public static void main(String[] args){
ExecutorService es = Executors.newsSingleThreadExecutor();
for(int1 = 0; i<5; 1++){
es.execute(new LiftOff());

}

es.shutdown();

)

#0(9), #0(8), #0(7), #0(6), #0(5), #0(4), #0(3), #0(2), #0(1), #O(Lift Off!!")
#1(9), #1(8), #1(7), #1(6), #1(5), #1(4), #1(3), #1(2), #1(1), #1(Lift Off!!)
#2(9), #2(8), #2(7), #2(6), #2(5), #2(4), #2(3), #2(2), #2(1), #2(Lift Off!!!)
#3(9), #3(8), #3(7), #3(6), #3(5), #3(4), #3(3), #3(2), #3(1), #3(Lift Off!!!)
#4(9), #4(8), #4(7), #4(6), #4(5), #4(4), #4(3), #4(2), #4(1), #4(Lift Off!!)

Callable - nonyyeHne sHavyeHN

MeTtopn submit() knacca ExecutorService Bo3BpallaetT 0ObLEKT
KJlacca Future, napamMeTpr3oBaHHbIA TUMOM PE3YbTaTa;

[11a obbekTa Future MOXXHO BbI3biBaTb METObI:

* iIsDone() - BbIACHNTL 3aBepLUeHa N 3a4a4a;

e get() - nonyunTb pesysbTaT NOoc/e 3aBepLUeHns 3aga4m;
Bbi30B Future<T>.get() 61okmMpyeTca 00 3aBepLUeHs 3a0a4u;
leperpyxeHHbit MeTo, Executors.callable() nonyyaer
Runnable n BbloaeT Callable;

ExecutorService cooep>xmt MeTOOb! A5 BbIMOJIHEHNS
KoJiuekummn obbekToB Callable.

[Tonmep ¢ Callable

import java.util.concurrent.Callable;
oublic class ResultiveTask implements Callable<String> {
private static int count = 0O;
orivate final int id = count++;
@Override
public String call() throws Exception {
return "Result from "+id;

j
j

public class CallableDemo {
private static int SIZE = 5;
public static void main(String[] args) {
ExecutorService es = Executors.newCachedThreadPool();
ArrayList<Future<String>> results = new ArrayList<Future<String>>()
for(int1 = 0; i<SIZE; i++){
results.add(es.submit(new ResultiveTask()));
J
es.shutdown();
for(Future<String> f:results){
try{
System.out.printin(f.get());

jcatch(InterruptedException e)f Result from 0

System.err.printin(e); Result from 1
lcatch(ExecutionException e Result from 2
System.err.printin(e); Result from 3

HH Result from 4

O>xknoaHme

o [TOTOK MOXXHO MEPEBECTU B PEXKM OXXNOAHUA OBYMSA CNOCODaMM:
 Bbisos Thread.yeld() - no3BongeT Opyrm NoToKam NepexsBaTnTb
yrpaBJieHe; ITO BCEro Jivib NoACKa3Ka A1 MiiaHNPOBLLMKA, HU
B KOEM CJly4ae He gupekTmeal
e BbizoB TimeUnit.MILLISECONDS.sleep(msecs) — nosBongdeT
NMPOVOCTAHOBWTL MOTOK Ha 3aJaHHOE BPEMSI.
e Bbi3oB mMeToga sleep() MOXKET NPUBECTY K UCKITKOHEHWIO
InterruptedException;
e [aK Kak UCKJ/TKOYEHUS, BO3HKAOLLME B MOTOKAX HE
PACMPOCTPAHATCSA B Main, nx Hago obpabartbiBaTh
nHanBuAyasibHO AJ1A Ka>Kgoro rnoToka.

class SleepyTask extends LiftOff {
public void run() {
try { d)
while(countDown-->0){ ®
System.out.printin(status()); @
TimeUnit. SECONDS.sleep(1); /O
}
} catch (InterruptedException ie)f
System.err.printin("Sleep Interrupted!”);

}
}

public static void main(String[] args) {
ExecutorService es = Executors.newCachedThreadPool();
for(int i = O; i<5; I++)
es.execute(new SleepyTask());
es.shutdown();

}
}

| l[pnopunTeT

B nakete JDK npenycmoTtpeHo 10 ypoBHEN NPUOPUTETOB,
OJHaKO, B onepaLyioHHOW CUCTEME 3TO YNCII0O OBbIYHO NHOE;
[TepeHOoCMOCTb 0BecnevmBaeTCs NCNOSIb3OBAHNEM TPEX
KOHCTaHT:

 Thread.MIN_PRIORITY

 Thread.NORM_PRIORITY

 Thread.MAX_PRIORITY

Thread.setPriority() ycTaHaBIMBaET MPUOPUTET MOTOKA;
Thread.getPriority() Bo3BpaLLaeT NPUOPUTET MOTOKA.

public class SimplePriorities implements Runnable {
orivate int priority, countDown = 5;
porivate volatile double d;
oublic SimplePriorities(int priority) {
this.priority = priority;

} n, n

public String toString() { return Thread.currentThread() + “: " + countDown; }
public void run() {
Thread.currentThread().setPriority(priority);
while(true) {
for(inti=1;1 < 100000; i++) {
d += (Math.Pl + Math.E) / (double)i;
If(i % 1000 == 0) Thread.yield();
}
System.out.printin(this);
if(--countDown == 0) return;

}
}

public static void main(String[] args) {
ExecutorService exec = Executors.newCachedThreadPool();
for(inti=0; 1< 5; i++)

exec.execute(new SimplePriorities(Thread.MIN_PRIORITY));
exec.execute(new SimplePriorities(Thread. MAX_PRIORITY));

exec.shutdown(); }}

Pe3ybTaTr padoThbl

Thread[pool-1-thread-6,10,main]: 5
Thread[pool-1-thread-6,10,main]: 4
Thread[pool-1-thread-6,10,main]: 3
Thread[pool-1-thread-6,10,main]: 2
Thread[pool-1-thread-6,10,main]: 1
Thread[pool-1-thread-3,1,main]: 5
Thread[pool-1-thread-2,1,main]: 5
Thread[pool-1-thread-1,1,main]: 5
Thread[pool-1-thread-5,1,main]: 5
Thread[pool-1-thread-4,1,main]: 5 ...

| |lOTOKN-OEMOHb

JeMOoH — 3TO cny)xXebHbI MOTOK, KOTOPbLIV PaboTaeT B

(DOHOBOM PEXUME;

[TporpamMmmMa He 3aBepLLIaeTcd noka XoTa Obl OOMH MOTOK-HE-

OEMOH NPOOOMKAET Pado”

dTb;

[porpaMma MOXKET 3aBEPLLUUTBCS AaXKe eC/Iv NPOOOS K0T

0abOoTy NMOTOKN-OEMOHbI;

[1eMOHbI - cny)XebHble MOTOKU, KaK TOJIbKO 3aBEPLUNTCA
NOCNegHUIA NMOTOK MPOrpaMM, AEMOHbI DyayT OCTAaHOBJIEHDI.
[leMOHOM MOTOK OesaeT Bbi30B MeToa setDeamon() nepen

3aryCKOM MOTOKa.

public class SimpleDaemons implements Runnable {
public void run() {
try {
while(true) {
TimeUnit. MILLISECONDS.sleep(100);
System.out.printin(Thread.currentThread() + " " +
this.getClass().getSimpleName());
J
} catch(InterruptedException e) {
System.out.print("sleep() interrupted");

}
}

public static void main(String[] args) throws Exception {

for(inti =0; 1< 10; i++) {
Thread daemon = new Thread(new SimpleDaemons());
daemon.setDaemon(true);
daemon.start();

J

System.out.printin(*All daemons started");

TimeUnit. MILLISECONDS.sleep(175);

3%

PeayibTaTt paboTbl AEMOHOB

All daemons started

Thread[Thread-3,5,main] SimpleDaemons
Thread[Thread-4,5,main] SimpleDaemons
Thread[Thread-1,5,main] SimpleDaemons
Thread[Thread-5,5,main] SimpleDaemons
Thread[Thread-0,5,main] SimpleDaemons
Thread[Thread-6,5,main] SimpleDaemons
Thread[Thread-2,5,main] SimpleDaemons
Thread[Thread-7,5,main] SimpleDaemons
Thread[Thread-8,5,main] SimpleDaemons
Thread[Thread-9,5,main] SimpleDaemons

Pabprika 0EMOHOB

public class DaemonThreadFactory implements ThreadFactory{
@Qverride
public Thread newThread(Runnable argO) {
Thread t = new Thread(arg0);
t.setDaemon(true);
return t;

b

e [enepb Npn cosgaHnin VIcnosIHUTENS Mbl MOXXEM MEPENATb EMY
HaLly adpriky OEMOHOB:
* Executor.newCachedThreadPool(new DeamonFactory());

e Bce NoToKu, NopoXXaeHHble 3Ton dhabpukon byayT oemoHamu!

BOonpoch!

Hem OeMOHbI OT/IMYaroTCAa OT OObIYHbIX NMOTOKOB?
CKObKO CMocoBOoB NOPOXAEHMS NOTOKOB Bbl 3HaeTe”
Kak nprnocTaHOBWUTL MOTOK?

Y10 Takoe llcnonHutesns?

CkosibkKO npuroputeToB onpeneneHo B JDK? B Windows B
Solaris”?

3a CYET YEro JOCTUraeTCA NePEHOCMOCTb KOOA MNP
MCMOJIb3OBaHNN MPUOPUTETOB?

B yem otnmndne nHtepdencos Callable n Runnable?

3aaayy

1. PeannsoBaTb C/IOXXeHVE MaTpuLL NCMNOb3Yy4
napasi1esNIbHOE BbIMOJIHEHVE OBYMA CMOCODAMU:

ACcnosib3ya Stream API, 11 6e3

2. AHANOMMYHO OIS YMHOXXEHWS MaTpUL,

3. TeKCT 3amnmpoBaH WNMPOM MPOCTOW
TOOCTAHOBKW C OOHMM KJTHOYOM. HanmcaTtb
napasifienbHbI aANropuT™M nogdopa kioda. 4
POBEPKN TEKCTA NCMNOJIb30BAaTh C/I0BAPb. PeLlnTb
3afady 6e3 Stream API n ncnonbaysa Stream AP

HTO 3a narrepH?

public class Blanket implements IComponent {
private String name;
private double time;
private String new_description;
private ArrayList<iComponent> components = new ArrayList<>();
public Blanket(){}
public Blankets(String name,String new_description, double time){
this.name = name;
this.time = time;
this.new_description = new_description;

}

public void add(IComponent component){}

Composite

HTO 3a narrepH?

public class SortedArray extends ArrayWrapper {
public SortedArray(lArray array){
super(array);
¥
@Qverride
public String[] getarray() {
String [] arr = array.getarray();
Arrays.sort(arr);
return arr;

}
}

Decorator

HTO 3a narrepH?

public abstract class Document {

public final void openDoc(String name) {
Document doc = loadFile(name);
doc.initChecker();
doc.showDocument();

}

protected void loadFile(String name);

Template Method

HTO 3a narrepH?

public class Deputat{
private Aide aide;
public void vote(X
aide.vote();
}.

public void propose()X
aide.propose();

¥
Y

Delegate

HTO 3a narrepH?

class Safe {
int Ivl; class File {
String weapon; Safe safe;
public Safe(int Ivl, String weapon) {
this.lvl = Ivl; public Safe getSafe() {
this.weapon = weapon; return safe;
))
public int getLvl() {
return Ivl; public void setSafe(Safe safe) {
} this.safe = safe;
public String getWeapon() { }
return weapon; }
)
}

Memento

| lomallHee 3agaHne

Hangnte MakcMyM B MaccuBe UCMOb3ysa 5 MOTOKOB;

HarmmwmnTe NOTOK CHETUMK, KOTOPbIV 3arnyCKaeT HOBbI CHETYMK U3 CBOErO NMOTOKA.
3anyctute 10 MOTOKOB M MPOCYMMUPYUTE B KOHLE PE3YNbTaT paboThl BCEX
cyeTyumkoB. CoenanTe npy NoMoLLM yield n wait Tak, 4tobbl cymMmma oTNimdanach OT
100. lNepenvumnTe kKog, 6be3onacHbIM 06pa3om, YTODbl OH HUKOrga He oLLnbancy

Hanounte umncno ot 0 go 10000000, KOTOpOE MMEET HaMbOJSIbLLUEE YNCIIO
nenutenen; Vicnonb3ymTte NoToku. [looymanTte, Kak pasdunTb 3Ty 3agady Ha 3a4aun
MeHbLLero pasmepal! Vicnoneaymte ThreadPool.

Hannwmnte MHOronoToO4YHOE MPUIIOXKEHWE, KOTOPOE BbIYNCIAET 3Ha4YeHWE Pl 4epes
BEPOATHOCTHbLIV NpoLuecc. BEpoATHOCTb TOro, YTO TOYKA B EOMHNYHOM KBagpaTte
OKaXKETCH B YETBEPTU Kpyra, BNMCaHHOW B 3TOT KBagpaT = pi/4.

(*) HaNVLINTE CcepBep, KOTOPbLIN YMEET BO3BPAaLLATb MOSIb30BaTENIAM haisbl 13
3a0aHHON OEPUKTOPUN.

