
Разбор домашних.
Потоки и потоки.

Практика 39 - Айрат Хасьянов

Минута Паттерна

SOLID - review

Разбор кода, Stream API

Что происходит?
Map<String, Integer> words = new HashMap<>();
 wordSequence.stream()
 .filter(element -> Pattern.compile("[а-яА-Я]
+").matcher(element).matches())
 .map(String::toLowerCase)
 .forEach(element -> {
 if (words.containsKey(element))
 words.put(element, words.get(element) + 1);
 else
 words.put(element, 1);

});

Stream.generate(() -> random.nextInt(100))

Что делаем?

Stream.generate(() -> random.nextInt(100))
 .limit(30)
 .filter(digit -> digit >= 0 && digit < 12)
 .forEach(digit ->
map.putIfAbsent(random.nextInt(100), digit));

Какая задача?
 while (words.size() > 1){
 words.stream().forEach(o -> {

if(o.length() > 0)symb.add(o.charAt(0));});
 Map characters = new HashMap();
 symb.stream()
 .collect(Collectors.groupingBy(key -> key))
 .forEach((k,v) -> characters.put(k, v.size()));
 symb.clear();

 result += characters.entrySet()
 .stream()
 .max(Map.Entry.comparingByValue()).toString().charAt(9);

 word = word.stream()
 .map(o -> o.substring(1, o.length()))
 .filter(o -> o.length() > 0)
 .collect(Collectors.toList());
 }

Что происходит?

 list.stream()
 .map(w->w.length()<4?
w.toUpperCase():w.contains("е")&w.contains("в")?w:"")
 .forEach(System.out::println);

Настраиваемый предикат
для фильтрации

 Predicate<Employee> isRich = (employee -> employee.getMoney()>1000);
 Predicate<Employee> isHappy = (employee ->
employee.getState().equals("happy"));
 Predicate<Employee> isCompetent = (employee ->
employee.getKnowledge().equals("high"));
 Predicate<Employee> predicate;
 switch (condition){
 case "money":
 predicate = isRich;
 break;
 case "state":
 predicate = isHappy;
 break;
 case "knowledge":
 predicate = isCompetent;
 break;
 default:
 predicate = (employee -> false);
 }
 return predicate;}}

Использовать легко:

String[] strings =list.stream()
 .filter(switcher("state").and(switcher("money"))
 .or(switcher("knowledge").and(switcher("money"))
 .or(switcher("state").negate().and(switcher("knowledge")))))
 .map(Employee::getName)
 .toArray(String[]::new);

Concurrency

Пример
public class LiftOff implements Runnable{

protected int countDown = 10;
private static int taskCount = 0;
private final int id = taskCount++;
public LiftOff(){}
public LiftOff(int countDown){

this.countDown = countDown;
}
 public String status(){

return "#"+id+"("+ (countDown>0?countDown+"), ":"Lift Off!!!)");
}
public void run(){

while(countDown-->0){
System.out.print(status());
Thread.yield();

} } }

Пример выполнения
public class MainThread {
public static void main(String[] args {

System.out.println("Waiting for lift off...");
Thread t = new Thread(new LiftOff());
t.start();

}
}

Waiting for lift off... #0(9), #0(8), #0(7), #0(6), #0(5), #0(4),
#0(3), #0(2), #0(1), #0(Lift Off!!!)

Несколько потоков
public class MoreThreads {
public static void main(String[] args){

System.out.println("Waiting for lift offs...");
Thread t;
for(int i=0; i<5; i++){
 t = new Thread(new LiftOff());
t.start();

} } }
Waiting for lift offs... #1(9), #1(8), #1(7), #1(6), #1(5), #1(4), #1(3),
#1(2), #1(1), #1(Lift Off!!!) #2(9), #2(8), #2(7), #2(6), #2(5), #2(4),
#2(3), #2(2), #2(1), #2(Lift Off!!!) #3(9), #3(8), #3(7), #3(6), #3(5),
#3(4), #3(3), #3(2), #3(1), #3(Lift Off!!!) #4(9), #4(8), #4(7), #4(6),
#4(5), #4(4), #0(9), #4(3), #0(8), #4(2), #0(7), #4(1), #0(6), #0(5),
#4(Lift Off!!!)#0(4), #0(3), #0(2), #0(1), #0(Lift Off!!!)

Исполнители
• Рекомендуется использовать вместо прямого создания
объектов Thread;

• Ускоряют работу с потоками за счет использования пулов:
• CachedThreadPool — новый поток для каждой задачи;
• FixedThreadPool — фиксированное количество потоков;
• SingleThreadExecutor — одновременно исполняет
единственный поток; Если такому исполнителю передается
более одной задачи, они ставятся в очередь.

• Вызов метода shutdown() исполнителя прекращает передачу
ему новых задач.

CachedThreadPool
public class CachedThreadPool {

public static void main(String[] args){
ExecutorService es = Executors.newCachedThreadPool();
for(int i = 0; i<5; i++){

es.execute(new LiftOff());
}
es.shutdown();

}}
#0(9), #3(9), #2(9), #1(9), #1(8), #2(8), #1(7), #2(7), #1(6), #2(6), #1(5),
#2(5), #1(4), #2(4), #1(3), #2(3), #1(2), #2(2), #1(1), #2(1), #1(Lift
Off!!!)#2(Lift Off!!!)#0(8), #0(7), #0(6), #3(8), #3(7), #4(9), #0(5), #0(4),
#3(6), #4(8), #0(3), #3(5), #4(7), #0(2), #0(1), #3(4), #4(6), #0(Lift
Off!!!)#3(3), #4(5), #4(4), #3(2), #4(3), #4(2), #3(1), #4(1), #4(Lift
Off!!!)#3(Lift Off!!!)

FixedThreadPool
public class FixedThreadPool {

public static void main(String[] args){
ExecutorService es = Executors.newFixedThreadPool(2);
for(int i = 0; i<5; i++){

es.execute(new LiftOff());
}
es.shutdown();

}}

#0(9), #0(8), #0(7), #0(6), #0(5), #0(4), #1(9), #1(8), #1(7), #1(6), #1(5), #1(4),
#1(3), #0(3), #1(2), #1(1), #0(2), #0(1), #0(Lift Off!!!)#1(Lift Off!!!) #2(9),
#3(9), #2(8), #2(7), #3(8), #3(7), #2(6), #2(5), #3(6), #3(5), #2(4), #2(3), #3(4),
#3(3), #2(2), #2(1), #3(2), #3(1), #2(Lift Off!!!)#4(9), #4(8), #4(7), #4(6), #4(5),
#4(4), #4(3), #4(2), #4(1), #4(Lift Off!!!)#3(Lift Off!!!)

SingleThreadExecutor
public class SingleThreadExecutor {

public static void main(String[] args){
ExecutorService es = Executors.newSingleThreadExecutor();
for(int i = 0; i<5; i++){

es.execute(new LiftOff());
}
es.shutdown();

}}

#0(9), #0(8), #0(7), #0(6), #0(5), #0(4), #0(3), #0(2), #0(1), #0(Lift Off!!!)
#1(9), #1(8), #1(7), #1(6), #1(5), #1(4), #1(3), #1(2), #1(1), #1(Lift Off!!!)
#2(9), #2(8), #2(7), #2(6), #2(5), #2(4), #2(3), #2(2), #2(1), #2(Lift Off!!!)
#3(9), #3(8), #3(7), #3(6), #3(5), #3(4), #3(3), #3(2), #3(1), #3(Lift Off!!!)
#4(9), #4(8), #4(7), #4(6), #4(5), #4(4), #4(3), #4(2), #4(1), #4(Lift Off!!!)

Callable - получение значений

• Метод submit() класса ExecutorService возвращает объект
класса Future, параметризованный типом результата;

• Для объекта Future можно вызывать методы:
• isDone() - выяснить завершена ли задача;
• get() - получить результат после завершения задачи;

• Вызов Future<T>.get() блокируется до завершения задачи;
• Перегруженный метод Executors.callable() получает

Runnable и выдает Callable;
• ExecutorService содержит методы для выполнения
коллекций объектов Callable.

Пример с Callable
import java.util.concurrent.Callable;
public class ResultiveTask implements Callable<String> {

private static int count = 0;
private final int id = count++;
@Override
public String call() throws Exception {

return "Result from "+id;
}

}

public class CallableDemo {
private static int SIZE = 5;
public static void main(String[] args) {

ExecutorService es = Executors.newCachedThreadPool();
ArrayList<Future<String>> results = new ArrayList<Future<String>>();
for(int i = 0; i<SIZE; i++){

results.add(es.submit(new ResultiveTask()));
}
es.shutdown();
for(Future<String> f:results){
try{

System.out.println(f.get());
}catch(InterruptedException e){

System.err.println(e);
}catch(ExecutionException e){

System.err.println(e);
}}}}

Result from 0
Result from 1
Result from 2
Result from 3
Result from 4

Ожидание
• Поток можно перевести в режим ожидания двумя способами:

• Вызов Thread.yeld() - позволяет другим потокам перехватить
управление; Это всего лишь подсказка для планировщика, ни
в коем случае не директива!

• Вызов TimeUnit.MILLISECONDS.sleep(msecs) — позволяет
приостановить поток на заданное время.

• Вызов метода sleep() может привести к исключению
InterruptedExсeption;

• Так как исключения, возникающие в потоках не
распространяются в main, их надо обрабатывать
индивидуально для каждого потока.

class SleepyTask extends LiftOff {
public void run() {

try {
while(countDown-->0){

System.out.println(status());
TimeUnit.SECONDS.sleep(1);

}
} catch (InterruptedException ie){

System.err.println("Sleep Interrupted!");
}

}
public static void main(String[] args) {

ExecutorService es = Executors.newCachedThreadPool();
for(int i = 0; i<5; i++)

es.execute(new SleepyTask());
es.shutdown();

}
}

Sleep

Приоритет
• В пакете JDK предусмотрено 10 уровней приоритетов,
однако, в операционной системе это число обычно иное;

• Переносимость обеспечивается использованием трех
констант:
• Thread.MIN_PRIORITY
• Thread.NORM_PRIORITY
• Thread.MAX_PRIORITY

• Thread.setPriority() устанавливает приоритет потока;
• Thread.getPriority() возвращает приоритет потока.

public class SimplePriorities implements Runnable {
private int priority, countDown = 5;
private volatile double d;
public SimplePriorities(int priority) {

this.priority = priority;
}
public String toString() { return Thread.currentThread() + ": " + countDown; }
public void run() {

Thread.currentThread().setPriority(priority);
while(true) {

for(int i = 1; i < 100000; i++) {
d += (Math.PI + Math.E) / (double)i;
if(i % 1000 == 0) Thread.yield();

}
System.out.println(this);
if(--countDown == 0) return;

}
}
public static void main(String[] args) {
ExecutorService exec = Executors.newCachedThreadPool();
for(int i = 0; i < 5; i++)

exec.execute(new SimplePriorities(Thread.MIN_PRIORITY));
exec.execute(new SimplePriorities(Thread.MAX_PRIORITY));
exec.shutdown(); }}

Результат работы
Thread[pool-1-thread-6,10,main]: 5
Thread[pool-1-thread-6,10,main]: 4
Thread[pool-1-thread-6,10,main]: 3
Thread[pool-1-thread-6,10,main]: 2
Thread[pool-1-thread-6,10,main]: 1
Thread[pool-1-thread-3,1,main]: 5
Thread[pool-1-thread-2,1,main]: 5
Thread[pool-1-thread-1,1,main]: 5
Thread[pool-1-thread-5,1,main]: 5
Thread[pool-1-thread-4,1,main]: 5 ...

Потоки-демоны
• Демон — это служебный поток, который работает в
фоновом режиме;

• Программа не завершается пока хотя бы один поток-не-
демон продолжает работать;

• Программа может завершиться даже если продолжают
работу потоки-демоны;

• Демоны - служебные потоки, как только завершится
последний поток программ, демоны будут остановлены.

• Демоном поток делает вызов метода setDeamon() перед
запуском потока.

public class SimpleDaemons implements Runnable {
public void run() {

try {
while(true) {

TimeUnit.MILLISECONDS.sleep(100);
System.out.println(Thread.currentThread() + " " +
this.getClass().getSimpleName());

}
} catch(InterruptedException e) {

System.out.print("sleep() interrupted");
}

}
public static void main(String[] args) throws Exception {

for(int i = 0; i < 10; i++) {
Thread daemon = new Thread(new SimpleDaemons());
daemon.setDaemon(true);
daemon.start();

}
System.out.println("All daemons started");
TimeUnit.MILLISECONDS.sleep(175);

}}

Результат работы демонов
All daemons started
Thread[Thread-3,5,main] SimpleDaemons
Thread[Thread-4,5,main] SimpleDaemons
Thread[Thread-1,5,main] SimpleDaemons
Thread[Thread-5,5,main] SimpleDaemons
Thread[Thread-0,5,main] SimpleDaemons
Thread[Thread-6,5,main] SimpleDaemons
Thread[Thread-2,5,main] SimpleDaemons
Thread[Thread-7,5,main] SimpleDaemons
Thread[Thread-8,5,main] SimpleDaemons
Thread[Thread-9,5,main] SimpleDaemons

Фабрика демонов
public class DaemonThreadFactory implements ThreadFactory{

@Override
public Thread newThread(Runnable arg0) {

Thread t = new Thread(arg0);
t.setDaemon(true);
return t;

} }

• Теперь при создании Исполнителя мы можем передать ему
нашу фабрику демонов:
• Executor.newCachedThreadPool(new DeamonFactory());

• Все потоки, порожденные этой фабрикой будут демонами!

Вопросы
• Чем демоны отличаются от обычных потоков?

• Сколько способов порождения потоков Вы знаете?

• Как приостановить поток?

• Что такое Исполнитель?

• Сколько приоритетов определено в JDK? В Windows в
Solaris?

• За счет чего достигается переносимость кода при
использовании приоритетов?

• В чем отличие интерфейсов Callable и Runnable?

Задачи
1. Реализовать сложение матриц используя

параллельное выполнение двумя способами:
используя Stream API, и без

2. Аналогично для умножения матриц

3. Текст зашифрован шифром простой
подстановки с одним ключом. Написать
параллельный алгоритм подбора ключа. Для
проверки текста использовать словарь. Решить
задачу без Stream API и используя Stream API

Что за паттерн?
public class Blanket implements IComponent {
 private String name;
 private double time;
 private String new_description;
 private ArrayList<IComponent> components = new ArrayList<>();
 public Blanket(){}
 public Blankets(String name,String new_description, double time){
 this.name = name;
 this.time = time;
 this.new_description = new_description;
 }

 public void add(IComponent component){}
.......

Composite

Что за паттерн?

public class SortedArray extends ArrayWrapper {
 public SortedArray(IArray array){
 super(array);
 }
 @Override
 public String[] getarray() {
 String [] arr = array.getarray();
 Arrays.sort(arr);
 return arr;
 }
}

Decorator

Что за паттерн?
public abstract class Document {

 public final void openDoc(String name) {
Document doc = loadFile(name);
doc.initChecker();
doc.showDocument();

 }
 protected void loadFile(String name);

}

Template Method

Что за паттерн?
public class Deputat{

 private Aide aide;

public void vote(){
aide.vote();

};
 public void propose(){

aide.propose();
};

}

Delegate

Что за паттерн?

Memento

class Safe {
 int lvl;
 String weapon;
 public Safe(int lvl, String weapon) {
 this.lvl = lvl;
 this.weapon = weapon;
 }
 public int getLvl() {
 return lvl;
 }
 public String getWeapon() {
 return weapon;
 }
}

class File {
 Safe safe;

 public Safe getSafe() {
 return safe;
 }

 public void setSafe(Safe safe) {
 this.safe = safe;
 }
}

Домашнее задание
1. Найдите максимум в массиве используя 5 потоков;

2. Напишите поток счётчик, который запускает новый счётчик из своего потока.
Запустите 10 потоков и просуммируйте в конце результат работы всех
счетчиков. Сделайте при помощи yield и wait так, чтобы сумма отличалась от
100. Перепишите код безопасным образом, чтобы он никогда не ошибался

3. Найдите число от 0 до 10000000, которое имеет наибольшее число
делителей; Используйте потоки. Подумайте, как разбить эту задачу на задачи
меньшего размера! Используйте ThreadPool.

4. Напишите многопоточное приложение, которое вычисляет значение Pi через
вероятностный процесс. Вероятность того, что точка в единичном квадрате
окажется в четверти круга, вписанной в этот квадрат = pi/4.

5. (*) напишите сервер, который умеет возвращать пользователям файлы из
заданной дериктории.

