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Получены формулы для расчета выхода экзоэлектронов из сферических пылевых частиц в равновесной
пылевой плазме атмосферного давления. Установлено, что при дроблении пылевых частиц на более мелкие со-
вокупный выход электронов увеличивается.
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Термин «экзоэлектронная эмиссия, или эффект Крамера» стал употребляться, когда обнару-
жилось, что различные металлические и неметаллические кристаллы обладают способностью ис-
пускать электроны после механических воздействий на них, в частности после разрывов и дробле-
ний. Экзоэмиссию отличает испускание электрона с поверхности вещества при отсутствии внеш-
него электрического поля [1, 2]. В процессах плазменно-дугового нанесения различных функцио-
нальных покрытий частицы конденсированного вещества (пылевые частицы) вводятся в поток
низкотемпературной газоразрядной дуговой плазмы. Находясь в струе плазмы, частицы ускоряют-
ся, нагреваются и наносятся на поверхность изделия. При соударении с поверхностью материала,
на которое происходит напыление, частица может разделиться на более мелкие по размерам пыле-
вые частицы, вследствие чего происходит дополнительная эмиссия экзоэлектронов этими части-
цами в окружающую плазму. Дополнительные электроны вызывают изменение степени иониза-
ции и проводимости плазмы. Таким образом, для более корректного описания параметров плазмы
в процессах нанесения функциональных покрытий необходимо принимать во внимание явление
экзоэлектронной эмиссии из пылевых частиц.

Низкотемпературную газоразрядную дуговую плазму атмосферного давления, содержащую
пылевые частицы, можно рассматривать как равновесную пылевую плазму [3–9]. При температуре
окружающего газа от 1000 до 3000 К твердые или жидкие частицы конденсированного вещества
(пылевые частицы) заряжены положительно в результате электронной эмиссии с их поверхности,
и поэтому газовая фаза содержит свободные электроны, а концентрация ионизованных атомов газа
остается пренебрежимо малой по сравнению с концентрацией электронов и нейтральных атомов.
В работе [4] решено сферически-симметричное самосогласованное уравнение Пуассона – Больц-
мана для потенциала φ электрического поля в равновесной пылевой плазме атмосферного дав-
ления
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где r – текущая координата от центра частица; q  – абсолютное значение заряда электрона; k  –
постоянная Больцмана; T  – абсолютная температура; ε  – относительная диэлектрическая
проницаемость; 0ε  – электрическая постаянная; 0en  – концентрация валентных электронов в цен-
тре частицы, где принимается, что φ = 0; in  – концентрация ионов пылевой частицы. Там же полу-
чена следующая формула для расчета выхода электронов из сферической пылевой частицы:
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где eN  – количество электронов, вышедших из пылевой частицы; R – радиус пылевой частицы;
E – напряженность электрического поля на поверхности частицы, которая определяется из соот-
ношения
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λ = , l – половина среднего расстояния между центрами двух соседних

пылевых частиц. Как видно из формул (1) и (2),  выход электронов имеет зависимость от радиуса
частицы. Таким образом, данные формулы могут быть использованы для исследования влияния
изменения размеров частиц на эмиссию электронов из пылинок при различных значениях темпе-
ратуры окружающего газа, рода частиц и расстояния между ними, т.е. для установления количест-
венных зависимостей экзоэлектронной эмиссии от основных параметров равновесной пылевой
плазмы.

Рассмотрим случай, когда данная частица разделяется на множество мелких частиц. Пусть
исходная частица имеет форму шара, радиус которого 1R , а концентрация валентных электронов

0en = 21 –310 м . Обозначим буквой s число частиц, на которые разделяется исходная частица. С це-
лью упрощения задачи предположим, что получаемые частицы также имеют форму шара, радиус
которых будет R.

Пусть z будет числом экзоэлектронов, выходящих из пылевой частицы при её делении на s
частей. Тогда

1e ez s N N= ⋅ − , (3)
где 1eN  – число электронов, вышедших из исходной частицы радиусом 1R , а eN  определяется по
формуле (1). На рис. 1 показана зависимость числа экзоэлектронов от s, рассчитанная по формуле
(3), где кривые 1, 2 и 3 соответствуют температурам 500, 1000 и 1500 К. Как видно, с ростом s
число экзоэлектронов увеличивается. Этот результат согласуется с основными выводами экспери-
ментальных работ [2, 10]. Так, например, при делении исходной частицы на 1000 частей при тем-
пературе 1000 К число экзоэлектронов достигает 3·104. На рис. 2 показана зависимость числа экзо-
электронов от T, где кривые 1, 2 и 3 соответствуют значениям s = 10, 100 и 1000. Из рис. 2 видно
усиление экзоэлектронной эмиссии с повышением температуры. Данный эффект находит экспе-
риментальное подтверждение и носит название термостимулированной экзоэлектронной эмиссии
[10].

Полученные результаты могут быть использованы для расчетов параметров технологических
процессов, где проявляется экзоэлектронная эмиссия, в частности в процессах плазменно-дугового
нанесения функциональных покрытий.

Рис. 1. Зависимость числа экзоэлектронов
от числа частиц, на которые разделяется
исходная частица

Рис. 2. Зависимость числа экзоэлектронов
от температуры



Расчет экзоэлектронной эмиссии из микрочастиц конденсированного вещества 233

СПИСОК ЛИТЕРАТУРЫ

1. К о р о л е в  Ю . В . ,  М е с я ц  Г . А .  Автоэлектронные и взрывные процессы в газовом разряде. – Новосибирск:
Наука, 1982. – 27 с.

2. Э к з о э л е к т р о н н а я  эмиссия / под ред. Н.И. Кобозева. – М.:ИЛ, 1962. – 306 с.
3. Ф о р т о в  В . Е . ,  Х р а п а к  А . Г . ,  Я к у б о в  И . Т .  Физика неидеальной плазмы: учеб. пособие. – М.:

Физматлит, 2004. – 528 с.
4. Д а у т о в  Г . Ю . ,  С а б и т о в  Ш . Р . ,  Ф а й р у ш и н  И . И .  // Вестник КГТУ им. А.Н. Туполева. – 2007. –

№ 1. – С. 29–32.
5. Д а у т о в  Г . Ю . ,  Д а у т о в  И . Г . ,  Ф а й р у ш и н  И . И .  // Вестник КГТУ им. А.Н.Туполева. – 2009. – № 1.

– С. 57–59.
6. Д а у т о в  И . Г . ,  М а р д а н ш и н  Р . М . ,  Ф а й р у ш и н  И . И . ,  Аш р а п о в  Т . Ф .  // Вестник КГТУ

им. А.Н. Туполева. – 2010. – № 3. – С. 143–148.
7. Д а у т о в  И . Г . ,  К а ш а п о в  Н . Ф . ,  М а р д а н ш и н  Р . М . ,  Ф а й р у ш и н  И . И .  // Вестник КГТУ

им. А.Н. Туполева. – 2010. – № 4. – С. 134–136.
8. V i s h n y a k o v  V . I .  // Phys. Rev. E. – 2012. – V. 85. – P. 026402 ().
9. V i s h n y a k o v  V . I .  // Phys. Rev. E. – 2006. – V. 74. – P. 036404 ().
10. М и н ц  Р . И . ,  М и л ь м а н  И . И . ,  К р ю к  В . И .  // УФН. –  1976. – Т. 119. – Вып. 4.

*Казанский национальный исследовательский технический Поступила в редакцию 30.12.13.
университет им. А.Н. Туполева-КАИ, г. Казань, Россия
**Казанский (Приволжский) федеральный университет, г. Казань, Россия
E-mail: fairushin_ilnaz@mail.ru

________________
Файрушин Ильназ Изаилович, к.т.н., ассистент каф. технической физики и энергетики;
Даутов Ильдар Галиевич, к.ф.-м.н., доцент;
Кашапов Наиль Фаикович, д.т.н., профессор, профессор каф. технической физики и энергетики.




