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Abstract. We present and validate a set of equations for rep-
resenting the atmosphere’s large-scale general circulation in
an Earth system model of intermediate complexity (EMIC).
These dynamical equations have been implemented in Aeo-
lus 1.0, which is a statistical–dynamical atmosphere model
(SDAM) and includes radiative transfer and cloud modules
(Coumou et al., 2011; Eliseev et al., 2013). The statistical
dynamical approach is computationally efficient and thus en-
ables us to perform climate simulations at multimillennia
timescales, which is a prime aim of our model development.
Further, this computational efficiency enables us to scan large
and high-dimensional parameter space to tune the model pa-
rameters, e.g., for sensitivity studies.

Here, we present novel equations for the large-scale zonal-
mean wind as well as those for planetary waves. Together
with synoptic parameterization (as presented by Coumou et
al., 2011), these form the mathematical description of the dy-
namical core of Aeolus 1.0.

We optimize the dynamical core parameter values by tun-
ing all relevant dynamical fields to ERA-Interim reanaly-
sis data (1983–2009) forcing the dynamical core with pre-
scribed surface temperature, surface humidity and cumulus
cloud fraction. We test the model’s performance in repro-
ducing the seasonal cycle and the influence of the El Niño–
Southern Oscillation (ENSO). We use a simulated annealing

optimization algorithm, which approximates the global min-
imum of a high-dimensional function.

With non-tuned parameter values, the model performs rea-
sonably in terms of its representation of zonal-mean circula-
tion, planetary waves and storm tracks. The simulated an-
nealing optimization improves in particular the model’s rep-
resentation of the Northern Hemisphere jet stream and storm
tracks as well as the Hadley circulation.

The regions of high azonal wind velocities (planetary
waves) are accurately captured for all validation experiments.
The zonal-mean zonal wind and the integrated lower tropo-
sphere mass flux show good results in particular in the North-
ern Hemisphere. In the Southern Hemisphere, the model
tends to produce too-weak zonal-mean zonal winds and a
too-narrow Hadley circulation. We discuss possible reasons
for these model biases as well as planned future model im-
provements and applications.

1 Introduction

Numerical models of the Earth system play a key role in our
understanding of physical processes in Earth and atmosphere
and can be used to simulate past and future climate changes.
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General circulation models (GCMs) are physically the
most realistic tools for studying and modelling climate vari-
ability and climate change in the Earth system. However, due
to their relatively high resolution, they are costly in terms
of CPU runtime, limiting their applicability to study climate
variability over long (∼millennia) timescales.

On the other hand, highly idealized and computational ef-
ficient models for the climate system are able to simulate
long time periods, but those are often box or one- or two-
dimensional models describing only a limited number of pro-
cesses or feedbacks of the real world. Hence, their applica-
tion is limited, but they have been applied to study paleocli-
mate (Berger et al., 1992; Harvey, 1989) and future global
change (Xiao et al., 1997).

A third class of models are so-called Earth system models
of intermediate complexity (EMICs) which form a compro-
mise between the computationally expensive (but more re-
alistic) GCMs and the highly simplified models (Claussen
et al., 2002). The number of processes and feedbacks are
comparable to GCMs; however, due to a reduction in reso-
lution and/or complexity of some model components, it is
possible to study climate simulations up to multimillennia
timescales (Eliseev et al., 2014a, b; Ganopolski et al., 2001;
Montoya et al., 2005). Other applications include determin-
ing quick assessments of climate change impacts or running
thousands of parameter sensitivity experiments (Knutti et al.,
2002; Schmittner and Stocker, 1999).

EMICs are thus particularly useful for understanding the
roles of different Earth components on very long timescales
(multimillennia and longer) and consequently form useful
tools complementary to GCMs. Internal climate processes on
such very long timescales are primarily driven by ocean and
ice dynamics (Holland et al., 2001; Latif, 1998; Polyakov
et al., 2003), with the atmosphere’s role being likely limited
to globally distributing any perturbations to the system. In
GCMs, it is however often the atmosphere which takes most
of the computational load due to the need to resolve syn-
optic weather systems, which requires a high-resolution dis-
cretization in space and time. For these reasons, a key step
in the development of EMICs intended for studying ocean
and ice dynamics on multimillennial timescales is the deriva-
tion and validation of statistical–dynamical equations which
accurately represent atmosphere dynamics (Coumou et al.,
2011).

EMICs have been used in many climate studies and sev-
eral different types of simplified atmospheric components
that form part of an EMIC exist including two-dimensional,
zonally averaged atmosphere models, 2.5-D atmosphere
models (the vertical dimension is reconstructed using two-
dimensional fields) with simple energy balance or statistical–
dynamical atmosphere models (SDAMs) (Claussen et al.,
2002; McGuffie and Henderson-Sellers, 2005). Most EMIC
studies focus on climate variability on very long timescales
(e.g., glacial cycles), and therefore fast processes are nor-
mally parameterized. In particular, SDAMs parameterize

smaller-scale (and more short-lived) processes like synop-
tic eddy activity in terms of the large-scale, long-term fields.
The assumption of those models is thus that atmospheric
variables can be expressed in separate terms of a large-
scale, long-term component, with characteristic spatial and
temporal scales of L > 1000 km and T > 10 days, and a
small-scale component-like ensemble of synoptic-scale ed-
dies and waves. The latter are then parameterized by their
averaged statistical characteristics (their total kinetic energy
and heat, their moist and momentum fluxes, etc.). This means
that transport effects of the fast-moving weather systems on
the large-scale, long-term atmospheric motion are averaged
(Ehlers and Krafft, 2001).

The essential difference compared to GCMs is the point
of truncation in the frequency spectrum of atmospheric mo-
tion (Saltzman, 1978). GCMs solve all phenomena of fre-
quencies lower than and including synoptic cyclones (and
sometimes even mesoscale systems), whereas statistical–
dynamical (SD) models parameterize all scales smaller than
and equal to synoptic. Much of the difficulty in SD models is
to define physically reasonable parameterizations occurring
in the equations (Saltzman, 1978). For Aeolus, the synoptic
parameterization has been described in detail in Coumou et
al. (2011).

As written above, SD models are also spatially averaged
since, for long-term climate simulations, we are typically in-
terested in the large spatial aspects of the climate. It is fur-
ther practical to split the large-scale, long-term field into two
components: the zonally averaged mean field and the asym-
metric departure of the field from the zonally averaged fields
characterizing the east–west variations. The azonal variables
can be, for example, resolved by one-dimensional Fourier
components around latitude circles or into spherical harmon-
ics (Saltzman, 1978).

Here, we present the Aeolus 1.0 dynamical core, devel-
oped at the Potsdam Institute for Climate Impact Research
(PIK), a new SD model for the atmosphere. It uses some as-
pects of the atmosphere module of the EMIC CLIMBER-2
developed by Petoukhov et al. (2000). The dynamical core
is completely new with novel equations for the large-scale
meridional wind speed as well as quasi-stationary planetary
waves. Together with the synoptic parameterizations pre-
sented in Coumou et al. (2011), these equations form the new
dynamical core of Aeolus 1.0. The model is coupled with the
cloud module consisting of a three-layer stratiform plus con-
vective cloud scheme as presented and validated in Eliseev et
al. (2013).

Further, we present the equations of the model and validate
the dynamical core using a parameter optimization experi-
ment. Aeolus 1.0 is forced with prescribed surface tempera-
ture, surface humidity and cumulus cloud fraction to test the
model’s performance. In particular, we examine the repro-
duction of the seasonal cycle and the influence of El Niño–
Southern Oscillation (ENSO) and compare relevant dynam-
ical fields of the model output against seasonal means of
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ERA-Interim reanalysis data (climatology 1983–2009). The
effects of parameter tuning are evaluated to improve the per-
formance of the model.

In Sect. 2, we present the novel equations of the Aeo-
lus 1.0 dynamical core with the derivation of these equa-
tions presented in the Supplement (Sects. S1–S2). The dy-
namical core is coupled with a convective plus three-layer
stratiform cloud scheme (which includes low-level, mid-level
and upper-level stratiform clouds) developed by Eliseev et
al. (2013). In Sect. 3, we describe the experiment setup and
the used reanalysis data sets. In Sect. 4, we explain the model
discretization, and in Sect. 5 we introduce our specific cali-
bration method. For parameter optimization of the wind ve-
locities, we use simulated annealing, which approximates the
global minimum of a high-dimensional function (Flechsig et
al., 2013). In Sect. 6, we present Aeolus’ dynamical fields
with pre-optimized and optimized parameters and compare
them with observations and output from models of the Cou-
pled Model Intercomparison Project phase 5 (CMIP5). We
conclude by discussing performance and limitations of the
model in Sect. 7.

2 Governing equations

2.1 General structure of the atmosphere

Aeolus 1.0 is a 2.5-D SD model, with the vertical dimen-
sion being largely parameterized and only coarsely resolved,
and it therefore belongs to the class of intermediate com-
plexity atmosphere models. Water and energy conservation
is achieved via a set of two-dimensional, vertically averaged
prognostic equations for temperature and specific humidity
(Petoukhov et al., 2000).

The three-dimensional structure is described by these two-
dimensional surface fields with the vertical dimensions re-
constructed using an equation for the lapse rate and assum-
ing an exponential profile for specific humidity (Petoukhov
et al., 2000).

For given temperature and specific humidity fields, the
three-dimensional wind field is calculated using a set of diag-
nostic equations. These statistical–dynamical equations for
the wind fields are coupled and thus need several time steps
or iterations to equilibrate.

The equations of the dynamical core of Aeolus 1.0 are
separated into equations for the (1) synoptic-scale tran-
sient waves (or storm tracks), (2) quasi-stationary planetary
waves and (3) the zonal-mean wind. Thus, following clas-
sical statistical–dynamical approaches (Dobrovolski, 2000;
Imkeller and von Storch, 2012), the key assumption is that
the wind velocity field V can be split into a synoptic-scale
component V ′ (2- to 6-day period) and a large-scale, long-
term component 〈V 〉 (Fraedrich and Böttger, 1978) such that

V = 〈V 〉+V ′ = {〈u〉, 〈v〉, 〈w〉}+
{
u′,v′,w′

}
. (1)

The variables u, v and w describe the wind velocity in zonal,
meridional and vertical directions. The brackets (〈. . .〉) sym-
bolize time-averaged quantities and the prime (. . .′) indi-
cates deviations from this time-averaged field. The large-
scale long-term component 〈V 〉 is subdivided into a zonal-
mean 〈V 〉 and an azonal component 〈V ∗〉 :

〈V 〉 = 〈V 〉 + 〈V ∗〉. (2)

The large-scale, zonal-mean zonal wind velocity 〈u(z,φ)〉
with height above surface z and latitude φ is assumed to be
geostrophic (resulting in the thermal wind balance):

〈u(z,φ)〉 = −
1
a f

 1
ρ0

〈
∂p0

∂φ

〉
+

z∫
0

g

T0

〈
∂T

∂φ

〉
dz

 , (3)

where the sea level pressure gradient is calculated by 〈 ∂p0
∂φ
〉 =

av∗ρ|f |
−Cα sinα with ageostrophic velocity parameter Cα = 5 and
the Earth radius a (derived and explained by Pethoukov et
al. 2000; Eq. 13) and α is the cross-isobar angle defined as
in Coumou et al. (2011; their Eq. A31). The variable v∗ is
the azonal meridional wind velocity, ρ is the air density with
the reference air density ρ0, f is the Coriolis parameter, φ
is the latitude, T0 is the reference temperature and g is the
gravitational acceleration (see Petoukhov et al., 2000).

As derived in the Supplement in Sect. S2, the large-scale,
zonal-mean meridional wind velocity 〈v (z,φ)〉 is given by

〈v (z,φ)〉 = (4)

d1 · (−2tan(φ)
(
〈u∗v∗〉+ 〈u′v′〉

)
)/N

+ d2 · (
∂

∂φ

(
〈u∗v∗〉+ 〈u′v′〉

)
)/N

+ d3 ·

(
(
z

H0
− 1

)
∂〈u〉

∂z
a)/N + d4 · (A)/N,

with N := n1 · (tan(φ)〈u〉)+ n2 ·

(
−
∂〈u〉

∂φ

)
+ n3 · (2�a sin(φ)),

where d1,d2,d3,d4,n1,n2 and n3 are tunable parameters and
A represents the convection-related term:

A=
L〈Pco〉

H0

〈usf〉

0a−00−01 (Ta− T0)
(
1− aqq2

s
)
+02nc

.

The atmospheric-scale height H0, the exchange for the mo-
mentums Kz, the Earth’s angular velocity � as well as the
dry adiabatic lapse rate 0a, latent heat of evaporation L and
model parameters 00,01,02,aq ,T0 are explained in Table 1.
Ta is a temperature which would occur near the surface if
the lapse rate did not change within the planetary boundary
layer (PBL), qs is the surface air specific humidity and nc is
the cumulus cloud amount. The latter variable is either com-
puted by the cloud module or, as in this experiment, observa-
tional data are used. The variable Pco is the convective pre-
cipitation rate and is calculated by the cloud model (Eliseev
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Table 1. Atmosphere model parameters.

Symbol Description Value

a Earth’s radius 6.4× 106 m
ρ0 Reference air density 1.3 kg m−3

g Gravitational acceleration 9.8 ms−2

T0 Reference temperature 273.16 K
f Coriolis parameter 2�sin(φ)
� Earth’s angular velocity 7.3× 10−5 rad s−1

Cα Ageostrophic velocity parameter 5
α Cross-isobar angle ≤ 10◦

H0 Atmosphere-scale height 8× 103 m
L Latent heat of evaporation 2.257× 106 J Kg−1

0a Dry adiabatic lapse rate 9.8× 10−3 K m−1

00 Temperature lapse rate parameter 5.2× 10−3 K m−1

01 Temperature lapse rate parameter 5.5× 10−5 m−1

02 Temperature lapse rate parameter 10−3 K m−1

aq Temperature lapse rate parameter 103
(

kg
kg

)2

Kz Coefficient of the small-scale and mesoscale turbulent exchange for the momentums 0.005z m2 s−1

et al., 2013). The variable usf is the zonal surface wind; see
Eq. (S10) in the Supplement.

The azonal component of the large-scale wind field de-
scribes quasi-stationary planetary waves and depends on lat-
itude, longitude and height. At the equivalent barotropic level
(EBL), azonal geostrophic components of horizontal veloci-
ties are computed by employing the definition of the stream
function ψ depending on latitude φ and longitude λ:

〈u∗EBL (λ,φ)〉 = −
1
a
∇φ〈ψ

∗
EBL〉 (5)

〈v∗EBL (λ,φ)〉 =
1
a
∇λ〈ψ

∗
EBL〉, (6)

whereby the stream function can be subdivided into contri-
butions from thermally and orographically induced waves
depicted by subscripts “th” and “or”, respectively. They are
considered to be additive due to linearity of the barotropic
vorticity equations such that

〈ψ∗EBL〉 = 90 · 〈ψ
∗

th,EBL〉+ 〈ψ
∗
or,EBL〉. (7)

The parameter 90 is a tuning parameter which is necessary
since smoothing is applied to dampen local moisture feed-
backs in the model. This smoothing however reduces spatial
gradients in ψ∗EBL and therefore u∗EBL and v∗EBL themselves.
The equation for the orographically induced waves is intro-
duced in Sect. S1.2 in the Supplement.

The zeroth-order solution of the thermally induced waves
of the barotropic vorticity equation is given by (see Sect. S1.3
in the Supplement)

〈ψ∗th,0,EBL〉 = −〈T
∗
EBL〉

g

�ρ0T
2
0 cosφ

∇φ

zEBL∫
0

ρ〈[T (z)]〉dz. (8)

It is solved at two beta planes, for the Northern Hemisphere
and Southern Hemisphere, respectively:

〈ψ∗th,0,EBL〉NH =−〈T
∗

EBL〉
g

�ρ0 T
2
0 cosβNH

∇φ

zEBL∫
0

ρ〈[T (z)]〉dz (9)

〈ψ∗th,0,EBL〉SH =−〈T
∗

EBL〉
g

�ρ0 T
2
0 cosβSH

∇φ

zEBL∫
0

ρ〈[T (z)]〉dz. (10)

The beta plane is an approximation in which the Coriolis pa-
rameter is linearized to reference latitudes βNH and βSH for
the Northern Hemisphere and Southern Hemisphere, respec-
tively. In the tropical belt, the variable 〈ψ∗th,0,EBL〉 is interpo-
lated linearly between the two beta planes.

The standardized integrated heat content in Eq. (8) (Iv =∫ zEBL
0 ρ〈[T (z)]〉dz) is calculated analytically by assuming a

lapse rate 0 = 00+01 (Ta− T0)
(
1− aqq2

s
)
−02nc such that

T (z)= T (zEBL)−0(z− zEBL). One obtains

Iv =ρ0 ([T (zEBL)]− [0]zEBL)H0

(
1− e−

zEBL
H0

)
−0ρ0H0

{
(H0− zEBL)

(
e
−
zEBL
H0 − 1

)}
.

In addition, Iv is smoothed by five points in latitude to avoid
numerical artifacts which may arise due to spatial differenti-
ating.

To remove possible singularities near the poles, at high lat-
itudes, the stream function is dampened by a fourth-order in-
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terpolation function. Planetary waves at other tropospheric
levels are directly calculated from those at the EBL (see
Sect. S1.1 in the Supplement).

Finally, the time-averaged kinetic energy of transient
eddies 〈E′k〉 =

1
2

(
〈u′

2
〉+ 〈v′

2
〉

)
is determined using the

statistical–dynamical equations as described in Coumou et
al. (2011). Since detailed derivations are provided in Coumou
et al. (2011), we only briefly discuss the diagnostic equations
for transient eddy activity here. The equations are derived
starting from the equation of the kinetic energy of transient
eddies:

∂〈E′k〉

∂t
=−〈V〉 · ∇〈E′k〉+ 〈u

′V′〉 · ∇〈u〉− 〈v′V′〉〉 · ∇〈v〉+

Kfh1H 〈E
′

k〉+Kfz1z〈E
′

k〉−Kfs〈E
′

k〉

+ f
(
〈u′v′ag〉− 〈v

′u′ag〉
)
. (11)

By assuming that the vertical (baroclinic) flux term is
equipartitioned between the zonal and the meridional kinetic
energy components, we can split Eq. (11) into three separate
equations for 〈u′2〉, 〈v′2〉 and 〈u′v′〉:

∂〈u′
2
〉

∂t
=−〈V〉 · ∇〈u′2〉− 2〈u′2〉

∂〈u〉

∂x
− 2〈u′v′〉

∂〈u〉

∂y

+Ksyn

[(
∂〈u〉

∂z

)2

+

(
∂〈v〉

∂z

)2
]
+Kfh1H 〈u

′2
〉

+Kfz1z〈u
′2
〉−Kfs〈u

′2
〉+ f

(
〈u′v′ag〉− 〈v

′u′ag〉
)

(12)

∂〈v′
2
〉

∂t
=−〈V〉 · ∇〈v′2〉− 2〈v′2〉

∂〈v〉

∂y
− 2〈v′2〉

∂〈v〉

∂x

+Ksyn

[(
∂〈u〉

∂z

)2

+

(
∂〈v〉

∂z

)2
]
+Kfh1H 〈v

′2
〉

+Kfz1z〈v
′2
〉−Kfs〈u

′2
〉+ f

(
〈u′v′ag〉− 〈v

′u′ag〉
)

(13)

∂〈u′v′〉

∂t
=−〈V〉 · ∇〈u′v′〉− 〈u′V〉 · ∇〈v〉− 〈v′V〉

· ∇〈u〉 +Kfh1H 〈u
′v′〉+Kfz1z〈u

′v′〉−Kfs〈u
′v′〉

+ f
(
〈v′v′ag〉− 〈u

′u′ag〉
)
. (14)

Here, Kfh and Kfz are internal atmospheric small-
/mesoscale friction coefficients in the horizontal and vertical
directions, respectively;Kfs is the surface friction coefficient;
f is the Coriolis parameter; and the subscript “ag” denotes
ageostrophic terms.

The terms for Ksyn, the vertical macro-turbulent diffusion

coefficient and f
(
〈v′v′ag〉− 〈u

′u′ag〉
)

, need to be parameter-
ized, which is derived in Coumou et al. (2011). This way,
a set of diagnostic equations for synoptic transient eddies is
derived which, as also seen in Eqs. (12)–(14), are all coupled
to the large-scale wind field.

This provides us with a coupled set of equations for
〈u〉, 〈v〉, 〈u∗〉, 〈v∗〉, 〈u′

2
〉, 〈v′

2
〉 and 〈u′v′〉, which can be

solved. Cross terms like 〈u∗v∗〉 can be determined by multi-
plying 〈u∗〉with 〈v∗〉 and taking the zonal mean of that quan-
tity. All derivatives are determined numerically. The values
of the parameters are listed in Table 1.

3 Forcing data and reanalysis data sets

The simulations were forced by multiyear averages of
monthly mean climatological, El Niño and La Niña month
data (surface temperature, surface specific humidity, temper-
ature at 500 mb, geopotential height at 500 and 1000 mb) us-
ing ERA-Interim reanalysis data (Dee et al., 2011) for 1983–
2009, as our aim is to show that Aeolus captures year-to-
year variability associated with the ENSO cycle. We identi-
fied 87 El Niño (74 La Niña) months using 3-month running
means of Extended Reconstructed Sea Surface Temperature
(ERSST) v4 anomalies (Huang et al., 2016) using the defini-
tion that at least five consecutive overlapping seasons of sea
surface temperature (SST) anomalies are greater than 0.5 K
(less than −0.5 K) for El Niño (La Niña) events.

Multiyear averages of monthly mean, El Niño and La
Niña month cumulative cloud fractions are taken from ISSCP
(Rossow and Schiffer, 1999). The spatial resolution is 2.5×
2.5◦ (lat× long) and the time range is 1983–2009.

We chose this time period, because the cumulative cloud
fraction data, which are needed to calculate the lapse rate, are
only available for this time period.

To avoid strong temperature gradients in the specified
boundary conditions for the numerical experiments, we use
the lapse rate equation to calculate temperatures at 1000 mb
from those at 500 mb. We first calculate the lapse rate using
the temperature field and specific humidity utilizing the equa-
tion as given in Petoukhov et al. (2000) at 1000 mb. Then, we
recalculate the temperature field at 1000 mb by employing
the temperature field at 500 mb and the linear lapse rate equa-
tion. This way, we ensure that the temperature at 500 mb is
close to observations, and at the same time we have a vertical
temperature realistic profile for a model like Aeolus. Since
the ERA-Interim 500 mb temperatures contain an orographic
component, we exclude 〈ψ∗th,0,EBL〉 in Eq. (7) in order not to
incorporate orographic forcing of planetary waves twice.

We optimized the parameters for the numerical solutions
of the wind velocities u∗, v∗ and 〈u〉 as well as eddy kinetic
energy 〈E′k〉 at 500 mb. To compare the strength and posi-
tion of the Hadley and Ferrell cells between observation and
model, we calculate a zonal-mean mass flux 〈m〉 in the lower
troposphere using the zonal-mean meridional wind velocity
〈v〉 at levels between 1000 and 500 mb, assuming exponen-
tial decay of air density with height (Petoukhov et al., 2000).

Before use with Aeolus, all data sets are interpolated to
3.75× 3.75◦ (lat× long) spatial resolution.
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4 Model discretization

Aeolus operates on a reduced grid to overcome the restric-
tion of small time steps near the poles due to the Courant–
Friedrichs–Lewy (CFL) criteria (Jablonowski et al., 2009). In
the grid generation, longitudinally adjacent cells are merged
if their zonal width in meters would be less than half of the
cell width at the Equator.

This way the reduced grid has the same resolution as a
regular grid at the Equator, but at nominal resolution (3.75×
3.75◦) around the poles only six cells are defined. On the
regular grid, the maximum permissible time step due to the
CFL criteria would be approximately 5 min, while the limit
for the reduced grid is approximately 2 h.

5 Calibration

Equations (1)–(14) are implemented in Aeolus and numeri-
cally solved on a 3.75× 3.75◦ reduced grid with four tropo-
spheric height levels (1000, 3000, 5000 and 9000 m).

The calibration of the winds is divided into two parts. First,
we optimize the dynamical variables primarily driven by the
thermal state of the atmosphere: the azonal velocities in zonal
and meridional directions 〈u∗〉 and 〈v∗〉 as well as the zonal-
mean zonal wind velocity 〈u〉. In the second step, we tune
the zonal-mean synoptic kinetic energy 〈E′k〉 and the lower
troposphere integrated mass flux 〈m〉, which solely depend
on the zonal-mean meridional wind 〈v〉.

A common approach for parameter tuning is simulated an-
nealing (Ingber, 1996; Kirkpatrick, 1984). It is one experi-
ment type in the multirun simulation environment SimEnv
for sensitivity and uncertainty analysis of model output
(Flechsig et al., 2013) which we use for all calibration ex-
periments. A schematic plot of the optimization process is
shown in Sect. S3 in the Supplement.

For each model run, the thermal state of the atmosphere
is kept constant (and initialized as described above) and the
dynamical core is equilibrated to this thermal state. This typ-
ically requires only a few time steps. Since we tune only the
parameters of the dynamical core, Aeolus first calculates the
clouds using its cloud scheme (Eliseev et al., 2013) to deter-
mine the lapse rate and initialize the three-dimensional ther-
mal state. After that, only the state of the dynamical core is
updated each time step.

5.1 Dynamical core tuning – step 1

For a good starting point, the parameters are first tuned
manually, providing “pre-optimized” values. Next, we define
physically realistic parameter ranges for automatic tuning as
listed in Table 2.

For the azonal wind velocities, we use a weighting func-
tion which excludes the tropics (from 10◦ S to 10◦ N) and po-
lar regions (poleward of 60◦ S for the Southern Hemisphere
to exclude influences of Antarctica and poleward of 70◦ N for

Table 2. Pre-optimized and optimized parameter sets and parameter
ranges for optimization step 1.

Parameters Optimized Range Pre-optimized
value value

φflat0 56.5 56.0 : 84.0 70.0
βNH 57.2 30.0 : 60.0 37.5
βSH −31.3 −60.0 : −30.0 −52.5
90 10.14 7.4 : 12 8.0

the Northern Hemisphere) such that the midlatitudes, where
planetary waves are important, are optimized.

The non-excluded grid as well as the zonal-mean zonal
wind are weighted by w(φ)= |cos(φ)|.

The total skill score for the scheme in step 1 is calculated
by multiplying the individual skills for the azonal velocities
in zonal and meridional directions (Su∗ ,Sv∗) and the skill for
the zonal-mean zonal wind velocity(S

〈u〉):

S = Su∗Sv∗S〈u〉.

The goal of the optimization procedure is to maximize the
skill S.

Skill score functions for individual variables are computed
as in Taylor (2001):

S (φ,λ, t)=
(1+ rX)4

(AX + 1/AX)2
. (15)

In Eq. (15), rX is the coefficient of the spatial correlation
between the area-weighted modeled and observed fields of
X; AX is the so-called relative spatial variation calculated
according to

AX = AX,M/AX,O. (16)

Here, the variable AX,M is the spatial average of∣∣XM−XM,g
∣∣ and XM,g is a globally averaged value of the

modeled field XM. The observed field is similarly defined by
AX,O.

5.2 Dynamical core tuning – step 2

For tuning the zonal-mean meridional wind velocity 〈v〉, and
in particular the strength and width of the Hadley cell, we use
the vertical integral of the lower tropospheric integrated mass
flux 〈m〉. In addition, we tune the zonal-mean area-weighted
synoptic kinetic energy 〈E′k〉. Both variables strongly depend
on the dynamic fields tuned in step 1, which is the reason for
tuning them in a separate second step.

Total skill score for the scheme in step 2 is calculated by
multiplying the individual skills for the vertical integral of
lower troposphere mass flux (S

〈m〉) as well as the eddy ki-
netic energy (S〈E′k〉):

S = S
〈m〉S〈E′k〉

.
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Table 3. Pre-optimized and optimized parameter sets and parameter
ranges for optimization step 2.

Parameters Optimized Range Pre-optimized
value value

U0 5.86 3.5 : 6.5 5
m 0.7849 0.4662 : 0.86658 0.6666
d1 0.41 0.0 : 2.0 1.0
d2 2.36 0.0 : 2.5 1.0
d3 0.83 0.0 : 2.5 1.0
d4 1.84 0.0 : 2.5 1.0
n1 2.16 0.0 : 2.5 1.0
n2 1.63 0.0 : 2.0 1.0
n3 1.06 0.0 : 2.0 0.5

The goal of the optimization procedure is again to maxi-
mize skill S.

The skill score function for the eddy kinetic energy is
given by the Taylor skill score function (Eq. 15).

The skill score is then calculated by

S
〈m〉 =

(
meanHadley_Obs−meanHadley_Model

)2
r2
X. (17)

Here, rX is the coefficient of the spatial correlation be-
tween area-weighted modeled and observed fields (as in
Eq. 15), meanHadley_Model and meanHadley_Obs are the mean
values of the area-weighted modeled and observed mean
mass flux. We use this more elaborate skill function to pro-
mote a proper Hadley circulation in the model.

The weights of the lower troposphere mass flux 〈m〉 are
calculated according to

w(φ)=

{
|cos(φ)| φ > 60◦ S
0 φ ≤ 60◦ S .

For calculating the mean intensity of the Hadley cell, we de-
termine the roots of the mass flux in observation data close to
0 and 30◦ which determine the Hadley cell latitudinal bound-
aries. This way, we have 36 values for the boundaries of the
northern Hadley cell. Between these latitudinal borders, we
calculate the mean strength of the Hadley cell.

In Table 3, the manually tuned (or pre-optimized) param-
eters and their ranges are listed.

6 Results

6.1 Results of calibration – step 1

We compared the numerical solutions using the optimized
parameters for the wind fields 〈u∗〉, 〈v∗〉 and 〈u〉 of climato-
logical monthly averages, El Niño and La Niña months from
ERA-Interim reanalysis (Dee et al., 2011) for 1983–2009.

The figures for azonal wind velocities are divided into six
subplots. The left column shows observational data and the
right column model data. The top row shows climatological
monthly averages, the middle row multiyear averages of El
Niño months and the bottom row multiyear averages of La
Niña months.

In Figs. 1 and 2, the azonal components of the zonal wind
velocities (〈u∗〉) for February and August at 500 mb are dis-
played, respectively. The figures show that with optimized
parameters the model reasonably reproduces the main ob-
served features both in terms of spatial position and magni-
tude. In particular, the extratropical planetary waves are well
captured with some minor discrepancies in the tropics. Both
the seasonal cycle and the response to the ENSO cycle are
well captured by the model.

Figures 3 and 4 show the same type of plots for the azonal
meridional wind velocity (〈v∗〉). Also, for the meridional
wind velocity, the most important features of the reanalysis
data are well represented in the model. The model results
coincide well in wind strength and spatial pattern with the
reanalysis data. The wind strength in winter, for both clima-
tological and El Niño months, is stronger than for La Niña
months. In summer, the opposite is seen for both model and
reanalysis data.

In Fig. 5, the zonal-mean zonal wind velocity (〈u〉) at
500 mb is shown with the orange line representing reanaly-
sis data, red representing model data with optimized param-
eters and gray representing model data with pre-optimized
parameters. The figure is subdivided into six subplots. The
top row depicts 〈u〉 in February and the bottom row shows
〈u〉 in August, while the columns show climatological data,
El Niño data and La Niña data, respectively. It is noticeable
that the results obtained with pre-optimized parameters are
already reasonable. Apparently, the initial choice of tuning
parameter values was already near the optimum, and hence
the optimized parameters led only to small improvements of
the model results. The Northern Hemisphere 〈u〉 profile is
well resolved in both seasons for both El Niño and La Niña
months. Parameter optimization slightly improves the results
in the tropics. The modeled amplitude of 〈u〉 in the Southern
Hemisphere is too small in February for all plots and too high
in August.

The optimized parameters are listed in Table 2. The βNH
in the Northern Hemisphere has a higher value, whereas the
βSH in the Southern Hemisphere has a lower value than the
pre-optimized parameter values.

The last parameter is 90 and is changed to a higher value
in order to strengthen speeds in 〈v∗〉 and 〈u∗〉.

6.2 Results of calibration – step 2

We compared the numerical solutions using the optimized
parameters for the zonal-mean lower troposphere integrated
mass flux 〈m〉 and eddy kinetic energy 〈E′k〉

www.geosci-model-dev.net/11/665/2018/ Geosci. Model Dev., 11, 665–679, 2018



672 S. Totz et al.: The dynamical core of the Aeolus 1.0 statistical–dynamical atmosphere model

ERA-Interim u* (500 mb) Aeolus u*(500 mb)
(a) (b)

C
li
m

-150 -100 -50 0 50 100 150

50

0

-50

-150 -100 -50 0 50 100 150

50

0

-50

(c) (d)

E
l
N

iñ
o

-150 -100 -50 0 50 100 150

50

0

-50

-150 -100 -50 0 50 100 150

50

0

-50

(e) (f)

L
a

N
iñ

a

-150 -100 -50 0 50 100 150

50

0

-50

-150 -100 -50 0 50 100 150

50

0

-50

u
*(m s )

-10

-5

0

5

10

15

-1

Figure 1. Azonal large-scale zonal wind u∗ at 500 mb for all February months/El Niño February months/La Niña February months. The left
column shows the results from reanalysis data and the right column shows the results from Aeolus received by optimized parameters. The
model is forced by surface temperature, humidity and cumulus cloud fraction.
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Figure 2. Azonal large-scale zonal wind velocity u∗ at 500 mb for August (compare Fig. 1).
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Figure 3. Azonal large-scale meridional wind velocity v∗ at 500 mb for February (compare Fig. 1).
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Figure 4. Azonal large-scale meridional wind velocity v∗ at 500 mb for August (compare Fig. 1).
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Figure 5. Zonal-mean large-scale zonal wind velocity 〈u(z,φ)〉 at 500 mb. Panel (a) shows the climatological monthly mean zonal-mean
zonal velocity in February, (b) the monthly mean zonal-mean velocity of El Niño February months and (c) the monthly mean zonal-mean
velocity of La Niña February months. Panel (d) displays the monthly mean climatological zonal-mean zonal velocity in August, (e) the
monthly mean zonal-mean velocity in El Niño August months and (f) the monthly mean zonal-mean velocity in La Niña August months.
The yellow line represents zonal-mean large-scale zonal wind obtained by reanalysis data, the gray line is zonal-mean large-scale zonal wind
velocity from Aeolus using pre-optimized parameters and the red line represents zonal-mean large-scale zonal wind velocity from Aeolus
using optimized parameters.

The plots in Fig. 6 show that in general the monthly mean
zonal-mean mass flux calculated with optimized parameters
matches better with observational data. Here, the gain of the
parameter optimization is clearly better than we saw with cal-
ibration step 1. The ENSO cycle is clearly visible. However,
the width of the Hadley cell (especially in August) is still too
small compared to the width of the Hadley cell obtained by
reanalysis data. The figure shows only plots with a latitudinal
range from 60◦ S to 90◦ N as reanalysis data are spiky over
Antarctica.

Figure 7 shows the zonal-mean eddy kinetic energy 〈E′k〉.
We show the same color code as in Fig. 6. Northern Hemi-
sphere modeled 〈E′k〉 profile is again well resolved in both
seasons and for El Niño and La Niña months with the pa-
rameter optimization. Smaller spikes vanish such that the
modeled 〈E′k〉 better matches the observed data. The param-
eter optimization gained more improvement in the Northern
Hemisphere (NH) than in the Southern Hemisphere (SH).

In Figs. 8 and 9, the eddy kinetic energies 〈E′K 〉 for Febru-
ary and August are displayed. The left column shows obser-
vational data and the right column model data. The top row
presents climatological monthly averages, the middle row El
Niño months and the bottom row La Niña months.

The spatial position and the magnitude are well captured;
seasons and the ENSO cycles are also well resolved, with

some discrepancies in the tropics (i.e., the region over the
Atlantic and Pacific oceans) and the Southern Hemisphere.
In February and August, 〈E′K 〉 is stronger in the Northern
Hemisphere than in the Southern Hemisphere for both the
climatology and in El Niño months. Only in La Niña months,
〈E′K 〉 is weaker in the Northern Hemisphere.

The optimized parameters are listed in Table 3. The pa-
rameters U0 and m for optimizing the eddy kinetic energy
are greater than the manually tuned values.

The parameters d3 and n3 are close to 1, whereas the pa-
rameters d2, d4 and n1 are close to 2 and have a strong impact
on the amplitude of the Hadley cell and the Ferrell cell. The
parameter with the smallest influence is d1.

6.3 Comparison to CMIP5 models

Figure 10 shows the comparison of February and August
〈E′k〉, 〈u〉 and 〈m〉 between CMIP5 models (gray lines), Ae-
olus (red) and ERA-Interim data (orange). In general, CMIP5
models represent the 〈E′k〉 and 〈u〉 very well in both hemi-
spheres. However, in the Southern Hemisphere, the storm
tracks, i.e., 〈E′k〉, of all models are too weak compared to ob-
servations with Aeolus on the lower end of the CMIP5 range.
Further, some individual CMIP5 models can have too-low or
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Figure 6. Zonal-mean large-scale mass flux 〈m〉. Panel (a) shows the climatological monthly mean zonal-mean mass flux in February, (b) the
monthly mean zonal-mean mass flux of El Niño February months and (c) the monthly mean zonal-mean mass flux of La Niña February
months. Panel (d) displays the monthly mean climatological zonal-mean mass flux in August, (e) the monthly mean zonal-mean mass flux in
El Niño August months and (f) the monthly mean zonal-mean mass flux in La Niña August months. The yellow line represents zonal-mean
large-scale mass flux obtained by reanalysis data, the gray line is the zonal-mean large-scale mass flux from Aeolus using pre-optimized
parameters and the red line represents the zonal-mean large-scale mass flux from Aeolus using optimized parameters.
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Figure 7. Zonal-mean time-averaged eddy kinetic energy 〈E′
k
〉 (compare Fig. 6).
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Figure 9. Eddy kinetic energy 〈E′
k
〉 in August at 500 mb (compare Fig. 1).
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Figure 10. Comparison to CMIP5 models. The orange line represents ERA-Interim data, the red line results from Aeolus and gray lines
CMIP5 models (annual mean zonal-mean data).

too-high 〈E′k〉 and 〈u〉 compared to ERA-Interim, similar to
Aeolus.

The CMIP5 multimodel mean of 〈m〉 appears to be close
to the reanalysis and most models reproduce this well. Still,
some CMIP5 models can differ strongly from 〈m〉 in ERA-
Interim with some spiky behavior. Nevertheless, the width
and strength of the Hadley cell is in most models well pre-
sented, but the Ferrell cell is often too strong. Aeolus’ results
give reasonable strength and width of the Ferrell cell, but the
width of the Southern Hemisphere Hadley cell in August is
too small compared to both reanalysis and CMIP5 models.

7 Summary and discussion

In this paper, we presented the atmosphere model Aeolus,
which is a statistical–dynamical atmosphere model and be-
longs to the class of intermediate complexity models. The
equations of Aeolus are time averaged and the model has
a spatial resolution of 3.75◦× 3.75◦ (lat× long). The three-

dimensional structure of Aeolus is reconstructed using a set
of two-dimensional, vertically averaged prognostic equations
for temperature and water vapor (Petoukhov et al., 2000).
The advantage of such types of models is the fast compu-
tation time and for that reason the possibility to study and
simulate long time periods as well as conduct sensitivity ex-
periments.

We performed parameter optimization of the dynamical
core consisting of a large multidimensional parameter space
and can be searched due to its fast computation time. For
this approach, we used the simulated annealing optimiza-
tion algorithm, which approximates the global minimum of a
high-dimensional function. We divided the calibration into
two parts. First, the azonal velocities in zonal and merid-
ional directions as well as the zonal-mean zonal wind veloc-
ity were optimized, because they are primarily driven by the
thermal state of the atmosphere. In the second step, we opti-
mized the zonal-mean synoptic kinetic energy and the lower
troposphere integrated mass flux, and hence the zonal-mean

www.geosci-model-dev.net/11/665/2018/ Geosci. Model Dev., 11, 665–679, 2018



678 S. Totz et al.: The dynamical core of the Aeolus 1.0 statistical–dynamical atmosphere model

meridional velocity, since those variables depend strongly on
variables of step 1.

The results of the winds and eddy kinetic energy are in rea-
sonable agreement with the reanalysis data and showed that
our model is able to reproduce the dynamic response from the
seasonal cycle as well as the ENSO cycle which is a prime
goal of our model development efforts. Parameter optimiza-
tion in particular improves representation of the Hadley cell
in terms of strength and width.

In the Southern Hemisphere, the dynamical fields tend to
be too weak. This model bias might be related to the miss-
ing Antarctic ice sheet, upper tropospheric ozone, the con-
stant lapse rate assumption or fundamental limitations of the
equations. These possibilities will be analyzed in future work
using the Potsdam Earth Model (POEM) to which Aeolus has
been coupled.

Compared to CMIP5 models, Aeolus captures reasonably
well the dynamical state of the atmosphere in the North-
ern Hemisphere, particularly for monthly mean eddy kinetic
energy 〈E′k〉, zonal-mean wind velocity 〈u〉 and mass flux
〈m〉. Especially the mass flux of the Ferrell cell is better
captured than in other models, whereas the Southern Hemi-
sphere Hadley cell width of Aeolus in August is too small
compared to CMIP5 models.
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 Supplementary Information 1 

 2 

S1 Planetary Waves  3 

S1.1 Calculation of planetary waves at tropospheric levels excluding EBL-level 4 

At other tropospheric levels than the EBL, the components are calculated by 5 

 〈𝑢𝑢∗(𝑧𝑧)〉 =  −
1
𝑓𝑓𝜌𝜌0

∇𝜙𝜙〈𝑝𝑝𝑧𝑧∗〉 

 
(S1 ) 

 〈𝑣𝑣∗(𝑧𝑧)〉 =  
1
𝑓𝑓𝜌𝜌0

∇𝜆𝜆〈𝑝𝑝𝑧𝑧∗〉, ( S2 ) 

   

 6 

The azonal component is computed assuming isothermal expansion of air parcels in planetary waves 7 

 〈𝑝𝑝𝑧𝑧∗〉 = 〈𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉exp[(𝑧𝑧 − 𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸)/𝐻𝐻0] +  
𝑝𝑝∗𝑔𝑔
Γ𝑅𝑅 exp[−𝑧𝑧/𝐻𝐻0] �ln �

𝑇𝑇(𝑧𝑧)
𝑇𝑇(𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸)� − ln �

𝑇𝑇(𝑧𝑧)
𝑇𝑇(𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸)�� (S3 ) 

and 8 

 〈𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉 = 𝜌𝜌 �〈𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸〉�∇𝜙𝜙〈𝜓𝜓𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉 + 2�
〈𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸〉
𝑎𝑎 cos(𝜙𝜙) + Ω� sin(𝜙𝜙)〈𝜓𝜓𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉 (S4 ) 

 9 

 10 

 11 

S1.2 Orographically induced stream function 12 

For the waves excited by the orography, the stream function is calculated by 13 

 
𝛽𝛽∇𝜆𝜆〈𝜓𝜓𝑜𝑜𝑜𝑜,0,𝐸𝐸𝐸𝐸𝐸𝐸

∗ 〉 = −
𝑓𝑓
𝐻𝐻0

〈𝑤𝑤𝑜𝑜𝑜𝑜〉 +
𝑓𝑓2

𝑔𝑔
𝜕𝜕〈𝑢𝑢′𝑣𝑣′〉∗

𝜕𝜕𝑧𝑧  

 
(S5 ) 

 14 

where 𝑓𝑓 is the Coriolis parameter and 𝛽𝛽 = ∇𝜙𝜙𝑓𝑓 and 15 

 16 



2 
 

𝑤𝑤𝑜𝑜𝑜𝑜 =  〈𝑢𝑢〉∇𝜙𝜙ℎ𝑜𝑜𝑜𝑜 + 〈𝑣𝑣〉∇𝜆𝜆ℎ𝑜𝑜𝑜𝑜 + 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠(〈𝑢𝑢〉2 + 〈𝑣𝑣〉2 + 〈𝑢𝑢′2〉 + 〈𝑣𝑣′2〉)1/2ℎ𝑠𝑠𝑠𝑠𝑠𝑠. 

 
(S6 ) 

 1 

The variable ℎ𝑜𝑜𝑜𝑜 describes the grid cell averaged orography height ℎ𝑠𝑠𝑠𝑠𝑠𝑠 the subgrid scale standard deviation of the 2 

height of mountains, and 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠is an additional tuning parameter. 3 

The azonal component describes quasi-stationary planetary waves and is subdivided into a geostrophic and 4 
ageostrophic term: 5 

𝑢𝑢∗ = 𝑢𝑢𝑔𝑔𝑔𝑔𝑜𝑜𝑠𝑠∗ + 𝑢𝑢𝑎𝑎𝑔𝑔𝑔𝑔𝑜𝑜𝑠𝑠∗  

𝑣𝑣∗ = 𝑣𝑣𝑔𝑔𝑔𝑔𝑜𝑜𝑠𝑠∗ + 𝑣𝑣𝑎𝑎𝑔𝑔𝑔𝑔𝑜𝑜𝑠𝑠∗  

S1.3 Zeroth order solution of the thermally induced waves of the barotropic vorticity equation at the EBL 6 

We start from the z-projection of the baroclinic vorticity equation, which can be derived from the simplified Navier-7 
Stokes-equation : 8 

 𝑢𝑢�
𝜕𝜕
𝜕𝜕𝜕𝜕  �

𝜕𝜕2〈Ψ𝐸𝐸𝐸𝐸𝐸𝐸
∗ 〉

𝜕𝜕𝜕𝜕2 +
𝜕𝜕2〈Ψ𝐸𝐸𝐸𝐸𝐸𝐸

∗ 〉
𝜕𝜕𝑦𝑦2

�+ 𝛽𝛽
𝜕𝜕〈𝜓𝜓∗〉
𝜕𝜕𝜕𝜕 =  −

𝜌𝜌
𝑇𝑇0
𝜕𝜕〈𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉
𝜕𝜕𝜕𝜕

𝜕𝜕p�
𝜕𝜕𝑦𝑦

1
𝜌𝜌02

 ( S7 ) 

 9 

 with = 2Ω
𝑎𝑎

 cos𝜙𝜙 , and Ω is the earth’s rotation angular velocity, 𝑎𝑎 is the earth’s radius and 𝜙𝜙 the latitude. 10 

In Eq. (S7) 〈Ψ𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉 is the stream function of the azonal large-scale component at the equivalent barotropic level 11 

𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸, 𝜕𝜕 and 𝑦𝑦 are the horizontal and vertical direction, 𝑇𝑇0  is the constant reference temperature and 〈𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉 is the 12 

large-scale long-term azonal temperature at the EBL. The variable 𝑢𝑢� is the zonal mean zonal wind velocity, 𝜌𝜌0 13 

stands for the density near surface and p� is the zonal mean pressure. 14 

For the stream function of the azonal large-scale component of motion at the equivalent barotropic level 𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸we use 15 
the ansatz 16 

〈Ψ𝐸𝐸𝐸𝐸𝐸𝐸
∗ 〉 = 〈Ψ0,𝐸𝐸𝐸𝐸𝐸𝐸

∗ 〉+ 𝜖𝜖〈Ψ1,𝐸𝐸𝐸𝐸𝐸𝐸
∗ 〉+… 

For the zeroth order approximation, we can neglect higher order derivations of Ψ: 17 

 𝛽𝛽
𝜕𝜕〈Ψ0,𝐸𝐸𝐸𝐸𝐸𝐸

∗ 〉
𝜕𝜕𝜕𝜕 =  −

1
𝜌𝜌 𝑇𝑇0

𝜕𝜕〈𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝑦𝑦

∫ 𝜌𝜌〈[𝑇𝑇(𝑧𝑧)]〉  𝑑𝑑𝑧𝑧∞ 
0

𝐻𝐻0
 ( S8 ) 

In eq. (S8), we replaced p� = ∫ 𝑅𝑅𝜌𝜌〈[𝑇𝑇(𝑧𝑧)]〉 𝑑𝑑𝑧𝑧/𝐻𝐻0
∞ 

0  and 𝐻𝐻0 = 𝑅𝑅𝑇𝑇0/𝑔𝑔 and 𝜌𝜌 = 𝜌𝜌0exp(−𝑧𝑧/𝐻𝐻0),  𝑅𝑅  is the gas 18 

constant,  𝜌𝜌 is the air density, T is the temperature , 𝐻𝐻0 is the atmospheric scale height, and g the gravity 19 

acceleration . Per definition, one can replace the term with 20 



3 
 

∫ 𝑝𝑝 𝑑𝑑𝑧𝑧∞ 
0
𝐻𝐻0

=
𝑔𝑔𝑅𝑅 
𝑅𝑅𝑇𝑇0

2� 𝜌𝜌〈[𝑇𝑇(𝑧𝑧)]〉 𝑑𝑑𝑧𝑧
𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸 

0
 

Such that  1 

𝜕𝜕〈𝜓𝜓0,𝐸𝐸𝐸𝐸𝐸𝐸
∗ 〉
𝜕𝜕𝜕𝜕

= −
𝑎𝑎𝑔𝑔𝑅𝑅 

2Ω𝑅𝑅𝑇𝑇02𝜌𝜌0 cos𝜙𝜙
2
𝜕𝜕
𝜕𝜕𝑦𝑦

� 𝜌𝜌〈[𝑇𝑇(𝑧𝑧)]〉 𝑑𝑑𝑧𝑧
𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸  

0

𝜕𝜕〈𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉
𝜕𝜕𝜕𝜕

 

 2 

With latter equation and 1
a
∇𝜙𝜙= 𝜕𝜕 𝜕𝜕𝑦𝑦⁄  , we can then derive  3 

〈𝜓𝜓0,𝐸𝐸𝐸𝐸𝐸𝐸
∗ 〉 = −〈𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉

𝑔𝑔
Ω𝜌𝜌0𝑇𝑇02 cos𝜙𝜙∇𝜙𝜙

� 𝜌𝜌〈[𝑇𝑇(𝑧𝑧)]〉
𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸

0
𝑑𝑑𝑧𝑧 

 4 

 5 

S2 Derivation of the zonal mean meridional wind velocity 6 

The zonal mean meridional wind velocity 〈𝑣𝑣(𝑧𝑧,𝜙𝜙)〉 which also accounts for convective contribution is calculated by 7 

〈𝑣𝑣(𝑧𝑧,𝜙𝜙)〉 = 

𝑑𝑑1 ⋅ (−2 tan(𝜙𝜙)�〈𝑢𝑢∗𝑣𝑣∗〉 + 〈𝑢𝑢′𝑣𝑣′〉�) + 𝑑𝑑2 ⋅ ( 𝜕𝜕𝜕𝜕𝜙𝜙 �〈𝑢𝑢
∗𝑣𝑣∗〉 + 〈𝑢𝑢′𝑣𝑣′〉�) + 𝑑𝑑3 ⋅ ��−

𝑑𝑑𝐾𝐾𝑧𝑧
𝑧𝑧 + 𝐾𝐾𝑧𝑧

𝐻𝐻0
�𝜕𝜕〈𝑢𝑢〉𝜕𝜕𝑧𝑧 𝑎𝑎�+ 𝑑𝑑4 ⋅ (𝐴𝐴)

𝑛𝑛1 ∗ (tan(𝜙𝜙)〈𝑢𝑢〉) + 𝑛𝑛2 ∗ �−
𝜕𝜕〈𝑢𝑢〉
𝜕𝜕𝜙𝜙 � + 𝑛𝑛3 ∗ (2Ω𝑎𝑎 sin(𝜙𝜙))

 

 . ( S9 ) 

   

With 𝐾𝐾𝑧𝑧 = 0.005 𝑧𝑧 and  8 

𝐴𝐴 =
ℒ〈𝑃𝑃𝑐𝑐𝑜𝑜〉������

𝐻𝐻0

〈𝑢𝑢𝑠𝑠𝑠𝑠〉�������

Γ𝑎𝑎 − Γ0 − Γ1(𝑇𝑇𝑎𝑎 − 𝑇𝑇0)�1− 𝑎𝑎𝑞𝑞𝑞𝑞𝑠𝑠2�+ Γ2𝑛𝑛𝑐𝑐  
 

whereby the parameters are given in Table 1. We roughly approximate 〈𝑢𝑢𝑠𝑠𝑠𝑠〉������� by constant profile for this experiment 9 

 〈𝑢𝑢𝑠𝑠𝑠𝑠〉������� = �     
2,                                                         |𝜙𝜙| > 40

−2 cos �𝜙𝜙
𝜋𝜋

40°
� ,                             otherwise. ( S10 ) 

 10 
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The additional calculation of 〈𝑢𝑢𝑠𝑠𝑠𝑠〉������� instead of the calculated surface zonal velocity is done to avoid instabilities. 1 

Instabilities can emerge due to the strong positive feedback between the meridional temperature and vertical wind 2 
velocity, which lead to high latent heat. In nature these would be damped out but due to fixed troposphere height, we 3 
parameterize it in the above described way.   4 

For the derivation we start with the differential equation of the zonal wind component 5 

 
𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑 =

tan𝜙𝜙
𝑎𝑎 𝑢𝑢𝑣𝑣 + 𝑓𝑓𝑣𝑣 −

1
𝜌𝜌 Δ𝜆𝜆𝑝𝑝 + 𝐹𝐹𝑢𝑢 

 
( S11 ) 

Whereby a is the Earth radius, 𝑓𝑓 is the Coriolis factor and 𝐹𝐹𝑢𝑢 is the frictional force in u-direction. Multiplying the 6 

equation with 𝜌𝜌 and using that 𝜌𝜌 𝑠𝑠𝑢𝑢
𝑠𝑠𝑠𝑠

= 𝑠𝑠(𝜌𝜌𝑢𝑢)
𝑠𝑠𝑠𝑠

− 𝑢𝑢 𝑠𝑠𝜌𝜌
𝑠𝑠𝑠𝑠

, 𝑠𝑠(𝜌𝜌𝑢𝑢)
𝑠𝑠𝑠𝑠

= 𝜕𝜕(𝜌𝜌𝑢𝑢)
𝜕𝜕𝑠𝑠

+ 𝑽𝑽 ⋅ 𝚫𝚫 (𝜌𝜌𝑢𝑢) and 𝑽𝑽 ⋅ 𝚫𝚫 (𝜌𝜌𝑢𝑢) = Δ (𝜌𝜌𝑢𝑢𝑽𝑽)−  (𝜌𝜌𝑢𝑢)𝚫𝚫 ⋅7 

𝑽𝑽, we get  8 

 
𝜕𝜕(𝜌𝜌𝑢𝑢)
𝜕𝜕𝑑𝑑 + Δ (𝜌𝜌𝑢𝑢𝑽𝑽 ) − 𝑢𝑢 �

𝑑𝑑𝜌𝜌
𝑑𝑑𝑑𝑑 + (𝜌𝜌𝑢𝑢)𝚫𝚫 ⋅ 𝑽𝑽� =

tan𝜙𝜙
𝑎𝑎 𝜌𝜌𝑢𝑢𝑣𝑣 + 𝑓𝑓𝜌𝜌𝑣𝑣 − Δ𝜆𝜆𝑝𝑝+ 𝜌𝜌𝐹𝐹𝑢𝑢 

 
 

   

With the continuity equation and using spherical coordinates, the equation simplifies to 9 

 

𝜕𝜕(𝜌𝜌𝑢𝑢)
𝜕𝜕𝑑𝑑 +

1
𝑎𝑎 cos𝜙𝜙

𝜕𝜕(𝜌𝜌𝑢𝑢2)
𝜕𝜕𝜕𝜕 +

1
𝑎𝑎 cos𝜙𝜙

𝜕𝜕(𝜌𝜌 cos𝜙𝜙 𝑢𝑢𝑣𝑣)
𝜕𝜕𝜙𝜙 +

𝜕𝜕(𝜌𝜌𝑤𝑤𝑢𝑢)
𝜕𝜕𝑧𝑧

=
tan𝜙𝜙
𝑎𝑎 𝜌𝜌𝑢𝑢𝑣𝑣 + 𝑓𝑓𝜌𝜌𝑣𝑣 −

1
𝑎𝑎 cos𝜙𝜙

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 + 𝜌𝜌𝐹𝐹𝑢𝑢 

( S12 ) 

 10 

 11 

We calculate the zonal average  (…� ), take into account that 𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆
� = 0  and assume a vertical dependence of 12 

the density �𝜌𝜌 = 𝜌𝜌0(𝑧𝑧)�: 13 

 𝜕𝜕(𝜌𝜌0𝑢𝑢)
𝜕𝜕𝑑𝑑

���������
+

1
𝑎𝑎
𝜕𝜕(𝜌𝜌0𝑢𝑢𝑣𝑣)
𝜕𝜕𝜙𝜙

�����������
+
𝜕𝜕(𝜌𝜌0𝑤𝑤𝑢𝑢)

𝜕𝜕𝑧𝑧

�����������
= 2

tan𝜙𝜙
𝑎𝑎 𝜌𝜌𝑢𝑢𝑣𝑣���� + 𝑓𝑓𝜌𝜌�̅�𝑣 + 𝜌𝜌0𝐹𝐹𝑢𝑢�   

 14 

We split the wind variables into an synoptic scale waves, planetary waves and zonal mean wind (𝑢𝑢 = 𝑢𝑢� + 𝑢𝑢∗ + 𝑢𝑢′). 15 

Under the assumption that 𝑢𝑢� and 𝑣𝑣∗ are independent, the result of the zonal mean over the azonal component is zero: 16 

 
𝑢𝑢𝑣𝑣���� = 𝑢𝑢��̅�𝑣 + 𝑢𝑢�𝑣𝑣∗ + 𝑢𝑢�𝑣𝑣′ + 𝑢𝑢∗�̅�𝑣 + 𝑢𝑢∗𝑣𝑣∗ + 𝑢𝑢∗𝑣𝑣′ + 𝑢𝑢′�̅�𝑣 + 𝑢𝑢′𝑣𝑣∗ + 𝑢𝑢′𝑣𝑣′�������������������������������������������������������������������������

= 𝑢𝑢��̅�𝑣 + 𝑢𝑢�𝑣𝑣′ + 𝑢𝑢∗𝑣𝑣∗ + 𝑢𝑢′�̅�𝑣 + 𝑢𝑢′𝑣𝑣′�������������������������������������� 
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 1 

We average eq. (S12) over time and phase speed (〈… 〉). Due to a “gap” in the three-dimensional (period-wavelength-2 
phase velocity) spectrum of atmospheric processes (see, e.g., Fraedrich & Böttger 1978, Coumou et al. 2011), the 3 
synoptic-scale component in its interaction with the large-scale long-term component of the atmospheric fields on the 4 
time scales about 10-20 days and longer could be, to a first approximation, represented (described) in terms of its 5 
ensemble (statistical) characteristics (the second and higher-order moments), and not as the individual eddies 6 

(Saltzman, 1978). We can simplify the terms 〈𝑢𝑢�𝑣𝑣′〉 =  〈𝑢𝑢′�̅�𝑣〉 = 0 . In addition, it is 𝑢𝑢��̅�𝑣���� = 𝑢𝑢��̅�𝑣 due to quasi stationarity 7 

of both terms. It is also 〈𝑠𝑠𝜕𝜕
𝑠𝑠𝑠𝑠
〉 = 0 and 〈𝑢𝑢��̅�𝑣〉 = 〈𝑢𝑢�〉〈�̅�𝑣〉 since the oscillations of 𝑢𝑢� and �̅�𝑣 are very small and independent 8 

of each other.  By using the continuity equation 𝜌𝜌0
𝑎𝑎
𝜕𝜕〈𝑣𝑣�〉
𝜕𝜕𝜙𝜙

− tan𝜙𝜙
𝑎𝑎

𝜌𝜌0�̅�𝑣 + 𝜕𝜕(𝜌𝜌0〈𝑤𝑤�〉)
𝜕𝜕𝑧𝑧 

= 0, we can simplify eq. (S12) to 9 

 
 
1
𝑎𝑎 𝜌𝜌0

〈�̅�𝑣〉
𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝜙𝜙 + 

𝜌𝜌0
𝑎𝑎
𝜕𝜕�〈𝑣𝑣∗𝑢𝑢∗〉 ��������� + 〈𝑣𝑣′𝑢𝑢′�����〉�

𝜕𝜕𝜙𝜙 + 𝜌𝜌0〈𝑤𝑤�〉
𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧 +  

𝜕𝜕�𝜌𝜌0〈𝑤𝑤∗𝑢𝑢∗�������〉+ 〈𝑤𝑤′𝑢𝑢′������〉�
𝜕𝜕𝑧𝑧

=  
tan𝜙𝜙
𝑎𝑎 𝜌𝜌0〈𝑢𝑢�〉〈�̅�𝑣〉 + 2 

tan𝜙𝜙
𝑎𝑎

�〈𝑣𝑣∗𝑢𝑢∗〉�������� + 〈𝑣𝑣′𝑢𝑢′〉��������� + 𝑓𝑓𝜌𝜌�̅�𝑣 + 𝜌𝜌0𝐹𝐹𝑢𝑢�  

( S13 ) 

With the assumption that 𝜌𝜌0 = 𝑒𝑒−𝑧𝑧/𝐻𝐻0 and 𝜌𝜌0𝐹𝐹𝑢𝑢�  = 𝜕𝜕 𝜏𝜏�
𝜕𝜕𝑧𝑧 

=  𝜕𝜕 
𝜕𝜕𝑧𝑧 
�𝜅𝜅𝜌𝜌0

𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧
� = 𝜅𝜅 𝜕𝜕𝜌𝜌0

𝜕𝜕𝑧𝑧
𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

+ 𝜌𝜌0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

+ 𝜌𝜌0𝜅𝜅
𝜕𝜕2〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧2

=10 

 −𝜅𝜅 𝜌𝜌0
𝐻𝐻0

𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

+ 𝜌𝜌0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

 , we obtain 11 

𝜌𝜌0〈�̅�𝑣〉 �
1
𝑎𝑎
𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝜙𝜙

− tan𝜙𝜙
𝑎𝑎

〈𝑢𝑢�〉 − 𝑓𝑓� = 2 tan𝜙𝜙
𝑎𝑎

�〈𝑣𝑣∗𝑢𝑢∗〉�������� + 〈𝑣𝑣′𝑢𝑢′〉��������� −  𝜌𝜌0
𝑎𝑎
𝜕𝜕�〈𝑣𝑣∗𝑢𝑢∗〉 ���������+〈𝑣𝑣′𝑢𝑢′������〉�

𝜕𝜕𝜙𝜙
− 𝜌𝜌0〈𝑤𝑤�〉

𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

−

 𝜕𝜕(𝜌𝜌0〈𝑤𝑤∗𝑢𝑢∗�������〉+〈𝑤𝑤′𝑢𝑢′�������〉)
𝜕𝜕𝑧𝑧

− 𝜅𝜅 𝜌𝜌0
𝐻𝐻0

𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

+ 𝜌𝜌0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

  
( S14 ) 

  

The contribution to the vertical exchange of the atmospheric momentum from stationary eddies described in our case 12 

by zonally averaged 〈𝑤𝑤∗𝑢𝑢∗�������〉 is shown negligibly small (Hantel and Hacker, 1978). Also, the scale analysis attests 13 

that 〈𝑤𝑤�〉 𝜕𝜕〈𝑢𝑢〉
𝜕𝜕𝑧𝑧

 are small (Petoukhov et al., 2003): 14 

−𝜌𝜌0〈𝑤𝑤�〉
𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

−  
𝜕𝜕(𝜌𝜌0〈𝑤𝑤∗𝑢𝑢∗�������〉+ 〈𝑤𝑤′𝑢𝑢′������〉)

𝜕𝜕𝑧𝑧 − 𝜅𝜅
𝜌𝜌0
𝐻𝐻0

𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

+ 𝜌𝜌0
𝜕𝜕𝜅𝜅
𝜕𝜕𝑧𝑧

𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

≈ −  
𝜕𝜕(𝜌𝜌0〈𝑤𝑤′𝑢𝑢′������〉)

𝜕𝜕𝑧𝑧 − 𝜅𝜅
𝜌𝜌0
𝐻𝐻0

𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

+ 𝜌𝜌0
𝜕𝜕𝜅𝜅
𝜕𝜕𝑧𝑧

𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

 

 15 

Hence the eq. (S14) can be rewritten into 16 

𝜌𝜌0〈�̅�𝑣〉 �
1
𝑎𝑎
𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝜙𝜙

− tan𝜙𝜙
𝑎𝑎

〈𝑢𝑢�〉 − 𝑓𝑓� = 2 tan𝜙𝜙
𝑎𝑎

�〈𝑣𝑣∗𝑢𝑢∗〉�������� + 〈𝑣𝑣′𝑢𝑢′〉��������� −  𝜌𝜌0
𝑎𝑎
𝜕𝜕�〈𝑣𝑣∗𝑢𝑢∗〉 ���������+〈𝑣𝑣′𝑢𝑢′������〉�

𝜕𝜕𝜙𝜙
− 𝜌𝜌0〈𝑤𝑤�〉

𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

−

 𝜕𝜕(𝜌𝜌0〈𝑤𝑤∗𝑢𝑢∗�������〉+〈𝑤𝑤′𝑢𝑢′�������〉)
𝜕𝜕𝑧𝑧

− 𝜅𝜅 𝜌𝜌0
𝐻𝐻0

𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

+ 𝜌𝜌0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

  
( S15 ) 
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With 〈𝑢𝑢′𝑤𝑤′������〉 = −𝜅𝜅′ 𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

, whereby 𝜅𝜅′ is the coefficient of large-scale turbulent exchange for the momentum due to 1 

transient synoptic eddies (Williams and Davies, 1965), we get 2 

𝜌𝜌0〈�̅�𝑣〉 �
1
𝑎𝑎
𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝜙𝜙

−
tan𝜙𝜙
𝑎𝑎

〈𝑢𝑢�〉 − 𝑓𝑓�

= 2
tan𝜙𝜙
𝑎𝑎

�〈𝑣𝑣∗𝑢𝑢∗〉 ��������� + 〈𝑣𝑣′𝑢𝑢′������〉� −
𝜌𝜌0
𝑎𝑎
𝜕𝜕�〈𝑣𝑣∗𝑢𝑢∗〉 ��������� + 〈𝑣𝑣′𝑢𝑢′������〉�

𝜕𝜕𝜙𝜙 − (𝜅𝜅 + 𝜅𝜅′)
𝜌𝜌0
𝐻𝐻0

𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

+ 𝜌𝜌0
𝜕𝜕(𝜅𝜅 + 𝜅𝜅′)

𝜕𝜕𝑧𝑧
𝜕𝜕〈𝑢𝑢�〉
𝜕𝜕𝑧𝑧

 

With 𝐾𝐾𝑧𝑧 = 𝜅𝜅+ 𝜅𝜅′ we can simplify the equation to 3 

〈𝑣𝑣(𝑧𝑧,𝜙𝜙)〉 =
−2 tan(𝜙𝜙) �〈𝑢𝑢∗𝑣𝑣∗〉 + 〈𝑢𝑢′𝑣𝑣′〉�+ 𝜕𝜕

𝜕𝜕𝜙𝜙 �〈𝑢𝑢
∗𝑣𝑣∗〉+ 〈𝑢𝑢′𝑣𝑣′〉� + (−𝑑𝑑𝐾𝐾𝑧𝑧𝑑𝑑𝑧𝑧 + 𝐾𝐾𝑧𝑧

𝐻𝐻0
)𝜕𝜕〈𝑢𝑢〉𝜕𝜕𝑧𝑧 𝑎𝑎

tan(𝜙𝜙)〈𝑢𝑢〉 − 𝜕𝜕〈𝑢𝑢〉
𝜕𝜕𝜙𝜙 + 2Ω𝑎𝑎 sin(𝜙𝜙)

 

 . ( S16 ) 

The derived equation for the meridional velocity does not account for latent heat release associated with 4 
convective precipitation. To capture this additional term we include convective precipitation and finally 5 
introduce tuning parameters, which have values close to 1. 6 
 7 

 8 

S3 Schematic plot of the optimization process 9 

 10 
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