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Abstract – The eigenvalue problem for generalized natural modes of an inhomogeneous optical fiber

without a sharp boundary is formulated as a problem for the set of time-harmonic Maxwell equations 

with Reichardt condition at infinity in the cross-sectional plane. The generalized eigenvalues of this 

problem are the complex propagation constants on a logarithmic Reimann surface. The original problem

is reduced to a nonlinear spectral problem with Fredholm integral operator. Theorem on spectrum

localization is proved, and then it is proved that the set of all eigenvalues of the original problem can only

be a set of isolated points on the Reimann surface, ant it also proved that each eigenvalue depends 

continuously on the frequency and refraction index and can appear and disappear only at the boundary 

of the Reimann surface. The Galerkin method for numerical calculation of the generalized natural modes 

is proposed, and the convergence of the method is proved.

I. INTRODUCTION

Optical fibers are dielectric waveguides (DWs), i.e., regular dielectric rods, having various cross sectional
shapes, and where generally the refractive index of the dielectric may vary in the waveguide’s cross section [1].
Although existing technologies often result in a refractive index that is anisotropic, frequently it is possible to
assume that the fiber is isotropic [2], which is the case investigated in this work. The study of the source-free 
electromagnetic fields, called natural modes, that can propagate on DWs necessitates that longitudinally the rod 
extend to infinity. Since often DWs are not shielded, the medium surrounding the waveguide transversely forms
an unbounded domain, typically taken to be free space. This fact plays an extremely important role in the 
mathematical analysis of natural waveguide modes, and brings into consideration a variety of possible
formulations. Each different formulation can be cast as an eigenvalue problem for the set of time-harmonic
Maxwell equations, but they differ in the form of the condition imposed at infinity in the cross-sectional plane,
and hence in the functional class of the natural-mode field. This also restricts the localization of the eigenvalues
in the complex plane of the eigenparameter [3]. All of the known natural-mode solutions (i.e., guided modes,
leaky modes, and complex modes) satisfy the Reichardt condition at infinity [3]. The wavenumbers  may be
generally considered on the appropriate logarithmic Reimann surface. The Reichardt condition in this problem is 
connected with the fact that wavenumbers may be complex. For real wavenumbrs on the principal (“proper”) 
sheet of this Reimann surface, one can reduce the Reichardt condition to either the Sommerfeld radiation 
condition or to the condition of exponential decay. The Reichardt condition may be considered as a generaliza-
tion of the Sommerfeld radiation condition and can be applied for complex wavenumbers. This condition may
also be considered as the continuation of the Sommerfeld radiation condition from a part of the real axis of the
complex parameter  to the appropriate logarithmic Reimann surface.

II. STATEMENT OF THE PROBLEM

We consider the generalized natural modes of an inhomogeneous optical fiber without a sharp boundary. Let
the three-dimensional space be occupied by an isotropic source-free medium, and let the refractive index be
prescribed as a positive real-valued function 1 2,n n x x independent of the longitudinal coordinate 3x  and 

equal to a constant outside a cylinder. The axis of the cylinder is parallel to then 3x -axis, and its cross-section

is a bounded domain  with a Lipschitz boundary on the plane 2
1 2 1 2, : ,R x x x x . Denote by

 the unbounded domain 2 \R , and denote by n  the maximum of the function n  in the domain ,
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where . Let the function  belong to the space of real-valued continuous in  functions. By

denote the space of twice continuously differentiable in  complex-valued functions.

n n

2x R

n
2R 2 2( )C R

2R

The modal problems can be formulated as a vector eigenvalue problem for the set of differential equations
(we use notations from [3] for differential operators) 

. (1) 2
0 0Rot , Rot ,i i nE H H E

Here 0 , 0  are the free-space dielectric and magnetic constants, respectively. We consider the propagation 

constant  as an unknown complex parameter and radian frequency 0  as a given parameter. We seek non-

zero solutions ,E H of set (1) in the space 
6

2 2C R . By denote the Reimann surface of the func-

tion 2 2 2( ) ln k n , where 2 2
0 0k . By (1)

0 denote the principal (“proper”) sheet of , which is 

specified by the following conditions: (1)
02 arg ( ) 3 2, Im ( ) 0, .

We say that vector-function ,E H satisfies the Reichardt condition if the vector-function ,E H  can be 

represented for all 0x R  as

(1), ( , ) exp( ),
T T

l l l

l

H r ilE, H A B  (2) 

where (1)
lH  is the Hankel function of the first kind and index l , ,r  are the polar coordinates of the point x .

The series in (2) should converge uniformly and absolutely.

Definition 1. A nonzero vector 
6

2 2, C RE H  is referred to as a generalised eigenvector (or eigen-

mode) of the problem (1), (2) corresponding to an eigenvalue  if the relations of problem (1), (2) are 

valid. The set of all eigenvalues of the problem (1), (2) is called the spectrum of this problem. 

II. GALERKIN METHOD

If ,E H  is an eigenvector of problem (1), (2) corresponding to an eigenvalue , then

2 2 2 2
2

1
( ) Grad Div ( ) ( ; , ) ( ) ,x k n n y n x y y dy

n
E E  (3) 

2 2 2
0( ) Rot ( ) ( ; , ) ( ) , ,x i n y n x y y dy x R yH E . (4) 

where (1)
04 ( )i H x y . For any 2,x y  the function  is analytic for . Passing the 

operator Grad Div  under the integral in relation (3), and using the differentiation rule for weakly singular

integrals we obtain a nonlinear spectral problem for a strongly-singular domain integral equation

 (5) 
3

2 2( ) 0, ; : .A x A L LE
3

Definition 2. A nonzero vector is called an eigenvector of operator-valued function 
3

2LE ( )A

corresponding to an eigenvalue  if the relation (5) is valid. The set of all  for which the opera-

tor ( )A  does not have the bounded inverse operator in  is called the spectrum of operator-valued

function

3

2L

( ).A  Denote by )(A  the spectrum of operator-valued function ( ).A

Theorem 1. For all  the operator ( )A  is Fredholm with zero index. The 

sets (1)
0 : , Im 0kn , , and (1)

0 : Re 0  are free of the 

eigenvalues of problem (1), (2). The spectrum of problem (1), (2) is equivalent to the spectrum of the operator-

(1)
0 : , Im 0kn
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valued function ( )A  and can be only a set of isolated points on . Each eigenvalue  of the problem (1), (2)

depends continuously on ( , , ) and can appear and disappear only at the boundary ofn n , i.e., 

at kn  and at infinity on .

i

This theorem was proved in [4]. The eigenvectors of problem (1), (2) are equivalent to the eigenvectors of the 
operator-valued function ( )A  corresponding to the same eigenvalues  in the sense of results [4].b

Consider the Galerkin method for numerical approximation of integral equation (5). We cover W with small

squares and denote by  the sub-domain W DiD nW
1

n

n . We seek the approximate solution  of 

equation (5) in the form of linear combination

nE

1

( ) ( )
n

n i

i

x a xE F , nx W , where  are basis func-

tions, , if , , if 

iF

( ) 1i xF ix D ( ) 0i xF ix D . We seek the non-zero approximate solution  in the 

space . The unknown coefficients can be determined from the set of linear algebraic 

equations:

nE

1span , ,nH F FK n ia

i

WU

i

1

( ) , 0
n

i i j

i

a A b F F , 1, ,j nK , (6)

where denotes inner product in . The singular Galerkin elements,
3

2L ( ) ,i iA b F F  are calculated 

analytically by formula:

1
ln

2 2
ii i

x y dy
x x p D

1
, (7)

that is true if point x  is at center of the square .iD

Therefore, using Galerkin method for solving nonlinear spectral problem for strongly-singular domain
integral equation (5), we obtain finite–dimensional nonlinear spectral problem (6), that we can rewrite in the
operator form:

( ) 0, ; :n n n n n nA x A HE H , (8)

where the operator-valued function ( )nA  is determined by (6).

Convergence of the presented numerical algorithm is governed by the theorem, which follows from theorem
1 and results of paper [5]. Following [5], we denote by N  the infinite subset of the set of integers . Denote 
by , , the convergence  for n ,

N

nE E n N nE E n N .

Theorem 2. If ( )n nAb s , ( ) 0,n n nA E 1nE , and , ,0nb b L 0nE E n N N ,

then 0 ( )Ab s  and 0 0( ) 0,A E 0 1E .
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