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• The original method of three-particle structural analysis is proposed.
• The original three-particle correlation function is introduced.
• The time evolution of three-particle correlations is evaluated for liquid and amorphous aluminium.
• The ‘‘stable’’ disordered structures are detected, that are formed by triplets with various configurations.
• Transitions between the various configurations of triplets are observed.
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a b s t r a c t

Analysis of three-particle correlations is performed on the basis of simulation data of
atomic dynamics in liquid and amorphous aluminium. A three-particle correlation function
is introduced to characterize the relative positions of various three particles—the so-called
triplets. Various configurations of triplets are found by calculation of pair and three-particle
correlation functions. It was found that in the case of liquid aluminium with temperatures
1000 K, 1500 K, and 2000 K the three-particle correlations are more pronounced within
the spatial scales, comparable with a size of the second coordination sphere. In the case
of amorphous aluminium with temperatures 50 K, 100 K, and 150 K these correlations
in the mutual arrangement of three particles are manifested up to spatial scales, which
are comparable with a size of the third coordination sphere. Temporal evolution of three-
particle correlations is analyzed by using a time-dependent three-particle correlation
function, for which an integro-differential equation of type of the generalized Langevin
equation is output with help of projection operators technique. A solution of this equation
by means of mode-coupling theory is compared with our simulation results. It was found
that this solution correctly reproduces the behavior of the time-dependent three-particle
correlation functions for liquid and amorphous aluminium.

© 2017 Published by Elsevier B.V.

1. Introduction

At present time the main attention is paid to study the structure of condensed systems, which are in equilibrium or in
metastable states [1–4]. Often, the traditional experimental methods of structural analysis do not allow to correctly identify
the presence of some structures in bulk systems due to their small sizes, either low concentrations in the system, or due to
relatively short lifetimes. Usually, information about the structure of condensed systems is extracted by using microscopic
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methods or bymethods of X-ray and neutron diffraction. Here, the static structure factor determined from the experimental
data is critical quantity, which is relatedwith the pair distribution function, g(r) [2,4]. At the same time, the pair distribution
function g(r) can be determined on the basis of atomic/molecular dynamics simulations, and then it can be compared with
experimental data.

In addition, the three-particle correlations has an essential impact for different processes in condensed systems. Thus,
an account for three-particle correlations is required to explain the dynamic heterogeneity in liquids [5,6], to describe
of transport properties in chemical reactions [4,7], to study the structural heterogeneity of materials at mechanical
deformations [8,9], to detect the nuclei of on ordered phase (i.e. crystalline, quasicrystalline) [10,11], to describe the
amorphization of liquids at rapid cooling [2,4,12]. Direct evaluation of three-particle correlations by means of experimental
measurements is extremely difficult problem [4,13,14]. Here, the special methods must be adopted to extract such
information [4,15,16]. On the other hand, detailed information about the three-particle correlations can be obtained on
the basis of atomic/molecular dynamics simulations data. Note that early studies of the three-particle correlations were
focused mainly on simple liquids such as the Lennard-Jones fluid, the hard spheres system, and the colloidal systems [4,
17–20]. In some recent studies, on the basis of data of the molecular dynamics simulation the three-particle correlations
were estimated in such systems as carbon nanotubes, electrolytes, metallic melts and alloys [2,21,22]. In these studies, the
information about three-particle correlations is usually extracted from the time evolution of two and more parameters
characterized the positions and trajectories of the particles relative each other.

In the present work, the original method of three-particle structural analysis and evaluation of time-dependent three-
particle correlations is proposed, where the arbitrary trajectories of motion of the various three particles (that will be
denoted as triplets) are considered. The method allows one to identify the presence of ordered crystalline and ‘‘stable’’
disordered structures, which are difficult to be detected by conventional methods of structural analysis (for example,
such as the Voronoi’s tessellation method [23], the Delaunay’s triangulation method [24], the bond-orientational order
parameters [3]). The applicability of this method will be demonstrated for the case of the liquid and amorphous aluminium.

2. Simulation details

We performed the atomic dynamics simulation of liquid and amorphous aluminium. The system contains N = 864
atoms, located into a cubic simulation cell with periodic boundary conditions in all directions. The interatomic forces are
calculated through EAM-potential [25,26]. The velocities and coordinates of atoms are determined through the integrating
Newton’s equations of motion by using Velocity-Verlet algorithm with the time-step 1t = 1 fs.

Initially, a crystalline sample with fcc lattice and numerical density ρ = 1.23 σ−3 (or mass density 2300 kg/m3) was
prepared, where σ = 2.86 Å is the effective diameter of the aluminium atom. Further, the system was melted to the
temperatures T = 1000, 1500, and 2000 K. The amorphous samples were generated through the fast cooling with the
rate 1012 K/c of a melt at the temperature 2000 K to the temperatures T = 50, 100, and 150 K (the melting temperature is
Tm ≃ 934 K). The simulations were performed in NpT -ensemble at constant pressure p = 1 atm.

3. Methods

3.1. Three-particle correlation function

Let us consider a system, consisting of N classical particles with same masses m, which are located into the simulation
cubic cell with a volume V . From the geometric point of view, locations of any three particles generate a triangle (i.e. triplet).
This triplet is characterized by the area, S. Then, the area of ith triplet, Si, at time t (here i ∈ {1, 2, . . . ,NT }, NT is the number
of all possible triplets in the system) is defined by

Si(t) =


li(t) · [li(t) − r (12)

i (t)] · [li(t) − r (23)
i (t)] · [li(t) − r (31)

i (t)]
1/2

. (1)

Here, li(t) = [r (12)
i (t)+r (23)

i (t)+r (31)
i (t)]/2 is the semiperimeter of ith triplet; r (12)

i , r (23)
i , and r (31)

i are the distances between
the vertices of ith triplet with conditional labels 1, 2, and 3. It follows from Eq. (1) that the area of ith triplet, Si, takes positive
values and values closed to zero. Different triplets can be correlated to the same values Si, and the triplets are independent
from each other (i.e. have no common vertices) or interconnected (i.e. one or two vertices are mutual). To estimate the
quantity Si one vertex of triplet is considered as central (i.e. fixed), relative to which the positions of the other vertices must
be defined (see Fig. 1).

To determine the probability of emergence of the triplets with the area S, the three-particle correlation function is
introduced

g(S) =
1
NT

NT
i=1

δ(S − Si). (2)
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Fig. 1. (Color online) Schematic illustration demonstrated the triplets with single and general vertices as well as single triangle with a some area S, where
the vertices with labels 1, 2, and 3 are presented.

Here, the number of the all triplets in the system with N particles is defined by

NT =
N(N − 1)(N − 2)

6
. (3)

It follows from Eq. (3) that for a system with N = 500 particles the number of triplets NT is more than 20000000. It
demonstrates that treatment of simulation results requires significant computing resources. Therefore, at realization of the
three-particle structural analysis we can restrict our attention to consider a spherical region with a fixed radius Rc in the
center of which the main (i.e. fixed) particle of triplet is located. The optimal value of radius Rc corresponds to the distance
at which the pair correlation function g(r) of considered system ceases to oscillate.

3.2. Dynamics of three-particle correlations

In a system with N particles the coordinates q⃗ and impulses p⃗ form a 6N-dimensional phase space. The time evolution
of the system will be defined by the Hamiltonian H(q⃗, p⃗), which can be written through the canonical Liouville equation of
motion as follows [27]:

dA(t)
dt

= {H(q⃗, p⃗), A(t)} =

N
i=1


∂H(q⃗, p⃗)

∂pi

∂A(t)
∂qi

−
∂H(q⃗, p⃗)

∂qi

∂A(t)
∂pi


(4)

or

dA(t)
dt

= iLA(t), (5)

where L is the Liouville operator, {. . .} is the Poisson brackets, A is the dynamic variable that obtained from results of
simulation. By means of the technique of Zwanzig–Mori’s projection operators

Π0 =
A0(0)


A∗

0(0)
|A0(0)|2

 , P0 = 1 − Π0, (6)

one obtains from Eq. (5) the following non-Markovian equation [27–30]:

dF(t)
dt

= −Ω2
1

 t

0
M1(τ )F(t − τ)dτ , (7)

where

F(t) =
⟨A∗

0(0)A0(t)⟩
⟨|A0(0)|2⟩

(8)

is the time correlation function;

M1(τ ) =
⟨A∗

1(0)e
iL022τA1(0)⟩

⟨|A1(t)|2⟩
(9)

is the first order memory function;

Ω2
1 =

⟨|A1(0)|2⟩
⟨|A0(0)|2⟩

(10)
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is the first-order frequency parameter, and
A1(t) = iLA0(t) (11)

is the next dynamics variable. By considering that the Liouville equation for dynamic variable A1(t)

dA1(t)
dt

= iL022A1(t), (12)

the kinetic integro-differential equation can be obtained for the first-order memory function as follows [27]:

dM1(t)
dt

= −Ω2
2

 t

0
M2(τ )M1(t − τ)dτ . (13)

Similarly, a chain of equations can be constructed as

dMn−1(t)
dt

= −Ω2
n

 t

0
Mn(τ )Mn−1(t − τ)dτ , n = 1, 2, 3, . . . . (14)

Here, the nth order frequency parameter will be determined as follows [27,31]:

Ω2
n =

⟨|An(0)|2⟩
⟨|An−1(0)|2⟩

. (15)

Using the Laplace transformation, Mn(s) =


∞

0 e−stMn(t)dt (where s = iω), the chain of Eq. (14) can be rewritten as a
continued fraction [27]

F(s) =
1

s +
Ω2

1

s+
Ω2
2

s+···

. (16)

From Eq. (14) one obtains [27,31]

F̈(k, t) + Ω2
1 (k)F(k, t) + Ω2

2 (k)
 t

0
M2(k, t − τ)Ḟ(k, τ )dτ = 0, (17)

where k = |k⃗| is the wave number [2,28]. By using the key condition of the mode-coupling theory [27,31]

Ω2
2 (k)M2(k, t) = ϕ(k)δ(t) + Ω2

1 (k)

υ1F(k, t) + υ2F(k, t)p


, (18)

the Eq. (17) can be rewritten in the form

F̈(k, t) + Ω2
1 (k)F(k, t) + ϕ(k)Ḟ(k, t)δ(t) + Ω2

1 (k)
 t

0


υ1F(k, t − τ) + υ2F(k, t − τ)p


Ḟ(k, τ )dτ = 0. (19)

Here, Ω1(k) and ϕ(k) are the frequency parameters, δ(t) is the Dirac’s delta function, υ1 ≥ 0, υ2 ≥ 0 (υ1 + υ2 ≠ 0) are
the weight of the corresponding contributions, the parameter p > 1 can be fractional. The exact solution of Eq. (19) will be
defined through the frequency parameters Ω1(k), ϕ(k) as well as through the characteristics υ1, υ2, and p [32].

A numerical solution of integro-differential equation (19) can be found from [32]:

zn + Ω2
1 xn + Ω2

1τ

n
i=0


υ1xi + υ2x

p
i


zn−i = 0, (20)

yn+1 = yn + τ zn, (21)
xn+1 = xn + τyn+1. (22)

Let us take the quantity

s⃗j(t) =
µjSj(t)N⃗j

σ
, j = 1, 2, . . . ,NT (23)

as a dynamical variable. If the value A0 = s⃗j(t) is taken as initial dynamical variable (see Eq. (6)), then the time correlation
function will be defined as

FT (k, t) =
1
NT

NT
j=1

exp

−ik⃗(s⃗j(t) − s⃗j(0))


, (24)

and xn = FT (k, t), yn = ḞT (k, t), zn = F̈T (k, t), where τ = 0.01 fs, while initial conditions in Eq. (20) are FT (k, t = 0) = 1
and ḞT (k, t = 0) = 0 [32]. Here, Sj(t) is the area of jth triplet at time t , N⃗j = nj1e⃗x + nj2e⃗y + nj3e⃗z is the vector of normal to
the plane of this triangle (see illustration in Fig. 1), µj = ±[n2

j1 + n2
j2 + n2

j3]
−1/2 is the normalization constant determined by

a sign of parameter nj4 from equation of the plane nj1x + nj2y + nj3z + nj4 = 0, which connects of vertices of jth triplet. At
nj4 > 0 we have a value µj < 0, otherwise we have a value µj > 0.
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Fig. 2. Time-dependent area of a triplet in atomic dynamics of aluminium. Top panel: liquid aluminium at the temperature 1000 K. Bottom panel:
amorphous aluminium at the temperature 100 K.

4. Results and discussions

4.1. Behavior of single triplet

The time dependent area of a triplet is evaluated at different temperatures. Thus, in Fig. 2 (top panel) it is shown the
time-dependent area of a triplet S(t) in liquid aluminium at temperature 1000 K. It can be seen that the quantity S(t) takes
the values in the range 0.25 nm2 < S < 1 nm2. The evolution of S(t) in the case of liquid aluminium is characterized by
the high-frequency fluctuations of a relatively small amplitude, which are originated due to collective motion of atoms. The
low-frequency fluctuations with a relatively large amplitude define a main trend of S(t), and they defined by transition to
the diffusive motion of particles, when an atom or several atoms leave a nearest environment.

Fig. 2 (bottompanel) represents the time-dependent area of a triplet in amorphous aluminiumat temperature T = 100K.
Contrasted to the liquid, the diffusive regime of S(t) is not observed, that is due to extremely low mobility of atoms.
The fluctuations with relatively small amplitude are seen; wherein the area S(t) takes the values within a narrow range
0.29 nm2 < S < 0.36 nm2. These fluctuations is caused by vibrations of atoms in a surrounded of ‘‘neighbors’’.

4.2. Features of three-particle correlations

The distribution function g(S) was computed by Eq. (2) for the liquid and amorphous systems, and those triplets were
considered, only which located within a sphere of the radius Rc = 3 σ . Also, the pair distribution function was determined
as follows [2,33,34]:

g(r) =
V

4πr2N

N
i=1


1ni(r)

1r


, (25)

where 1ni(r) is the probability to find the pair of the atoms separated by the distance r . For convenience, the distances
between the atoms we will measure in the units of σ and the area of triplet in the units of σ 2 (here, σ = 2.86 Å).

Fig. 3 shows the curves g(S) and g(r) for liquid aluminium at temperatures 1000, 1500, and 2000 K. As seen the pair
distribution function g(r) of liquid aluminium has oscillations and contains the maxima at distances r = r (L)

m1 , r
(L)
m2 , r

(L)
m3 , and

r (L)
m4 , which characterize the correlation lengths. The estimated inter-particle distances r = r (L)

m1 , r
(L)
m2 , r

(L)
m3 , and r (L)

m4 are given
in Table 1. The undistinguished maximum at r ≃ r (L)

m4 is indication that the pair correlations are practically absent at large
distances. For the reason that both the functions g(S) and g(r) correspond to the same system, it is quite reasonable to
assume that themaxima in function g(S), located at S = S(L)

m1 and S(L)
m2, are associated with the triplets, in which the distances

between pairs of atoms correspond to correlation lengths r (L)
m1 , r

(L)
m2 , r

(L)
m3 , and r (L)

m4 . Then, the different possible configurations
of three atoms can be selected, where the atoms that form these triplets are remote to the distances r = r (L)

m1 , r
(L)
m2 , r

(L)
m3 , and

r (L)
m4 . As a result of such selection, five different widespread configurations appear in liquid aluminium, which are depicted
in Fig. 4 with labels CL1, CL2,. . . , CL5.

From analysis of simulation data, it follows that the triplets with configurations CL1 and CL2, which correspond to the
maximum at S(L)

m1 in the function g(S) that also give impact to the main maxima of the function g(r) at r (L)
m1 and r (L)

m2 . In this
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Table 1
Inter-particle distances r (L)

m1 , r
(L)
m2 , r

(L)
m3 , and r (L)

m4 (in units σ ), as well as the areas S(L)
m1 and S(L)

m2 (in units σ 2), which correspond to positions of the main maxima
of the functions g(r) and g(S) in the case of liquid aluminium. The errors in the values are estimated to be less than 5%.

T (K) r (L)
m1 r (L)

m2 r (L)
m3 r (L)

m4 S(L)
m1 S(L)

m2

1000 0.969 1.841 2.661 3.535 0.45 0.823
1500 0.962 1.822 2.654 3.532 0.44 0.803
2000 0.955 1.815 2.647 3.528 0.43 0.797

Fig. 3. (Color online) Three-particle correlation function g(S) (top panel) and pair distribution function g(r) (bottom panel), obtained for liquid aluminium
at temperatures 1000, 1500, and 2000 K. The positions of main maxima of the functions g(S) and g(r) are indicated by arrows.

Fig. 4. (Color online) Triplets which appear in liquid aluminium and correspond to the main maxima of the functions g(S) and g(r). The circles mark the
atoms. The lines mark the distances r12 , r23 , and r13 between the atoms. Here, φ is the angle between two straight lines, which connect the vertices of the
triangle.

case, a mutual arrangement of three atoms covers a spatial scale, which are comparable with size of the first and second
coordination spheres. Also, the presence of triplets with configurations CL1 and CL2 is observed in other model liquids [4].
So, Zahn et al. observed the triplets with inter-particle distances r ≃ 1.0 σ and r ≃ 1.9 σ (i.e. with configurations similar
to CL1 and CL2, where r = r (L)

m1 ≃ 0.96 σ and r (L)
m2 ≃ 1.82 σ ) in two-dimensional colloidal liquid, where three-particle

correlation functions were calculated from particle configurations (see Fig.2 and Fig.4 in Ref. [4]). The triplets CL3, CL4, and
CL5 that correspond to the maximum of function g(S) at S(L)

m2, are usually involved to formation of maxima of the function
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Fig. 5. (Color online) Three-particle correlation function g(S) (top panel) and pair distribution function g(r) (bottom panel), obtained for amorphous
aluminium at temperatures 50, 100, and 150 K.

Table 2
Inter-particle distances r (A)

m1 , r (A)
m2 , . . . , r (A)

m8 (in units σ ) and the areas S(A)
m1 , S(A)

m2 , . . . , S(A)
m5 (in units σ 2), which correspond to positions of the main maxima

of the functions g(r) and g(S) in the case of amorphous aluminium. The errors in the values are estimated to be less than 8%.

T (K) r (A)
m1 r (A)

m2 r (A)
m3 r (A)

m4 r (A)
m5 r (A)

m6 r (A)
m7 r (A)

m8 S(A)
m1 S(A)

m2 S(A)
m3 S(A)

m4 S(A)
m5

50 1.0 1.472 1.731 1.983 2.381 2.657 2.962 3.612 0.02 – 0.455 0.804 1.17
100 1.0 1.465 1.738 1.982 2.379 2.654 2.961 3.609 0.06 0.24 0.471 0.811 1.23
150 1.0 1.455 1.734 1.982 2.378 2.651 2.958 3.605 0.08 0.28 0.458 0.851 1.19

g(r) at r (L)
m3 and r (L)

m4 . Remarkable that the structure of the system can be restored by connecting the different configurations
CL1, CL2, CL3, CL4, and CL5.

Fig. 5 represents the functions g(S) and g(r) for amorphous system at temperatures 50, 100, and 150 K. Five pronounced
maxima are detected for g(S), and eight maxima are most pronounced for the function g(r). As seen from Fig. 5 (top panel),
the function g(S) contain the maxima at S = S(A)

m1 , S
(A)
m2 , S

(A)
m5 , as S

(A)
m3 and S(A)

m4 , which are not observed for liquid system. The
estimated inter-particle distances, which correspond to positions of maxima of the functions g(S) and g(r), are given in
Table 2.

In the case of amorphous aluminium, various triplets are detected, where twelve configurations can be chosen as
widespread, which depicted in Fig. 6 with labels CA1, CA2,. . . , CA12. Wherein, the most of the configurations except of CA1,
CA3, and CA4 cover the spatial scale, which exceeds the size of the second coordination sphere. The presence of maxima
at small areas S (for example, the maxima at S = S(A)

m1 and S(A)
m2 ), which correspond to CA1 and CA2, can be indication of

structural ordering, as well as evidence of the presence of quasi-ordered structures. At the same time, the configurations
CA1 and CA2 together with CA3 and CA4 generate the main maximum of the function g(r) at the distance r = r (A)

m1 . The
formation of triples CA5, CA6,. . . , CA9, that correspond to the maxima of function g(S) at S = S(A)

m3 and S(A)
m4 , leads to splitting

of second maximum of the function g(r). The configurations CA2, CA4, and CA11 participate to formation of the maximum
of g(r) at r = r (A)

m2 , and give impact to the maxima of the three-particle correlation function g(S) at S = S(A)
m2 , S

(A)
m3 , and S(A)

m5 .
The presence of maximum in the function g(S) at S = S(A)

m5 is due to the triplets CA10, CA11,. . . , CA12, the number of which
is negligible.

The configurations CL1, CL2,. . . , CL5 and CA1, CA2,. . . , CA12 appear because the atoms that form these triplets are
surrounded by neighbors, which slow down their motion—so-called cage effect. According to effective neighborhoodmodel
proposed by Vorselaars et al., the cage effect occurs in liquids and glasses, where the particles are trapped in a local energy
minimum [6]. Namely, a single particle at motion jumps from one cage to another cage (i.e. from one local energyminimum
to another local energy minimum) [6]. In the case of aluminium atoms with configurations, which are depicted in Figs. 4
and 6, the jumps between different cages lead to transitions between various triplets. Usually, these transitions occur
between triplets with similar configurations, for example, between CL1 and CL2, between CL3 and CL4 in the case of liquid
aluminium as well as between CA1 and CA2, between CA3 and CA4, between CA6 and CA10, between CA7 and CA8 in the
case of amorphous aluminium. Unlike liquid, in the amorphous system the transitions between the triplets of different
configurations occur very slowly, where the jumps of atoms between different cages occur for a long time due to the high
viscosity.
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Fig. 6. (Color online) Configurations of triplets in the amorphous aluminium, which involve in the formation of the main maxima of the functions g(S)
and g(r).

Fig. 7. (Color online) Three-particle correlation function FT (k, t) obtained for aluminium at various temperatures and at wave number k = 4.6 Å−1 . The
solid lines mark the theoretical results; symbols depict results of simulations.

4.3. Time-dependent three-particle correlations

The analysis of the time-dependent three-particle correlations is also done by means of the time correlation function
FT (k, t), defined by Eq. (24). As an example, the function FT (k, t) obtained for liquid and amorphous aluminium at different
temperatures is presented in Fig. 7. The calculationswere performed at fixed value of thewave number k = 4.6Å−1.We note
that the behavior of the function FT (k, t) is similar to behavior of incoherent scattering function F(k, t) [35]. The function
FT (k, t) demonstrates the fast decay to zero in the case of liquid system, that is caused with attenuation of three-particle
correlations. The rate of attenuation is expected to be correlatedwith the structural relaxation time. In the case of amorphous
aluminium at temperatures 50, 100, and 150 K, the function FT (k, t) is characterized by more complex shape.

On the other hand, the function FT (k, t) was computed by Eq. (19) on the basis of simulation results at k = 4.6 Å−1 and
the temperatures T = 50, 100, 150, 1000, 1500, and 2000 K. Then, the Eq. (19) was solved numerically according to scheme
(20)–(24), while the parameters υ1, υ2, Ω2

1 , pwere taken as adjustable. The values of the parameters are given in Table 3. As
can be seen from Fig. 7, the theory with Eq. (19) reproduces the behavior of function FT (k, t) at all considered temperatures.
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Table 3
Numerical values of the parametersυ1 ,υ2 ,Ω2

1 , and p of the integro-differential equation (19) obtained from fit of numerical solution of Eq. (19) to simulation
results.

T (K) υ1 υ2 Ω2
1 (×1025 s−2) p

50 1.531 13.43 3.3 1.62
100 1.232 9.334 6.5 1.52
150 0.934 8.415 9.8 1.45

1000 0.815 1.873 64 2.32
1500 0.795 1.721 98 2.0
2000 0.713 1.634 130 1.96

Further, for the case of amorphous system, the theory allows one to reproduce the emergence of plateau in function FT (k, t).
The frequency parameter,Ω2

1 , takes the relatively small values 3.3×1025 s−2
≤ Ω2

1 ≤ 9.8×1025 s−2 for amorphous system
and large values 64 × 1025 s−2

≤ Ω2
1 ≤ 130 × 1025 s−2 for liquid system. Here, the increase of the parameter Ω2

1 with
temperature can be due to increase of transition rate between triplets of various configurations.

5. Conclusion

In the present work, the analysis of the three-particle correlations in many-particle systems is suggested. By atomic
dynamics simulation of liquid and amorphous aluminium, the applicability of the proposed method of three-particle
structural analysis is demonstrated to identify the structures, which are generated by various triplets. By applying the
calculation of the pair and three-particle distribution functions, the triplets of various configurations are found. It has been
shown that these triplets, which are formed due to particle correlations can cover the spatial scales, which are comparable
with sizes of the second and third coordination spheres. On the other hand, it was found that the time evolution of the
three-particle correlations in liquid and amorphous aluminium can be recovered from transition between triplets of various
configurations. Then, it is shown that the time-dependent three-particle correlations in these systems are reproducible by
the integro-differential equation (19). Here, an agreement between theoretical results and our atomic dynamics simulation
data is observed.
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