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Исследование посвящено изучению влияния температуры вегетации на рост и развитие рас-
тений вики яровой, а также на дыхательную активность почвенного микробного сообщества с 
точки зрения оценки потенциала вики яровой как сидеральной культуры, улавливающей СО2 из 
атмосферы. Для этого был проведен лабораторный вегетационный эксперимент длительностью 
63 дня при трех температурах вегетации ‒ 20 °C (базовая) и 25 °C, 30 °C (повышенные). Резуль-
таты показывают, что максимальная фитомасса была достигнута при температуре вегетации 25 
°C, без существенных различий в длине побегов при разных температурах. Однако длина корней 
увеличилась в 1.9 раза при 30 °C по сравнению с 25 °C и в 1.4 раза по сравнению с 20 °C. Со-
держание углерода в фитомассе увеличивалось с ростом растений, но не менялось значительно с 
температурой. Дыхательная активность почвы была выше при повышенных температурах, веро-
ятно, из-за увеличения корневой экссудации. Расчеты показывают, что выращивание вики яровой 
в течение 63 дней может способствовать улавливанию 119, 166 и 97 кг С/га при 30 °C, 25 °C и 20 
°C, соответственно, с наиболее эффективным улавливанием при 25 °C. Полученные результаты 
свидетельствуют о том, что вика яровая может быть полезной зеленой культурой и поглотителем 
атмосферного углерода, при этом оптимальный вегетационный период составляет 56 дней, что 
позволяет максимально улавливать углерод и при этом предотвращать образование семян.

Ключевые слова: парниковые газы; улавливание углерода; вика яровая; почвенная респира-
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Введение
За последнее столетие увеличение 

концентрации CO2 в атмосфере привело 
к глобальному изменению климата и, как 
следствие, увеличению частоты и интенсивности 
экстремальных климатических явлений. Это 
окажет сильное влияние на цикл углерода в 
биосфере в целом и в отдельных экосистемах в 
частности (Frank et al., 2015). Почвы являются 
вторым крупнейшим пулом углерода после 
мирового океана, они сохраняют больше 
углерода, чем атмосфера (в 2 раза) и растительная 
биомасса (в 3‒5 раз) (Wang, 2019), поэтому 
небольшие изменения в этом резервуаре могут 
оказать серьезное влияние на концентрацию 
CO2 в атмосфере (Reinthaler et al., 2021). В 
последние столетия было зафиксировано 
увеличение выбросов CO2 в атмосферу более 
чем в пять раз при гораздо меньшем увеличении 
объемов поглощения СО2 природными средами, 
что обусловлено, например, максимальной 
растворимостью СО2 в воде. Так, поглощение 
CO2 почвой возросло только в три раза (Федоров, 
2013). Установлено, что общий выброс CO2 в 

атмосферу составляет 6.3 млрд тС/год, из которых 
почвенные экосистемы поглощают около 23% 
(Федоров, 2004).

Согласно данным разных источников, на вы-
бросы от сельского хозяйства, лесного хозяйства 
и землепользования приходится от 13 до 21% ми-
ровых выбросов парниковых газов, что соответ-
ствует 12 ГтСО2-экв (Climate …, 2020; Nabuurs et 
al., 2022). Эмиссия парниковых газов в сельском 
хозяйстве происходит при энтеральной фермен-
тации в животноводстве, при обращении с отхо-
дами животноводства, в частности навозами и 
пометами, при обработке почвы (вспашка, боро-
нование, внесение минеральных и органических 
удобрений), использовании энергии (электри-
чество, топливо) (Столбовой, 2020; Agricultural 
.., 2023; Golasa, 2021; Greenhouse …, 2024; Soil-
based …, 2021). 

Увеличение эмиссии СО2 из сельскохозяй-
ственных почв при их обработке приводит к еще 
одному негативному последствию, а именно к 
снижению содержания почвенного органическо-
го вещества и, как следствие, к потере почвенно-
го плодородия. Вспашка приводит к повышению 
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активности почвенных микроорганизмов – бакте-
рий, высвобождению СО2 из почвы и поступле-
нию его в приземный слой атмосферы. Кроме 
того, высвобождается диоксид углерода, нака-
пливающийся в почвенной пористой структуре. 
Известно, что максимальная доля парниковых 
газов, содержащихся в почве, сконцентрирована 
в верхних горизонтах, так как там наблюдаются 
наиболее активные процессы жизнедеятельно-
сти бактерий и микромицет (Александрова и др., 
2023). Кроме того установлено, что базальное 
дыхание зависит от температуры и влажности по-
чвы. Поэтому существует множество исследова-
ний, направленных на оценку дыхания почвы при 
воздействии различных внешних факторов. По 
результатам таких исследований можно постро-
ить глобальные экологические модели изменения 
углеродного баланса. 

На данный момент активно разрабатываются 
методы, увеличивающие сохранение почвенного 
углерода, в частности минимальная или нулевая 
обработка почвы, использование почвопокров-
ных культур, мульчи, использование бобовых 
вместо чистого пара, использование лесополос и 
многолетних культур (Mattila et al., 2022; Sources 
…, 2019). При этом стоит упомянуть, что боль-
шинство данных методов давно известно и при-
меняется, однако получили они широкое осве-
щение именно в контексте углеродсберегающего 
земледелия. Так, одним из популярных агротех-
нических приемов является использование сиде-
ральных культур. Под сидерацией понимают осо-
бый метод удобрения почвы, подразумевающий 
высадку специальных растений для борьбы с со-
рняками, для интенсификации процесса азотфик-
сации (в случае использования бобовых культур) 
с последующим запахиванием их биомассы, что 
обеспечит дополнительное поступление органи-
ческого вещества в почву (Борисова, 2015). При 
выращивании сидератов растения запахивают в 
почву до фазы созревания семян, что позволяет 
внедрять их как промежуточную культуру в сево-
обороте, например, после озимых. Применение 
сидерации способствует фиксации атмосферно-
го углерода с последующим возвращением его в 
почву. Кроме того, происходит улучшение струк-
туры почвы за счет развития корневой системы, 
снижение ветровой и водной эрозии, подавление 
сорных растений, обеспечение среды обитания 
опылителей, повышение разнообразия и актив-
ности почвенного микробного сообщества (Lei et 
al., 2022; Valizadeh et al., 2023). 

Целью данной работы было оценить потенци-
альную возможность использовать вику яровую 
как сидеральную культуру с целью улавливания и 

сохранения в почве атмосферного углерода.

Материалы и методы исследования
В условиях теплицы был проведен 

вегетационный эксперимент длительностью 63 
дня при трех температурных режимах: 20 °С, 25 
°С и 30 °С. Условия оставались неизменными 
на протяжении эксперимента: содержание СО2 
в воздушной среде ‒ от 390 до 420 ppm, режим 
освещенности ‒ 16 часов световая фаза, 8 часов 
темнота, интенсивность освещения ‒ от 400 до 
500 Вт/м2, относительная влажность воздуха ‒ 
от 50 до 55 %, влажность почвы ‒ от 55 до 60% 
от общей влагоемкости. Выращивание растений 
вики яровой (Vicia sativa L.) осуществляли в 
контейнерах размером 30×40×20 см, в которые 
были помещены 10 кг серой лесной почвы. В 
начале эксперимента определяли рН почвы, 
содержание подвижного фосфора (Pподв), 
подвижного калия (Кподв), общего азота (Nобщ), 
общего (Собщ) и органического углерода (Сорг), 
гранулометрический состав. Содержание 
общего углерода и общего азота в почвенных 
и растительных образцах определяли методом 
сухого сжигания согласно DIN/ISO 13878 
на анализаторе Elementar Vario MAX Cube 
(Germany) (Борисова, 2015), подвижные формы 
фосфора и калия в почве были определены 
методом спектрометрии с индуктивно связанной 
плазмой на анализаторе ICPE 9000 Shimadzu 
(Japan). Экстракцию подвижных форм 
макроэлементов осуществляли с использованием 
ацетатно-аммонийного буферного раствора 
с рН 4.8 согласно ГОСТ Р ИСО 27085-2012. 
Гранулометрический состав определяли с 
использованием лазерного дифракторметра Blue 
Wave Microtrack (USA) согласно ISO 13320:2020. 
Исходная почва характеризовалась следующими 
показателями: рН 6.7±0.2, Собщ 4.14±0.11%, Сорг 
3.41±0.12 %, Nобщ 0.21±0.01%, Pподв 0.03±0.01 мг/
кг, Кподв 0.07±0.01 мг/кг, гранулометрический 
состав по Ферре – пылевато-глинистый суглинок 
(глина 30.5%, пыль 75.4%, песок 0%).

На 14-е, 21-е и 40-е сутки определяли морфо-
метрические показатели растений (длина корня и 
побега, биомасса корня и побега), а также содер-
жание углерода в фитомассе методом сухого сжи-
гания (Борисова, 2015). Суммарное содержание 
углерода в фитомассе определяли на основании 
данных сухой биомассы растений и содержания 
в ней Собщ. 

Эмиссию СО2 из почвы оценивали по уровню 
респираторной активности почвы согласно ISO 
16072: 2002 c окончанием на газовом хромато-
графе Nexis GC-2030 Shimadzu (Япония). Далее 
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была определена кумулятивная эмиссия СО2 из 
почвы с растениями.

Для расчета баланса углерода для всех тем-
пературных режимов была установлена разница 
между количеством углерода, уловленного фито-
массой растений вики яровой за 40 суток вегета-
ции, и количеством углерода, выделенным из по-
чвы за счет ее респираторной активности. 

Все измерения проводились не менее трех раз. 
Статистическую обработку полученных результа-
тов выполняли с использованием Microsoft Excel. 
Все данные, представленные на рисунках и в та-
блице, содержат средние значения и стандартные 
ошибки. Достоверность различий оценивали с 
использованием критерия Фишера при α=0.05 в 
пакете Statistiсa 13.0.

Результаты и их обсуждение
Эффективность фиксации СО2 из атмосферы 

в углерод фитомассы при разных температурных 
режимах зависит от интенсивности физиологи-
ческих процессов, в частности, процессов фо-
тосинтеза и дыхания. Косвенными критериями, 
позволяющими оценить влияние температуры на 
развитие растения, являются морфометрические 
характеристики, такие как длина корня, длина по-
бега, длина стебля, биомасса (рис. 1). 

Показано, что с 7-х по 14-е сутки экспери-
мента прирост биомассы корня и побега вики 
яровой по всем показателям составил в среднем 
84‒143% и 115‒162%, соответственно. При 30 
°С прирост биомассы корня был максимальным 
на 28‒49 сутки эксперимента. Начиная с 35-х 
суток скорость прироста биомассы растений 
уменьшалась, достигнув минимальных значений 
на 56‒63 сутки эксперимента. Установлено, что 
прирост биомассы не менее чем в 2 раза превы-
шает изменения остальных морфометрических 
характеристик. Это согласуется с формой расте-
ния – невысокое, кустистое. На 63 сутки экспе-
римента биомасса растений, выращенных при 30 
°С, составила 3.1±1.2 г, при 25 °С 4.1±0.9 г, при 20 
°С 2.4±1.6 г. Таким образом, максимальная фито-
масса установлена при температуре вегетации 25 
°С. Длины корня и побега в конце вегетационного 
эксперимента составили 8.8‒16.7 см и 58.0‒62.0 
см, соответственно. Не установлено достоверно-
го различия (p<0.05) в длинах побегов растений, 
выращенных при разных температурах, при этом 
выращивание растений при повышенной темпе-
ратуре 30 °С привело к увеличению длины корня 
в 1.9 раз по сравнению с температурой вегетации 
25 °С и в 1.4 раза по сравнению с температурой 
вегетации 20 °С. В качестве сидеральных культур 
и фиксаторов CO2 предпочтительно использовать 

растения, которые обладают высоким приростом 
фитомассы в начале вегетации.

Увеличение биомассы растений происходит 
за счет процесса фотосинтеза, в ходе которого 
из атмосферного углерода (диоксида углерода) 
синтезируются органические молекулы. Соот-
ветственно, углерод биомассы растений является 
углеродом, уловленным из атмосферы. Показано, 
что содержание углерода в фитомассе вики яро-
вой увеличивается со временем вегетации расте-
ния (рис. 2), при этом достоверных различий в ко-
личестве углерода в зависимости от температуры 
вегетации не установлено (p<0.05). Наименьшим 
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Рис. 1. Изменение морфометрических показателей 
растений вики яровой, выращиваемой при разных 

температурах 
а – изменение прироста биомассы корня, b – изменение приро-
ста биомассы стебля, c – длины корня и побега на 63-и сутки 

эксперимента
Fig. 1. Changes in morphometric parameters of 

spring vetch plants grown at different temperatures 
a – change in root biomass growth, b – change in stem biomass 

growth, c – root and shoot length on the 63rd day of the 
experiment
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содержанием углерода с 28 по 63 сутки характе-
ризовались растения, которые выращивались при 
повышенной температуре – 30°С.

Корни растений, особенно бобовых, выделяют 
экссудаты, которые в свою очередь могут стиму-
лировать активность микробного сообщества ри-
зосферы. С одной стороны, ризосфера представ-
лена достаточно тонким (2…3 мм) слоем почвы, с 
другой стороны экссудация корней может стиму-
лировать гетеротрофное дыхание в ризосферной 
почве, на долю которого приходится до 20% от 
общего дыхания почвы. Для этого была оцене-
на респираторная активность почвы в динамике 
вегетационного эксперимента (рис. 3). Показано, 
что базальная респираторная активность почвы 
при вегетации вики яровой изменялась в диапа-
зоне 0.16–0.23 мгСО2/г·ч при 30ºС, 0.14–0.21 мг-
СО2/г·ч при 25ºС, 0.13–0.19 мгСО2/г·ч при 25ºС. 
В целом, базальная респираторная активность 
почвенного микробного сообщества всегда выше 
при повышенных температурах, однако достовер-
ные различия установлены только на 21, 28 и 35 

сутки (p<0.05). Вероятно, в данный период идет 
активное развитие корневой системы вики яро-
вой, активное выделение экссудатов, что в сово-
купности с повышенной температурой приводит 
к увеличению активности почвенных гетеротро-
фных микроорганизмов. При этом стоит отме-
тить, что значения респираторной активности 
являются типичными для серой лесной почвы, 
на которой произрастали растения (Иващенко 
и др., 2014; Мамаева и др., 2012; Blagodatskaya 
et al., 2006) и выше значений полученных в ла-
бораторных экспериментах при ингибировании 
почвы без растений (Вершинин и др., 2021), что 
подтверждает стимулирующее действие почвен-
ных растительных экссудатов. Так же стоит отме-
тить, что данные по кумулятивной эмиссии СО2 
за вегетационный сезон, рассчитанные на основе 
респираторной активности почвенного микроб-
ного сообщества, соотносятся с данными других 
исследователей (Larionova et al., 1998).

На следующем этапе были рассчитаны эмис-
сия углерода за счет респираторной активности 
и объем его улавливания в фитомассе растений. 
Разница в данных показателях позволяет оценить 
эффективность использования вики яровой с точ-
ки зрения улавливания углерода из атмосферы 
с последующим внесением его в почву (рис. 4). 
Однако стоит отметить, что при расчете баланса 
углерода было допущено упрощение, и анализ 
улавливания СО2 из атмосферы базировался толь-
ко на данных углерода, уловленного в фитомас-
се.  При этом известно, что в растительных ор-
ганизмах одновременно происходят фотосинтез, 
дыхание, выделение экссудатов, отмирание ча-
стей корня/побега и т.д. Показано, что выращи-
вание вики яровой в течении 63 суток позволяет 
уловить 119, 166 и 97 кг С/га при температурах 
вегетации 30, 25 и 20ºС, соответственно. Наи-
более эффективно использование вики яровой 
в качестве сидеральной культуры и возможного 
поглотителя атмосферного углерода (СО2) при 
25ºС, так данная температура характеризовалась 
невысокой эмиссией СО2 за счет респираторной 
активности и максимальной биомассой растений. 
Увеличение температуры на 5ºС приводит к сни-
жению эффективности в 1.4 раза, а снижение на 
5ºС – к снижению эффективности в 1.7 раза. Еще 
одним важным параметром, который необходимо 
установить при разработке технологий улавли-
вания атмосферного углерода в фитомассе рас-
тений, является минимальный достаточный срок 
вегетации. Полученные результаты показывают, 
что вегетация растений вики яровой в течение 56 
суток является оптимальной, что в свою очередь 
приведет к высокому улавливанию углерода и не-
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допущению формирования семян.

Заключение
Результаты данного исследования показыва-

ют, что оптимальная температура для выращива-
ния яровой вики в качестве сидерата и потенци-
ального поглотителя углерода составляет 25 °C. 
При этой температуре растения демонстрируют 
максимальный рост фитомассы и улавливание 
углерода, в то время как выбросы CO2 от дыха-
ния почвы сводятся к минимуму. Повышение или 
понижение температуры на 5 °C приводит к зна-
чительному снижению эффективности, что под-
черкивает необходимость подбора оптимальных 
сидеральных культур для разных климатических 
зон. Было установлено, что оптимальный вегета-
ционный период составляет 56 дней, что обеспе-
чивает высокий уровень улавливания углерода и 
не позволяет растениям сформировать семена. 
Полученные результаты могут в дальнейшем 
быть использованы для разработки эффективных 
технологий улавливания атмосферного углерода 
и увеличения почвенного плодородия.

Благодарность: Работа выполнена при фи-
нансовой поддержке Российского научного фон-
да, грант № 23-26-00275.
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Pronovich N.A., Krasovskaya S.I., Aleksandrova 
L., Kuryntseva P.A. Assessment of vegetation 
temperature impact on the efficiency of 
atmospheric carbon capture in spring vetch (Vicia 
sativa L.).

This article is devoted to the study of the influence 
of vegetation temperature on the growth and 
development of spring vetch plants, as well as on the 
respiratory activity of the soil microbial community 
from the point of view of assessing the potential of 
spring vetch as a green manure that captures CO2 
from the atmosphere. For this purpose, a vegetation 

experiment lasting 63 days was conducted at three 
vegetation temperatures – 20 °C (base) and 25 °C, 30 
°C (elevated). The results showed that the maximum 
phytomass was achieved at a vegetation temperature 
of 25 °C, without significant differences in the 
length of shoots at different temperatures. However, 
the length of the roots increased 1.9 times at 30 °C 
compared to 25 °C and 1.4 times compared to 20 °C. 
The carbon content in the phytomass increased with 
plant growth, but did not change significantly with 
temperature. The respiratory activity of the soil was 
higher at elevated temperatures, probably due to an 
increase in root exudation. Calculations showed that 
growing spring vetch for 63 days could contribute to 
the capture of 119, 166 and 97 kg C/ha at 30 °C, 25 
°C and 20 °C, respectively, with the most effective 
capture at 25 °C. We assume that spring vetch can be 
a useful green crop and an absorber of atmospheric 
carbon, while the optimal growing season is 56 days, 
which makes it possible to capture carbon as much as 
possible and at the same time prevent the formation 
of seeds. 
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spring vetch; soil respiratory activity; climate change.


