The Peierls–Bogoliubov Inequality in C*-Algebras and Characterization of Tracial Functionals

Airat M. Bikchentaev

(Submitted by D.H. Mushtari)

Received February 21, 2011

Abstract—We prove that either of the Peierls-Bogoliubov and Araki-Lieb-Thirring inequalities characterizes the tracial functionals among all positive functionals on a C^* -algebra. We also give the affirmative answer to the question of J. Zemánek.

DOI: 10.1134/S1995080211030061

Keywords and phrases: Algebra of matrices, functional calculus, positive functional, tracial functional, the Peierls-Bogoliubov inequality, von Neumann algebra, C*-algebra.

In what follows, M_n stands for the algebra of $n \times n$ complex matrices, M_n^+ stands for the cone of positive semi-definite matrices.

It is an important issue in statistical mechanics to calculate the value of the so-called *partition* function $\operatorname{tr}(e^{\widetilde{H}})$, where the Hermitian matrix \widetilde{H} is the Hamiltonian of a physical system. Since that computation is often difficult, it is simpler to compute the related quantity $\operatorname{tr}(e^H)$, where H is a convenient approximation of the Hamiltonian \widetilde{H} . Indeed, let $\widetilde{H} = H + K$. The *Peierls–Bogoliubov* inequality provides useful information on $\operatorname{tr}(e^{H+K})$ from $\operatorname{tr}(e^H)$. This inequility states that, for two Hermitian operators H and K

$$\operatorname{tr}(e^{H}) \exp \frac{\operatorname{tr}(e^{H}K)}{\operatorname{tr}(e^{H})} \le \operatorname{tr}(e^{H+K}).$$
(1)

The equality occurs in the Peierls-Bogoliubov inequality if and only if K is a scalar matrix. The elegant proof of the inequality (1) for Hermitian $H, K \in M_n$ is given in § 7 of [1].

Recall that (for basic references, see, e.g., [10, 14]) a positive linear functional φ on a von Neumann algebra \mathcal{M} is said to be *normal* if $\varphi(\sup A_i) = \sup \varphi(A_i)$ for every bounded increasing net $\{A_i\}$ of positive operators in \mathcal{M} . A linear functional φ on a C^* -algebra \mathcal{A} is said to be *tracial* if $\varphi(AB) = \varphi(BA)$ for all A, B in \mathcal{A} .

Lemma 1. A positive normal functional φ on von Neumann algebra \mathcal{M} is tracial if and only if

$$\varphi(e^H) \exp \frac{\varphi(e^{H/2} K e^{H/2})}{\varphi(e^H)} \le \varphi(e^{H+K})$$
(2)

for all positive operators H, K in \mathcal{M} .

Proof. It was proved in Theorem 7 of [12] that

$$\tau(e^H) \exp \frac{\tau(e^H K)}{\tau(e^H)} \le \tau(e^{H+K})$$

for every semifinite normal trace τ on \mathcal{M} and any Hermitian operators H, K in \mathcal{M} with $\tau(e^H) < \infty$. We have

$$\tau(e^{H}K) = \tau(e^{H/2}e^{H/2}K) = \tau(e^{H/2}Ke^{H/2}) < \infty$$

Supported by the Russian Federal Agency of Science and Innovations (contract No 02.740.0193).