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ON THE τ-COMPACTNESS OF PRODUCTS
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Abstract. Let M be the von Neumann algebra of operators in a Hilbert space H and τ be an exact

normal semi-finite trace on M. We obtain inequalities for permutations of products of τ -measurable

operators. We apply these inequalities to obtain new submajorizations (in the sense of Hardy, Lit-

tlewood, and Pólya) of products of τ -measurable operators and a sufficient condition of orthogonality

of certain nonnegative τ -measurable operators. We state sufficient conditions of the τ -compactness

of products of self-adjoint τ -measurable operators and obtain a criterion of the τ -compactness of the

product of a nonnegative τ -measurable operator and an arbitrary τ -measurable operator. We present

an example that shows that the nonnegativity of one of the factors is substantial. We also state a

criterion of the elementary nature of the product of nonnegative operators from M. All results are

new for the *-algebra B(H) of all bounded linear operators in H endowed with the canonical trace

τ = tr.
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Introduction. Let M be the von Neumann algebra of operators in a Hilbert space H and τ be an
exact normal semi-finite trace on M. Products of τ -measurable operators appear in various problems
of the theory of noncommutative integration (e.g., in [20] in the definition of dual spaces in the sense

of Köthe, the Golden–Thompson inequality [7], the Peierls–Bogolyubov inequality [6], etc.). Sufficient
conditions for the integrability of products of τ -measurable operators were found in [14]. This paper is
a continuation of the papers [4, 10], in which criteria of the τ -compactness of products of nonnegative

τ -measurable operators were obtained. Similar problems were examined in [3, 8, 30, 31]. Compact
products of operators were studied in [16, 17, 19, 23, 25, 27, 32]. Applications of compact (respectively,
τ -compact) products of operators are discussed in [22] (respectively, in [5]).

In Sec. 3 we obtain inequalities for permutations of products of τ -measurable operators. We apply
these inequalities to obtain new submajorizations (in the sense of Hardy, Littlewood, and Pólya) of
products of τ -measurable operators and a sufficient condition of orthogonality of certain nonnegative

τ -measurable operators. In Sec. 4, we state sufficient conditions of the τ -compactness of products of
self-adjoint τ -measurable operators and obtain a criterion of the τ -compactness of the product of a
nonnegative τ -measurable operator and an arbitrary τ -measurable operator. We present an example

that shows that the nonnegativity of one of factors is substantial. From a well-known property of
permutations (see item (6) of Lemma 2.1) we deduce that a nonnegative operator A ∈ M is an
elementary operator if and only if Ap is elementary for all p > 0. Theorem 4.2 shows that a similar

situation also occurs for products of nonnegative operators A,B ∈ M: the operator AB is elementary
if and only if the operators ApBr are elementary for all p, r > 0. We describe some applications of
results obtained to symmetric spaces on (M, τ). All results are new for the *-algebra B(H) of all

bounded linear operators in H endowed with the canonical trace τ = tr.
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1. Basic definitions, preliminaries, and notation. Let M be the von Neumann algebra of

operators in a Hilbert space H, Mpr be a lattice of projectors in M, and M+ be the cone of positive
elements from M. Let I be the unit of the algebra M and M1 = {X ∈ M : ‖X‖ ≤ 1}.

A mapping ϕ : M+ → [0,+∞] is called a trace if

ϕ(X + Y ) = ϕ(X) + ϕ(Y ), ϕ(λX) = λϕ(X) ∀X,Y ∈ M+, λ ≥ 0

(in this case 0 · (+∞) ≡ 0) and

ϕ(Z∗Z) = ϕ(ZZ∗) ∀Z ∈ M.

A trace ϕ is said to be exact if ϕ(X) > 0 for all X ∈ M+, X �= 0; semi-finite if

ϕ(X) = sup
{
ϕ(Y ) : Y ∈ M+, Y ≤ X, ϕ(Y ) < +∞

}
∀X ∈ M+;

normal if

Xi ↗ X, i.e., (Xi,X ∈ M+) ⇒ ϕ(X) = supϕ(Xi).

An operator in H (not necessarily bounded or densely defined) is said to be adjoint to the von Neu-

mann algebra M if it commutes with any unitary operator from the commutator subalgebra M′ of
the algebra M. A self-adjoint operator is adjoint to M if and only if all projectors from its spectral
decomposition of unity belong to M.

Let τ be an exact, normal, semi-finite trace on M. A closed operator X adjoint to M with
everywhere dense in H domain D(X) is said to be τ -measurable, if for arbitrary ε > 0 there exists

P ∈ Mpr such that PH ⊂ D(X) and τ(I − P ) < ε. The set M̃ of all τ -measurable operators is

a *-algebra with respect to the transition to conjugate operator, multiplication by scalars, and the
operations of strong addition and multiplication obtained by the closure of the ordinary operations

(see [28, 29]). For a family L ⊂ M̃, we denote by L+ and Lsa its positive and Hermitian parts,

respectively. We denote the partial order in M̃sa generated by the proper cone M̃+ by ≤.

If X is a closed, densely defined linear operator adjoint to M and |X| = √
X∗X , then the spectral

decomposition of P |X|(·) is contained in M and X ∈ M̃ if and only if there exists λ ∈ R such that

τ(P |X|((λ,+∞))) < +∞.

If X ∈ M̃ and X = U |X| is the polar decomposition of X, then U ∈ M and |X| ∈ M̃+. Moreover, if

|X| =
∞∫

0

λP |X|(dλ)

is the spectral decomposition, then τ(P |X|((λ,+∞))) → 0 as λ → +∞.

We denote by μt(X) a permutation of the operator X ∈ M̃, i.e., a nonincreasing, right-continuous
function μ(X) : (0,∞) → [0,∞) defined by the formula

μt(X) = inf
{
‖XP‖ : P ∈ Mpr, τ(I − P ) ≤ t

}
, t > 0.

The set of τ -compact operators

M̃0 =
{
X ∈ M̃ : μ∞(X) ≡ lim

t→∞μt(X) = 0
}

is an ideal in M̃ (see [33]). The set of elementary operators

F(M) =
{
X ∈ M : μt(X) = 0 for some t > 0

}

is an ideal in M. If τ(I) < +∞, then M̃0 = M̃.
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Let m be a linear Lebesgue measure on R. The noncommutative Lebesgue Lp-space associated with

(M, τ) (0 < p < ∞) can be defined as follows:

Lp(M, τ) =
{
X ∈ M̃ : μ(X) ∈ Lp(R

+,m)
}

with the F - (norm for 1 ≤ p < ∞)

‖X‖p = ‖μ(X)‖p, X ∈ Lp(M, τ).

We have F(M) ⊂ Lp(M, τ) ⊂ M̃0 for all 0 < p < ∞.

For operators X,Y ∈ (L1 + L∞)(M, τ), the submajorization (or Hardy–Littlewood–Pólya weak
spectral order), X ≺≺ Y , means that

t∫

0

μs(X)ds ≤
t∫

0

μs(Y )ds for all t > 0.

For operators X,Y ∈ M̃ we also consider their Jordan product X ◦Y = 1
2 (XY +Y X) and Lie product

(commutator) [X,Y ] = XY − Y X. An operator X ∈ M̃ is said to be normal if X∗X = XX∗,
hyponormal if X∗X ≥ XX∗, cohyponormal if X∗ is hyponormal, and quasinormal if X commutes

with X∗X, i.e., X · X∗X = X∗X · X. Each quasinormal operator X ∈ M̃ is hyponormal (see [13,

Theorem 2.9]).
If M = B(H) is the *-algebra of all bounded linear operators in H and τ = tr is the canonical trace,

then M̃ coincides with B(H) and M̃0 and F(M) coincide with the ideals of compact operators and

finite-dimensional operators in H, respectively. We have

μt(X) =

∞∑
n=1

sn(X)χ[n−1,n)(t), t > 0,

where {sn(X)}∞n=1 is the sequence of s-numbers of the operator X (see [24, p. 46]) and χA is the
indicator of the set A ⊂ R. Then the space Lp(M, τ) if the Schatten–von Neumann ideal Sp, 0 < p <
∞.

Let (Ω, ν) be a space with measure andM be the von Neumann algebra of operators of multiplication

by functions from L∞(Ω, ν) in the space L2(Ω, ν). The algebra M does not contain nonzero compact
operators if and only if the measure ν does not have atoms (see [1, Theorem 8.4]).

2. Lemmas on τ-measurable operators.

Lemma 2.1 (see [2, 21, 33]). Let X,Y ∈ M̃. Then the following assertions hold :

(1) μt(X) = μt(|X|) = μt(X
∗) for all t > 0;

(2) if |X| ≤ |Y |, then μt(X) ≤ μt(Y ) for all t > 0;

(3) if A,B ∈ M, then μt(AXB) ≤ ‖A‖‖B‖μt(X) for all t > 0;
(4) μs+t(XY ) ≤ μs(X)μt(Y ) for all s, t > 0;
(5) μs+t(X + Y ) ≤ μs(X) + μt(Y ) for all s, t > 0;

(6) μt(|X|p) = μt(X)p for all p > 0 and t > 0;
(7) lim

t→0+
μt(X) = ‖X‖ for X ∈ M and lim

t→0+
μt(X) = ∞ for X /∈ M.

Lemma 2.2 (see [20, p. 720]). If X,Y ∈ M̃+ and Z ∈ M̃, then the inequality X ≤ Y implies
ZXZ∗ ≤ ZY Z∗.

Lemma 2.3. If X,Y ∈ M̃, then |XY | = ||X|Y |. In particular, if X ∈ M is an isometry (i.e.,

X∗X = I), then |XY | = |Y |.
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Proof. We have |XY | = (Y ∗X∗XY )1/2 = (Y ∗|X|2Y )1/2 = ||X|Y |. �

Lemma 2.4 (see [4, Proposition]). If X,Y ∈ M̃+, then XY ∈ M̃0 ⇔ X1/2Y X1/2 ∈ M̃0 ⇔ Y 1/2XY 1/2 ∈
M̃0.

Lemma 2.5 (see [8, Theorem 1]). Let A ∈ M̃+, B ∈ M̃sa, and −A ≤ B ≤ A. Then there exists a
unitary operator S ∈ Msa such that 2|B| ≤ A+ SAS.

We also recall (see [12, Theorem 1]) that there exist operators X ∈ M̃sa and Y ∈ M̃+ such that

B = XY + Y X and A = X2 + Y 2. Examples of operators A ∈ M̃+ and B ∈ M̃sa with −A ≤ B ≤ A

can be found in [9]. Lemma 2.5 implies the following assertion.

Lemma 2.6 (see [15, Proposition 1.2]). If A ∈ M̃+, B ∈ M̃sa, and −A ≤ B ≤ A, then B ≺≺ A.

Lemma 2.7 (see [3, 30, 31]). If X ∈ M̃+, Y ∈ M̃sa, and XY ∈ (L1+L∞)(M, τ), then XtY X1−t ≺≺
XY for all 0 < t < 1.

Lemma 2.8 (see [10, Theorem 3.5]). Let X,Y ∈ M̃, X be hyponormal, and Y by cohyponormal.

Then μt(XY ) ≥ μt(Y X) for all t > 0.

3. Inequalities for permutations of τ-measurable operators. Let τ be an exact, normal,

semi-finite trace on the von Neumann algebra M.

Theorem 3.1. Let A ∈ M̃, Xk, Yk ∈ M̃+, and Xk ≤ Yk, k = 1, 2. Then

μt(X
1/2
1 AX

1/2
2 ) ≤ μt(Y

1/2
1 AY

1/2
2 ) ∀t > 0.

Proof. By Lemma 2.2 we have A∗X1A ≤ A∗Y1A. Therefore, by items (1), (2), and (6) of Lemma 2.1
and the monotonicity of the real function λ �→ λ1/2 (λ ≥ 0) for all t > 0, we obtain

μt(X
1/2
1 A) = μt(A

∗X1A)
1/2 ≤ μt(A

∗Y1A)
1/2 = μt(Y

1/2
1 A).

Similarly, we obtain

μt(X
1/2
2 B∗) ≤ μt(Y

1/2
2 B∗)

for all B ∈ M̃ and t > 0. By item (1) of Lemma 2.1 we have

μt(BX
1/2
2 ) = μt((X

1/2
2 B∗)∗) ≤ μt((Y

1/2
2 B∗)∗) = μt(BY

1/2
2 )

for all B ∈ M̃ and t > 0. Replacing the operator A by AX
1/2
2 and the operator B by Y

1/2
1 , we obtain

for all t > 0 the inequalities

μt(X
1/2
1 AX

1/2
2 ) ≤ μt(Y

1/2
1 AX

1/2
2 ) ≤ μt(Y

1/2
1 AY

1/2
2 ),

which was required. �

Proposition 3.1. If operators X,Y ∈ M̃ are invertible and X−1, Y −1 ∈ M1, then

μt(X
−1 − Y −1) ≤ μt(X − Y ) ∀t > 0.

Moreover,

μt(X
−2 − Y −2) ≤ 2μt/2(X − Y ) ∀t > 0.

Proof. For all invertible X,Y ∈ M̃ we have

X−1 − Y −1 = X−1(Y −X)Y −1 = Y −1(Y −X)X−1.

Therefore, by items (3) and (1) of Lemma 2.1, for all t > 0 we obtain

μt(X
−1 − Y −1) = μt(X

−1(Y −X)Y −1) ≤ ‖X−1‖‖Y −1‖μt(Y −X) ≤ μt(Y −X) = μt(X − Y ).
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Since

‖X−1 + Y −1‖ ≤ ‖X−1‖+ ‖Y −1‖ ≤ 2,

X−2 − Y −2 =
1

2

(
(X−1 − Y −1)(X−1 + Y −1) + (X−1 + Y −1)(X−1 − Y −1)

)
,

the inequality

μt(X
−2 − Y −2) ≤ 2μt/2(X − Y )

for all t > 0 follows from items (3) and (5) of Lemma 2.1. The proposition is proved. �
If an operator X ∈ M̃ is invertible in M̃, then by item (4) of Lemma 2.1 we have

1 = μ2t(I) = μ2t(XX−1) ≤ μt(X)μt(X
−1)

for all t ∈ (0, 2−1τ(I)). Therefore, X,X−1 /∈ M̃0 for τ(I) = +∞.

Proposition 3.2. If X ∈ M̃ and Y ∈ Mpr, then

μt(Y XY ) ≤ min{μt(XY ), μt(X ◦ Y )} ∀t > 0.

Proof. By item (3) of Lemma 2.1 for all t > 0 we have

μt(Y XY ) ≤ ‖Y ‖μt(XY ) = μt(XY ),

2μt(Y XY ) = μt(Y (XY + Y X)Y ) ≤ ‖Y ‖2μt(XY + Y X) = μt(XY + Y X).

The proposition is proved. �
In particular, if

X ∈ M̃+,

then
μt(X

1/2Y X1/2) = μt(Y XY ), μt(X
1/2Y X1/2) ≤ min

{
μt(XY ), μt(X ◦ Y )

}

for all t > 0. Note that for X,Y ∈ M̃+, the inequality μt(X
1/2Y X1/2) ≤ μt(XY ) does not hold in

the general case (see [3, p. 575]).

Theorem 3.2. If X,Y ∈ M̃, then μt(XY ) = μt(|X||Y ∗|) for all t > 0.

Proof. By Lemma 2.3 and item (1) of Lemma 2.1, for all t > 0 we have

μt(XY ) = μt(|XY |) = μt(||X|Y |) = μt(|X|Y ) = μt((|X|Y )∗) = μt(Y
∗|X|) =

= μt(|Y ∗|X||) = μt(||Y ∗||X||) = μt(|Y ∗||X|) = μt((|Y ∗||X|)∗) =
= μt(|X||Y ∗|).

The theorem is proved. �

Corollary 3.1. If an operator X ∈ M̃ is nilpotent of order n and m ≥ n, then |Xm−k||X∗k| = 0 for
all k ∈ {1, 2, . . . ,m− 1}.
Proof. By the condition Xn = 0 �= Xn−1. We have

0 = μt(X
m) = μt(X

m−kXk) = μt(|Xm−k||X∗k|)
for all m ≥ n and t > 0. Therefore, |Xm−k||X∗k| = 0 for all k ∈ {1, 2, . . . ,m− 1}. �

Theorem 3.2 and Lemma 2.7 imply the following assertion.

Corollary 3.2. We have |X|t|Y ∗||X|1−t ≺≺ XY for all 0 < t < 1 and X,Y ∈ M̃.

Corollary 3.3. Let X,Y ∈ M̃, where the operator X is hyponormal and the operator Y is cohyponor-

mal. Then μt(|X||Y ∗|) ≥ μt(|X∗||Y |) for all t > 0.
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Proof. By Lemma 2.8 and item (1) of Lemma 2.1 for all t > 0 we have

μt(|X||Y ∗|) = μt(XY ) ≥ μt(Y X) = μt(|Y ||X∗|) = μt((|Y ||X∗|)∗) = μt(|X∗||Y |). (1)

The proof is complete. �

Corollary 3.4. Let operators X,Y ∈ M̃ be normal. Then μt(|X||Y ∗|) = μt(|X∗||Y |) for all t > 0.

Proof. By [10, Corollary 3.6] we have the equality in (1). �

Theorem 3.3. Let X,Y ∈ M̃, XY ∈ (L1 + L∞)(M, τ), X is hyponormal, and Y is cohyponormal.
Then

λXY + (1− λ)Y X ≺≺ XY ∀0 ≤ λ ≤ 1.

In particular, X ◦ Y ≺≺ XY .

Proof. For all t > 0, due to Lemma 2.8 and the positive homogeneity and subadditivity of the
functional

Φ(A, t) =

t∫

0

μs(A)ds, A ∈ (L1 + L∞)(M, τ)

we obtain
t∫

0

μs(λXY + (1− λ)Y X)ds ≤ λ

t∫

0

μs(XY )ds+ (1− λ)

t∫

0

μs(Y X)ds ≤
t∫

0

μs(XY )ds.

The theorem is proved. �
Theorems 3.2 and 3.3 imply the following.

Corollary 3.5. In conditions of Theorem 3.3 we have λXY + (1− λ)Y X ≺≺ |X||Y ∗|.
Proposition 3.3. If X,Y,A ∈ (L1 + L∞)(M, τ) and X,X − A ≺≺ Y , then X − λA ≺≺ Y for all

0 ≤ λ ≤ 1.

Proof. The assertion follows from the positive homogeneity and the subadditivity of the functional

Φ(A, t) =

t∫

0

μs(A)ds, A ∈ (L1 + L∞)(M, τ),

and the representation X −λA = (1−λ)X+λ(X −A). In particular, if X,A ∈ M̃ and X −A ≺≺ X,
then X − λA ≺≺ X for all 0 ≤ λ ≤ 1. �

Proposition 3.4. If X,Y ∈ M̃sa and X2 + Y 2 ∈ (L1 + L∞)(M, τ), then

X ◦ Y ≺≺ 1

2
(X2 + Y 2), [X,Y ] ≺≺ X2 + Y 2.

Proof. Since (X ± Y )2 ≥ 0 and (X ± iY )(X ∓ iY ) ≥ 0 with i ∈ C, i2 = −1, we have

−X2 − Y 2 ≤ XY + Y X ≤ X2 + Y 2, −X2 − Y 2 ≤ i(XY − Y X) ≤ X2 + Y 2.

Now the assertions follow from Lemma 2.6. �
Since XY = X ◦ Y + 1

2 [X,Y ], Proposition 3.4 implies the following assertion.

Corollary 3.6. If X,Y ∈ M̃sa and X2 + Y 2 ∈ (L1 + L∞)(M, τ), then XY ≺≺ X2 + Y 2.

For a wide class of operators X,Y ∈ M̃sa we have μt(XY ) ≤ μt

(
X2+Y 2

2

)
for all t > 0 (see [18,

Lemma3.4]).
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4. On the τ-compactness of products of τ-measurable operators.

Theorem 4.1. Let operators X,Y ∈ M̃sa be such that

XY + Y XY ∈ M̃0, Y 2 + Y ≥ λ|Y |p

with certain 0 < λ, p < +∞. Then XY ∈ M̃0.

Proof. We have XY = Y X +A with

A = XY − Y X = XY + Y XY − (XY + Y XY )∗ ∈ M̃0.

Then

XY +XY 2 −AY = XY + (XY −A)Y = XY + Y XY ∈ M̃0

and, since AY ∈ M̃0, we have

XY +XY 2 ∈ M̃0.

Therefore,

X(Y + Y 2)X = (XY +XY 2)X ∈ M̃0.

By Lemma 2.2 and item (2) of Lemma 2.1, we obtain

X · |Y |p ·X ∈ M̃0.

Since

μt(X|Y |p/2)2 = μt((X|Y |p/2)∗)2 = μt(|Y |p/2X)2 = μt(||Y |p/2X|)2 = μt(||Y |p/2X|2)
= μt(X|Y |pX) → 0 as t → +∞,

we obtain

X|Y |p/2 ∈ M̃0.

Since

|X · |Y |p/2| = ||X| · |Y |p/2|
by Lemma 2.3, we have |X| · |Y |p/2 ∈ M̃0. Therefore,

|X| · |Y | ∈ M̃0

by Theorem 4.1 (see [10]). Let X = U |X| and Y = V |Y | be polar decompositions of the operators X

and Y . Then Y = |Y |V and XY = U · |X||Y | · V ∈ M̃0. The theorem is proved. �

Corollary 4.1. Let operators X,Y ∈ M̃sa be such that

XY − Y XY ∈ M̃0, Y 2 − Y ≥ λ|Y |p

with certain 0 < λ, p < +∞. Then XY ∈ M̃0.

Proof. The operators X1 = −X and Y1 = −Y satisfy all conditions of Theorem 4.1 and X1Y1 = XY .
�

Proposition 4.1. For operators X ∈ M̃ and Y ∈ M̃+, the following conditions are equivalent :

(i) XY ∈ M̃0;

(ii) XYX∗ ∈ M̃0.
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Proof. (ii)⇒(i). By items (1) and (6) of Lemma 2.1 we have

μt(XY 1/2)2 = μt((XY 1/2)∗)2 = μt(Y
1/2X∗)2 = μt(|Y 1/2X∗|)2 = μt(|Y 1/2X∗|2)

= μt(XY X∗) → 0 as t → +∞.

Therefore, XY 1/2 ∈ M̃0 XY = XY 1/2 · Y 1/2 ∈ M̃0. �

Corollary 4.2. For operators X,Y ∈ M̃ we have

XY ∈ M̃0 ⇔ |X||Y ∗| ∈ M̃0 ⇔ |X|1/2|Y ∗||X|1/2 ∈ M̃0 ⇔ |Y ∗|1/2|X||Y ∗|1/2 ∈ M̃0.

Corollary 4.3. Let X ∈ M̃sa and Y ∈ M̃. If XY ∈ M̃0, then |Y ∗|1/2 X |Y ∗|1/2 ∈ M̃0.

Proof. LetX = X+−X− be the Jordan decomposition of the operator X ∈ M̃sa, whereX+,X− ∈ M̃+

and X+X− = 0. Then |X| = X+ +X− and

|Y ∗|1/2 X± |Y ∗|1/2 ≤ |Y ∗|1/2 |X| |Y ∗|1/2

by Lemma 2.2. If XY ∈ M̃0, then |Y ∗|1/2 |X| |Y ∗|1/2 ∈ M̃0 by Corollary 4.2. Now due to item (2) of
Lemma 2.1 we have

|Y ∗|1/2 X± |Y ∗|1/2 ∈ M̃+
0 ,

and hence
|Y ∗|1/2 X |Y ∗|1/2 = |Y ∗|1/2 X+ |Y ∗|1/2 − |Y ∗|1/2 X− |Y ∗|1/2 ∈ M̃0.

The assertion is proved. �

Example 4.1. The condition X,Y ∈ M̃+ is essential in Lemma 2.4 and the condition Y ∈ M̃+ is

essential in Proposition 4.1. We endow the von Neumann algebra M =
∞⊕
n=1

M2(C) with the exact,

normal, semi-finite trace τ =
∞⊕
n=1

tr2 and set

X =

∞⊕
n=1

(
1/2 1/2
1/2 1/2

)
, Y =

∞⊕
n=1

(
1 0
0 −1

)
.

Then X ∈ Mpr, Y ∈ Msa, and X1/2Y X1/2 = 0 ∈ M̃0, but the operators

XY =

∞⊕
n=1

(
1/2 −1/2
1/2 −1/2

)
, X ◦ Y =

∞⊕
n=1

(
1/2 0
0 −1/2

)
/∈ M̃0.

Example 4.2 (theorem on lifting of idempotents; see [26, Proposition 7]). LetM = B(H) and τ = tr

be the canonical trace, let operators X ∈ M and Y = I − X be such that XY ∈ M̃0. Then the

representation X = P + Z holds, where P = P 2 ∈ M and Z ∈ M̃0.

Theorem 4.2. Let X,Y ∈ M+, n ∈ N, and pk > 0, qk > 0, r > 0, k = 1, . . . , n. Then the following
conditions are equivalent :

(i) XY ∈ F(M);
(ii) Xp1Y q1 · · ·XpnY qn ∈ F(M);

(iii) Xp1Y q1 · · ·XpnY qnXr ∈ F(M).

Proof. (i)⇒(ii), (iii). We have XY X ∈ F(M). By items (1) and (6) of Lemma 2.1 we obtain

μt(XY 1/2) = μt(XYX)1/2 ∀t > 0;

therefore,

XY 1/2 ∈ F(M).
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Now

Y 1/2XY 1/2 ∈ F(M).

By items (1) and (6) of Lemma 2.1 we have

μt(X
1/2Y 1/2) = μt(Y

1/2XY 1/2)1/2 ∀t > 0;

therefore,

X1/2Y 1/2 ∈ F(M).

Continuing this process, we obtain

X2−m
Y 2−m ∈ F(M)

for all m ∈ N. We choose m such that 2−m < min{p1, q1}. Then
Xp1Y q1 = Xp1−2−m ·X2−m

Y 2−m · Y q1−2−m ∈ F(M).

The implications (ii)⇒(i) and (iii)⇒(i) can be verified by arguments similar to the proof of Theorem 4.1
(see [10]). �

Theorem 4.3. Let operators X,Y ∈ Msa be such that XY + Y XY ∈ F(M) and Y 2 + Y ≥ λ|Y |p
with certain 0 < λ, p < +∞. Then XY ∈ F(M).

Proof. Repeating the arguing from the proof of Theorem 4.1, we obtain X|Y |p/2 ∈ F(M). Let

X = U |X| and Y = V |Y | be the polar decompositions of the operators X and Y . Then U, V ∈ Msa

and UX = |X|, Y = |Y |V . Since

|X||Y |p/2 = UX|Y |p/2 ∈ F(M),

we have |X||Y | ∈ F(M) by Theorem 4.2. Therefore, XY = U · |X||Y | · V ∈ F(M). The theorem is
proved. �

Corollary 4.4. Let operators X,Y ∈ Msa be such that XY − Y XY ∈ F(M) and Y 2 − Y ≥ λ|Y |p
with certain 0 < λ, p < +∞. Then XY ∈ F(M).

Proof. The operators X1 = −X and Y1 = −Y satisfy all condition of Theorem 4.3 and X1Y1 = XY .

�
The proof of the following proposition is similar to the proof of Proposition 4.1.

Proposition 4.2. For operators X ∈ M and Y ∈ M+ the following conditions are equivalent :

(i) XY ∈ F(M);

(ii) XYX∗ ∈ F(M).

Example 4.1 show that the positiveness condition of operator Y ∈ M is essential in Proposition 4.2.

Proposition 4.3. Let an operator X ∈ M̃ be quasinormal and Xn = X for a certain natural number

n ≥ 2. Then X ∈ M1 and the following conditions are equivalent :

(i) X ∈ F(M);

(ii) X ∈ M̃0.

Proof. We have μt(X) = μt(X
n) = μt(X)n for all t > 0 due to [14, Theorem 2.4]. Therefore,

μt(X) ∈ {0, 1} for all t > 0 and X ∈ M1 by item (7) of Lemma 2.1. The rest of the proof is obvious.
�

Note that if X ∈ M̃ with Xn = X for a certain natural number n ≥ 2 and X /∈ M̃0, then μt(X) ≥ 1

for all t > 0 due to [11, Lemma 4.8]. The vector space E in M̃ is called the symmetric space on (M, τ)
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if the conditions X ∈ E , Y ∈ M̃, and μ(Y ) ≤ μ(X) imply Y ∈ E . For example, M, F(M), M̃0,

(L1+L∞)(M, τ), and Lp(M, τ) for 0 < p < +∞. If X ∈ M̃ and n ≥ 2, then by Theorem 3.2 we have

μt(X
n) = μt(X

n−kXk) = μt(|Xn−k||X∗k|)
for all k ∈ {1, 2, . . . , n − 1} and t > 0. Therefore, Xn ∈ E ⇔ |Xn−k||X∗k| ∈ E for all k ∈
{1, 2, . . . , n− 1}.
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17. Ž. Čučković and S. Şahutoǧlu, “Compactness of products of Hankel operators on the polydisk
and some product domains in C

2,” J. Math. Anal. Appl., 371, No. 1, 341–346 (2010).
18. D. Dauitbek, N. E. Tokmagambetov, and K. S. Tulenov, “Commutation inequalities related to

polar decompositions of τ -measurable operators,” Izv. Vyssh. Ucheb. Zaved. Ser. Mat., No. 7,
56–62 (2014).

19. X. H. Ding, “Compact product of Toeplitz operators on the polydisk,” Acta Math. Sinica (Chin.

Ser.), 48, No. 3, 493–498 (2005).

467



20. P. G. Dodds, T. K.-Y. Dodds, and B. de Pagter, “Noncommutative Köthe duality,” Trans. Am.
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