ON THE τ-COMPACTNESS OF PRODUCTS OF τ-MEASURABLE OPERATORS ADJOINT TO SEMI-FINITE VON NEUMANN ALGEBRAS

A. M. Bikchentaev
UDC 517.983, 517.986

Abstract

Let \mathcal{M} be the von Neumann algebra of operators in a Hilbert space \mathcal{H} and τ be an exact normal semi-finite trace on \mathcal{M}. We obtain inequalities for permutations of products of τ-measurable operators. We apply these inequalities to obtain new submajorizations (in the sense of Hardy, Littlewood, and Pólya) of products of τ-measurable operators and a sufficient condition of orthogonality of certain nonnegative τ-measurable operators. We state sufficient conditions of the τ-compactness of products of self-adjoint τ-measurable operators and obtain a criterion of the τ-compactness of the product of a nonnegative τ-measurable operator and an arbitrary τ-measurable operator. We present an example that shows that the nonnegativity of one of the factors is substantial. We also state a criterion of the elementary nature of the product of nonnegative operators from \mathcal{M}. All results are new for the ${ }^{*}$-algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators in \mathcal{H} endowed with the canonical trace $\tau=\mathrm{tr}$.

Keywords and phrases: Hilbert space, linear operator, von Neumann algebra, normal semi-finite trace, τ-measurable operator, τ-compact operator, elementary operator, nilpotent, permutation, submajorization.
AMS Subject Classification: 47C15, 46L51

Introduction. Let \mathcal{M} be the von Neumann algebra of operators in a Hilbert space \mathcal{H} and τ be an exact normal semi-finite trace on \mathcal{M}. Products of τ-measurable operators appear in various problems of the theory of noncommutative integration (e.g., in [20] in the definition of dual spaces in the sense of Köthe, the Golden-Thompson inequality [7], the Peierls-Bogolyubov inequality [6], etc.). Sufficient conditions for the integrability of products of τ-measurable operators were found in [14]. This paper is a continuation of the papers [4, 10], in which criteria of the τ-compactness of products of nonnegative τ-measurable operators were obtained. Similar problems were examined in [3, 8, 30, 31]. Compact products of operators were studied in $[16,17,19,23,25,27,32]$. Applications of compact (respectively, τ-compact) products of operators are discussed in [22] (respectively, in [5]).

In Sec. 3 we obtain inequalities for permutations of products of τ-measurable operators. We apply these inequalities to obtain new submajorizations (in the sense of Hardy, Littlewood, and Pólya) of products of τ-measurable operators and a sufficient condition of orthogonality of certain nonnegative τ-measurable operators. In Sec. 4, we state sufficient conditions of the τ-compactness of products of self-adjoint τ-measurable operators and obtain a criterion of the τ-compactness of the product of a nonnegative τ-measurable operator and an arbitrary τ-measurable operator. We present an example that shows that the nonnegativity of one of factors is substantial. From a well-known property of permutations (see item (6) of Lemma 2.1) we deduce that a nonnegative operator $A \in \mathcal{M}$ is an elementary operator if and only if A^{p} is elementary for all $p>0$. Theorem 4.2 shows that a similar situation also occurs for products of nonnegative operators $A, B \in \mathcal{M}$: the operator $A B$ is elementary if and only if the operators $A^{p} B^{r}$ are elementary for all $p, r>0$. We describe some applications of results obtained to symmetric spaces on (\mathcal{M}, τ). All results are new for the ${ }^{*}$-algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators in \mathcal{H} endowed with the canonical trace $\tau=\operatorname{tr}$.

[^0]1. Basic definitions, preliminaries, and notation. Let \mathcal{M} be the von Neumann algebra of operators in a Hilbert space $\mathcal{H}, \mathcal{M}^{\text {pr }}$ be a lattice of projectors in \mathcal{M}, and \mathcal{M}^{+}be the cone of positive elements from \mathcal{M}. Let I be the unit of the algebra \mathcal{M} and $\mathcal{M}_{1}=\{X \in \mathcal{M}:\|X\| \leq 1\}$.

A mapping $\varphi: \mathcal{M}^{+} \rightarrow[0,+\infty]$ is called a trace if

$$
\varphi(X+Y)=\varphi(X)+\varphi(Y), \quad \varphi(\lambda X)=\lambda \varphi(X) \quad \forall X, Y \in \mathcal{M}^{+}, \lambda \geq 0
$$

(in this case $0 \cdot(+\infty) \equiv 0$) and

$$
\varphi\left(Z^{*} Z\right)=\varphi\left(Z Z^{*}\right) \quad \forall Z \in \mathcal{M}
$$

A trace φ is said to be exact if $\varphi(X)>0$ for all $X \in \mathcal{M}^{+}, X \neq 0$; semi-finite if

$$
\varphi(X)=\sup \left\{\varphi(Y): Y \in \mathcal{M}^{+}, Y \leq X, \varphi(Y)<+\infty\right\} \quad \forall X \in \mathcal{M}^{+}
$$

normal if

$$
X_{i} \nearrow X, \quad \text { i.e., } \quad\left(X_{i}, X \in \mathcal{M}^{+}\right) \Rightarrow \varphi(X)=\sup \varphi\left(X_{i}\right)
$$

An operator in \mathcal{H} (not necessarily bounded or densely defined) is said to be adjoint to the von Neumann algebra \mathcal{M} if it commutes with any unitary operator from the commutator subalgebra \mathcal{M}^{\prime} of the algebra \mathcal{M}. A self-adjoint operator is adjoint to \mathcal{M} if and only if all projectors from its spectral decomposition of unity belong to \mathcal{M}.

Let τ be an exact, normal, semi-finite trace on \mathcal{M}. A closed operator X adjoint to \mathcal{M} with everywhere dense in \mathcal{H} domain $\mathcal{D}(X)$ is said to be τ-measurable, if for arbitrary $\varepsilon>0$ there exists $P \in \mathcal{M}^{\text {pr }}$ such that $P \mathcal{H} \subset \mathcal{D}(X)$ and $\tau(I-P)<\varepsilon$. The set $\widetilde{\mathcal{M}}$ of all τ-measurable operators is a *-algebra with respect to the transition to conjugate operator, multiplication by scalars, and the operations of strong addition and multiplication obtained by the closure of the ordinary operations (see [28, 29]). For a family $\mathcal{L} \subset \widetilde{\mathcal{M}}$, we denote by \mathcal{L}^{+}and $\mathcal{L}^{\text {sa }}$ its positive and Hermitian parts, respectively. We denote the partial order in $\widetilde{\mathcal{M}}^{\text {sa }}$ generated by the proper cone $\widetilde{\mathcal{M}}^{+}$by \leq.

If X is a closed, densely defined linear operator adjoint to \mathcal{M} and $|X|=\sqrt{X^{*} X}$, then the spectral decomposition of $P^{|X|}(\cdot)$ is contained in \mathcal{M} and $X \in \widetilde{\mathcal{M}}$ if and only if there exists $\lambda \in \mathbb{R}$ such that

$$
\tau\left(P^{|X|}((\lambda,+\infty))\right)<+\infty
$$

If $X \in \widetilde{\mathcal{M}}$ and $X=U|X|$ is the polar decomposition of X, then $U \in \mathcal{M}$ and $|X| \in \widetilde{\mathcal{M}}{ }^{+}$. Moreover, if

$$
|X|=\int_{0}^{\infty} \lambda P^{|X|}(d \lambda)
$$

is the spectral decomposition, then $\tau\left(P^{|X|}((\lambda,+\infty))\right) \rightarrow 0$ as $\lambda \rightarrow+\infty$.
We denote by $\mu_{t}(X)$ a permutation of the operator $X \in \widetilde{\mathcal{M}}$, i.e., a nonincreasing, right-continuous function $\mu(X):(0, \infty) \rightarrow[0, \infty)$ defined by the formula

$$
\mu_{t}(X)=\inf \left\{\|X P\|: P \in \mathcal{M}^{\mathrm{pr}}, \tau(I-P) \leq t\right\}, \quad t>0 .
$$

The set of τ-compact operators

$$
\widetilde{\mathcal{M}}_{0}=\left\{X \in \widetilde{\mathcal{M}}: \mu_{\infty}(X) \equiv \lim _{t \rightarrow \infty} \mu_{t}(X)=0\right\}
$$

is an ideal in $\widetilde{\mathcal{M}}$ (see [33]). The set of elementary operators

$$
\mathcal{F}(\mathcal{M})=\left\{X \in \mathcal{M}: \mu_{t}(X)=0 \text { for some } t>0\right\}
$$

is an ideal in \mathcal{M}. If $\tau(I)<+\infty$, then $\widetilde{\mathcal{M}}_{0}=\widetilde{\mathcal{M}}$.

Let m be a linear Lebesgue measure on \mathbb{R}. The noncommutative Lebesgue L_{p}-space associated with $(\mathcal{M}, \tau)(0<p<\infty)$ can be defined as follows:

$$
L_{p}(\mathcal{M}, \tau)=\left\{X \in \widetilde{\mathcal{M}}: \mu(X) \in L_{p}\left(\mathbb{R}^{+}, m\right)\right\}
$$

with the F - (norm for $1 \leq p<\infty$)

$$
\|X\|_{p}=\|\mu(X)\|_{p}, \quad X \in L_{p}(\mathcal{M}, \tau) .
$$

We have $\mathcal{F}(\mathcal{M}) \subset L_{p}(\mathcal{M}, \tau) \subset \widetilde{\mathcal{M}}_{0}$ for all $0<p<\infty$.
For operators $X, Y \in\left(L_{1}+L_{\infty}\right)(\mathcal{M}, \tau)$, the submajorization (or Hardy-Littlewood-Polya weak spectral order), $X \prec \prec Y$, means that

$$
\int_{0}^{t} \mu_{s}(X) d s \leq \int_{0}^{t} \mu_{s}(Y) d s \quad \text { for all } t>0
$$

For operators $X, Y \in \widetilde{\mathcal{M}}$ we also consider their Jordan product $X \circ Y=\frac{1}{2}(X Y+Y X)$ and Lie product (commutator) $[X, Y]=X Y-Y X$. An operator $X \in \widetilde{\mathcal{M}}$ is said to be normal if $X^{*} X=X X^{*}$, hyponormal if $X^{*} X \geq X X^{*}$, cohyponormal if X^{*} is hyponormal, and quasinormal if X commutes with $X^{*} X$, i.e., $X \cdot X^{*} X=X^{*} X \cdot X$. Each quasinormal operator $X \in \widetilde{\mathcal{M}}$ is hyponormal (see [13, Theorem 2.9]).

If $\mathcal{M}=\mathcal{B}(\mathcal{H})$ is the ${ }^{*}$-algebra of all bounded linear operators in \mathcal{H} and $\tau=\operatorname{tr}$ is the canonical trace, then $\widetilde{\mathcal{M}}$ coincides with $\mathcal{B}(\mathcal{H})$ and $\widetilde{\mathcal{M}}_{0}$ and $\mathcal{F}(\mathcal{M})$ coincide with the ideals of compact operators and finite-dimensional operators in \mathcal{H}, respectively. We have

$$
\mu_{t}(X)=\sum_{n=1}^{\infty} s_{n}(X) \chi_{[n-1, n)}(t), \quad t>0
$$

where $\left\{s_{n}(X)\right\}_{n=1}^{\infty}$ is the sequence of s-numbers of the operator X (see [24, p. 46]) and χ_{A} is the indicator of the set $A \subset \mathbb{R}$. Then the space $L_{p}(\mathcal{M}, \tau)$ if the Schatten-von Neumann ideal $\mathfrak{S}_{p}, 0<p<$ ∞.

Let (Ω, ν) be a space with measure and \mathcal{M} be the von Neumann algebra of operators of multiplication by functions from $L_{\infty}(\Omega, \nu)$ in the space $L_{2}(\Omega, \nu)$. The algebra \mathcal{M} does not contain nonzero compact operators if and only if the measure ν does not have atoms (see [1, Theorem 8.4]).

2. Lemmas on τ-measurable operators.

Lemma 2.1 (see [2, 21, 33]). Let $X, Y \in \widetilde{\mathcal{M}}$. Then the following assertions hold:
(1) $\mu_{t}(X)=\mu_{t}(|X|)=\mu_{t}\left(X^{*}\right)$ for all $t>0$;
(2) if $|X| \leq|Y|$, then $\mu_{t}(X) \leq \mu_{t}(Y)$ for all $t>0$;
(3) if $A, B \in \mathcal{M}$, then $\mu_{t}(A X B) \leq\|A\|\|B\| \mu_{t}(X)$ for all $t>0$;
(4) $\mu_{s+t}(X Y) \leq \mu_{s}(X) \mu_{t}(Y)$ for all $s, t>0$;
(5) $\mu_{s+t}(X+Y) \leq \mu_{s}(X)+\mu_{t}(Y)$ for all $s, t>0$;
(6) $\mu_{t}\left(|X|^{p}\right)=\mu_{t}(X)^{p}$ for all $p>0$ and $t>0$;
(7) $\lim _{t \rightarrow 0+} \mu_{t}(X)=\|X\|$ for $X \in \mathcal{M}$ and $\lim _{t \rightarrow 0+} \mu_{t}(X)=\infty$ for $X \notin \mathcal{M}$.

Lemma 2.2 (see [20, p. 720]). If $X, Y \in \widetilde{\mathcal{M}}^{+}$and $Z \in \widetilde{\mathcal{M}}$, then the inequality $X \leq Y$ implies $Z X Z^{*} \leq Z Y Z^{*}$.

Lemma 2.3. If $X, Y \in \widetilde{\mathcal{M}}$, then $|X Y|=\| X|Y|$. In particular, if $X \in \mathcal{M}$ is an isometry (i.e., $\left.X^{*} X=I\right)$, then $|X Y|=|Y|$.

Proof. We have $|X Y|=\left(Y^{*} X^{*} X Y\right)^{1 / 2}=\left(Y^{*}|X|^{2} Y\right)^{1 / 2}=\| X|Y|$.
Lemma 2.4 (see [4, Proposition]). If $X, Y \in \widetilde{\mathcal{M}}^{+}$, then $X Y \in \widetilde{\mathcal{M}}_{0} \Leftrightarrow X^{1 / 2} Y X^{1 / 2} \in \widetilde{\mathcal{M}}_{0} \Leftrightarrow Y^{1 / 2} X Y^{1 / 2} \in$ $\widetilde{\mathcal{M}}_{0}$.
Lemma 2.5 (see [8, Theorem 1]). Let $A \in \widetilde{\mathcal{M}}^{+}, B \in \widetilde{\mathcal{M}}^{\text {sa }}$, and $-A \leq B \leq A$. Then there exists a unitary operator $S \in \mathcal{M}^{\text {sa }}$ such that $2|B| \leq A+S A S$.

We also recall (see [12, Theorem 1]) that there exist operators $X \in \widetilde{\mathcal{M}}^{\text {sa }}$ and $Y \in \widetilde{\mathcal{M}}^{+}$such that $B=X Y+Y X$ and $A=X^{2}+Y^{2}$. Examples of operators $A \in \widetilde{\mathcal{M}}^{+}$and $B \in \widetilde{\mathcal{M}}^{\text {sa }}$ with $-A \leq B \leq A$ can be found in [9]. Lemma 2.5 implies the following assertion.
Lemma 2.6 (see [15, Proposition 1.2]). If $A \in \widetilde{\mathcal{M}}^{+}, B \in \widetilde{\mathcal{M}}^{\text {sa }}$, and $-A \leq B \leq A$, then $B \prec \prec A$.
Lemma 2.7 (see [3, 30, 31]). If $X \in \widetilde{\mathcal{M}}^{+}, Y \in \widetilde{\mathcal{M}}^{\text {sa }}$, and $X Y \in\left(L_{1}+L_{\infty}\right)(\mathcal{M}, \tau)$, then $X^{t} Y X^{1-t} \prec \prec$ $X Y$ for all $0<t<1$.
Lemma 2.8 (see [10, Theorem 3.5]). Let $X, Y \in \widetilde{\mathcal{M}}, X$ be hyponormal, and Y by cohyponormal. Then $\mu_{t}(X Y) \geq \mu_{t}(Y X)$ for all $t>0$.
3. Inequalities for permutations of τ-measurable operators. Let τ be an exact, normal, semi-finite trace on the von Neumann algebra \mathcal{M}.
Theorem 3.1. Let $A \in \widetilde{\mathcal{M}}, X_{k}, Y_{k} \in \widetilde{\mathcal{M}}^{+}$, and $X_{k} \leq Y_{k}, k=1,2$. Then

$$
\mu_{t}\left(X_{1}^{1 / 2} A X_{2}^{1 / 2}\right) \leq \mu_{t}\left(Y_{1}^{1 / 2} A Y_{2}^{1 / 2}\right) \quad \forall t>0
$$

Proof. By Lemma 2.2 we have $A^{*} X_{1} A \leq A^{*} Y_{1} A$. Therefore, by items (1), (2), and (6) of Lemma 2.1 and the monotonicity of the real function $\lambda \mapsto \lambda^{1 / 2}(\lambda \geq 0)$ for all $t>0$, we obtain

$$
\mu_{t}\left(X_{1}^{1 / 2} A\right)=\mu_{t}\left(A^{*} X_{1} A\right)^{1 / 2} \leq \mu_{t}\left(A^{*} Y_{1} A\right)^{1 / 2}=\mu_{t}\left(Y_{1}^{1 / 2} A\right)
$$

Similarly, we obtain

$$
\mu_{t}\left(X_{2}^{1 / 2} B^{*}\right) \leq \mu_{t}\left(Y_{2}^{1 / 2} B^{*}\right)
$$

for all $B \in \widetilde{\mathcal{M}}$ and $t>0$. By item (1) of Lemma 2.1 we have

$$
\mu_{t}\left(B X_{2}^{1 / 2}\right)=\mu_{t}\left(\left(X_{2}^{1 / 2} B^{*}\right)^{*}\right) \leq \mu_{t}\left(\left(Y_{2}^{1 / 2} B^{*}\right)^{*}\right)=\mu_{t}\left(B Y_{2}^{1 / 2}\right)
$$

for all $B \in \widetilde{\mathcal{M}}$ and $t>0$. Replacing the operator A by $A X_{2}^{1 / 2}$ and the operator B by $Y_{1}^{1 / 2}$, we obtain for all $t>0$ the inequalities

$$
\mu_{t}\left(X_{1}^{1 / 2} A X_{2}^{1 / 2}\right) \leq \mu_{t}\left(Y_{1}^{1 / 2} A X_{2}^{1 / 2}\right) \leq \mu_{t}\left(Y_{1}^{1 / 2} A Y_{2}^{1 / 2}\right)
$$

which was required.
Proposition 3.1. If operators $X, Y \in \widetilde{\mathcal{M}}$ are invertible and $X^{-1}, Y^{-1} \in \mathcal{M}_{1}$, then

$$
\mu_{t}\left(X^{-1}-Y^{-1}\right) \leq \mu_{t}(X-Y) \quad \forall t>0
$$

Moreover,

$$
\mu_{t}\left(X^{-2}-Y^{-2}\right) \leq 2 \mu_{t / 2}(X-Y) \quad \forall t>0 .
$$

Proof. For all invertible $X, Y \in \widetilde{\mathcal{M}}$ we have

$$
X^{-1}-Y^{-1}=X^{-1}(Y-X) Y^{-1}=Y^{-1}(Y-X) X^{-1}
$$

Therefore, by items (3) and (1) of Lemma 2.1, for all $t>0$ we obtain

$$
\mu_{t}\left(X^{-1}-Y^{-1}\right)=\mu_{t}\left(X^{-1}(Y-X) Y^{-1}\right) \leq\left\|X^{-1}\right\|\left\|Y^{-1}\right\| \mu_{t}(Y-X) \leq \mu_{t}(Y-X)=\mu_{t}(X-Y)
$$

Since

$$
\begin{gathered}
\left\|X^{-1}+Y^{-1}\right\| \leq\left\|X^{-1}\right\|+\left\|Y^{-1}\right\| \leq 2 \\
X^{-2}-Y^{-2}=\frac{1}{2}\left(\left(X^{-1}-Y^{-1}\right)\left(X^{-1}+Y^{-1}\right)+\left(X^{-1}+Y^{-1}\right)\left(X^{-1}-Y^{-1}\right)\right),
\end{gathered}
$$

the inequality

$$
\mu_{t}\left(X^{-2}-Y^{-2}\right) \leq 2 \mu_{t / 2}(X-Y)
$$

for all $t>0$ follows from items (3) and (5) of Lemma 2.1. The proposition is proved.
If an operator $X \in \widetilde{\mathcal{M}}$ is invertible in $\widetilde{\mathcal{M}}$, then by item (4) of Lemma 2.1 we have

$$
1=\mu_{2 t}(I)=\mu_{2 t}\left(X X^{-1}\right) \leq \mu_{t}(X) \mu_{t}\left(X^{-1}\right)
$$

for all $t \in\left(0,2^{-1} \tau(I)\right)$. Therefore, $X, X^{-1} \notin \widetilde{\mathcal{M}}_{0}$ for $\tau(I)=+\infty$.
Proposition 3.2. If $X \in \widetilde{\mathcal{M}}$ and $Y \in \mathcal{M}^{\text {pr }}$, then

$$
\mu_{t}(Y X Y) \leq \min \left\{\mu_{t}(X Y), \mu_{t}(X \circ Y)\right\} \quad \forall t>0 .
$$

Proof. By item (3) of Lemma 2.1 for all $t>0$ we have

$$
\begin{gathered}
\mu_{t}(Y X Y) \leq\|Y\| \mu_{t}(X Y)=\mu_{t}(X Y) \\
2 \mu_{t}(Y X Y)=\mu_{t}(Y(X Y+Y X) Y) \leq\|Y\|^{2} \mu_{t}(X Y+Y X)=\mu_{t}(X Y+Y X) .
\end{gathered}
$$

The proposition is proved.
In particular, if

$$
X \in \widetilde{\mathcal{M}}^{+}
$$

then

$$
\mu_{t}\left(X^{1 / 2} Y X^{1 / 2}\right)=\mu_{t}(Y X Y), \quad \mu_{t}\left(X^{1 / 2} Y X^{1 / 2}\right) \leq \min \left\{\mu_{t}(X Y), \mu_{t}(X \circ Y)\right\}
$$

for all $t>0$. Note that for $X, Y \in \widetilde{\mathcal{M}}^{+}$, the inequality $\mu_{t}\left(X^{1 / 2} Y X^{1 / 2}\right) \leq \mu_{t}(X Y)$ does not hold in the general case (see [3, p. 575]).
Theorem 3.2. If $X, Y \in \widetilde{\mathcal{M}}$, then $\mu_{t}(X Y)=\mu_{t}\left(|X|\left|Y^{*}\right|\right)$ for all $t>0$.
Proof. By Lemma 2.3 and item (1) of Lemma 2.1, for all $t>0$ we have

$$
\begin{aligned}
\mu_{t}(X Y) & =\mu_{t}(|X Y|)=\mu_{t}(| | X|Y|)=\mu_{t}(|X| Y)=\mu_{t}\left((|X| Y)^{*}\right)=\mu_{t}\left(Y^{*}|X|\right)= \\
& =\mu_{t}\left(\left|Y^{*}\right| X| |\right)=\mu_{t}\left(| | Y^{*}| | X| |\right)=\mu_{t}\left(\left|Y^{*}\right||X|\right)=\mu_{t}\left(\left(\left|Y^{*}\right||X|\right)^{*}\right)= \\
& =\mu_{t}\left(|X|\left|Y^{*}\right|\right) .
\end{aligned}
$$

The theorem is proved.
Corollary 3.1. If an operator $X \in \widetilde{\mathcal{M}}$ is nilpotent of order n and $m \geq n$, then $\left|X^{m-k}\right|\left|X^{* k}\right|=0$ for all $k \in\{1,2, \ldots, m-1\}$.

Proof. By the condition $X^{n}=0 \neq X^{n-1}$. We have

$$
0=\mu_{t}\left(X^{m}\right)=\mu_{t}\left(X^{m-k} X^{k}\right)=\mu_{t}\left(\left|X^{m-k}\right|\left|X^{* k}\right|\right)
$$

for all $m \geq n$ and $t>0$. Therefore, $\left|X^{m-k}\right|\left|X^{* k}\right|=0$ for all $k \in\{1,2, \ldots, m-1\}$.
Theorem 3.2 and Lemma 2.7 imply the following assertion.
Corollary 3.2. We have $|X|^{t}\left|Y^{*}\right||X|^{1-t} \prec \prec X Y$ for all $0<t<1$ and $X, Y \in \widetilde{\mathcal{M}}$.
Corollary 3.3. Let $X, Y \in \widetilde{\mathcal{M}}$, where the operator X is hyponormal and the operator Y is cohyponormal. Then $\mu_{t}\left(|X|\left|Y^{*}\right|\right) \geq \mu_{t}\left(\left|X^{*}\right||Y|\right)$ for all $t>0$.

Proof. By Lemma 2.8 and item (1) of Lemma 2.1 for all $t>0$ we have

$$
\begin{equation*}
\mu_{t}\left(|X|\left|Y^{*}\right|\right)=\mu_{t}(X Y) \geq \mu_{t}(Y X)=\mu_{t}\left(|Y|\left|X^{*}\right|\right)=\mu_{t}\left(\left(|Y|\left|X^{*}\right|\right)^{*}\right)=\mu_{t}\left(\left|X^{*}\right||Y|\right) \tag{1}
\end{equation*}
$$

The proof is complete.
Corollary 3.4. Let operators $X, Y \in \widetilde{\mathcal{M}}$ be normal. Then $\mu_{t}\left(|X|\left|Y^{*}\right|\right)=\mu_{t}\left(\left|X^{*}\right||Y|\right)$ for all $t>0$.
Proof. By [10, Corollary 3.6] we have the equality in (1).
Theorem 3.3. Let $X, Y \in \widetilde{\mathcal{M}}, X Y \in\left(L_{1}+L_{\infty}\right)(\mathcal{M}, \tau), X$ is hyponormal, and Y is cohyponormal. Then

$$
\lambda X Y+(1-\lambda) Y X \prec \prec X Y \quad \forall 0 \leq \lambda \leq 1 .
$$

In particular, $X \circ Y \prec \prec X Y$.
Proof. For all $t>0$, due to Lemma 2.8 and the positive homogeneity and subadditivity of the functional

$$
\Phi(A, t)=\int_{0}^{t} \mu_{s}(A) d s, \quad A \in\left(L_{1}+L_{\infty}\right)(\mathcal{M}, \tau)
$$

we obtain

$$
\int_{0}^{t} \mu_{s}(\lambda X Y+(1-\lambda) Y X) d s \leq \lambda \int_{0}^{t} \mu_{s}(X Y) d s+(1-\lambda) \int_{0}^{t} \mu_{s}(Y X) d s \leq \int_{0}^{t} \mu_{s}(X Y) d s
$$

The theorem is proved.
Theorems 3.2 and 3.3 imply the following.
Corollary 3.5. In conditions of Theorem 3.3 we have $\lambda X Y+(1-\lambda) Y X \prec \prec|X|\left|Y^{*}\right|$.
Proposition 3.3. If $X, Y, A \in\left(L_{1}+L_{\infty}\right)(\mathcal{M}, \tau)$ and $X, X-A \prec \prec Y$, then $X-\lambda A \prec \prec Y$ for all $0 \leq \lambda \leq 1$.

Proof. The assertion follows from the positive homogeneity and the subadditivity of the functional

$$
\Phi(A, t)=\int_{0}^{t} \mu_{s}(A) d s, \quad A \in\left(L_{1}+L_{\infty}\right)(\mathcal{M}, \tau)
$$

and the representation $X-\lambda A=(1-\lambda) X+\lambda(X-A)$. In particular, if $X, A \in \widetilde{\mathcal{M}}$ and $X-A \prec \prec X$, then $X-\lambda A \prec \prec X$ for all $0 \leq \lambda \leq 1$.
Proposition 3.4. If $X, Y \in \widetilde{\mathcal{M}}^{\text {sa }}$ and $X^{2}+Y^{2} \in\left(L_{1}+L_{\infty}\right)(\mathcal{M}, \tau)$, then

$$
X \circ Y \prec \prec \frac{1}{2}\left(X^{2}+Y^{2}\right), \quad[X, Y] \prec \prec X^{2}+Y^{2} .
$$

Proof. Since $(X \pm Y)^{2} \geq 0$ and $(X \pm i Y)(X \mp i Y) \geq 0$ with $i \in \mathbb{C}, i^{2}=-1$, we have

$$
-X^{2}-Y^{2} \leq X Y+Y X \leq X^{2}+Y^{2}, \quad-X^{2}-Y^{2} \leq i(X Y-Y X) \leq X^{2}+Y^{2}
$$

Now the assertions follow from Lemma 2.6.
Since $X Y=X \circ Y+\frac{1}{2}[X, Y]$, Proposition 3.4 implies the following assertion.
Corollary 3.6. If $X, Y \in \widetilde{\mathcal{M}}^{\text {sa }}$ and $X^{2}+Y^{2} \in\left(L_{1}+L_{\infty}\right)(\mathcal{M}, \tau)$, then $X Y \prec \prec X^{2}+Y^{2}$.
For a wide class of operators $X, Y \in \widetilde{\mathcal{M}}^{\text {sa }}$ we have $\mu_{t}(X Y) \leq \mu_{t}\left(\frac{X^{2}+Y^{2}}{2}\right)$ for all $t>0$ (see [18, Lemma3.4]).

4. On the τ-compactness of products of τ-measurable operators.

Theorem 4.1. Let operators $X, Y \in \widetilde{\mathcal{M}}^{\text {sa }}$ be such that

$$
X Y+Y X Y \in \widetilde{\mathcal{M}}_{0}, \quad Y^{2}+Y \geq \lambda|Y|^{p}
$$

with certain $0<\lambda, p<+\infty$. Then $X Y \in \widetilde{\mathcal{M}_{0}}$.
Proof. We have $X Y=Y X+A$ with

$$
A=X Y-Y X=X Y+Y X Y-(X Y+Y X Y)^{*} \in \widetilde{\mathcal{M}}_{0}
$$

Then

$$
X Y+X Y^{2}-A Y=X Y+(X Y-A) Y=X Y+Y X Y \in \widetilde{\mathcal{M}}_{0}
$$

and, since $A Y \in \widetilde{\mathcal{M}}_{0}$, we have

$$
X Y+X Y^{2} \in \widetilde{\mathcal{M}}_{0}
$$

Therefore,

$$
X\left(Y+Y^{2}\right) X=\left(X Y+X Y^{2}\right) X \in \widetilde{\mathcal{M}}_{0}
$$

By Lemma 2.2 and item (2) of Lemma 2.1, we obtain

$$
X \cdot|Y|^{p} \cdot X \in \widetilde{\mathcal{M}}_{0}
$$

Since

$$
\begin{aligned}
\mu_{t}\left(X|Y|^{p / 2}\right)^{2} & =\mu_{t}\left(\left(X|Y|^{p / 2}\right)^{*}\right)^{2}=\mu_{t}\left(|Y|^{p / 2} X\right)^{2}=\mu_{t}\left(\left.| | Y\right|^{p / 2} X \mid\right)^{2}=\mu_{t}\left(\|\left.\left. Y\right|^{p / 2} X\right|^{2}\right) \\
& =\mu_{t}\left(X|Y|^{p} X\right) \rightarrow 0 \quad \text { as } t \rightarrow+\infty
\end{aligned}
$$

we obtain

$$
X|Y|^{p / 2} \in \widetilde{\mathcal{M}}_{0}
$$

Since

$$
\left.|X \cdot| Y\right|^{p / 2}|=\| X| \cdot|Y|^{p / 2} \mid
$$

by Lemma 2.3, we have $|X| \cdot|Y|^{p / 2} \in \widetilde{\mathcal{M}}_{0}$. Therefore,

$$
|X| \cdot|Y| \in \widetilde{\mathcal{M}}_{0}
$$

by Theorem 4.1 (see [10]). Let $X=U|X|$ and $Y=V|Y|$ be polar decompositions of the operators X and Y. Then $Y=|Y| V$ and $X Y=U \cdot|X||Y| \cdot V \in \widetilde{\mathcal{M}}_{0}$. The theorem is proved.

Corollary 4.1. Let operators $X, Y \in \widetilde{\mathcal{M}}^{\text {sa }}$ be such that

$$
X Y-Y X Y \in \widetilde{\mathcal{M}}_{0}, \quad Y^{2}-Y \geq \lambda|Y|^{p}
$$

with certain $0<\lambda, p<+\infty$. Then $X Y \in \widetilde{\mathcal{M}}_{0}$.
Proof. The operators $X_{1}=-X$ and $Y_{1}=-Y$ satisfy all conditions of Theorem 4.1 and $X_{1} Y_{1}=X Y$.

Proposition 4.1. For operators $X \in \widetilde{\mathcal{M}}$ and $Y \in \widetilde{\mathcal{M}}^{+}$, the following conditions are equivalent:
(i) $X Y \in \widetilde{\mathcal{M}}_{0}$;
(ii) $X Y X^{*} \in \widetilde{\mathcal{M}}_{0}$.

Proof. (ii) \Rightarrow (i). By items (1) and (6) of Lemma 2.1 we have

$$
\begin{aligned}
\mu_{t}\left(X Y^{1 / 2}\right)^{2} & =\mu_{t}\left(\left(X Y^{1 / 2}\right)^{*}\right)^{2}=\mu_{t}\left(Y^{1 / 2} X^{*}\right)^{2}=\mu_{t}\left(\left|Y^{1 / 2} X^{*}\right|\right)^{2}=\mu_{t}\left(\left|Y^{1 / 2} X^{*}\right|^{2}\right) \\
& =\mu_{t}\left(X Y X^{*}\right) \rightarrow 0 \quad \text { as } t \rightarrow+\infty
\end{aligned}
$$

Therefore, $X Y^{1 / 2} \in \widetilde{\mathcal{M}}_{0} \quad X Y=X Y^{1 / 2} \cdot Y^{1 / 2} \in \widetilde{\mathcal{M}}_{0}$.
Corollary 4.2. For operators $X, Y \in \widetilde{\mathcal{M}}$ we have

$$
X Y \in \widetilde{\mathcal{M}}_{0} \quad \Leftrightarrow \quad|X|\left|Y^{*}\right| \in \widetilde{\mathcal{M}}_{0} \quad \Leftrightarrow \quad|X|^{1 / 2}\left|Y^{*}\right||X|^{1 / 2} \in \widetilde{\mathcal{M}}_{0} \quad \Leftrightarrow \quad\left|Y^{*}\right|^{1 / 2}|X|\left|Y^{*}\right|^{1 / 2} \in \widetilde{\mathcal{M}}_{0} .
$$

Corollary 4.3. Let $X \in \widetilde{\mathcal{M}}^{\text {sa }}$ and $Y \in \widetilde{\mathcal{M}}$. If $X Y \in \widetilde{\mathcal{M}}_{0}$, then $\left|Y^{*}\right|^{1 / 2} X\left|Y^{*}\right|^{1 / 2} \in \widetilde{\mathcal{M}}_{0}$.
Proof. Let $X=X_{+}-X_{-}$be the Jordan decomposition of the operator $X \in \widetilde{\mathcal{M}}^{\text {sa }}$, where $X_{+}, X_{-} \in \widetilde{\mathcal{M}}^{+}$ and $X_{+} X_{-}=0$. Then $|X|=X_{+}+X_{-}$and

$$
\left|Y^{*}\right|^{1 / 2} X_{ \pm}\left|Y^{*}\right|^{1 / 2} \leq\left|Y^{*}\right|^{1 / 2}|X|\left|Y^{*}\right|^{1 / 2}
$$

by Lemma 2.2. If $X Y \in \widetilde{\mathcal{M}}_{0}$, then $\left|Y^{*}\right|^{1 / 2}|X|\left|Y^{*}\right|^{1 / 2} \in \widetilde{\mathcal{M}}_{0}$ by Corollary 4.2. Now due to item (2) of Lemma 2.1 we have

$$
\left|Y^{*}\right|^{1 / 2} X_{ \pm}\left|Y^{*}\right|^{1 / 2} \in \widetilde{\mathcal{M}}_{0}^{+}
$$

and hence

$$
\left|Y^{*}\right|^{1 / 2} X\left|Y^{*}\right|^{1 / 2}=\left|Y^{*}\right|^{1 / 2} X_{+}\left|Y^{*}\right|^{1 / 2}-\left|Y^{*}\right|^{1 / 2} X_{-}\left|Y^{*}\right|^{1 / 2} \in \widetilde{\mathcal{M}}_{0} .
$$

The assertion is proved.
Example 4.1. The condition $X, Y \in \widetilde{\mathcal{M}}^{+}$is essential in Lemma 2.4 and the condition $Y \in \widetilde{\mathcal{M}}^{+}$is essential in Proposition 4.1. We endow the von Neumann algebra $\mathcal{M}=\bigoplus_{n=1}^{\infty} \mathbb{M}_{2}(\mathbb{C})$ with the exact, normal, semi-finite trace $\tau=\bigoplus_{n=1}^{\infty} \operatorname{tr}_{2}$ and set

$$
X=\bigoplus_{n=1}^{\infty}\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right), \quad Y=\bigoplus_{n=1}^{\infty}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Then $X \in \mathcal{M}^{\text {pr }}, Y \in \mathcal{M}^{\text {sa }}$, and $X^{1 / 2} Y X^{1 / 2}=0 \in \widetilde{\mathcal{M}}_{0}$, but the operators

$$
X Y=\bigoplus_{n=1}^{\infty}\left(\begin{array}{ll}
1 / 2 & -1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right), \quad X \circ Y=\bigoplus_{n=1}^{\infty}\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & -1 / 2
\end{array}\right) \notin \widetilde{\mathcal{M}}_{0} .
$$

Example 4.2 (theorem on lifting of idempotents; see [26, Proposition 7]). Let $\mathcal{M}=\mathcal{B}(\mathcal{H})$ and $\tau=\operatorname{tr}$ be the canonical trace, let operators $X \in \mathcal{M}$ and $Y=I-X$ be such that $X Y \in \widetilde{\mathcal{M}}_{0}$. Then the representation $X=P+Z$ holds, where $P=P^{2} \in \mathcal{M}$ and $Z \in \widetilde{\mathcal{M}}_{0}$.
Theorem 4.2. Let $X, Y \in \mathcal{M}^{+}, n \in \mathbb{N}$, and $p_{k}>0, q_{k}>0, r>0, k=1, \ldots, n$. Then the following conditions are equivalent:
(i) $X Y \in \mathcal{F}(\mathcal{M})$;
(ii) $X^{p_{1}} Y^{q_{1}} \cdots X^{p_{n}} Y^{q_{n}} \in \mathcal{F}(\mathcal{M})$;
(iii) $X^{p_{1}} Y^{q_{1}} \cdots X^{p_{n}} Y^{q_{n}} X^{r} \in \mathcal{F}(\mathcal{M})$.

Proof. (i) \Rightarrow (ii), (iii). We have $X Y X \in \mathcal{F}(\mathcal{M})$. By items (1) and (6) of Lemma 2.1 we obtain

$$
\mu_{t}\left(X Y^{1 / 2}\right)=\mu_{t}(X Y X)^{1 / 2} \quad \forall t>0
$$

therefore,

$$
X Y^{1 / 2} \in \mathcal{F}(\mathcal{M})
$$

Now

$$
Y^{1 / 2} X Y^{1 / 2} \in \mathcal{F}(\mathcal{M})
$$

By items (1) and (6) of Lemma 2.1 we have

$$
\mu_{t}\left(X^{1 / 2} Y^{1 / 2}\right)=\mu_{t}\left(Y^{1 / 2} X Y^{1 / 2}\right)^{1 / 2} \quad \forall t>0 ;
$$

therefore,

$$
X^{1 / 2} Y^{1 / 2} \in \mathcal{F}(\mathcal{M})
$$

Continuing this process, we obtain

$$
X^{2^{-m}} Y^{2^{-m}} \in \mathcal{F}(\mathcal{M})
$$

for all $m \in \mathbb{N}$. We choose m such that $2^{-m}<\min \left\{p_{1}, q_{1}\right\}$. Then

$$
X^{p_{1}} Y^{q_{1}}=X^{p_{1}-2^{-m}} \cdot X^{2^{-m}} Y^{2^{-m}} \cdot Y^{q_{1}-2^{-m}} \in \mathcal{F}(\mathcal{M}) .
$$

The implications (ii) \Rightarrow (i) and (iii) \Rightarrow (i) can be verified by arguments similar to the proof of Theorem 4.1 (see [10]).

Theorem 4.3. Let operators $X, Y \in \mathcal{M}^{\text {sa }}$ be such that $X Y+Y X Y \in \mathcal{F}(\mathcal{M})$ and $Y^{2}+Y \geq \lambda|Y|^{p}$ with certain $0<\lambda, p<+\infty$. Then $X Y \in \mathcal{F}(\mathcal{M})$.

Proof. Repeating the arguing from the proof of Theorem 4.1, we obtain $X|Y|^{p / 2} \in \mathcal{F}(\mathcal{M})$. Let $X=U|X|$ and $Y=V|Y|$ be the polar decompositions of the operators X and Y. Then $U, V \in \mathcal{M}^{\text {sa }}$ and $U X=|X|, Y=|Y| V$. Since

$$
|X||Y|^{p / 2}=U X|Y|^{p / 2} \in \mathcal{F}(\mathcal{M})
$$

we have $|X||Y| \in \mathcal{F}(\mathcal{M})$ by Theorem 4.2. Therefore, $X Y=U \cdot|X||Y| \cdot V \in \mathcal{F}(\mathcal{M})$. The theorem is proved.

Corollary 4.4. Let operators $X, Y \in \mathcal{M}^{\text {sa }}$ be such that $X Y-Y X Y \in \mathcal{F}(\mathcal{M})$ and $Y^{2}-Y \geq \lambda|Y|^{p}$ with certain $0<\lambda, p<+\infty$. Then $X Y \in \mathcal{F}(\mathcal{M})$.

Proof. The operators $X_{1}=-X$ and $Y_{1}=-Y$ satisfy all condition of Theorem 4.3 and $X_{1} Y_{1}=X Y$.

The proof of the following proposition is similar to the proof of Proposition 4.1.
Proposition 4.2. For operators $X \in \mathcal{M}$ and $Y \in \mathcal{M}^{+}$the following conditions are equivalent:
(i) $X Y \in \mathcal{F}(\mathcal{M})$;
(ii) $X Y X^{*} \in \mathcal{F}(\mathcal{M})$.

Example 4.1 show that the positiveness condition of operator $Y \in \mathcal{M}$ is essential in Proposition 4.2.
Proposition 4.3. Let an operator $X \in \widetilde{\mathcal{M}}$ be quasinormal and $X^{n}=X$ for a certain natural number $n \geq 2$. Then $X \in \mathcal{M}_{1}$ and the following conditions are equivalent:
(i) $X \in \mathcal{F}(\mathcal{M})$;
(ii) $X \in \widetilde{\mathcal{M}}_{0}$.

Proof. We have $\mu_{t}(X)=\mu_{t}\left(X^{n}\right)=\mu_{t}(X)^{n}$ for all $t>0$ due to [14, Theorem 2.4]. Therefore, $\mu_{t}(X) \in\{0,1\}$ for all $t>0$ and $X \in \mathcal{M}_{1}$ by item (7) of Lemma 2.1. The rest of the proof is obvious.

Note that if $X \in \widetilde{\mathcal{M}}$ with $X^{n}=X$ for a certain natural number $n \geq 2$ and $X \notin \widetilde{\mathcal{M}}_{0}$, then $\mu_{t}(X) \geq 1$ for all $t>0$ due to [11, Lemma 4.8]. The vector space \mathcal{E} in $\widetilde{\mathcal{M}}$ is called the symmetric space on (\mathcal{M}, τ)
if the conditions $X \in \mathcal{E}, Y \in \widetilde{\mathcal{M}}$, and $\mu(Y) \leq \mu(X)$ imply $Y \in \mathcal{E}$. For example, $\mathcal{M}, \mathcal{F}(\mathcal{M}), \widetilde{\mathcal{M}}_{0}$, $\left(L_{1}+L_{\infty}\right)(\mathcal{M}, \tau)$, and $L_{p}(\mathcal{M}, \tau)$ for $0<p<+\infty$. If $X \in \widetilde{\mathcal{M}}$ and $n \geq 2$, then by Theorem 3.2 we have

$$
\mu_{t}\left(X^{n}\right)=\mu_{t}\left(X^{n-k} X^{k}\right)=\mu_{t}\left(\left|X^{n-k}\right|\left|X^{* k}\right|\right)
$$

for all $k \in\{1,2, \ldots, n-1\}$ and $t>0$. Therefore, $X^{n} \in \mathcal{E} \Leftrightarrow\left|X^{n-k}\right|\left|X^{* k}\right| \in \mathcal{E}$ for all $k \in$ $\{1,2, \ldots, n-1\}$.

REFERENCES

1. A. B. Antonevich, Linear Functional Equations. Operator Approach [in Russian], Minsk (1988).
2. A. M. Bikchentaev, "On noncommutative function spaces," Trans. Am. Math. Soc. (2), 154, 179-187 (1992).
3. A. M. Bikchentaev, "Majorization for products of measurable operators," Int. J. Theor. Phys., 37, No. 1, 571-576 (1998).
4. A. M. Bikchentaev, "On one property of L_{p}-spaces on semi-finite von Neumann algebras," Mat. Zametki, 64, No. 2, 185-190 (1998).
5. A. M. Bikchentaev, "The continuity of multiplication for two topologies associated with a semifinite trace on von Neumann algebra," Lobachevskii J. Math., 14, 17-24 (2004).
6. A. M. Bikchentaev, "The Peierls-Bogoliubov inequality in C^{*}-algebras and characterization of tracial functionals," Lobachevskii J. Math., 32, No. 3, 175-179 (2011).
7. A. M. Bikchentaev, "Commutativity of projectors and characterization of traces on von Neumann algebras, II," Mat. Zametki, 89, No. 4, 483-494 (2011).
8. A. M. Bikchentaev, "Operator of block proection in normed ideal spaces of measurable operators," Izv. Vyssh. Ucheb. Zaved. Ser. Mat., 2, 86-91 (2012).
9. A. Bikchentaev, "On Hermitian operators X and Y meeting the condition $-Y \leq X \leq Y$," Lobachevskii J. Math., 34, No. 3, 227-233 (2013).
10. A. M. Bikchentaev, "On normal τ-measurable operators adjoint to a semi-finite von Neumann algebra," Mat. Zametki, 96, No. 3, 350-360 (2014).
11. A. M. Bikchentaev, "To the theory of τ-measurable operators adjoint to a semi-finite von Neumann algebra," Mat. Zametki, 98, No. 3, 337-348 (2015).
12. A. M. Bikchentaev, "On operator-monotone and operator-convex functions," Izv. Vyssh. Ucheb. Zaved. Ser. Mat., 5, 70-74 (2016).
13. A. M. Bikchentaev, "On idempotent τ-measurable operators adjoint to a von Neumann algebra," Mat. Zametki, 100, No. 4, 492-503 (2016).
14. A. Bikchentaev, "Integrable products of measurable operators," Lobachevskii J. Math., 37, No. 4, 397-403 (2016).
15. V. I. Chilin and F. A. Sukochev, "Weak convergence in noncommutative symmetric spaces," J. Operator Theory, 31, No. 1, 35-65 (1994).
16. C. Chu, "Compact product of Hankel and Toeplitz operators on the Hardy space," Indiana Univ. Math. J., 64, No. 4, 973-982 (2015).
17. Ž. Čučković and S. Şahutoğlu, "Compactness of products of Hankel operators on the polydisk and some product domains in $\mathbb{C}^{2}, "$ J. Math. Anal. Appl., 371, No. 1, 341-346 (2010).
18. D. Dauitbek, N. E. Tokmagambetov, and K. S. Tulenov, "Commutation inequalities related to polar decompositions of τ-measurable operators," Izv. Vyssh. Ucheb. Zaved. Ser. Mat., No. 7, 56-62 (2014).
19. X. H. Ding, "Compact product of Toeplitz operators on the polydisk," Acta Math. Sinica (Chin. Ser.), 48, No. 3, 493-498 (2005).
20. P. G. Dodds, T. K.-Y. Dodds, and B. de Pagter, "Noncommutative Köthe duality," Trans. Am. Math. Soc., 339, No. 2, 717-750 (1993).
21. T. Fack and H. Kosaki, "Generalized s-numbers of τ-measurable operators," Pac. J. Math., 123, No. 2, 269-300 (1986).
22. I. S. Feshchenko, "On the closedness of the sum of ranges of operators A_{k} with almost compact products $A_{i}^{*} A^{j}, " J$. Math. Anal. Appl., 416, No. 1, 24-35 (2014).
23. J. Flores, P. Tradacete, V. G. Troitsky, "Disjointly homogeneous Banach lattices and compact products of operators," J. Math. Anal. Appl., 354, No. 2, 657-663 (2009).
24. I. Ts. Gohberg and M. G. Krein, Introduction to the Theory of Linear Non-Self-Adjoint Operators [in Russian], Nauka, Moscow (1965).
25. C. Gu, "Zero or compact products of several Hankel operators," Integral Equations Operator Theory, 43, No. 3, 298-312 (2002).
26. P. De La Harpe, "Initiation à l'algèbre de Calkin," Lect. Notes Math., 725, Springer-Verlag, Berlin (1979), pp. 180-219.
27. Y. J. Lee and K. Na, "Compact products of Toeplitz operators on the Dirichlet space of the unit ball," J. Math. Anal. Appl., 401, No. 2, 654-658 (2013).
28. E. Nelson, "Notes on non-commutative integration," J. Funct. Anal., 15, No. 2, 103-116 (1974).
29. I. E. Segal, "A non-commutative extension of abstract integration," Ann. Math., 57, No. 3, 401-457 (1953).
30. F. A. Sukochev, "On a hypothesis of A. M. Bikchentaev," Izv. Vyssh. Ucheb. Zaved. Ser. Mat., No. 6, 67-70 (2012).
31. F. A. Sukochev, "On a conjecture of A. Bikchentaev," Proc. Symp. Pure Math., 87, Am. Math. Soc., Providence, Rhode Island (2013), pp. 327-339.
32. D. Xia, D. Zheng, "Compact products of Hankel operators," Integral Equations Operator Theory, 38, No. 3, 357-375 (2000).
33. F. J. Yeadon, "Non-commutative L^{p}-spaces," Math. Proc. Cambridge Phil. Soc., 77, No. 1, 91-102 (1975).
A. M. Bikchentaev

Kazan (Volga region) Federal University, Kazan, Russia
E-mail: Airat.Bikchentaev@kpfu.ru

[^0]: Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 140, Differential Equations. Mathematical Physics, 2017.

