ON THE τ -COMPACTNESS OF PRODUCTS OF τ -MEASURABLE OPERATORS ADJOINT TO SEMI-FINITE VON NEUMANN ALGEBRAS

A. M. Bikchentaev

UDC 517.983, 517.986

Abstract. Let \mathcal{M} be the von Neumann algebra of operators in a Hilbert space \mathcal{H} and τ be an exact normal semi-finite trace on \mathcal{M} . We obtain inequalities for permutations of products of τ -measurable operators. We apply these inequalities to obtain new submajorizations (in the sense of Hardy, Littlewood, and Pólya) of products of τ -measurable operators and a sufficient condition of orthogonality of certain nonnegative τ -measurable operators. We state sufficient conditions of the τ -compactness of products of self-adjoint τ -measurable operators and obtain a criterion of the τ -compactness of the product of a nonnegative τ -measurable operator and an arbitrary τ -measurable operator. We present an example that shows that the nonnegativity of one of the factors is substantial. We also state a criterion of the elementary nature of the product of nonnegative operators from \mathcal{M} . All results are new for the *-algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators in \mathcal{H} endowed with the canonical trace $\tau = \text{tr}$.

Keywords and phrases: Hilbert space, linear operator, von Neumann algebra, normal semi-finite trace, τ -measurable operator, τ -compact operator, elementary operator, nilpotent, permutation, sub-majorization.

AMS Subject Classification: 47C15, 46L51

Introduction. Let \mathcal{M} be the von Neumann algebra of operators in a Hilbert space \mathcal{H} and τ be an exact normal semi-finite trace on \mathcal{M} . Products of τ -measurable operators appear in various problems of the theory of noncommutative integration (e.g., in [20] in the definition of dual spaces in the sense of Köthe, the Golden–Thompson inequality [7], the Peierls–Bogolyubov inequality [6], etc.). Sufficient conditions for the integrability of products of τ -measurable operators were found in [14]. This paper is a continuation of the papers [4, 10], in which criteria of the τ -compactness of products of nonnegative τ -measurable operators were studied in [16, 17, 19, 23, 25, 27, 32]. Applications of compact (respectively, τ -compact) products of operators are discussed in [22] (respectively, in [5]).

In Sec. 3 we obtain inequalities for permutations of products of τ -measurable operators. We apply these inequalities to obtain new submajorizations (in the sense of Hardy, Littlewood, and Pólya) of products of τ -measurable operators and a sufficient condition of orthogonality of certain nonnegative τ -measurable operators. In Sec. 4, we state sufficient conditions of the τ -compactness of products of self-adjoint τ -measurable operators and obtain a criterion of the τ -compactness of the product of a nonnegative τ -measurable operator and an arbitrary τ -measurable operator. We present an example that shows that the nonnegativity of one of factors is substantial. From a well-known property of permutations (see item (6) of Lemma 2.1) we deduce that a nonnegative operator $A \in \mathcal{M}$ is an elementary operator if and only if A^p is elementary for all p > 0. Theorem 4.2 shows that a similar situation also occurs for products of nonnegative operators $A, B \in \mathcal{M}$: the operator AB is elementary if and only if the operators $A^p B^r$ are elementary for all p, r > 0. We describe some applications of results obtained to symmetric spaces on (\mathcal{M}, τ) . All results are new for the *-algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators in \mathcal{H} endowed with the canonical trace $\tau = \text{tr}$.

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 140, Differential Equations. Mathematical Physics, 2017.

1. Basic definitions, preliminaries, and notation. Let \mathcal{M} be the von Neumann algebra of operators in a Hilbert space \mathcal{H} , \mathcal{M}^{pr} be a lattice of projectors in \mathcal{M} , and \mathcal{M}^+ be the cone of positive elements from \mathcal{M} . Let I be the unit of the algebra \mathcal{M} and $\mathcal{M}_1 = \{X \in \mathcal{M} : ||X|| \le 1\}$.

A mapping $\varphi : \mathcal{M}^+ \to [0, +\infty]$ is called a *trace* if

$$\varphi(X+Y) = \varphi(X) + \varphi(Y), \quad \varphi(\lambda X) = \lambda \varphi(X) \quad \forall X, Y \in \mathcal{M}^+, \ \lambda \ge 0$$

(in this case $0 \cdot (+\infty) \equiv 0$) and

$$\varphi(Z^*Z) = \varphi(ZZ^*) \quad \forall Z \in \mathcal{M}$$

A trace φ is said to be *exact* if $\varphi(X) > 0$ for all $X \in \mathcal{M}^+$, $X \neq 0$; *semi-finite* if

$$\varphi(X) = \sup \left\{ \varphi(Y) : Y \in \mathcal{M}^+, Y \le X, \varphi(Y) < +\infty \right\} \quad \forall X \in \mathcal{M}^+;$$

normal if

$$X_i \nearrow X$$
, i.e., $(X_i, X \in \mathcal{M}^+) \Rightarrow \varphi(X) = \sup \varphi(X_i)$.

An operator in \mathcal{H} (not necessarily bounded or densely defined) is said to be *adjoint to the von Neu*mann algebra \mathcal{M} if it commutes with any unitary operator from the commutator subalgebra \mathcal{M}' of the algebra \mathcal{M} . A self-adjoint operator is adjoint to \mathcal{M} if and only if all projectors from its spectral decomposition of unity belong to \mathcal{M} .

Let τ be an exact, normal, semi-finite trace on \mathcal{M} . A closed operator X adjoint to \mathcal{M} with everywhere dense in \mathcal{H} domain $\mathcal{D}(X)$ is said to be τ -measurable, if for arbitrary $\varepsilon > 0$ there exists $P \in \mathcal{M}^{\mathrm{pr}}$ such that $P\mathcal{H} \subset \mathcal{D}(X)$ and $\tau(I - P) < \varepsilon$. The set $\widetilde{\mathcal{M}}$ of all τ -measurable operators is a *-algebra with respect to the transition to conjugate operator, multiplication by scalars, and the operations of strong addition and multiplication obtained by the closure of the ordinary operations (see [28, 29]). For a family $\mathcal{L} \subset \widetilde{\mathcal{M}}$, we denote by \mathcal{L}^+ and $\mathcal{L}^{\mathrm{sa}}$ its positive and Hermitian parts, respectively. We denote the partial order in $\widetilde{\mathcal{M}}^{\mathrm{sa}}$ generated by the proper cone $\widetilde{\mathcal{M}}^+$ by \leq .

If X is a closed, densely defined linear operator adjoint to \mathcal{M} and $|X| = \sqrt{X^*X}$, then the spectral decomposition of $P^{|X|}(\cdot)$ is contained in \mathcal{M} and $X \in \widetilde{\mathcal{M}}$ if and only if there exists $\lambda \in \mathbb{R}$ such that

$$\tau(P^{|X|}((\lambda, +\infty))) < +\infty.$$

If $X \in \widetilde{\mathcal{M}}$ and X = U|X| is the polar decomposition of X, then $U \in \mathcal{M}$ and $|X| \in \widetilde{\mathcal{M}}^+$. Moreover, if

$$|X| = \int_{0}^{\infty} \lambda P^{|X|}(d\lambda)$$

is the spectral decomposition, then $\tau(P^{|X|}((\lambda, +\infty))) \to 0$ as $\lambda \to +\infty$.

We denote by $\mu_t(X)$ a *permutation* of the operator $X \in \widetilde{\mathcal{M}}$, i.e., a nonincreasing, right-continuous function $\mu(X) : (0, \infty) \to [0, \infty)$ defined by the formula

$$\mu_t(X) = \inf \left\{ \|XP\| : P \in \mathcal{M}^{\mathrm{pr}}, \ \tau(I-P) \le t \right\}, \quad t > 0.$$

The set of τ -compact operators

$$\widetilde{\mathcal{M}}_0 = \left\{ X \in \widetilde{\mathcal{M}} : \ \mu_{\infty}(X) \equiv \lim_{t \to \infty} \mu_t(X) = 0 \right\}$$

is an ideal in $\widetilde{\mathcal{M}}$ (see [33]). The set of elementary operators

$$\mathcal{F}(\mathcal{M}) = \left\{ X \in \mathcal{M} : \ \mu_t(X) = 0 \text{ for some } t > 0 \right\}$$

is an ideal in \mathcal{M} . If $\tau(I) < +\infty$, then $\widetilde{\mathcal{M}}_0 = \widetilde{\mathcal{M}}$.

Let *m* be a linear Lebesgue measure on \mathbb{R} . The noncommutative Lebesgue L_p -space associated with (\mathcal{M}, τ) (0 can be defined as follows:

$$L_p(\mathcal{M}, \tau) = \left\{ X \in \widetilde{\mathcal{M}} : \ \mu(X) \in L_p(\mathbb{R}^+, m) \right\}$$

with the *F*- (norm for $1 \le p < \infty$)

$$||X||_p = ||\mu(X)||_p, \quad X \in L_p(\mathcal{M}, \tau).$$

We have $\mathcal{F}(\mathcal{M}) \subset L_p(\mathcal{M}, \tau) \subset \widetilde{\mathcal{M}}_0$ for all 0 .

For operators $X, Y \in (L_1 + L_\infty)(\mathcal{M}, \tau)$, the submajorization (or Hardy–Littlewood–Polya weak spectral order), $X \prec \forall Y$, means that

$$\int_{0}^{t} \mu_{s}(X) ds \leq \int_{0}^{t} \mu_{s}(Y) ds \quad \text{for all } t > 0.$$

For operators $X, Y \in \widetilde{\mathcal{M}}$ we also consider their Jordan product $X \circ Y = \frac{1}{2}(XY + YX)$ and Lie product (commutator) [X, Y] = XY - YX. An operator $X \in \widetilde{\mathcal{M}}$ is said to be *normal* if $X^*X = XX^*$, *hyponormal* if $X^*X \ge XX^*$, *cohyponormal* if X^* is hyponormal, and *quasinormal* if X commutes with X^*X , i.e., $X \cdot X^*X = X^*X \cdot X$. Each quasinormal operator $X \in \widetilde{\mathcal{M}}$ is hyponormal (see [13, Theorem 2.9]).

If $\mathcal{M} = \mathcal{B}(\mathcal{H})$ is the *-algebra of all bounded linear operators in \mathcal{H} and $\tau = \text{tr}$ is the canonical trace, then $\widetilde{\mathcal{M}}$ coincides with $\mathcal{B}(\mathcal{H})$ and $\widetilde{\mathcal{M}}_0$ and $\mathcal{F}(\mathcal{M})$ coincide with the ideals of compact operators and finite-dimensional operators in \mathcal{H} , respectively. We have

$$\mu_t(X) = \sum_{n=1}^{\infty} s_n(X) \chi_{[n-1,n)}(t), \quad t > 0,$$

where $\{s_n(X)\}_{n=1}^{\infty}$ is the sequence of *s*-numbers of the operator X (see [24, p. 46]) and χ_A is the indicator of the set $A \subset \mathbb{R}$. Then the space $L_p(\mathcal{M}, \tau)$ if the Schatten–von Neumann ideal \mathfrak{S}_p , 0 .

Let (Ω, ν) be a space with measure and \mathcal{M} be the von Neumann algebra of operators of multiplication by functions from $L_{\infty}(\Omega, \nu)$ in the space $L_2(\Omega, \nu)$. The algebra \mathcal{M} does not contain nonzero compact operators if and only if the measure ν does not have atoms (see [1, Theorem 8.4]).

2. Lemmas on τ -measurable operators.

Lemma 2.1 (see [2, 21, 33]). Let $X, Y \in \widetilde{\mathcal{M}}$. Then the following assertions hold:

(1) $\mu_t(X) = \mu_t(|X|) = \mu_t(X^*)$ for all t > 0;

(2) if $|X| \leq |Y|$, then $\mu_t(X) \leq \mu_t(Y)$ for all t > 0;

(3) if $A, B \in \mathcal{M}$, then $\mu_t(AXB) \leq ||A|| ||B|| \mu_t(X)$ for all t > 0;

(4) $\mu_{s+t}(XY) \le \mu_s(X)\mu_t(Y)$ for all s, t > 0;

(5) $\mu_{s+t}(X+Y) \le \mu_s(X) + \mu_t(Y)$ for all s, t > 0;

(6) $\mu_t(|X|^p) = \mu_t(X)^p$ for all p > 0 and t > 0;

(7) $\lim_{t\to 0+} \mu_t(X) = ||X||$ for $X \in \mathcal{M}$ and $\lim_{t\to 0+} \mu_t(X) = \infty$ for $X \notin \mathcal{M}$.

Lemma 2.2 (see [20, p. 720]). If $X, Y \in \widetilde{\mathcal{M}}^+$ and $Z \in \widetilde{\mathcal{M}}$, then the inequality $X \leq Y$ implies $ZXZ^* \leq ZYZ^*$.

Lemma 2.3. If $X, Y \in \widetilde{\mathcal{M}}$, then |XY| = ||X|Y|. In particular, if $X \in \mathcal{M}$ is an isometry (i.e., $X^*X = I$), then |XY| = |Y|.

Proof. We have $|XY| = (Y^*X^*XY)^{1/2} = (Y^*|X|^2Y)^{1/2} = ||X|Y|.$

Lemma 2.4 (see [4, Proposition]). If $X, Y \in \widetilde{\mathcal{M}}^+$, then $XY \in \widetilde{\mathcal{M}}_0 \Leftrightarrow X^{1/2}YX^{1/2} \in \widetilde{\mathcal{M}}_0 \Leftrightarrow Y^{1/2}XY^{1/2} \in \widetilde{\mathcal{M}}_0$.

Lemma 2.5 (see [8, Theorem 1]). Let $A \in \widetilde{\mathcal{M}}^+$, $B \in \widetilde{\mathcal{M}}^{sa}$, and $-A \leq B \leq A$. Then there exists a unitary operator $S \in \mathcal{M}^{sa}$ such that $2|B| \leq A + SAS$.

We also recall (see [12, Theorem 1]) that there exist operators $X \in \widetilde{\mathcal{M}}^{sa}$ and $Y \in \widetilde{\mathcal{M}}^+$ such that B = XY + YX and $A = X^2 + Y^2$. Examples of operators $A \in \widetilde{\mathcal{M}}^+$ and $B \in \widetilde{\mathcal{M}}^{sa}$ with $-A \leq B \leq A$ can be found in [9]. Lemma 2.5 implies the following assertion.

Lemma 2.6 (see [15, Proposition 1.2]). If $A \in \widetilde{\mathcal{M}}^+$, $B \in \widetilde{\mathcal{M}}^{sa}$, and $-A \leq B \leq A$, then $B \prec \prec A$.

Lemma 2.7 (see [3, 30, 31]). If $X \in \widetilde{\mathcal{M}}^+$, $Y \in \widetilde{\mathcal{M}}^{sa}$, and $XY \in (L_1+L_\infty)(\mathcal{M}, \tau)$, then $X^tYX^{1-t} \prec XY$ for all 0 < t < 1.

Lemma 2.8 (see [10, Theorem 3.5]). Let $X, Y \in \widetilde{\mathcal{M}}$, X be hyponormal, and Y by cohyponormal. Then $\mu_t(XY) \ge \mu_t(YX)$ for all t > 0.

3. Inequalities for permutations of τ -measurable operators. Let τ be an exact, normal, semi-finite trace on the von Neumann algebra \mathcal{M} .

Theorem 3.1. Let $A \in \widetilde{\mathcal{M}}, X_k, Y_k \in \widetilde{\mathcal{M}}^+$, and $X_k \leq Y_k, k = 1, 2$. Then $\mu_t(X_1^{1/2}AX_2^{1/2}) \leq \mu_t(Y_1^{1/2}AY_2^{1/2}) \quad \forall t > 0.$

Proof. By Lemma 2.2 we have $A^*X_1A \leq A^*Y_1A$. Therefore, by items (1), (2), and (6) of Lemma 2.1 and the monotonicity of the real function $\lambda \mapsto \lambda^{1/2}$ ($\lambda \geq 0$) for all t > 0, we obtain

$$\mu_t(X_1^{1/2}A) = \mu_t(A^*X_1A)^{1/2} \le \mu_t(A^*Y_1A)^{1/2} = \mu_t(Y_1^{1/2}A).$$

Similarly, we obtain

$$\mu_t(X_2^{1/2}B^*) \le \mu_t(Y_2^{1/2}B^*)$$

for all $B \in \widetilde{\mathcal{M}}$ and t > 0. By item (1) of Lemma 2.1 we have

$$\mu_t(BX_2^{1/2}) = \mu_t((X_2^{1/2}B^*)^*) \le \mu_t((Y_2^{1/2}B^*)^*) = \mu_t(BY_2^{1/2})$$

for all $B \in \widetilde{\mathcal{M}}$ and t > 0. Replacing the operator A by $AX_2^{1/2}$ and the operator B by $Y_1^{1/2}$, we obtain for all t > 0 the inequalities

$$\mu_t(X_1^{1/2}AX_2^{1/2}) \le \mu_t(Y_1^{1/2}AX_2^{1/2}) \le \mu_t(Y_1^{1/2}AY_2^{1/2}),$$

which was required.

Proposition 3.1. If operators $X, Y \in \widetilde{\mathcal{M}}$ are invertible and $X^{-1}, Y^{-1} \in \mathcal{M}_1$, then $\mu_t(X^{-1} - Y^{-1}) \leq \mu_t(X - Y) \quad \forall t > 0$

$$\mu_t(X^{-1} - Y^{-1}) \le \mu_t(X - Y) \quad \forall t > 0$$

Moreover,

$$\mu_t(X^{-2} - Y^{-2}) \le 2\mu_{t/2}(X - Y) \quad \forall t > 0.$$

Proof. For all invertible $X, Y \in \widetilde{\mathcal{M}}$ we have

$$X^{-1} - Y^{-1} = X^{-1}(Y - X)Y^{-1} = Y^{-1}(Y - X)X^{-1}.$$

Therefore, by items (3) and (1) of Lemma 2.1, for all t > 0 we obtain

$$\mu_t(X^{-1} - Y^{-1}) = \mu_t(X^{-1}(Y - X)Y^{-1}) \le ||X^{-1}|| ||Y^{-1}|| \mu_t(Y - X) \le \mu_t(Y - X) = \mu_t(X - Y).$$

461

Since

$$||X^{-1} + Y^{-1}|| \le ||X^{-1}|| + ||Y^{-1}|| \le 2,$$

$$X^{-2} - Y^{-2} = \frac{1}{2} \left((X^{-1} - Y^{-1})(X^{-1} + Y^{-1}) + (X^{-1} + Y^{-1})(X^{-1} - Y^{-1}) \right),$$

the inequality

$$\mu_t(X^{-2} - Y^{-2}) \le 2\mu_{t/2}(X - Y)$$

for all t > 0 follows from items (3) and (5) of Lemma 2.1. The proposition is proved.

If an operator $X \in \mathcal{M}$ is invertible in \mathcal{M} , then by item (4) of Lemma 2.1 we have

$$1 = \mu_{2t}(I) = \mu_{2t}(XX^{-1}) \le \mu_t(X)\mu_t(X^{-1})$$

for all $t \in (0, 2^{-1}\tau(I))$. Therefore, $X, X^{-1} \notin \widetilde{\mathcal{M}}_0$ for $\tau(I) = +\infty$.

Proposition 3.2. If $X \in \widetilde{\mathcal{M}}$ and $Y \in \mathcal{M}^{\mathrm{pr}}$, then

$$\mu_t(YXY) \le \min\{\mu_t(XY), \ \mu_t(X \circ Y)\} \quad \forall t > 0.$$

Proof. By item (3) of Lemma 2.1 for all t > 0 we have

$$\mu_t(YXY) \le \|Y\|\mu_t(XY) = \mu_t(XY),$$

$$_t(YXY) = \mu_t(Y(XY + YX)Y) \le \|Y\|^2 \mu_t(XY + YX) = \mu_t(XY + YX).$$

The proposition is proved.

 2μ

In particular, if

then

 $X \in \widetilde{\mathcal{M}}^+,$

$$\mu_t(X^{1/2}YX^{1/2}) = \mu_t(YXY), \quad \mu_t(X^{1/2}YX^{1/2}) \le \min\left\{\mu_t(XY), \ \mu_t(X \circ Y)\right\}$$

for all t > 0. Note that for $X, Y \in \widetilde{\mathcal{M}}^+$, the inequality $\mu_t(X^{1/2}YX^{1/2}) \leq \mu_t(XY)$ does not hold in the general case (see [3, p. 575]).

Theorem 3.2. If $X, Y \in \widetilde{\mathcal{M}}$, then $\mu_t(XY) = \mu_t(|X||Y^*|)$ for all t > 0.

Proof. By Lemma 2.3 and item (1) of Lemma 2.1, for all t > 0 we have

$$\mu_t(XY) = \mu_t(|XY|) = \mu_t(||X|Y|) = \mu_t(|X|Y) = \mu_t((|X|Y)^*) = \mu_t(Y^*|X|) = \mu_t(|Y^*|X|) = \mu_t(|Y^*|X|) = \mu_t(|Y^*||X|) = \mu_t(|Y^*||X|)^*) = \mu_t(|X||Y^*|).$$

The theorem is proved.

Corollary 3.1. If an operator $X \in \widetilde{\mathcal{M}}$ is nilpotent of order n and $m \ge n$, then $|X^{m-k}||X^{*k}| = 0$ for all $k \in \{1, 2, \ldots, m-1\}$.

Proof. By the condition $X^n = 0 \neq X^{n-1}$. We have

$$0 = \mu_t(X^m) = \mu_t(X^{m-k}X^k) = \mu_t(|X^{m-k}||X^{*k}|)$$

for all $m \ge n$ and t > 0. Therefore, $|X^{m-k}| |X^{*k}| = 0$ for all $k \in \{1, 2, \dots, m-1\}$.

Theorem 3.2 and Lemma 2.7 imply the following assertion.

Corollary 3.2. We have $|X|^t |Y^*| |X|^{1-t} \prec \forall XY$ for all 0 < t < 1 and $X, Y \in \widetilde{\mathcal{M}}$.

Corollary 3.3. Let $X, Y \in \widetilde{\mathcal{M}}$, where the operator X is hyponormal and the operator Y is cohyponormal. Then $\mu_t(|X||Y^*|) \ge \mu_t(|X^*||Y|)$ for all t > 0.

462

Proof. By Lemma 2.8 and item (1) of Lemma 2.1 for all t > 0 we have

$$\mu_t(|X||Y^*|) = \mu_t(XY) \ge \mu_t(YX) = \mu_t(|Y||X^*|) = \mu_t((|Y||X^*|)^*) = \mu_t(|X^*||Y|).$$
(1)

The proof is complete.

Corollary 3.4. Let operators $X, Y \in \widetilde{\mathcal{M}}$ be normal. Then $\mu_t(|X||Y^*|) = \mu_t(|X^*||Y|)$ for all t > 0.

Proof. By [10, Corollary 3.6] we have the equality in (1).

Theorem 3.3. Let $X, Y \in \widetilde{\mathcal{M}}$, $XY \in (L_1 + L_\infty)(\mathcal{M}, \tau)$, X is hyponormal, and Y is cohyponormal. Then

$$\lambda XY + (1 - \lambda)YX \prec \prec XY \quad \forall 0 \le \lambda \le 1$$

In particular, $X \circ Y \prec \prec XY$.

Proof. For all t > 0, due to Lemma 2.8 and the positive homogeneity and subadditivity of the functional

$$\Phi(A,t) = \int_{0}^{t} \mu_{s}(A)ds, \quad A \in (L_{1} + L_{\infty})(\mathcal{M},\tau)$$

we obtain

$$\int_{0}^{t} \mu_{s}(\lambda XY + (1-\lambda)YX)ds \leq \lambda \int_{0}^{t} \mu_{s}(XY)ds + (1-\lambda) \int_{0}^{t} \mu_{s}(YX)ds \leq \int_{0}^{t} \mu_{s}(XY)ds.$$

The theorem is proved.

Theorems 3.2 and 3.3 imply the following.

Corollary 3.5. In conditions of Theorem 3.3 we have $\lambda XY + (1 - \lambda)YX \prec |X||Y^*|$.

Proposition 3.3. If $X, Y, A \in (L_1 + L_\infty)(\mathcal{M}, \tau)$ and $X, X - A \prec Y$, then $X - \lambda A \prec Y$ for all $0 \leq \lambda \leq 1$.

Proof. The assertion follows from the positive homogeneity and the subadditivity of the functional

$$\Phi(A,t) = \int_{0}^{t} \mu_s(A) ds, \quad A \in (L_1 + L_\infty)(\mathcal{M}, \tau),$$

and the representation $X - \lambda A = (1 - \lambda)X + \lambda(X - A)$. In particular, if $X, A \in \widetilde{\mathcal{M}}$ and $X - A \prec \prec X$, then $X - \lambda A \prec \prec X$ for all $0 \le \lambda \le 1$.

Proposition 3.4. If $X, Y \in \widetilde{\mathcal{M}}^{sa}$ and $X^2 + Y^2 \in (L_1 + L_\infty)(\mathcal{M}, \tau)$, then

$$X \circ Y \prec \prec \frac{1}{2}(X^2 + Y^2), \quad [X, Y] \prec \prec X^2 + Y^2.$$

Proof. Since $(X \pm Y)^2 \ge 0$ and $(X \pm iY)(X \mp iY) \ge 0$ with $i \in \mathbb{C}$, $i^2 = -1$, we have $-X^2 - Y^2 \le XY + YX \le X^2 + Y^2$, $-X^2 - Y^2 \le i(XY - YX) \le X^2 + Y^2$.

Now the assertions follow from Lemma 2.6.

Since $XY = X \circ Y + \frac{1}{2}[X, Y]$, Proposition 3.4 implies the following assertion.

Corollary 3.6. If $X, Y \in \widetilde{\mathcal{M}}^{sa}$ and $X^2 + Y^2 \in (L_1 + L_\infty)(\mathcal{M}, \tau)$, then $XY \prec \prec X^2 + Y^2$.

For a wide class of operators $X, Y \in \widetilde{\mathcal{M}}^{sa}$ we have $\mu_t(XY) \leq \mu_t\left(\frac{X^2+Y^2}{2}\right)$ for all t > 0 (see [18, Lemma3.4]).

$$\Box$$

4. On the τ -compactness of products of τ -measurable operators.

Theorem 4.1. Let operators $X, Y \in \widetilde{\mathcal{M}}^{sa}$ be such that

$$XY + YXY \in \widetilde{\mathcal{M}}_0, \quad Y^2 + Y \ge \lambda |Y|^p$$

with certain $0 < \lambda, p < +\infty$. Then $XY \in \widetilde{\mathcal{M}}_0$.

Proof. We have XY = YX + A with

$$A = XY - YX = XY + YXY - (XY + YXY)^* \in \widetilde{\mathcal{M}}_0$$

Then

$$XY + XY^2 - AY = XY + (XY - A)Y = XY + YXY \in \widetilde{\mathcal{M}}_0$$

and, since $AY \in \widetilde{\mathcal{M}}_0$, we have

$$XY + XY^2 \in \widetilde{\mathcal{M}}_0.$$

Therefore,

$$X(Y+Y^2)X = (XY+XY^2)X \in \mathcal{M}_0.$$

By Lemma 2.2 and item (2) of Lemma 2.1, we obtain

$$X \cdot |Y|^p \cdot X \in \mathcal{M}_0.$$

Since

$$\mu_t(X|Y|^{p/2})^2 = \mu_t((X|Y|^{p/2})^*)^2 = \mu_t(|Y|^{p/2}X)^2 = \mu_t(||Y|^{p/2}X|)^2 = \mu_t(||Y|^{p/2}X|^2)$$

= $\mu_t(X|Y|^pX) \to 0 \text{ as } t \to +\infty,$

we obtain

$$X|Y|^{p/2} \in \widetilde{\mathcal{M}}_0.$$

Since

$$X \cdot |Y|^{p/2}| = ||X| \cdot |Y|^{p/2}|$$

by Lemma 2.3, we have $|X| \cdot |Y|^{p/2} \in \widetilde{\mathcal{M}}_0$. Therefore,

 $|X| \cdot |Y| \in \widetilde{\mathcal{M}}_0$

by Theorem 4.1 (see [10]). Let X = U|X| and Y = V|Y| be polar decompositions of the operators X and Y. Then Y = |Y|V and $XY = U \cdot |X||Y| \cdot V \in \widetilde{\mathcal{M}}_0$. The theorem is proved.

Corollary 4.1. Let operators $X, Y \in \widetilde{\mathcal{M}}^{sa}$ be such that

$$XY - YXY \in \widetilde{\mathcal{M}}_0, \quad Y^2 - Y \ge \lambda |Y|^p$$

with certain $0 < \lambda, p < +\infty$. Then $XY \in \widetilde{\mathcal{M}}_0$.

Proof. The operators $X_1 = -X$ and $Y_1 = -Y$ satisfy all conditions of Theorem 4.1 and $X_1Y_1 = XY$. \Box

Proposition 4.1. For operators $X \in \widetilde{\mathcal{M}}$ and $Y \in \widetilde{\mathcal{M}}^+$, the following conditions are equivalent:

- (i) $XY \in \widetilde{\mathcal{M}}_0$;
- (ii) $XYX^* \in \widetilde{\mathcal{M}}_0$.

Proof. (ii) \Rightarrow (i). By items (1) and (6) of Lemma 2.1 we have

$$\mu_t(XY^{1/2})^2 = \mu_t((XY^{1/2})^*)^2 = \mu_t(Y^{1/2}X^*)^2 = \mu_t(|Y^{1/2}X^*|)^2 = \mu_t(|Y^{1/2}X^*|^2)$$
$$= \mu_t(XYX^*) \to 0 \quad \text{as } t \to +\infty.$$

Therefore, $XY^{1/2} \in \widetilde{\mathcal{M}}_0 \ XY = XY^{1/2} \cdot Y^{1/2} \in \widetilde{\mathcal{M}}_0.$

Corollary 4.2. For operators $X, Y \in \widetilde{\mathcal{M}}$ we have

$$XY \in \widetilde{\mathcal{M}}_0 \quad \Leftrightarrow \quad |X||Y^*| \in \widetilde{\mathcal{M}}_0 \quad \Leftrightarrow \quad |X|^{1/2}|Y^*||X|^{1/2} \in \widetilde{\mathcal{M}}_0 \quad \Leftrightarrow \quad |Y^*|^{1/2}|X||Y^*|^{1/2} \in \widetilde{\mathcal{M}}_0.$$

Corollary 4.3. Let $X \in \widetilde{\mathcal{M}}^{\mathrm{sa}}$ and $Y \in \widetilde{\mathcal{M}}$. If $XY \in \widetilde{\mathcal{M}}_0$, then $|Y^*|^{1/2} X |Y^*|^{1/2} \in \widetilde{\mathcal{M}}_0.$

Proof. Let $X = X_+ - X_-$ be the Jordan decomposition of the operator $X \in \widetilde{\mathcal{M}}^{sa}$, where $X_+, X_- \in \widetilde{\mathcal{M}}^+$ and $X_+X_- = 0$. Then $|X| = X_+ + X_-$ and

$$|Y^*|^{1/2} X_{\pm} |Y^*|^{1/2} \le |Y^*|^{1/2} |X| |Y^*|^{1/2}$$

by Lemma 2.2. If $XY \in \widetilde{\mathcal{M}}_0$, then $|Y^*|^{1/2} |X| |Y^*|^{1/2} \in \widetilde{\mathcal{M}}_0$ by Corollary 4.2. Now due to item (2) of Lemma 2.1 we have

$$|Y^*|^{1/2} X_{\pm} |Y^*|^{1/2} \in \widetilde{\mathcal{M}}_0^+,$$

and hence

$$Y^*|^{1/2} X |Y^*|^{1/2} = |Y^*|^{1/2} X_+ |Y^*|^{1/2} - |Y^*|^{1/2} X_- |Y^*|^{1/2} \in \widetilde{\mathcal{M}}_0.$$

The assertion is proved.

Example 4.1. The condition $X, Y \in \widetilde{\mathcal{M}}^+$ is essential in Lemma 2.4 and the condition $Y \in \widetilde{\mathcal{M}}^+$ is essential in Proposition 4.1. We endow the von Neumann algebra $\mathcal{M} = \bigoplus_{n=1}^{\infty} \mathbb{M}_2(\mathbb{C})$ with the exact,

normal, semi-finite trace $\tau = \bigoplus_{n=1}^{\infty} \operatorname{tr}_2$ and set $X = \bigoplus_{n=1}^{\infty} \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$

$$X = \bigoplus_{n=1}^{\infty} \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}, \quad Y = \bigoplus_{n=1}^{\infty} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Then $X \in \mathcal{M}^{\mathrm{pr}}$, $Y \in \mathcal{M}^{\mathrm{sa}}$, and $X^{1/2}YX^{1/2} = 0 \in \widetilde{\mathcal{M}}_0$, but the operators

$$XY = \bigoplus_{n=1}^{\infty} \begin{pmatrix} 1/2 & -1/2 \\ 1/2 & -1/2 \end{pmatrix}, \quad X \circ Y = \bigoplus_{n=1}^{\infty} \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix} \notin \widetilde{\mathcal{M}}_0.$$

Example 4.2 (theorem on lifting of idempotents; see [26, Proposition 7]). Let $\mathcal{M} = \mathcal{B}(\mathcal{H})$ and $\tau = \text{tr}$ be the canonical trace, let operators $X \in \mathcal{M}$ and Y = I - X be such that $XY \in \widetilde{\mathcal{M}}_0$. Then the representation X = P + Z holds, where $P = P^2 \in \mathcal{M}$ and $Z \in \widetilde{\mathcal{M}}_0$.

Theorem 4.2. Let $X, Y \in \mathcal{M}^+$, $n \in \mathbb{N}$, and $p_k > 0$, $q_k > 0$, r > 0, k = 1, ..., n. Then the following conditions are equivalent:

- (i) $XY \in \mathcal{F}(\mathcal{M});$
- (ii) $X^{p_1}Y^{q_1}\cdots X^{p_n}Y^{q_n} \in \mathcal{F}(\mathcal{M});$
- (iii) $X^{p_1}Y^{q_1}\cdots X^{p_n}Y^{q_n}X^r \in \mathcal{F}(\mathcal{M}).$

Proof. (i) \Rightarrow (ii), (iii). We have $XYX \in \mathcal{F}(\mathcal{M})$. By items (1) and (6) of Lemma 2.1 we obtain

$$\mu_t(XY^{1/2}) = \mu_t(XYX)^{1/2} \quad \forall t > 0;$$

therefore,

$$XY^{1/2} \in \mathcal{F}(\mathcal{M}).$$

465

Now

$$Y^{1/2}XY^{1/2} \in \mathcal{F}(\mathcal{M}).$$

By items (1) and (6) of Lemma 2.1 we have

$$\mu_t(X^{1/2}Y^{1/2}) = \mu_t(Y^{1/2}XY^{1/2})^{1/2} \quad \forall t > 0;$$

therefore,

$$X^{1/2}Y^{1/2} \in \mathcal{F}(\mathcal{M}).$$

Continuing this process, we obtain

$$X^{2^{-m}}Y^{2^{-m}} \in \mathcal{F}(\mathcal{M})$$

for all $m \in \mathbb{N}$. We choose m such that $2^{-m} < \min\{p_1, q_1\}$. Then

$$X^{p_1}Y^{q_1} = X^{p_1 - 2^{-m}} \cdot X^{2^{-m}}Y^{2^{-m}} \cdot Y^{q_1 - 2^{-m}} \in \mathcal{F}(\mathcal{M})$$

The implications (ii) \Rightarrow (i) and (iii) \Rightarrow (i) can be verified by arguments similar to the proof of Theorem 4.1 (see [10]).

Theorem 4.3. Let operators $X, Y \in \mathcal{M}^{sa}$ be such that $XY + YXY \in \mathcal{F}(\mathcal{M})$ and $Y^2 + Y \ge \lambda |Y|^p$ with certain $0 < \lambda, p < +\infty$. Then $XY \in \mathcal{F}(\mathcal{M})$.

Proof. Repeating the arguing from the proof of Theorem 4.1, we obtain $X|Y|^{p/2} \in \mathcal{F}(\mathcal{M})$. Let X = U|X| and Y = V|Y| be the polar decompositions of the operators X and Y. Then $U, V \in \mathcal{M}^{sa}$ and UX = |X|, Y = |Y|V. Since

$$|X||Y|^{p/2} = UX|Y|^{p/2} \in \mathcal{F}(\mathcal{M}),$$

we have $|X||Y| \in \mathcal{F}(\mathcal{M})$ by Theorem 4.2. Therefore, $XY = U \cdot |X||Y| \cdot V \in \mathcal{F}(\mathcal{M})$. The theorem is proved.

Corollary 4.4. Let operators $X, Y \in \mathcal{M}^{sa}$ be such that $XY - YXY \in \mathcal{F}(\mathcal{M})$ and $Y^2 - Y \ge \lambda |Y|^p$ with certain $0 < \lambda, p < +\infty$. Then $XY \in \mathcal{F}(\mathcal{M})$.

Proof. The operators $X_1 = -X$ and $Y_1 = -Y$ satisfy all condition of Theorem 4.3 and $X_1Y_1 = XY$. \Box

The proof of the following proposition is similar to the proof of Proposition 4.1.

Proposition 4.2. For operators $X \in \mathcal{M}$ and $Y \in \mathcal{M}^+$ the following conditions are equivalent:

- (i) $XY \in \mathcal{F}(\mathcal{M});$
- (ii) $XYX^* \in \mathcal{F}(\mathcal{M})$.

Example 4.1 show that the positiveness condition of operator $Y \in \mathcal{M}$ is essential in Proposition 4.2.

Proposition 4.3. Let an operator $X \in \widetilde{\mathcal{M}}$ be quasinormal and $X^n = X$ for a certain natural number $n \geq 2$. Then $X \in \mathcal{M}_1$ and the following conditions are equivalent:

- (i) $X \in \mathcal{F}(\mathcal{M});$
- (ii) $X \in \mathcal{M}_0$.

Proof. We have $\mu_t(X) = \mu_t(X^n) = \mu_t(X)^n$ for all t > 0 due to [14, Theorem 2.4]. Therefore, $\mu_t(X) \in \{0,1\}$ for all t > 0 and $X \in \mathcal{M}_1$ by item (7) of Lemma 2.1. The rest of the proof is obvious. \Box

Note that if $X \in \widetilde{\mathcal{M}}$ with $X^n = X$ for a certain natural number $n \ge 2$ and $X \notin \widetilde{\mathcal{M}}_0$, then $\mu_t(X) \ge 1$ for all t > 0 due to [11, Lemma 4.8]. The vector space \mathcal{E} in $\widetilde{\mathcal{M}}$ is called the symmetric space on (\mathcal{M}, τ)

if the conditions $X \in \mathcal{E}$, $Y \in \widetilde{\mathcal{M}}$, and $\mu(Y) \leq \mu(X)$ imply $Y \in \mathcal{E}$. For example, \mathcal{M} , $\mathcal{F}(\mathcal{M})$, $\widetilde{\mathcal{M}}_0$, $(L_1 + L_\infty)(\mathcal{M}, \tau)$, and $L_p(\mathcal{M}, \tau)$ for $0 . If <math>X \in \widetilde{\mathcal{M}}$ and $n \geq 2$, then by Theorem 3.2 we have

$$\mu_t(X^n) = \mu_t(X^{n-k}X^k) = \mu_t(|X^{n-k}||X^{*k}|)$$

for all $k \in \{1, 2, ..., n-1\}$ and t > 0. Therefore, $X^n \in \mathcal{E} \Leftrightarrow |X^{n-k}| |X^{*k}| \in \mathcal{E}$ for all $k \in \{1, 2, ..., n-1\}$.

REFERENCES

- 1. A. B. Antonevich, Linear Functional Equations. Operator Approach [in Russian], Minsk (1988).
- A. M. Bikchentaev, "On noncommutative function spaces," Trans. Am. Math. Soc. (2), 154, 179–187 (1992).
- A. M. Bikchentaev, "Majorization for products of measurable operators," Int. J. Theor. Phys., 37, No. 1, 571–576 (1998).
- 4. A. M. Bikchentaev, "On one property of L_p -spaces on semi-finite von Neumann algebras," *Mat. Zametki*, **64**, No. 2, 185–190 (1998).
- A. M. Bikchentaev, "The continuity of multiplication for two topologies associated with a semifinite trace on von Neumann algebra," *Lobachevskii J. Math.*, 14, 17–24 (2004).
- A. M. Bikchentaev, "The Peierls-Bogoliubov inequality in C*-algebras and characterization of tracial functionals," *Lobachevskii J. Math.*, **32**, No. 3, 175–179 (2011).
- A. M. Bikchentaev, "Commutativity of projectors and characterization of traces on von Neumann algebras, II," *Mat. Zametki*, 89, No. 4, 483–494 (2011).
- A. M. Bikchentaev, "Operator of block proection in normed ideal spaces of measurable operators," *Izv. Vyssh. Ucheb. Zaved. Ser. Mat.*, 2, 86–91 (2012).
- 9. A. Bikchentaev, "On Hermitian operators X and Y meeting the condition $-Y \le X \le Y$," Lobachevskii J. Math., **34**, No. 3, 227–233 (2013).
- 10. A. M. Bikchentaev, "On normal τ -measurable operators adjoint to a semi-finite von Neumann algebra," *Mat. Zametki*, **96**, No. 3, 350–360 (2014).
- A. M. Bikchentaev, "To the theory of τ-measurable operators adjoint to a semi-finite von Neumann algebra," Mat. Zametki, 98, No. 3, 337–348 (2015).
- A. M. Bikchentaev, "On operator-monotone and operator-convex functions," Izv. Vyssh. Ucheb. Zaved. Ser. Mat., 5, 70–74 (2016).
- A. M. Bikchentaev, "On idempotent τ-measurable operators adjoint to a von Neumann algebra," Mat. Zametki, 100, No. 4, 492–503 (2016).
- A. Bikchentaev, "Integrable products of measurable operators," *Lobachevskii J. Math.*, 37, No. 4, 397–403 (2016).
- V. I. Chilin and F. A. Sukochev, "Weak convergence in noncommutative symmetric spaces," J. Operator Theory, 31, No. 1, 35–65 (1994).
- C. Chu, "Compact product of Hankel and Toeplitz operators on the Hardy space," Indiana Univ. Math. J., 64, No. 4, 973–982 (2015).
- 17. Ž. Čučković and S. Şahutoğlu, "Compactness of products of Hankel operators on the polydisk and some product domains in C²," J. Math. Anal. Appl., **371**, No. 1, 341–346 (2010).
- D. Dauitbek, N. E. Tokmagambetov, and K. S. Tulenov, "Commutation inequalities related to polar decompositions of τ-measurable operators," *Izv. Vyssh. Ucheb. Zaved. Ser. Mat.*, No. 7, 56–62 (2014).
- X. H. Ding, "Compact product of Toeplitz operators on the polydisk," Acta Math. Sinica (Chin. Ser.), 48, No. 3, 493–498 (2005).

- P. G. Dodds, T. K.-Y. Dodds, and B. de Pagter, "Noncommutative Köthe duality," Trans. Am. Math. Soc., 339, No. 2, 717–750 (1993).
- T. Fack and H. Kosaki, "Generalized s-numbers of τ-measurable operators," Pac. J. Math., 123, No. 2, 269–300 (1986).
- 22. I. S. Feshchenko, "On the closedness of the sum of ranges of operators A_k with almost compact products $A_i^* A^j$," J. Math. Anal. Appl., **416**, No. 1, 24–35 (2014).
- J. Flores, P. Tradacete, V. G. Troitsky, "Disjointly homogeneous Banach lattices and compact products of operators," J. Math. Anal. Appl., 354, No. 2, 657–663 (2009).
- 24. I. Ts. Gohberg and M. G. Krein, *Introduction to the Theory of Linear Non-Self-Adjoint Operators* [in Russian], Nauka, Moscow (1965).
- 25. C. Gu, "Zero or compact products of several Hankel operators," *Integral Equations Operator Theory*, **43**, No. 3, 298–312 (2002).
- P. De La Harpe, "Initiation à l'algèbre de Calkin," Lect. Notes Math., 725, Springer-Verlag, Berlin (1979), pp. 180–219.
- Y. J. Lee and K. Na, "Compact products of Toeplitz operators on the Dirichlet space of the unit ball," J. Math. Anal. Appl., 401, No. 2, 654–658 (2013).
- 28. E. Nelson, "Notes on non-commutative integration," J. Funct. Anal., 15, No. 2, 103–116 (1974).
- 29. I. E. Segal, "A non-commutative extension of abstract integration," Ann. Math., 57, No. 3, 401–457 (1953).
- F. A. Sukochev, "On a hypothesis of A. M. Bikchentaev," Izv. Vyssh. Ucheb. Zaved. Ser. Mat., No. 6, 67–70 (2012).
- F. A. Sukochev, "On a conjecture of A. Bikchentaev," Proc. Symp. Pure Math., 87, Am. Math. Soc., Providence, Rhode Island (2013), pp. 327–339.
- D. Xia, D. Zheng, "Compact products of Hankel operators," Integral Equations Operator Theory, 38, No. 3, 357–375 (2000).
- F. J. Yeadon, "Non-commutative L^p-spaces," Math. Proc. Cambridge Phil. Soc., 77, No. 1, 91–102 (1975).

A. M. Bikchentaev

Kazan (Volga region) Federal University, Kazan, Russia E-mail: Airat.Bikchentaev@kpfu.ru