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Abstract—For (n+ 1)-ly connected planar domain D with analytic boundary we construct the
function F (w,w0) = (w − w0)f(w,w0) which maps D conformally onto the unit disk with circular
and radial slits. We show that if n ≥ 2, then Mityuk’s function, M(w) = −(2π)−1 ln |f(w,w)|,
representing the generalized reduced module of the domain D has at least one stationary point in D.
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1. INTRODUCTION
Classical task in the complex function theory concerns with the construction of the conformal

mappings
F (w,w0) = (w − w0)f(w,w0), f(w0, w0) �= 0, (1)

from the planar finitely connected regions onto the canonical domains such as the unit disk centered at
the origin with cuts along the arcs of prescribed form, namely, circular concentric arcs, radial slits, or
their various disjoint combinations.

I. P. Mityuk [1] has proposed a way to define a generalized reduced modules connected with function
F (w,w0). The generalized reduced module,

M(w) = − 1

2π
ln |f ′(w,w)| (2)

of a multiply connected domain D at a point w will be called Mityuk’s function with respect to the
distinguished canonical domain.

Connection of the functions (2) with the exterior inverse boundary value problems goes back to
Gakhov [2]. As it has appeared, the non-emptiness of the critical points set of the function M(w) is
equivalent to the suitable exterior problem. The existence of critical points of Mityuk’s function in the
case of circular concentric slits has been proved by Kinder [3]. The case of circular and radial slits is
studied in the present report (see also [4] and [5]).

Let D be (n+ 1)-ly connected domain with the boundary ∂D, consisting of disjoint analytic curves
Lk, k = 0, n; the contour L0 encircles the others. In the section 1 we shell define the auxiliary functions
involving in the construction of the mapping (1) of the domain D onto the unit disk with radial and
circular slits. In the Section 2 the existence and the univalence of such a mapping will be proved. In
the Section 3 we show that the function (2) has at least one stationary point in D if n ≥ 2; the doubly-
connected example is constructed where the function (2) has no stationary points.

Let us note that a number of the assertions of this note can be transferred to the general case of Jordan
domains; we won’t stop on details.
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GENERALIZED REDUCED MODULE 665

2. FUNCTIONS S(w,w0), S∗(w,w0) AND THEIR PROPERTIES

Let 1 < m < n. We let Γ1 denote the collection of contours L0, L1, . . ., Lm, and let Γ2 be a finite set of
curves Lm+1, Lm+2, . . ., Ln. Let us introduce two fundamental functions S(w,w0) and S∗(w,w0) which
are the analogies of the Green and Neumann functions for the first and second problems of mathematical
physics. The quantity S(w,w0) is defined by the following properties:

1) the function s(w,w0) = S(w,w0) + ln |w − w0| is harmonic everywhere in the region D;
2) S(w,w0) has the following boundary values:

S(t, w0) = 0, t ∈ Γ1, and (∂S/∂n)(t, w0) = 0, t ∈ Γ2, (3)

where �n is the inner normal to the boundary ∂D, and the notation t ∈ Γk means that t varies over all of
the contours in the collection Γk, k = 1, 2.

The function S∗(w,w0) is defined analogously with

(∂S∗/∂n)(t, w0) = 0, t ∈ Γ1, and S∗(t, w0) = 0, t ∈ Γ2, (4)

instead of (3). Functions S(w,w0) and S∗(w,w0) are uniquely defined by these properties, and their
existence follows from the general theorems of the potential theory or from the following reasons. Using
the idea of the double of the multiply connected domain we construct the Riemann surface R, sewing
the region D and its copy, ˜D, along boundary contours Γ2. Due to the second boundary condition in (3)
the problem of search of function S(w,w0) harmonically continues from D to ˜D. At the same time the
values S(w,w0) vanish on each of 2(m+ 1) boundary components of the border of R. Thus the finding
of the function s(w,w0) = S(w,w0) + ln |w −w0| on the Riemann surface R of the genus n−m− 1
leads to the usual Dirichlet problem which solvability is well-known (see, e.g., [6]).

Integral representation for harmonic functions and boundary behavior of S(w,w0) and S∗(w,w0)
imply the following

Property 1. If u(w) is a harmonic function, which is continuously differentiable in the closed
domain D, then we have

u(w) =
1

2π

∫

Γ1

u(t)
∂S

∂n
(t, w)dσ − 1

2π

∫

Γ2

∂u

∂n
(t)S(t, w)dσ, (5)

u(w) = − 1

2π

∫

Γ1

∂u

∂n
(t)S∗(t, w)dσ +

1

2π

∫

Γ2

u(t)
∂S∗

∂n
(t, w)dσ. (6)

The following assertion establishes the symmetry of the functions S and S∗.
Property 2. Functions S(w,w0) and S∗(w,w0) are harmonic in D with respect to w0 (for fixed

w �= w0), and S(w,w0) = S(w0, w), S
∗(w,w0) = S∗(w0, w).

The proof is completely the same as the one for the Green function to be symmetric with respect to
its arguments (see, for instance, [7]).

To formulate the Property 3 we are needed in some constructions which we shell introduce now.
By the addition of the conjugate functions U(w,w0) and U∗(w,w0) we complete the functions

S(w,w0) and S∗(w,w0) up to the functions T (w,w0) = S(w,w0) + iU(w,w0) and T ∗(w,w0) =
S∗(w,w0) + iU∗(w,w0) and which are analytic with respect to w, harmonic with respect to w0, and
multi-valued in D. Let us find their increments when a point w goes around the closed curves homotopic
to the boundary contours. It is easy to see that the circuit along the contours Lk ∈ Γ1 doesn’t change
the function T ∗(w,w0), but gives to T (w,w0) the increments

−2πiξk(w) =

∫

Lk

dT (t, w) = i

∫

Lk

∂U

∂σ
(t, w)dσ = −i

∫

Lk

∂S

∂n
(t, w)dσ. (7)

Similarly, under the circuit of the contour Lk ∈ Γ2 the function T (w,w0) remains former, but T ∗(w,w0)
obtains the increment

−2πiξ∗k(w) =

∫

Lk

dT ∗(t, w) = −i

∫

Lk

∂S∗

∂n
(t, w)dσ. (8)
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666 ELIZAROV et al.

Periods ξk(w) and ξ∗k(w) are functions harmonic and single-valued in D. Formulae (5), (6) imply
that the boundary values ξk(w) vanish on all of the contours Γ1 except Lk(∈ Γ1), where these values are
equal to unit; on the rest of the boundary we have (∂ξk/∂n)|Γ2

= 0. Analogously, ξ∗k|Lj
= 0, ξ∗k|Lk

= 1

for Lk ∈ Γ2 and Lj ∈ Γ2, j �= k; (∂ξ∗k/∂n)|Γ1
= 0.

Functions ξk(w) and ξ∗k(w) are analogs of the harmonic measures in the Dirichlet problem. We apply
now to these functions the procedure of completion them by the conjugate functions. As a result we
obtain analytic functions ζk(w), k = 0,m, and ζ∗k(w), k = m+ 1, n, which are determined to within an
imaginary constant. They admit integral representations following from (7) and (8):

ζk(w) =
1

2π

∫

Lk

∂T

∂n
(t, w)dσ, ζ∗k(w) =

1

2π

∫

Lk

∂T ∗

∂n
(t, w)dσ.

When a point w goes around the closed curves homotopic Lj , the functions ζk(w) and ζ∗k(w) get the
imaginary increments

2πiAjk =

∫

Lj

dζk(w) = −i

∫

Lj

∂ξk
∂n

(t)dσ, k = 0,m, (9)

and

2πiA∗
jk =

∫

Lj

dζ∗k(w) = −i

∫

Lj

∂ξ∗k
∂n

(t)dσ, k = m+ 1, n,

respectively. Owing to the above mentioned boundary behavior of the functions ξk(w) and ξ∗k(w) all of
the constants Ajk for j > m, A∗

jk for j ≤ m are equal to zero. It follows from the relation

Ajk = − 1

4π2

∫∫

LjLk

∂2S(t, τ)

∂n(t)∂n(τ)
dσ(t)dσ(τ) = Akj

that the numbers Ajk, j, k = 0,m, form the symmetric matrix. Similar symmetry is obtained for the
matrix with entries A∗

jk, j, k = m+ 1, n. We are able now to formulate and prove the following

Property 3. Ranks of matrices {Ajk}m0 and {A∗
jk}nm+1 are equal m and n−m− 1, respectively.

Proof is carried out for the matrix {Ajk}m0 (the matrix {A∗
jk}nm+1 is treated similarly). Following to [8]

we form a harmonic function in D, ξ(w) =
∑m

k=0 αkξk(w), and calculate an integral

1

2π

∫∫

D

[gradξ(w)]2dudv = − 1

2π

∫

∂D

ξ(t)
∂ξ

∂n
(t)dσ = − 1

2π

∫

Γ1

ξ(t)
∂ξ

∂n
(t)dσ.

Using the inequalities (9) and taking into account the boundary properties of the function ξ(w), we get

1

2π

∫∫

D

[gradξ(w)]2dudv =

m
∑

j=0

m
∑

k=0

Ajkαjαk. (10)

The quantity in the left-hand side of the equality (10) is always non-negative: it vanishes only in the case
gradξ ≡ 0 in D, i.e. when ξ(w) ≡ const. But then all of the boundary values, αk, of the function ξ(w) on
the contours Γ1 are equal to each other.

Conversely, if all of the boundary values, αk, of the function ξ(w) are equal to each other, then we
obtain the boundary value problem for ξ(w), ξ|Γ1

= α, (∂ξ/∂n)|Γ2
= 0, which, by the uniqueness, has

only one solution, ξ(w) ≡ α (it is received by the transfer to the double of the domain D). Thus we have
proved the validity of the non-negativity relation

m
∑

j=0

m
∑

k=0

Ajkαjαk ≥ 0,
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where the equality is attained only when all of αk’s are equal to each other.
We set now α0 = 0. The quadratic form

m
∑

j=1

m
∑

k=1

Ajkαjαk =

m
∑

j=0

m
∑

k=0

Ajkαjαk

vanishes only when all of αk’s are equal to α0, i.e. equal to zero. Therefore, the matrix {Ajk}m1 is positive
definite, and hence it has non-zero determinant. Now we will show that the latter is the rank minor.

In fact, it follows from the properties of periods that
∑m

j=0Akj = 0, k = 0,m, and, moreover, as it is
noted above, all of Ajk’s vanish for j > m. Consequently,

Ak0 +

m
∑

j=1

Akj = 0, (11)

whence det{Akj}m0 = 0. Together with the just proved inequality, det{Akj}m1 �= 0, it yields to us the
desirable result, rank{Akj}m0 = m.

3. MAPPING ONTO THE UNIT DISK WITH CIRCULAR AND RADIAL SLITS
Let {Bjk}m1 and {B∗

jk}nm+2 are the inverse matrices to {Ajk}m1 and {A∗
jk}nm+2. We have the following

Lemma 1. Let D be (n+ 1)-ly connected Jordan domain with analytic boundary. Function

F (w,w0) = exp{−T (w,w0)−
m
∑

j=1

m
∑

k=1

Bjkζk(w)ξj(w0)} (12)

maps D conformally and univalently onto the unit disk with m cuts along the concentric circular
arcs centered at the origin and with n−m radial slits lying on the lines meeting at the origin.

Proof. To find out the geometrical properties of the function (12) we shell determine the multivalence
character of argF (w,w0). The function

m
∑

j=1

m
∑

k=1

Bjkζk(w)ξj(w0) (13)

is analytic in w; its periods under the circuit along the curves homotopic to the contours from the
collection Γ2 are equal to zero. Increments, which (13) receives under the circuit of Ll ∈ Γ1, are equal to

2πi

m
∑

j=1

m
∑

k=1

BjkAklξj(w0) = 2πiξl(w0)

by virtue of (9). The function −T (w,w0) has the same periods, therefore the expression

lnF (w,w0) = −T (w,w0)−
m
∑

j=1

m
∑

k=1

Bjkζk(w)ξj(w0) (14)

has no periods with respect to the curves homotopic to inner boundary contours Lk (k = 1, n). Let
us find an increment of the function (14) relative to L0. For this purpose we take into account that
the periods T (w,w0) and ζk(w) under the circuit of L0 are equal to 2πiξ0(w0) and, in view of (11), to
2πiAk0 = −2πi

∑m
j=1Akj , respectively. Hence the increment, which lnF (w,w0) receives under the

circuit of the contour L0, is equal to +2πi. Thus the function F (w,w0) is single-valued in D and has the
simple zero at the point w = w0.

For the values of (12) we shell determine the modules on the contours of Γ1 and the arguments on the
contours of Γ2. For this purpose we shell calculate the real part of the function lnF (w,w0) on Γ1, and
its imaginary part on Γ2. We consider the known boundary values of T (w,w0) and ζk(w) to find that

ln |F (t, w0)| =
{

0, t ∈ L0,

−
∑m

j=1Bjkξj(w0), t ∈ Lk, k = 1,m,
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∂

∂σ
argF (t, w0) = 0, t ∈ Lk, k = m+ 1, n.

It follows that the value |F (t, w0)| is constant on every contour Lk ∈ Γ1, and argF (t, w0) is constant
on every contour Lk ∈ Γ2. We conclude from these facts that the function F (w,w0) maps D on the
domain DF = F (D) such that the images of the boundary curves in Γ1 lie on the circles, and the images
of the boundary curves in Γ2 lie on the straight lines argF (t, w0) = const. An argument of the function
F (w,w0) don’t change when w circumscribes any contour Lk, k �= 0, therefore the image of every such
contour will be the cut along an arc of the circle (k = 1,m) or radial slit (k = m+ 1, n) on some Riemann
surface over the plane of the variable F . Since argF (t, w0) increases by 2π when w circumscribes L0,
then the image of the boundary contour L0 will be the unit circle |F | = 1.

Having used the argument principle, we will prove the univalence of the mapping F = F (w,w0). If
a is a point of the domain DF out of concentric circles and straight lines along which the images of
boundary contours Lk, k = 1, n, are located, then

var∂D arg[F (w,w0)− a] = 2π. (15)

Indeed, when w ∈ Lk, k = m+ 1, n, the difference F − a lies in the half plane bounded by a straight
line argF (t, w0) = const, and hence the variation of arg[F (w,w0)− a] is equal to zero. When w ∈ Lk,
k = 1,m, we represent F − a as a [F (w,w0)/a− 1] if |a| > |F (t, w0)|, t ∈ Lk, or by the expression
F (w,w0) [1− a/F (w,w0)] if |a| < |F (t, w0)|, t ∈ Lk; then it is easy to see that the relation

varLk
arg[F (w,w0)− a] = 0, k = 1,m,

holds. By virtue of simplicity of the closed curve F (L0) representing the unit circle an increment of the
argument of F (w,w0)− a along L0 is equal to +2π, and (15) is proved.

If a point a is located at the infinite part of the complement to the unit circle |F | = 1, then one can
show by the same reason that the variation of arg[F (w,w0)− a] along the boundary ∂D is equal to zero.
In view of the argument principle the function F (w,w0)− a, which doesn’t have poles in the domain D,
is nonzero if |a| > 1, and is equal to zero only once if |a| < 1. For the correctness of the latter conclusion
it remains to check that the analogous reasons are valid for the points lying on the curves excluded above.

Really, let, for example, the module of the point a coincides with F (t, w0), t ∈ Lk, k = 1,m. If
the point b (|b| �= |a|) belongs to sufficiently small neighborhood of a, then, by Rouche’s theorem, the
functions F (w,w0)− b and F (w,w0)− a = [F (w,w0)− b] + [b− a] have the same number of zeros.
Therefore the function F (w,w0) takes the value a only once.

Thus we have established that the function F (w,w0) produces the univalent mapping from the
domain D onto DF , the unit disk with circular and radial slits. Lemma 1 is proved.

Remark 1. The function F (w,w0) is determined to within a factor depending, in general, on w0 and
which is in modulus equal to unit. This factor will be uniquely determined if we require that one of the
radial slits, which is the image of some contour in Γ2 (say, the contour Lm+1), has the zero inclination.

4. MITYUK’S FUNCTION

We will present the function F (w,w0) in the form (1); it is clear that f(w0, w0) = F ′
w(w0, w0) �= 0.

Function (2) acts as a generalized reduced module of the domain D at a point w with respect to the
canonical domain DF ([1]). Let us call the quantity (2) Mityuk’s function, and a quantity

Ω(w) = exp[2πM(w)] = 1/|f(w,w)| (16)

Mityuk’s radius of the domain D at a point w (see [9, 10]). For finding the critical points of the function
M(w) we get the equation

f ′
1(w,w) = 0, (17)

where f ′
1(w,w0) means an application of the operator

∂

∂w
=

1

2

(

∂

∂u
− i

∂

∂v

)

, w = u+ iv,
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to the function f(w,w0) with respect to the first argument. There holds the following
Theorem 1. Equation (17) is solvable in (n+ 1)-ly connected domain D with analytic bound-

ary for any n �= 1.
Proof. As in the case of Gakhov’s equation (see, for example, [11]), we will reduce the solvability

of (17) to the existence problem of stationary points for some real surface connected with that equation.
Having used the representation (12) of the functionF (w,w0), on the base of the symmetry of the function
S(w,w0) = Re T (w,w0) with respect to its arguments and of the symmetry of the matrix {Bjk}mj,k=1 we
derive the equality ln |F (w,w0)| = ln |F (w0, w)|, whence

ln |f(w,w0)| = ln |f(w0, w)|. (18)

The relation (18) is principal in our reasonings. Further transforms of the equation (17) coincide with
those which were used in [11] for Gakhov’s equation. By means of (18) the left-hand side of (17) may be
presented as

f ′
1(w,w) = f(w,w)

∂

∂w
ln |f(w,w)|, (19)

Thus it is possible to write the equation (17) in the form (∂/∂w)M(w) = 0 where M(w) is Mityuk’s
function (2).

Equality (19) means that the root of the equation (17) is a stationary, or critical point of the surface
with the equation Ω = Ω(w), where Ω(w) is the Mityuk’s radius (16). We will explain the boundary
properties of function (16).

Lemma 2. Function (16) is infinitely differentiable in the domain D and has the following limit
values on the boundary ∂D:

lim
w→t

Ω(w) = 0, t ∈ Γ1, (20)

lim
w→t

Ω(w) = +∞, t ∈ Γ2. (21)

Proof of the lemma 2. Function Ω(w) inherits the property of infinite differentiability from the
functions entering its representation. Having used (12), we will rewrite the expression for Ω(w) in the
form

ln Ω(w) = s(w,w) +
m
∑

j=1

m
∑

k=1

Bjkξj(w)ξk(w),

where s(w,w) is a regular part of the function S(w,w0) calculated at a point w = w0, that is s(w,w) =
limw0→w[S(w,w0) + ln |w − w0|].

We will prove a limit relation (21) (proof of the equality (20) is completely analogous). By virtue of
the boundedness of the functions ξk(w) in the closed domain Dw it is sufficient to establish that

lim
w→t

s(w,w) = +∞, t ∈ Γ2. (22)

We will prove (22) for one of the contours Lk ∈ Γ2.
It follows from the equalities (3) that the function S(w,w0) is the conformal invariant. In order

to write this fact it will be convenient to correct notations for a short time. Domains connected by
conformal mappings are denoted by the same letter D, but they differ in lower indices corresponding
to variables which run over these D’s; so the new notation for our D is Dw. Furthermore, we mark
the dependence on the domains in the notations of fundamental and related functions defined in these
domains: S(w,w0) = S(Dw;w,w0), etc. As a result we receive the formula expressing change of
s(Dw;w,w) under the conformal transformations of the domain Dw :

s(Dw;w,w) = s(Dζ ; ζ, ζ) + ln |φ′(ζ)|, (23)

where Dw = φ(Dζ), w = φ(ζ). Considering the law of change (23), we pass to auxiliary circular domain
Dζ (unit disk minus n non-intersecting closed disks lying within it), and we map it onto the domain
Dw by a function w = φ(ζ). We take the unit circle centered at the origin as an outer circle Lζ0 ∈ ∂Dζ

corresponding to the contour Lk = Lwk.
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It is well-known that for the domain Dw with smooth boundary ∂Dw whose tangent slope angle as
a function of the arc parameter σ satisfies the Hölder condition the derivative of the conformal mapping
w = φ(ζ) from Dζ onto Dw has the bounded module |φ′(ζ)|. Therefore on the basis of (23) we will reduce
the equality (22) to the form

lim
ζ→eiθ

s(ζ, ζ) = +∞. (24)

Let us consider the function S(ζ, ζ0) harmonic in Dζ\{ζ0} whose normal derivative vanishes on the
outer circle Lζ0. Due to this fact the function S(ζ, ζ0) may be harmonically extend beyond the unit circle
by the symmetry principle (see, e.g., [12], p. 471). This extension is given by the formula

˜S(ζ, ζ0) =

⎧

⎨

⎩

S(ζ, ζ0), |ζ| < 1,

S(1/ζ, ζ0), |ζ| > 1.

Let’s note that S(1/ζ, ζ0) = − ln |(1 − ζζ0)/ζ|+ s(1/ζ, ζ0), |ζ| > 1. The first summand here is the
function harmonic in the whole plane except the point 1/ζ0. Hence the function S(ζ, ζ0) is represented
in the form S(ζ, ζ0) = − ln |(ζ − ζ0)(1 − ζζ0)|+ h(ζ, ζ0), at the same time

s(ζ, ζ0) = − ln |1− ζζ0|+ h(ζ, ζ0), (25)

where the function h(ζ, ζ0) harmonic in ζ has no singularities at the point ζ = ζ0. Besides this, the
normal derivative of the function h(ζ, ζ0) vanishes on the unit circle. Using an integral representation (6)
for h(ζ, ζ0) and setting ζ0 = ζ we will come to the formula

h(ζ, ζ) = − 1

2π

m
∑

k=1

∫

Lζk

∂h(t, ζ)

∂n
S∗(t, ζ)dθ +

1

2π

n
∑

k=m+1

∫

Lζk

h(t, ζ)
∂S∗(t, ζ)

∂n
dθ. (26)

If now ζ → eiθ ∈ Lζ0, then, as it is seen from (26), the quantity h(eiθ , eiθ) is bounded. This and (25)
imply (24), and, consequently, (22). Lemma 2 is proved.

Let’s continue the proof of Theorem 1 returning to old notations and introducing the new one: we will
denote by Ω the surface Ω = Ω(w) of Mityuk’s radius (16).

According to Lemma 2 the smooth surface Ω is attached to the boundary contours from the collection
Γ1 and has the form of cylinder over each of the components from Γ2. It is clear that such a surface, in
general, doesn’t possess a maximum (top) over the domainD. We will prove the existence of a stationary
point of the surface D using the properties of the planar vector fields. Let’s consider the gradient vector
field in D,

gradΩ(w) =
(

∂Ω

∂u
,
∂Ω

∂v

)

, w = u+ iv, (27)

whose singular points are exactly the roots of the equation (17). Suppose the domain D doesn’t contain
the singular points of (27). Then the components of the level lines Ω(w) = ε and Ω(w) = N , where ε
and N are sufficiently small and large positive numbers, respectively, are the simple closed curves that
approximate the boundary of the domain D. We consider the ((n+ 1)-ly connected) domain D∗ which
is bounded by these curves, and we define the winding number of the vector field (27) along the boundary
of the domain D∗ by the equality

γ = − 1

2πi

∫

∂D∗

d ln
∂Ω

∂w
. (28)

It is known from the theory of the planar vector fields [13] that if the winding number (28) is nonzero,
then there exists at least one singular point of the vector field (27). Hence in order to prove the solvability
of the equation (17) it is enough to show that γ �= 0.

We will consider the behavior of gradΩ(w) on the boundary of the domain D∗. Since D∗ consists of
the level lines of the function (16) where the equality

∂Ω

∂u
du+

∂Ω

∂v
dv = 0
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is fulfilled, then the vector gradΩ(w) is orthogonal to tangent vector (du, dv), i.e. the vector field (27)
coincides with the field of normals on the boundary D∗. Therefore γ = 1− n. Thus in the case of doubly
connected domain (n = 1) the winding number of the field (27) is equal to zero. If the connectivity order
of the domain D is greater than two, then γ �= 0, as was required.

Theorem 1 is proved.
Let’s consider the doubly connected case excluded in Theorem 1. We show that the equation (17)

can really be unsolvable (cf. [14]).
Example. The function

F (w,w0) =
w − w0

1− w0w

∞
∏

k=1

[

(1− q2kw/w0)(1− q2kw0/w)

(1− q2kww0)(1− q2k/(ww0))

](−1)k

maps the ring Eq = {w : q < |w| < 1} conformally onto the unit disk with one radial slit. For doubly
connected domain Eq the equation (17) takes the form

0 =
r2

1− r2
+

∞
∑

k=1

(−1)k
[

q2kr2

1− q2kr2
− q2k/r2

1− q2k/r2

]

(29)

(r = |w|). We will expand every term of the series at the left-hand side of (29) in powers of r and we will
group together the terms with the identical powers of r. This sequence of operations is reflected in the
following chain of equalities:

0 =

∞
∑

m=1

r2m +

∞
∑

k=1

∞
∑

m=1

(−q2m)k
[

r2m − r−2m
]

=

∞
∑

m=1

[

r2m − (r2m − r−2m)q2m

1 + q2m

]

=
∞
∑

m=1

(r2m + r−2m)q2m

1 + q2m
.

The result demonstrates that the equation (17) has no solutions in the doubly connected domain Eq.
In conclusion we will note that the given example of unsolvability of the equation (17) in doubly

connected domain is not the unique.
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