
Face drawing by KUKA
6 axis robot manipulator

Maxim Pichkalev

Laboratory of Intelligent Robotic Systems
Intelligent Robotics Department, ITIS

Kazan Federal University
maxvseman@gmail.com

Roman Lavrenov
Laboratory of Intelligent Robotic Systems

Intelligent Robotics Department, ITIS
Kazan Federal University

lavrenov@it.kfu.ru

Ramil Safin
Laboratory of Intelligent Robotic Systems

Intelligent Robotics Department, ITIS
Kazan Federal University

safin.ramil@it.kfu.ru

Kuo-Hsien Hsia
National Yunlin University
of Science and Techology

Yunlin City, Taiwan
khhsia@yuntech.edu.tw

Abstract—This article describes the algorithm of points
extraction from the picture processed by a canny edge detector
that will be turned in the curves using the cubic spline
interpolation. Here will be presented several examples,
including code. Furthermore, this paper will describe steps of
creating the system, which will depict on a sheet of paper a
picture taken from a web-camera. The system enables a webcam
from which will be taken snapshot, the convenient program with
the graphical user interface, including algorithms, whose
parameters can be changed, TCP server, webcam control,
observation of the drawing process and logging. The main
drawing component of the system is KUKA KR3 R540. KR3
R540 is robotic system with a manipulator that will take
commands to draw a result image.

Keywords—image processing, robotic system, computer vision
algorithm, industrial robot, draftsman robot, OpenCV, KUKA

I. INTRODUCTION
Robots are actively used today. Mobile robots are

autonomously planning route and mapping the surrounding
space. Robot-manipulators are widely used in industrial
problems and they placed on mobile wheeled and tracked
robots to manipulate various objects [1]. However, they are
also used for scientific purposes due to their excellent
accuracy and repeatability. For example, you can calibrate
cameras using robotic manipulators KUKA [2].
Alternatively, you can explore the algorithms for the visual
recognition of fiducial markers [3], if you attach the marker
to the robot's flange [4]. In our work, we will talk about our
robotic system based on the KUKA robotic arm and the
OpenCV program, with which the robot will draw the taken
image.

The tasks of computer vision are being solved today in
various systems. In mobile devices, in street video
surveillance systems. In addition, computer vision is
important in solving the problem of self-calibration of
cameras for autonomous robots equipped with manipulators.
[5]. We decided to combine face recognition and
programming a robot manipulator in a drawing task.

There are not a lot of picture drawing systems and
corresponding algorithms that get data in the online regime
described. Therefore, this is an attempt to describe such kind
of system created from scratch. Existing drawing robotics
systems were taken into account. Humanoid artists [6] - [8]

and different types of manipulators [9] – [13]. The first
humanoid [6] – Fujitsu robot HOAP2 was used to create the
human-like process. Firstly, the robot draws contours, and
then fill another area. To make the process much easier
OpenCV library was implemented. There was used a Canny
edge detector [14] to extract face contours, the image was
binarized, unwanted contours and noise were removed
applying different filters and thresholds. The closed contours
were coded as a Freeman chain code. The second humanoid
[7] is Pica; here are used the Center-off algorithm to find the
main contours of the face. After removing the noises, the next
step is to identify all face features. Another step is to prepare
features for drawing. The third humanoid is Betty [8]. Here
also, the OpenCV Canny edge detection algorithm is
implemented. For finding main features for drawing Furthest
Neighbor Theta-graphs is used.

Delta manipulator [9] also uses the OpenCV with the
Canny edge detector, it draws every pixel. Then when one
pixel is drawn, the manipulator moves a pan to nearby point
using some rules.

The robot Kuka KR6 [10] has similar steps to the Canny
algorithm’s steps in the image processing. The way the
calculation of the segment of a face is not properly shared.
However, it takes only five minutes to draw a realistic portrait
and more attention should be spent here. We can also find an
interesting robotic system on the YouTube channel [15]. Here
is used a sort of halftone technique - error diffusion to get
image data and then a division of an image into parts to avoid
ignored points that will cause drawing ruining lines through
the entire image after using the nearest neighbor search
algorithm to find the point with the smallest Euclidean
distance to find lines to draw.

 Our research is divided into three subtasks:
1. Creating an algorithm, which will

translate an image's pixels, taken using web-
camera, into the set of pair of points which will
represent an image's contour's splines.

2. Creating a server with protocol, which
will translate achieved set from step above using
TCP channel to the controller of the robotic
system. The KRL program for Kuka.

3. Combining image process algorithm and server
with protocol into one application.

709

2019 Developments in eSystems Engineering (DeSE)

978-1-7281-3021-7/19/$31.00 ©2019 IEEE
DOI 10.1109/DeSE.2019.00132

II. USED TECHOLOGIES

1. Opencv[16]
Popular open-source computer vision library.

2. Qt[17]
Qt is a framework for convenient developing of cross-

platform application with a graphical interface, also have
many useful classes, e.g. for network, database, string
processing, multithreading, etc.

3. Work Visual 4.0[18]
The software package WorkVisual is the developing

environment for KR C4 controlled robotic cells. It is able to
program robots offline, editing TOOL and BASE coordinate
system and etc.

4. KR3 R540 [19]
KR3 R540 is a robotic system that includes all

components of an industrial robot: manipulator (mechanical
system and electrical installations, see figure 1); controller;
connecting cables; end effector; SmartPAD; software; other
equipment.
Manipulator consist of following principal components:

Figure 1. Kuka KR3 R540 manipulator and its main components.

Where:

1. in-line wrist
2. arm
3. link arm
4. rotating column
5. base frame and electrical installations
Axis Beginning position Area of axis motions
A1 0° ±170°
A2 -90° -170 & 50°
A3 90° -110 & 155°
A4 80° ±175°
A5 0° ±120°
A6 0° ±350°

 The programming language of the Kuka controller is KRL
– Kuka Robot Language (similar to Pascal language). Code
located in two files: one with the dat file extension (here you
can find variables), second with the src extension (there are
commands).
 You can set a different kind of motions in KRL:

• PTP (Point to Point)
• LIN(Linear)

• SPLINE (linear moves and another splines can be
inside)

• CIRC(circle)
You can declare variables, arrays and structures and use many
other things like loops, logical and arithmetic operations.

III. CREATING AN ALGORITHM, WHICH WILL TRANSLATE
IMAGE'S PIXELS, TAKEN USING WEBCAM, INTO THE SET OF

PAIR OF POINTS WHICH WILL REPRESENT IMAGE'S CONTOUR'S
SPLINES.

Firstly, using canny algorithms we will get contours of the
picture with width equals one pixel. Short explanation:

• Prepare image (see fig. 2) using openCV library:
cv::Mat imgOrig=cv::imread(absolutePath+"image.jpg");

Figure 2. Initial image

• convert RGB image into grayscale
all methods:

I. ((R + G + B) / 3
II. (max (R, G, B) + min (R, G, B)) / 2

III. 0.21 R + 0.72 G + 0.07 B)
In openCV:

cv::cvtColor(imgOriginal, imgGrayscale,
COLOR_BGR2GRAY); // convert to grayscale

Use a Gaussian filter to get rid of the noise. The image
will be smoothed. Complexity is of image*kernel equal
O(W*H*K^2), where K is a number of rows and column of
the kernel. If divide kernel into two one dimensional vectors,
then complexity will be O(H*W*K) + O(H*W*K) = 2*
O(H*W*K). Also, using Fast Fourier Transform we will get
O(W*H*log(W*H)).

 In OpenCV:
 cv::GaussianBlur(imgGrayscale, imgBlurred,

cv::Size(5, 5), 1.8);
• Four convolutions of the image with edge

detector kernels and computation of the gradient
direction

• Non-maximum suppression (choose local
minimum)

• Thresholding with hysteresis (remove
values which below the low threshold, which
between the threshold and are not connected with
values above high threshold)

From the canny result we extract a set of points pair using

this way (let’s call this way ”feature extraction algorithm”):
Divide image 512*512 pixel into cells.

710

Go through every cell:
 for (int i = 0; i <8; i++)
 for (int j = 0; j < 8; j++)
E.g., take cell where i equals zero, and j equals three, go
through every pixel of the cell:
 for (int y = i * 64; y < (i + 1) * 64; y++) {
 for (int x = j * 64; x < (j + 1) *64; x++) {
Going through every y under current x, if value is not zero,
then put it into variable y2;
if (imgCanny.at<uchar>(x, y) > 0) {
 imgCanny.at<uchar>(x, y) = 255;
 y2 = cv::Point(x, y); }
After passing all y with a certain x, y2 put into currentX
vector, checking if it equals to nought.
if (y2.x == 0 && y2.y == 0) {}
else { curSixX.push_back(y2); }
y2.x = 0; y2.y = 0;

After this, do same operation with all x. Find cubic splines
[1] for whole array to depict it. Cubic spline finds function
between two points. Main idea of spline is to find unknown
parameter taking in our case two derivative.

This way we depict achieved image (fig.3).

Figure 3. After the Canny algorithm

Submit to the algorithm separated currentX vector - X and

Y vectors, based on them calculate function unknown
parameters. Set some , function give us corresponding y.
Draw point (fig. 4-5).
void opencv::drawSplines (
 cv::Mat &im, vector<double> &vecX,
 vector<double> &vecY, bool isClosed ,
 bool yOrX) {
 tk::spline s;
 s.set_points(vecX, vecY);
 double beg = vecX.at(0);
 double en = vecX.at(vecX.size() - 1);
 double dif = en - beg;
 double step_size = 0.05;
 int step_number = dif/step_size ;
 double cur_y = 0;
 while (beg < en) {
 beg += step_size;
 cur_y = s(beg);
 if(yOrX == false)

 circle(im, cv::Point(beg, cur_y), 0.5, cv::Scalar(255,
200, 0), 1, 8);
 else circle(im, cv::Point(cur_y, beg), 0.5,
cv::Scalar(255, 200, 0), 1, 8);
 } }

Figure 4. Cell. First for with X. For every x chosen one point. Points put in

the currentX vector. After passing all x, draw splines.

 Figure 5. 8*8 cells with 64*64 pixels.

The result with 64 cells enough inaccurate depicts an
initial image. For more accuracy, we should increase the
amount of cells (fig. 6). Also, for simplicity pull out some
currentX vectors, setting the threshold of currentX size:

 if (curSixX.size()>4) {

Figure 6. 50*50 cells with 10*10 pixels and pull out currentX vectors with

size <4, in sum we get 682 cells (first for with X);

711

We may increase the result image quality, at first computing
algorithm with first for with Y (fig. 7), and sum this with the
result of the algorithm there first for with X.

Figure 7. Cell. First for with Y.

For the simplicity of data transfer protocol in every

currentX vectors, leave only first and last values. The
message consisting of two points is easier transfer than the
message with a dynamically changing number of points (fig.
8).

For the reading of the image from the web camera, we use

openCV:
cv::VideoCapture capWebcam(0);
OpenCV and opencv_contib libraries were built using

CMake, MinGW generator.

IV. C
REATING A SERVER WITH PROTOCOL, WHICH WILL

TRANSLATE ACHIEVED SET FROM STEP ABOVE USING TCP
CHANNEL TO THE CONTROLLER OF THE ROBOTIC SYSTEM.

THE KRL PROGRAM FOR KUKA.
The protocol:
The server part. There is the integer variable - counter that

is assigned a value of zero.
1) waiting for the client (for the robotic system). The

connection.
2) the server transfers a message, the counter is

incremented by one, waits for the client reply.
3) repeat step two.
4) If the counter equals two, the server waits for the

control message, after getting which the server goes to the
first point, again the counter is assigned zero.

The client part:
The variable counter is assigned one (because in the Kuka

array the first index is one).
1) the connection to the server.
2) the waiting message from the server, after getting

which sends an echo message, the counter is incremented,
now it is two, moves the manipulator.

3) the counter equals two, gets the message, moves the
manipulator, sends the echo message, the counter is
incremented;

4) the counter equals three, the client sends the control
flag message and goes to the second point making the counter
equals one.

Classes for the work with TCP in the test client, for the
creating socket, were taken from the c++ library
<WS2tcpip.h> and for the server application was used the Qt
network model.

Figure 8. 50*50 cells with 10*10 pixels and pull out currentX vectors

with size <4, in currentX vectors leave first and last points, in sum 541
currentX vectors (first for with Y);

What is about the robotic system, for data exchanging we
used the EthernetKRL package of functions [18], letting:

• take XML or binary information
• send XML or binary information
• set controller like client or server
• connection configuration using XML file

There could be also used Kuka RSI (Robot Sensor

Interface) [20] for synchronous hard real-time
communication, where you should provide command updates
every 12ms, or your robot will stop.

The program for manipulator control was written in KRL
[21]. We used a structure where x, y, z is a position, a, b, c is
an orientation in space; S (status) and T (Turn) were used to
eliminate the ambiguity of a position (it can be achieved with
different axis position).

Calibrated tool and base that are shown in Figure 9.
Base’s origin is on the corner of the box, the tool’s origin is
at the end of the pen.

Figure 9. Base and tool coordinate frames. Blue is the tool.

Purple is the base.

712

XML message format:
"<Server><Pos2><X>SomeVariableX</X><Y>SomeVaria
bleY</Y><Z>0.15</Z><A>65.75-
81.44<C>150.0</C><S>2</S><T>3</T></Pos2></Se
rver>"

Figure 10. What depicts robotic system.

The drawing of one line takes about 3.5 seconds, in sum

1050 lines. (fig.10) It takes about one hour to draw the picture
above. Results you can see in figures 11-13. The velocity of
movements equals twenty percent of the maximum of the
KR3 R540.

Figure 11-12. Finished drawing of layer X (left), start draw layer (right) Y.

Figure 13. Drawn layer Y.

V. COMBINING IMAGE PROCESS ALGORITHM AND SERVER
WITH PROTOCOL INTO ONE APPLICATION
In the beginning, we can see the window with such elements:

• createServer – create a server and wait for clients.
• startCam – start camera, add new functions.
• downloadImg – download a picture, instead of

getting a picture from the camera.
• rebootS – reboot the server.
• exit – close the application

Figure 14. Application. Pushed startCam.

Figure 15. Application, started server. Transmit data to test client.

Shortly about the application (fig. 14-15): the first group

of regimes: xy, x, y. XY handles image with two passes (one
has main for X, another Y). The second regime group: full
and two. Two takes only the first and last value of the
currentX vector. In full, we take all currentX vector’s values.
The Button takePortrait puts the current camera’s frame in the
algorithm, takes a result, saves it with a name saved.jpg and
attaches it to display window, also saves pairs of points in the
file points.txt for server needs.

To launch the application on your computer, you can
download the release folder with the .exe file, .dll files and
image.jpg picture (512x512 pixels). All files must be placed
in the same directory with a .exe application file. In addition
to the main application, there are plain algorithm code, test
TCP client, KRL code in the repository.

713

 Figure 16. Whole system.

VI. CONCLUSIONS
The resulting system is shown in figure 16. On the top is

the application system and the bottom is the robotic system.
Arrows show dependencies between elements.

“B: name” means buttons and their names.
The camera can be turned on by pushing the button

startCam. The canny algorithm gets input values depending
on the number of pushed buttons (XY, X, Y, th1, th2,
downloadImg). Button downloadImg downloads an image,
which placed in the same package with name image.jpg. This
image will be used by Canny algorithm instead of the
camera’s images. The image window displays the Canny
algorithm’s or Feature extraction algorithm’s results. The
image window gets images from the Canny algorithm or the
Feature extraction algorithm. The Feature extraction
algorithm is an algorithm for extracting the image`s main
feature’s points described above. The Feature extraction
algorithm saves result image with the name saved.png and
points to the file points.txt, also it sends logs to the logging
element. The server can be started by startServer button then
it will wait for the client connection using the specified IP
address and the concrete port 59152. After receiving a
connection, the server starts to transmit messages. Buttons
pause and rebootS can stop or reboot the server. The server
also depends on the points.txt file that it will send to the client
through TCP. The EthernetKRL package is deployed as the
client and it connects to the server and gets messages, puts
them into the KRL program, and sends commands to the
manipulator. The manipulator draws an image.

 The next step in this research is to draw the picture with
splines as in the fig. 10 that improves the time parameter at
least twice by using segments calculation, like a KR 6 robot
[19].

Repository: https://gitlab.com/LIRS_Projects/KUKA-
face-picturing

ACKNOWLEDGEMENTS
The reported study was funded by the Russian

Foundation for Basic Research (RFBR) according to the
research project No. 18-58-45017.

REFERENCES
[1] Mavrin I., Lavrenov R., Magid E. Development of a Graphical User

Interface for a Crawler Mobile Robot Servosila Engineer //2018 11th
International Conference on Developments in eSystems Engineering
(DeSE). – IEEE, 2018. – pp. 192-197.

[2] Khusainov R., Klimchik A., Magid E. Humanoid robot kinematic
calibration using industrial manipulator //2017 International
Conference on Mechanical, System and Control Engineering
(ICMSC). – IEEE, 2017. – pp. 184-189.

[3] Sagitov, A., Shabalina, K., Lavrenov, R., Magid, E. Comparing
fiducial marker systems in the presence of occlusion //2017
International Conference on Mechanical, System and Control
Engineering (ICMSC). – IEEE, 2017. – pp. 377-382.

[4] Shabalina, K., Sagitov, A., Svinin, M., Magid, E. Comparing Fiducial
Markers Performance for a Task of a Humanoid Robot Self-calibration
of Manipulators: A Pilot Experimental Study //International
Conference on Interactive Collaborative Robotics. – Springer, Cham,
2018. – pp. 249-258.

[5] Meng Y., Zhuang H. Self-calibration of camera-equipped robot
manipulators //The International Journal of Robotics Research. – 2001.
– V. 20. – . 11. – pp. 909-921..

[6] Calinon S., Epiney J., Billard A. A humanoid robot drawing human
portraits //5th IEEE-RAS International Conference on Humanoid
Robots, 2005. – IEEE, 2005. – pp. 161-166.

[7] Lin C. Y., Chuang L. W., Mac T. T. Human portrait generation system
for robot arm drawing //2009 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics. – IEEE, 2009. – pp. 1757-1762.

[8] Lau M. C. et al. A portrait drawing robot using a geometric graph
approach: Furthest Neighbour Theta-graphs //2012 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
(AIM). – IEEE, 2012. – pp. 75-79.

[9] Hsu C. F. et al. Motion planning and control of a picture-based drawing
robot system //2017 Joint 17th World Congress of International Fuzzy
Systems Association and 9th International Conference on Soft
Computing and Intelligent Systems (IFSA-SCIS). – IEEE, 2017. – pp.
1-5.

[10] Jean-Pierre G., Saïd Z. The artist robot: A robot drawing like a human
artist //2012 IEEE International Conference on Industrial Technology.
– IEEE, 2012. – pp. 486-491.

[11] Ye X. et al. Deep learning-based human head detection and extraction
for robotic portrait drawing //2017 IEEE International Conference on
Robotics and Biomimetics (ROBIO). – IEEE, 2017. – pp. 1282-1287.

[12] Tresset P., Leymarie F. F. Portrait drawing by Paul the robot
//Computers & Graphics. – 2013. – V. 37. – . 5. – pp. 348-363.

[13] Jain S. et al. A force-controlled portrait drawing robot //2015 IEEE
International Conference on Industrial Technology (ICIT). – IEEE,
2015. – pp. 3160-3165.

[14] Canny J. A computational approach to edge detection //Readings in
computer vision. – Morgan Kaufmann, 1987. – pp. 184-203.

[15] Super Make Something Robotic Drawing Machine. [Online video].
URL: https://www.youtube.com/watch?v=OuCiHp43q20&t=370s

[16] Opencv. URL: https://docs.opencv.org/3.2.0/index.html
[17] Qt. URL: https://www.qt.io/
[18] KUKA Roboter GmbH, WorkVisual 4.0, Zugspitzstraße 140, D-86165

Augsburg, Germany
[19] KUKA Deutschland GmbH, Spez KR 3 AGILUS, Zugspitzstraße 140,

D-86165 Augsburg, Germany
[20] KUKA Roboter GmbH, KUKA.RobotSensorInterface 2.3,

Zugspitzstraße 140, D-86165 Augsburg, Germany
[21] KUKA Roboter GmbH, Kuka.Ethernet KRL 2.1, Zugspitzstraße 140,

D-86165 Augsburg, German

714

