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E. M. Karcheoskiy

INTEGRAL EQUATION METHODS
IN OPTICAL WAVEGUIDE THEOQORY

(Kazan {Volza Region) Federal University, Russia |

1. Introduction

Optical wavegnides are regular dielectric rods, having varions eross sectional shapes,
andd where penerally the dielectric permittivity may vary in the wavegnide's eross
section |1]. The eigenvalue problems for natural modes (surface, leaky, and complex
eigenmodes] of an inhomogeneous optical wavepnide without a sharp boundary (by
analogy with |2]) and for & step-index optical waveguide with smooth boundary of
cross-gection are formulated as problems for the set of time-harmonie Maxwell eqguati-
ons with partial radiation conditions (3], [4]} at infinitv in the cross-sectional plane.
The original problems by integral oquation methods are redueed to nonlinesr spectral
problems with Fredholm integrsl operators, Theorems on spectrum localization are
proved, and then it is proved that the sets of all eigenvalues of the original problems
can only be some sets of isolated points on the Reimann surface, ant it alse proved that
ol slgenvalue depends continuously on the frequency and dielectric permittivity and
can appear and disappear only at the boundary of the Reimann surface.

2. Step-index optical wavegunide

Let the three-dimensional space be ocoupied by an isotropic source-free medinm,
amd let the dielectric permittivicy be preseribed as a positive real-valued function = =
=l z) independent of the longitudinal coordinate and equal to 8 constant s = 0 outside
a cylinder. In this section we consider the natural modes of an step-index optical
fiber and suppose that the dieloctric permittivity is equal to a constant £ > £
inside the cylinder. The axis of the cylinder = parallel to the longitudinal coordinate,
andl its cross section is a bounded domain £ with & twice continuously differentiable
boundary «. The domain £ 15 a subset of a cirele with radivs By, Denote by £3; the
unbounded domain 02, = B2 '-.Iﬁ,. Denote by I the space of complex-valued continuons
and contimuonsly differentiable in T8 and Tk, twice continmonsly differentiable in £
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and 2 functions. Denote by A the Riemann surface of the function In xec( @), where
Yoo = 4 if*iem — A% Here k2 = w2egpg, w is a given radian frequency: g, pg are the
frev-space dielectrie and mapnetic constants, respectively. Denote by Ag the prineipal
i“proper") sheet of this Riemann surface, which is specified by the condition Imye(&8) =
0. A nonzera vector {E,H} £ I8 s referred to as eigenvector {or eigenmode) of the
problem corresponding to an cigenvalue @ ¢ A if the following relations are valid:

rotgE =twpoH,  rotgH = —dwep=E, _rE[FE‘_2 hrs (1)

rrAE+=r:hE_. ey, |..-.|_|

pxHY =pxH™, =zcn, (3)

E| _ o Al ity (ilo) . o

H | E E; i KocT)explzig).  + = Ry i)
[ "

Here differential operator rotg is obtained from usual operator by replacing generating
: : . : . . : 1) : . .
waveguide line derivative with 4F multiplication; and H,[ =) is the Hankel function of

the first kind and index . The conditions {4) are the the partial radiation conditions.

Theorem 1. (See |3} The imoginary ane [ and the real ars B of the sheet Ag except
the set &7 = {.'3 eR:k2, < < -'.:ﬂe_l_} are free af Bhe cigenvalues of the problem (1]-
i(4). Surface and complex cigenmaodes correapond o real sigenvalues 3 € & ond complex
eigenivadues 3 € An, respectively. Leaky eigenmaodes correspond fo compler sigenvalues
8 belonging fo an Stmproper” sheet of A for which Tmy e (F) = 0.

We use the representation of the eigenvectors of problem (1)-{4} in the form of the
single-layer potentials w and w

3 S Hu
E = : &t .'q .
1T (”“ B E\'.rl)
| |J
—i S i
— —_ i3 =
S - (”“‘” ErT azg) » Ea=w,

(6)

i dv i
e — oo 55 +E°E“’a_;u1) J e

-

ulz) @ 1 o n fopooly) .
0] =15 (VP -l) )| a6, 200 @
B

where unknown densities f . and g4 ro belong to the space of Halder continuous
functions €%, The original problem (1)-{4) by single-laver potential representation is
reduced |5] to a nonlinear eigenvalue problem for a set of singular integral equations
at the boundary «. This problem has the operator form

AB)w =T+ B(3))w =0, (8
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where [ is the identical operator in the Banach space W = |;':’_'-"1- ‘*:I'* and B(#) : W = W
i5 5 compact operator consists particularly of the following boundary singular imtegral
DM AtOTS:

ox
1 t—T
LP = —Fh/]n |Si.n 3 |p|:.‘-—_:|d'-_, e [D.E‘-T], L : I:‘_-.'I:|=':t — (_'.']:':‘I (o)

Ox Ox

1 T—t i
E‘I —— — — 1T T — (T T L x I . | E r
P Eﬂ_!ctg =—p(r)dr + Eﬂ_!ﬁ ydr, te[0,2q], §:0° o 1)

The original problem (1]-(4) is spectrally equivalent [3] to the problem (8] Namely,
suppase that w & W is an eigenvector of the operator-valued function 48] correspondi-
ng to an eigenvalue 3 € Ao\ D, D= {8 eI} B cR: 32 < kEE.:.;.}. Then using this
vector we can construct the densities of the single-layer potential representation of an
eigenmade {E, H} £ U8 of the problem (1)-(4), corresponding to the same eigenvalue
8. For other side, any sigenmode of the problem (1)-(4), corresponding to an eigenvalus
&< An ' I can be represented in the form of single-laver potentinls. The densities of
thie potentials construct an eigenvector w & Woof the operator-valned function 4(F)
corresponding to the same eigenvalue 3.

Theorem 2. (See |3]). For ach 3 2 {F e R : i A'EE_F} the operater A(F) has the
bounded inverse operator. The set of all cigenvalies 8 of the operafor-valued function
A(#) ean be only o set of iselafed pointe on A, Each eigenvalue § depends continuously

onw >0, ey =0, and z00 > 0 and can appear and disappenr only af the boundary of
A, ve al B =2k e and af infinaty.

3. Inhomogeneous optical waveguide

In this section we consider the natural modes of an mhomogeneous optical fiber
without a sharp boundary. Let the dielectric permittivity € belongs to the space C2(RE)
of twice continmously differentinble in B? functions. Denote by =4 the maximum of the
function £ in the domain £, ket =, > = = 0. A nonzero complex vector {E, H} <
|;L':'__-'EI'~[|Iﬂ ”B 15 referred to as eljgenvector (or eigenmode) of the problem corresponding to
an eigenvalue & € A if the following relations are valid |6]:

rotgE =iwpoH, rotgH = — iwspeE, = R, (11}
E — )
[H ] =y [g*" ]H}‘-.;xmr;expu;;.!«pj, r = Ry. (12)
[

Theorem 3. (See [G6]). The fmaginary axis [ and fhe real ans B of the sheet Ay exrept
the sef & = {_.'3'-:—: R: ko < 32 -'.:QE.F} are free of the eigenvalues of the problem
(11), (12). Surface and complexr eigenmodes correspond to read eigenvalues 3 € & and
compler eigenvalues @ £ A, respectively. Leoky eigenmodes corvespond te compler
eigenvalnes § belonging to an “improper” sheet af A for which Imx .. (F) < 0.
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If vector {E,H} £ I'If'ﬂl'[llﬂuﬁ g an eigenvector of problem (11), (12} corresponding
to an eigenvalue @ € A, then (see |G])

E(z) =¥ r[ (=ln) — =oc )83, w)Ey)dy+
i

(13)
+ grada f (E.="'erads) (y)®(F: 2, u)dy, =€ R,
Ir Y
Hiz) = —twsqrots f (=(v) — 2o )B(F: 2, v)E(w)dy, =< R (14)

iy

Using the integral representation [13) for ¢ € O we obtain & nonlinear sigenvalue
problem for integral equation on the domain £y, This problem has the operstor form

A{B)F = (I - B{3)F =10, (15)

where the operator B{(S) : (La())? — (La(f))? satisfies the right side of the integral
representation (13) for € £, For any 8 € A the operator Bi{#) is compact |6G].

[t was proved in the paper |6] that the original problem (11), (12} is spectrally
equivalent to problem (15). Namely, suppose that {E,H} < [C-ﬂll[ﬂ'.ijjﬁ is an elgenmode
of problem (11), (12} corresponding to an eigenvalue 3 € A, Then F =E £ [Lgl;_ﬂl_:l]z
is an eigenvector of the operator-valued function A(F) corresponding to the same ei-
renvalue 2. Suppose that F £ [Lﬂl:ﬂ!_:l]a 15 an elgenvector of the operator-valued function
A(2) corresponding to an eigenvalue # € A, and also suppose that the same number 2
is not an eigenvalue of the following problem:

[A+ (K- ) |u=0 zcR, ucCRY, (16)
s !
u= aH[Y (xoor) explilg), r = Ry (17)
B e

Let E = B(A)F and H = (iwpo) 'rotgE for x € B2 Then {E,H} e (C%RY))5
and {E,H} is an eigenvector of the original problem (11}, (12) corresponding to the
same eigenvalue 3.

Theorem 4. (See [6]). For each 3 € {3 e B : 8% = k%] the operator A(S) has the
bounded inverse operator. The sef of all eigenvalues @ of the operalor-valued function
Al3) can be only o set of isolefed points on A, Bach eigenvalue @ depends confinuously
onw =0, ey =0, and o0 > 0 and can appear and disappear ondy of the boundory of

A, de at B =2k, Foc and af infinity.

4. Mumerical Methods

Calerkin methods for numerical caleulations of the natural modes are proposed, the
convergenee of the methods s proved, and some resulis of numerical experiments are
discussed in the book |7).
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TRANSFERENCE OF THE INITIAL CONDITION
FOR LINEAR INTEGRO-DIFFERENTIAL EQUATION

(National Technical University of Ukraine "KPI", Kviv, Ukraine)

1. Preliminary result

Consider a linear integro-differential equation

b

Bx(t )
% =f Kis,7)xit,r)dr + fit, s), (1]
a

where 2(t, a) is unknown function, f(t,2) and K (t, 2) are given continnons functions of
arpuments ¢ and a; €= tp, a0 < b, a < 2 < b, a, bty are given nonnegative numbers., Let
at £ = tg such equality 15 valid

b
f Fgir)ety, v)dr = go. (2
o

where rontinuons function fg(r) and nmumber gg are also given.



