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Abstract. This paper describes one numerical procedure for calibrating three-axis mag-

netometers  (accelerometers).  Three-step techniques of magnetometer calibration is de-

veloped. The first calibration  step is solved by using the standard least squares linear 

estimation techniques and   calculate   the  deviation and the combined scale factors val-

ues of  the sensor. Second step is based on Newton discrete scheme and  is solved alge-

braically. Error parameters of rotation circle to become an ellipse are derived. Third step 

is based on the functional minimization  by numerical discrete Newton scheme. Sensors 

misalignment error is defined as an angles between the magnetic sensor sensing axes 

and the device body axes. 
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Introduction.  

 Magnetometers measure the intensity of magnetic fields and used in many scien-

tific and engineering applications. Up-to-date miniaturized 3-axis magnetometers and 

accelerometers well suited for portable navigation application and are  important built-

in units of many inertial navigation systems.  Conventional navigation systems com-

prised tri-axis angular rate sensors,  accelerometers and magnetometers  and is com-

bined with  sattelits navigation devices. Angular rate sensors and accelerometers is used 

to collect the 3-axis raw data for the pitch and roll calculation, magnetic sensor raw data 

for the heading calculation. Calibration is needed   to obtain parameters to convert sen-

sor raw data to normalized values for the further navigation calculation.  

 Reliability degree of 3-axis data source  can be defined by certain geometry 

clause.  For example 3 values  of ideal 3-axis magnetometer must be  satisfied of 

sphere equation   

 

If  three full round rotations along with device body axis   down,  down, and 

down respectively at a leveled smooth surface without a nearby interference mag-



netic field can be performed as depicted on fig.1 we have got a data that is shone on 

fig.2.    

.  

Fig.1 

Similar data for example can be obtained from Inertial Measurement Units IMU 

ADIS16480.   Manufacturer provide  fully calibrated  frame-aligned set of inertial 

MEMS sensors. On fig.3 we can see that the factory calibrating  characteristics is not 

remained in customer environment.    

 

 

 

Fig. 2 Raw data of ideal 3-axis magne-

tometer  

Fig.3 Raw data of 3-axis magnetometer 

with factory-built calibration 
  

The ADIS16480 provides user write control for accelerometer and magnetometer covar-

iance values in user-accessible registers in accordance of following scheme  



 

 

 In order to improve the accuracy of raw sensor data, especially when dealing with 

low-cost sensors, mathematical models must be built to take into account the various 

sources of errors. Some, such as scale-factors, misalignment and the resulting cross-

coupling of axes, apply to all kinds of sensors (gyroscopes, accelerometers). 

 There exist various methods  for three-axis sensors calibration. Some procedures 

and algorithm have been proposed for magnetometers calibration [1 - 8]. Our modified 

algorithm comprise three step calculations. 

 Lets consider base state of magnetic field distortions. Hard-iron interference 

magnetic field is normally generated by ferromagnetic materials. The effect of this su-

perposition is to bias the magnetic sensor outputs. A soft-iron interference magnetic 

field is generated by magnetically soft materials inside the handheld device. The effect 

of the soft-iron distortion is to make a full round rotation circle become a tilted ellipse. 

Scale factor error is defined as the mismatch of the sensitivity of the magnetic sensor 

sensing axes. The effect of the scale factor error causes the full round rotation circle to 

become an ellipse. Misalignment error is defined as the angles between the magnetic 

sensor sensing axes and the device body axes. All these factors are gathered into a gen-

eral matrix , and a zero-bias vector  , [3]. 

 

were   and  - are calibrated and raw sensor data,    

 is zero-bias vector, is resultant matrix defined by diagonal matrix 

of scale factors , 3 - axis rotation matrix  and misalignment 

error matrix  

,        

Fifteen parameters  have 

to be defined by calibration procedure.     



 Equation (2) can be rewritten the following form 

 

  where . Substitution of equation (3) into equation (1) yields  

            

Matrix form of resulting equation (4)  can be written as follower 

 

 Matrix elements  of equation (5) can be defined by least square method 

(LSM). More convenient approach for    calculation we found in [ 3 ] and then slight-

ly modified  it. 

 In accordance of  this approach equation  (5) can be rearranged  to following ex-

plicate form  

 

 

 

 

where , . 

 Then we have to form the LSM equation on batch of magnetometers data 

  

 

where   row of    matrix is defined by following expression 

 

 



th element ,  vector   is presented by linear combination 

of  coefficients.  

 Required batch of magnetometers data  we can obtain by three full round 

rotation  along with device body axis   approximately down, the  down, and 

down respectively. For this we use radio transmitter  for sending magnetometer da-

ta to  PS. 

 After yielding of  by solving least square equation   

  

we can define coefficients    ,  and then calculate matrix components , bias 

, from following dependences:    

  ;             

    

 

 

 The Cholesky factorization provides an upper triangular matrix , such that 

. We have to take into account that there are uncountable quantity 

of  matrices   such that . This is easy to see since any rotation matrix    sat-

isfies  and  .  Therefore only diagonal 

elements of triangular matrix   will be taken at the first step calibration.   

 Some approach use eigenvectors decomposition of symmetric matrix. Matrix 

 can be expressed  as   

 ,                         (10)  

where are eigenvalue, (  are correspondent eigen-vectors of  

.        



 All above mentioned approach yields bias value  and scale coefficients 

. Rotation angles  can be obtained only in case of . 

 Therefore we devise following algorithm of vector  components calcula-

tion. We develop numerical Newton scheme for rotation angle  calculation that 

be write below. At the  first lets put throw following numerical test. Distort data of ideal 

magnetometer by scaling , by rotation   and by shift  

along  axis and then try to restore its by above mentioned scheme.  

a) b)  c) 

Fig.4 Magnetometer data restore 

The distorted  of ideal magnetometer data is shone on fig.4a. Calibrated data 

after the first step  is depicted on the fig.4b. Calibrated data after  calculation 

of rotation parameter   is shone on the fig.4c. We can see that calcu-

lation of rotation parameter  is enough for data restore at the second 

step calibration in this case.        

 If compare fig.4b and fig.4c the following calculation scheme can be 

suggested. Magnetometer data at the second  must be obtained by three full 

round rotations along with device body axis    strictly down,  strictly down, and 

 down respectively at a leveled smooth surface without a nearby interfer-

ence magnetic field. The following function can be chosen as a clause for 

 calculation by numerical discrete Newton scheme  

   (11)  

 Discrete scheme means that we use numerical (not analytical) finite-

difference method for derivatives calculation in Newton scheme 



 

 Solution can be obtained of few iteration (12) if  numerical calculations 

is proper arranged.  Final result of data restore  is shone on fig.4c. Take into 

account that after the Cholesky factorization of matrix   addition normal-

ization of   is done because we do not need absolute value of   but only 

ratio of coefficients. Magnetometer data  on fig.3 confirm  the good factory calibration  

of ADIS16480 for the first step calculations of  ,   and poor one for 

the second step calculations of . On the fig.5 results of re-calibration 

are depicted: a - corresponds raw data, b - corresponds one step calibration, c 

- corresponds two step ones. We can see that the second step calculation 

yields more conspicuous data correction, fig.4c.  

a) b) c) 

Fig.5 Two sep calibration of IMU ADIS16480 

 It sould be stated that if  the first step requires three full rotation along 

three arbitrary axis the second step requires three full rotation along three 

strictly vertical axis.  

  At the third calibration we have to define misalignment error matrix . 

Due to expectable small value of misalignment angles we can suppose diago-

nal elements equal 1 and calculate only six value of . For this we use 

clause (11).   

) 

and Newton scheme  



 

 Solution can be obtained of few iteration (14) if  numerical calculations 

is proper arranged. 

 Comparative results of the second and third step calibrations are shone 

on fig.6 (a and b)   

а)  б) 

Fig.6 Second and third step calibrations  

 The third step calibration yields value of   that defines misalignment error  

 

The small value of  is explained by high quality of IMU.   

At the above we can state: 

1. Only three step 3-D magnetometer calibration provide calculation of full 

set correction parameters that comprise hard-iron and soft-iron interference, scale 

factor error and  misalignment error. The first calibration  step is solved by using the 

standard least squares linear estimation techniques. Second and third steps are based on 

Newton discrete scheme and  is solved algebraically. Solution can be obtained of 

few iteration if  numerical calculations is proper arranged.  



2. Magnetometer calibration scheme by Cholesky factorization of symmetric matrix 

 provides good correction scale factor, hard-iron and adequate soft- iron inter-

ference, but do not provide misalignment correction. 

3. Magnetometer calibration scheme by eigenvectors decomposition of symmetric ma-

trix provide adequate  correction parameters only in case of  and do not 

provide misalignment correction. 
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