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ABSTRACT
The East European Platform and the PreUrals are the regions where the Permian System 

was first established, but the provincialism of fossils and lack of radioisotopic age control 
have prevented the use there of the regional Permian subdivisions used outside of the region. 
We report the first U-Pb zircon chemical abrasion–isotope dilution–thermal ionization mass 
spectrometry (CA-ID-TIMS) age of 253.95 ± 0.06 Ma for a volcanic tuff from the terrestrial 
upper part of the lower Vyatkian Regional Stage in the Moscow syneclise (Russia). This age 
greatly improves the correlation of the East European Platform and the PreUrals with the 
international geologic time scale, and contributes to our understanding of sedimentation within 
the Permian-Triassic transition in the studied region. The new radioisotopic age integrated 
within the regional chronostratigraphic framework reveals the synchrony in extinction of 
faunas of the Dinocephalian superassemblage in the studied region with that in South Africa.

INTRODUCTION
The East European Platform and PreUrals 

(western flanks of the Ural Mountains) (EEPP) 
is the type region of the Permian System (Mur-
chison et al., 1845). In addition to the historical 
priority, the successions are famously rich in 
faunas of tetrapods (Amalitzky, 1922; Efremov 
and V’yushkov, 1955; Golubev, 2000; Tver-
dokhlebov et al., 2005). Excellent preservation, 
substantial diversity, and excellent stratigraphic 
constraints on the tetrapods within a regional 
chronostratigraphic framework (Arefiev et al., 
2015) denote a key role for this fauna in our 
understanding of the evolution of tetrapods 
(Benton, 2015; Lucas, 2017). At the same time, 
the provincial temperate faunas in the EEPP sec-
tion are of limited global chronostratigraphic 
value, and thus the temporal correlation of the 
tetrapod communities of the EEPP within the 
global context is still controversial.

A significant hiatus in sedimentation 
(6–9 m.y.) across the Permian-Triassic tran-
sition of the EEPP was proposed in the 2012 
Geologic Time Scale (GTS; Gradstein et al., 
2012), with all or most of the Lopingian Series 
missing (Henderson et al., 2012). This gap was 
an assumption from earlier and recent studies 
(Lozovskiy and Esaulova, 1998; Tverdokhlebov 
et al., 2005). Today, many geologists consider 
the Permian–Triassic continental succession in 
the EEPP as more complete (Arefiev et al., 2015; 
Sennikov and Golubev, 2017; Scholze et al., 
2019). The regional biostratigraphy, includ-
ing data on nonmarine ostracods and bivalves, 
tetrapods, conchostracans (clam shrimp), fish 
remains, and plants, along with magnetostratig-
raphy and chemostratigraphy, provide a reliable 
regional chronostratigraphic framework (Tay-
lor et al., 2009; Newell et al., 2010; Golubev, 
2015; Scholze et al., 2019; Naumcheva and Gol-

ubev, 2020). We have discovered a volcanic ash 
bed and obtained the first ever high-precision 
chemical abrasion–isotope dilution–thermal 
ionization mass spectrometry (CA-ID-TIMS) 
age in the entire Middle-Upper Permian of the 
EEPP from the upper part of the lower Vyatkian 
Regional Stage in the Sukhoborka locality at 
Vetluga River, Nizhny-Novgorod region, Russia 
(Fig. 1). We integrated this volcanic ash within 
the regional chronostratigraphic framework and 
made several observations regarding complete-
ness of the studied sedimentary succession, cor-
relation with the 2012 GTS, the evolution of 
tetrapods, and climate.

GEOLOGICAL SETTING
The continental Permian–Triassic sequences 

in the Moscow syneclise are best exposed along 
the Sukhona and Malaya Severnaya Dvina Riv-
ers of the Vologda region, and along the Vetluga 
River in the Nizhny-Novgorod region (Fig. 1; 
Arefiev et al., 2015). The Upper Permian–Lower 
Triassic is divided into series of formations 
that are successively exposed along the rivers 
(Fig. 1). The lithostratigraphy and biostratig-
raphy of the succession in the region are well 
established (Arefiev et al., 2015) and provide a 
precise correlation with other sections within 
the Moscow syneclise. The Vyatka Formation in 
the region is divided (upward) into the Zamosh-
nikovo, Luptug, and Moloma Members (Fig. 1; 
see Fig. S3 in the Supplemental Material1). The 
formation overlies the silty limestone of the 

1Supplemental Material. Figures S1–S4 (photos, stratigraphic logs, stratigraphy, and results of single grain chemical abrasion ID-TIMS analysis) and Tables S1 
and S2 (fossils, and U-Pb isotopic data). Please visit https://doi​.org/10.1130/GEOL.26213S.12132822 to access the supplemental material, and contact editing@
geosociety.org with any questions.
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Wuchiapingian Putyatinian Formation and is 
overlapped by the Triassic Vokhma Formation. 
The Sukhoborka location occurs in the lower 
course of the Vetluga River (Fig. 1).

MATERIAL, METHODS, AND RESULTS
An altered volcanic ash bed (bentonite) was 

found at the Sukhoborka section (56.73094°N, 
45.74826°E), in the middle part of the Zamosh-
nikovo Member, which is composed of flood-
plain to lacustrine, sandy to silty, sediments, 
often with paleosol horizons (Lozovskiy and 
Esaulova, 1998). The bentonite is located within 
sandstone of the Zamoshnikovo Member, 6 m 
above the Vetluga River bottom at Sukhoborka, 
and ∼15 m above the regional base of the mem-
ber (Fig. 1). The bentonite is 7–13 cm thick (bed 
С in Fig. 1) and occurs immediately above a 
greenish-gray fine sandstone with black lenses 

enriched in organic matter (beds A–B in Fig. 1). 
The appearance of the latter suggests a low-
energy, and possibly local stagnant, slackwater 
environment, where the volcanic material at this 
locality was preserved. The Sukhoborka ash bed, 
according to faunal data from strata below and 
above these beds (Fig. 1; Figs. S2 and S3, Table 
S1, and supplemental text), correlates with the 
upper Bykovian Regional Substage (RS) of the 
lower Vyatkian Regional Stage (Figs. 1 and 2; 
Arefiev et al., 2015).

Sample 16VD62 from bed C at the Suk-
hoborka locality yielded hundreds of sharply 
facetted, elongate, prismatic zircon crystals 
(Fig. S1), from which we selected eight single 
zircon grains for dating. All analyses yielded 
concordant and equivalent isotope ratios, and 
these were combined to yield a weighted mean 
206Pb/238U date of 253.95 ± 0.06(0.14) [0.30] 

Figure 1.  Geologic map and cross section 
of the Sukhoborka study area, Vetluga River, 
Nizhny-Novgorod region, Russia. (A) Geo-
logic map (sheet O38-XXVIII by G.I. Blom, 
unpublished, 1964) with main localities 
mentioned in the text. (B) Close-up of dis-
covered volcanic ash bed at Sukhoborka; 
a—brownish-light slightly reddish, poorly 
laminated fine sandstone; b—greenish-gray 
to bluish, poorly laminated fine sandstone 
with black lenses enriched in organic 
matter; c—strongly crimson volcanic ash 
bed with sharp lower and upper contacts; 
d—fine sandstone similar to a. (C) Cross 
section with general logs and paleomag-
netic data of main localities mentioned in 
text (modified from Lozovskiy and Esaulova, 
1998). Paleomagnetic data are from Bala-
banov and Muraviev (2010) and Lozovskiy 
et al. (2015). Biostratigraphy for each local-
ity is provided in the Supplemental Material 
(see footnote 1).
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Ma (2σ; mean square of weighted deviates 
[MSWD] = 1.44; n = 8), where the quoted errors 
indicate the following analytical uncertainties: 
(analytical + tracer), [analytical + tracer + decay 
constant]. This date is interpreted as estimating 
the volcanic eruption and depositional age. The 
narrow range in Th/U in the analyzed zircon 
crystals lends credibility to the interpretation 
that they are from a single source (Table S2; 
Fig. S4).

DISCUSSION
The new U-Pb zircon CA-ID-TIMS radioiso-

topic age from the upper Bykovian RS provides 
direct and precise correlation of the Lopingian 
rocks of the Moscow syneclise with the GTS 
(Fig. 2; Davydov et al., 2018; Yuan et al., 2019). 
Three chronostratigraphic levels constrain the 
Upper Permian–Lower Triassic successions in 
the EEPP (thick red lines on Fig. 2). The first 
level, the local Sukhonian-Putyatinian bound-
ary, is associated with the main biotic and 
climate perturbation within the Middle Perm-
ian–Early Triassic in the region, as recorded 
in the evolution of tetrapods (Golubev, 2015), 
ostracods (Molostovskaya et al., 2018), fishes 
(Platysomus-Toyemia superassemblage bound-
ary; Arefiev et al., 2015), and stable isotopes 
(δ13C and δ18O) of lacustrine carbonates (Fig. 2).

The carbon stable isotopes in lacustrine 
carbonates at the Capitanian-Wuchiapingian 
boundary demonstrate a significant shift toward 
heavier values, from 3‰ to 6‰, indicating a 
climatic cooling trend (Fig. 2). The oxygen 
isotopic composition of lacustrine carbonates 
in the Sukhonian RS possess relatively stable 
values, varying around 32‰–34‰, whereas 
starting from the Putyatinian RS, the oxygen 
isotopic compositions strongly oscillate between 
22‰ and 32‰, also indicating a cooling trend 
(Fig. 2). The switch in mode is interpreted here 
as related to a prominent cooling and perturba-
tion of the climate in the region (Leng and Mar-
shall, 2004) during the late Capitanian–Wuchi-
apingian (Arefiev et al., 2015), and correlated 
to the global latest Capitanian–Wuchiapingian 
climatic perturbation established in Australia 
and elsewhere (Wignall et al., 2009; Metcalfe 
et al., 2015; Davydov et al., 2018). The switch in 
the stable isotopic data in the Moscow Basin was 
likely not caused by a change in provenance, as 
the input from the source in the Urals appears 
much earlier than the Capitanian-Wuchiapin-
gian boundary proposed here (Arefiev et al., 
2011). This input smoothly increased through 
the boundary and became dominant in post-
Wuchiapingian time (Fig. 2).

Also near this chronostratigraphic level, 
the Capitanian paleomagnetic N1P zone of the 
EEPP (Fig. 2) is interpreted to correlate with 
the upper Capitanian paleomagnetic records of 
west Texas (USA) and the uppermost Abraha-
mskraal Formation in South Africa (Hounslow 

and Balabanov, 2018). The numerical age of the 
latter is constrained by U-Pb zircon geochro-
nology in west Texas (Ramezani and Bowring, 
2018) and in the Abrahamskraal Formation (Day 
et al., 2015). Consequently, the paleomagnetic 
R2P zone of EEPP correlates with the Wuchi-
apingian of the 2012 GTS (Fig. 2).

Drastic changes in tetrapod faunas occurred 
as a multistadial process of dinocephalian 
extinction around the mid-Severodvinian in the 
EEPP (late Sukhonian through early Putyatin-
ian). The dinocephalian-dominated fauna of the 
Ulemosaurus svijagensis assemblage zone (AZ) 
was replaced by a pareiasaur, dicynodont, and 
theriodont–dominated fauna (Suchonica vladi-
miri AZ [transitional] and Deltavjatia vjatkensis 
AZ). The last single taxon of dinocephalian Ule-
mosauridae gen. indet. is found in the Suchon-
ica vladimiri AZ (Golubev, 2015; Golubev and 
Bulanov, 2018). Similarly, in South Africa, the 
last dinocephalian Criocephalosaurus is found 
in the transition between the mass extinction 
of dinocephalians and immediately below the 
Pristerognathus AZ (Day et al., 2015). Appar-
ently, the Suchonica vladimiri AZ has the same 
stratigraphic position as the uppermost Tapino-
cephalus AZ and Pristerognathus AZ in South 
Africa. The latter AZ is designated there as an 
“interval zone” between the last appearance of 
dinocephalians and the first appearance of the 
dicynodont Tropidostoma (Day et al., 2015). The 
Pristerognathus AZ, according the new radio-
isotopic ages in South Africa, correlates with 
the Wuchiapingian Stage of the 2012 GTS (Day 
et al., 2015), and thus the Suchonica vladimiri 
AZ in the EEPP also corresponds to the Wuchi-
apingian Stage (Fig. 2), although the uppermost 
Capitanian age of the lower Suchonica vladimiri 
AZ cannot be excluded.

The second constrained chronostratigraphic 
level within the Lopingian in the EEPP is the 
new CA-ID-TIMS age that we obtained from the 
Sukhoborka locality. It is ∼200 k.y. older than 
the estimated radioisotopic age of the base of 
the Changhsingian in south China (Yuan et al., 
2019). This suggests the correlation of the base 
of the Nefyodovian RS of the EEPP with the 
Wuchiapingian-Changhsingian boundary of the 
2012 GTS (Fig. 2).

The third chronostratigraphic level of global 
utility, at the base of the Ryabi member of the 
Vokhmian RS (Tupilakosaurus AZ), possesses 
a direct biostratigraphic correlation with the 
Greenland Tupilakosaurus AZ (Fig. 2; Lozovs-
kiy, 1967; Lucas, 2017; Novikov, 2018). This 
tetrapod fauna in Greenland first occurs in the 
lower Ophiceras commune ammonoid zone 
(Nielsen, 1954; Bjerager et  al., 2006). The 
index species of the base of the global Triassic 
Hindeodus parvus in the region has been found 
with ammonoids Hypophiceras, Tompophiceras 
gracile (Spath), and T. pascoei (Spath) (Kozur, 
1998) and slightly below Tupilakosaurus. 

According to the recent high-resolution δ13Corg 
isotopic data, the first negative spike that is 
associated with the Permian-Triassic bound-
ary (PTB) in south China occurs immediately 
below Ophiceras commune (Sanson-Barrera 
et al., 2015), which is consistent with the con-
odont and other ammonoid data (Fig. 2). The 
ammonoids, conodonts, and δ13Corg isotopes in 
Siberia and Canada also suggested an Early Tri-
assic age for the Ophiceras commune ammonoid 
zone of Greenland (Kozur, 1998; Algeo et al., 
2012; Zakharov et al., 2015).

In the uppermost Permian, the first local 
occurrence datum of Lystrosaurus blomi from 
Vetluga (Blom, 1968) is in the lower Astashikha 
member of the lower Vokhmian RS of the EEPP. 
Originally, the Astashikha beds were included in 
the Permian (Blom, 1968). The discovery of Lys-
trosaurus in this unit, and common acceptance 
of the PTB in continental sequences at the first 
appearance datum (FAD) of the genus in South 
Africa, subsequently led some workers to equate 
the PTB in the EEPP to the base of Astashikha 
member (Lozovskiy and Esaulova, 1998). How-
ever, the occurrence of the reverse polarity chron 
within the lower Astashikha member (Fig. 2) as 
well as relatively low values of magnetic sus-
ceptibility and natural remanent magnetization 
(Lozovskiy et al., 2015) suggest a latest Perm-
ian age for the member. This interpretation is 
also supported by the negative shift in the car-
bon stable isotope record (Fig. 2; Arefiev et al., 
2015), which correlates with a similar shift in 
the latest Permian in south China (Yuan et al., 
2019). The ostracods from the Astashikha mem-
ber belong to the Darwinula mera–Gerdalia 
variabilis ostracod AZ, which that correlates 
with the uppermost Permian–lowermost Trias-
sic of the 2012 GTS (Naumcheva and Golubev, 
2020). Finally, our new bentonite age in the ana-
logues of the Scutosaurus karpinskii zone of the 
EEPP is consistent in biostratigraphic position 
and numerical age with a volcanic ash bed date 
in the Dicynodon Zone and near the base of the 
Lystrosaurus Assemblage Zone in South Africa 
reported by Gastaldo et al. (2015, 2020).

The integrated biostratigraphic, geochro-
nologic, and paleomagnetic data in the Mos-
cow syneclise presented here suggest the lack 
of a meaningful temporal gap in sedimentation 
across the Late Permian and into the P-T transi-
tion in the EEPP. The stratigraphic correlations 
proposed here greatly improve the reliability of 
regional to global correlation and expand our 
knowledge on paleoclimate change and tetrapod 
evolutionary processes within the Lopingian-
Triassic transition in the region. Specifically, the 
base of the Putyatinian RS coincides with the 
extinction of the Dinocephalian tetrapod fauna 
in the EEPP (Golubev, 2015). A similar event, 
i.e., 74%–80% loss of tetrapod generic richness, 
mostly due to the extinction of all dinocepha-
lian therapsids at the Capitanian-Wuchiapingian 
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transition, is also observed in South Africa 
(Fig. 2; Day et al., 2015). The correlation pro-
posed here finally resolves the problem of asyn-
chrony between Permian tetrapod fauna extinc-
tion in Gondwana (South Africa and surrounding 
regions) and in Eurasian continents (EEPP and 
China) (Benton, 2012; Day et al., 2015; Lucas, 
2017). We proposed that the extinction was asso-
ciated with the P4 glaciation in eastern Gond-
wana (Metcalfe et al., 2015; Davydov et al., 
2018) and potentially could have been caused by 
this climatic deterioration in temperate latitudes.

We suggest that the link between Emeishan 
basalt volcanism and the late Capitanian–Wuch-
iapingian extinction is precarious because this 
volcanism was generally post-Capitanian in age 
(ca. 260 Ma; Huang et al., 2016; Bagherpour 
et al., 2018; Li et al., 2018; Yang et al., 2018). 
The Capitanian-Wuchiapingian boundary is 
established at the base of bed 6k in the Penglai-
tan section in south China (Jin et al., 2006), and 
not at the beginning of Emeishan volcanism, as 
considered in some studies (Zhong et al., 2014; 
Day et al., 2015; Yang et al., 2018). Quantitative 
biostratigraphic constraints suggest a 260 Ma 
age for the boundary (Henderson et al., 2012). 
Nevertheless, the radioisotopic calibration of 
the Capitanian-Wuchiapingian boundary in the 
2012 GTS still requires improvement.
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