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Waveguides
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Abstract— The original problem in an unbounded domain is reduced to a linear parametric
eigenvalue problem in a circle, which is convenient for numerical solution. The examination of
the solvability of this problem is based on the spectral theory of compact self-adjoint operators.
The existence of surface guided waves is proved, and properties of the dispersion curves are
investigated. An algorithm for the numerical solution of the problem based on the finite element
method is proposed. The convergence of the numerical method is proved. Numerical results are
discussed.

1. INTRODUCTION

Optical waveguides are dielectric cylindrical structures that can conduct electromagnetic energy in
the visible and infrared parts of the spectrum. The waveguides used in optical communication are
flexible fibers made of transparent dielectrics. The cross section of a waveguide usually consists of
three regions: the central region (core) is surrounded by a cladding which, in turn, is surrounded
by a protective coating. The dielectric permittivity ε of the core can be constant or can vary over
the cross section; the dielectric permittivity of the cladding is usually positive constant (denote it
by ε∞). The coating is optically isolated from the core; for this reason, it is usually neglected in
mathematical models, and it is assumed that the cladding is unbounded from the outside.

We use the classical model (see [1]), in which the waveguide is assumed to be unbounded and
linearly isotropic. A mathematical analysis of surface waves based on the theory of unbounded self-
adjoint operators can be found in [2]. In that paper, the original problem is considered as a problem
of the form A(β)H = k2H with respect to the spectral parameter k2, and the dependence k = k(β)
is studied (H is the magnetic vector amplitude, k is the wavenumber, β is the propagation constant).
In [3], a similar technique is used to extend the results obtained in [2] to the case of waveguides
with a variable magnetic permeability.

The results obtained in [2, 3] give a complete understanding of the qualitative properties of
the spectrum of surface guided waves; however, in order to calculate the spectral characteristics
of waveguides, numerical methods are needed (see survey [4]). The formulations of the problems
used in [2, 3] are not quite convenient for obtaining numerical solutions. This is due to two specific
features of those statements.

1. The problems are formulated for the entire plane R2. For a numerical solution, special
measures must be taken to restrict the integration domain and to formulate additional boundary
conditions.

2. Spectral problems (except for a point spectrum) have a continuous part of the spectrum.
Although the location of this part is known exactly, a numerical solution requires that false ap-
proximate solutions be detected and discarded.

Statements of problems suggested in [5, 6] are free of those drawbacks. In those papers, exact
nonlocal boundary conditions (see [7, 8]) are used to reduce the problems that were originally
formulated for the entire plane R2 to equivalent problems in a circle. In [5, 6] the spectral problems
are formulated in a circle Ω which includes waveguide’s cross-section domain Ωi (see Fig. 1); these
problems have no continuous spectrum. Moreover, their spectrum is identical to the point part
of the spectrum of the original problem. These statements are convenient for the finite element
method. The cost of this advantage is that the spectral parameter appears in the equation in a
nonlinear fashion; more precisely, the problems have the form A(β, λ)H = λH, where A is a compact
self-adjoint operator. The solution of such problems requires the use of special iterative methods.

In this paper, we use a new formulation of the problem proposed in [9]. The original problem by
exact nonlocal boundary conditions method is reduced to an equivalent linear self-adjoint eigenvalue
problem A(p)H = β2B(p)H in the circle Ω. Here, the parameter p is the transverse wave number
p =

√
β2 − k2ε∞; for each p ≥ 0 the operators A(p) and B(p) are bounded and B(p) is compact;

vector H = (H1, H2) represents the first two components of the intensity vector H. We examine
the solvability of the problem and investigate some properties of the dispersion curves. Then we
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Figure 1: A schematic waveguide’s cross-section (on the left) and the dispersion curves for 1.5×1 rectangular
waveguide, ε(x) = 2.08, x ∈ Ωi, ε∞ = 1 (on the right).

propose an algorithm for the numerical solution of the problem based on the finite element method.
We prove the convergence of the numerical method and discuss some numerical results.

2. SOLVABILITY OF THE PROBLEM

First, we recall the statement of the problem given in [2]. Let H be the complex conjugate of H.
For the complex-valued vector fields H = (H1, . . . ,Hl) and H′ = (H′1, . . . ,H

′
l) (l ≥ 1), we define

H ·H′ = H1H′1 + . . . + HlH′l, |H|2 = H ·H, ∇H = (∇H1, . . . ,∇Hl),
∇H · ∇H′ = ∇H1 · ∇H′1 + . . . +∇Hl · ∇H′l, |∇H|2 = ∇H · ∇H.

Let V (D) = H1(D) be the Sobolev space of complex-valued scalar functions defined on the do-
main D ⊆ R2, and V l(D) = [H1(D)]l be the corresponding space of l-dimensional vector-functions.
The scalar product and norm in Hilbert space V l(D) are defined in the conventional way:

(H, H′) =
∫

D

(∇H · ∇H′ + H ·H′) dx, ‖H‖1,D = (H, H)1/2.

Consider a weak formulation of the original problem [2]: Find nonzero vectors H ∈ V 3(R2) and all
pairs (β, k) ∈ Λ = {(β, k) : β/

√
ε+ < k < β/

√
ε∞, β > 0} such that

∫

R2

(
1
ε
rotβH · rotβH′ +

1
ε∞

divβH divβH′
)

dx = k2

∫

R2

H ·H′ dx, (1)

for any H′ ∈ V 3(R2). Here differential operators divβ and rotβ are obtained from usual operators
by replacing generating waveguide line derivative with iβ multiplication; ε+ is the maximum of the
function ε. We suppose that ε ≥ ε∞, x ∈ R2.

Definition 1. The vector-function H ∈ V l(R2) is called metaharmonic in D ⊂ R2 if

−4H + p2H = 0, x ∈ D, p 6= 0.

The vector-function Hp ∈ V l(R2) is called metaharmonic extension of H ∈ V l(Ω) to Ω∞ = R2 \ Ω
if Hp is metaharmonic in Ω∞ and Hp

∣∣
Ω

= H.
The dielectric permittivity ε is equal to ε∞ in the domain Ω∞. Therefore, if a vector-function H

satisfies (1) then it is metaharmonic [2]. This fact let us to obtain (see [9] for technical details) a
new formulation of the original problem: For each p > 0 find all parameters β > 0 and nonzero
vectors H = (H, iH3) ∈ V 3(Ω), where Hl, l = 1, 2, 3, are real-valued functions, such that the
following relations are valid:

A(p)H = β2B(p)H, H3 = βT (p)H. (2)
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Here B(p) = D + C∗L−1(p)C and T (p) = L−1(p)C; by C∗ denote the adjoint operator. The linear
operators C : V 2(Ω) → V (Ω), D : V 2(Ω) → V 2(Ω), and L : V (Ω) → V (Ω) are defined by the
following relations:

(A(p)H,H′) =
∫

Ω

(1
ε
rotH rotH′ + 1

ε∞
divH divH′ + p2

ε∞
H · H′

)
dx

+
2π

ε∞

∞∑
n=−∞

Kn(Rp) an(H) · an(H′) +
1

ε∞

2π∫

0

(∂H1

∂ϕ
H′2 −

∂H2

∂ϕ
H′1

)∣∣∣
r=R

dϕ,

(DH,H′) =
∫

Ω

σH · H′ dx, (CH,H ′) =
∫

Ω

σH · ∇H ′ dx, σ = ε−1
∞ − ε−1,

(L(p)H, H ′) =
∫

Ω

(1
ε
∇H · ∇H ′ +

p2

ε∞
HH ′

)
dx +

2π

ε∞

∞∑
n=−∞

Kn(Rp) an(H) an(H ′).

Kn(z) = −zK ′
n(z)/Kn(z), an(H) =

1
2π

2π∫

0

H|r=R e−inϕ dϕ.

Here rotH = ∂H2/∂x1 − ∂H1/∂x2, divH = ∂H1/∂x1 + ∂H2/∂x2, R is the radius of the circle Ω,
and Kn(z) is the modified Bessel function of order n. The following theorem states some important
properties of the operators of the problem (2).

Theorem 1 (see (9)). For each p > 0 the operator A(p) is self-adjoint and positive definite;
for p = 0 this operator is self-adjoint and nonnegative. The operator-function A(p) is continuously
differentiable and increasing for p > 0. For each p ≥ 0 the operator B(p) is self-adjoint, nonnegative
and compact. The operator-function B(p) is continuously differentiable and nonincreasing for p > 0.
For each p > 0 the operator T (p) is compact. For each p > 0 the operator L(p) is continuously
invertible. All operators mentioned above are real.

The original problem (1) and problem (2) are equivalent in the sense of the following theorem.
Theorem 2 (see [9]). Suppose that (β, p, H) is a solution of the problem (2). Then (β, p) ∈ K,

where K = {(β, p) : p > 0, β > p
√

ε+/(ε+ − ε∞)}. Let Hp be the metaharmonic extension of H
to Ω∞, and let k =

√
(β2 − p2)/ε∞. Then (β, k, Hp) is the solution of the problem (1). Conversely.

Suppose that (β, k,H) is a solution of the problem (1). Let p =
√

β2 − k2ε∞. Then (β, p,H|Ω) is
the solution of the problem (2) with (β, p) ∈ K.

The existence and qualitative properties of the spectrum of surface guided waves were investi-
gated in the book [10] using new formulation (2) of the problem.

Theorem 3 (see [10]). For each p > 0 the set of all existing solutions of the problem (2) can be
represented as {βl(p), Hl(p), l = 1, 2, . . .}. Moreover, the following assertions hold:

(a) β1(p) ≤ . . . ≤ βl(p) ≤ . . ., βl(p) →∞ as l →∞; any βl(p) has a finite multiplicity (i.e., βl(p)
can coincide only with a finite number of βj(p), j ≥ 1).

(b) (A(p)Hl,Hj) = δl,j .
(c) The functions p → βl(p), l = 1, 2, . . ., are increasing and have the local Lipschitz property.
(d) βl(p)/p → k0 =

√
ε+/(ε+ − ε∞) as p →∞, l ≥ 1.

(e) β1(p) → +0, β2(p) → +0 as p → +0; βl(0) > 0, l ≥ 3.

The dispersion curves β = βl(p) for a homogeneous waveguide with a rectangular cross section are
shown in Fig. 1 on the right. Setting p = 0 in the first Equation (2), we obtain the cut-off equation
for finding the squares of the cut-off points βl(0).

3. APPROXIMATE SOLUTION OF THE PROBLEM

For discretization of the problem (2) we use finite element method with numerical integration.
Approximation Vh of the real Sobolev space H1(Ω) is based on usual conformal Lagrange finite
elements of the order m. Thus we obtain the real matrices AN

h (p), Dh, Ch, and LN
h (p) which are

discrete analogs of the operators A(p), D, C, and L(p), respectively [10]. These approximations
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depend on two parameters: the real parameter h (the characteristic size of finite elements, h → 0)
and the integer parameter N , which specifies the number of the Fourier harmonics taken into
account (N → ∞). Since we assume that the circle Ω of radius R is fixed, we do not explicitly
indicate the dependence on the third parameter R of the problem here.

The finite-dimensional approximation of the first equation in (2) is naturally described as the
generalized algebraic linear eigenvalue problem regarding spectral parameter (βN

h )2:

AN
h (p)HN

h = (βN
h )2BN

h (p)HN
h , BN

h (p) = Dh + (Ch)T (LN
h (p))−1Ch. (3)

Here, AN
h (p), LN

h (p), and BN
h (p) are large symmetric and positive definite matrices for each p > 0;

matrices AN
h (p), LN

h (p)), and Ch are sparse; BN
h (p) is full and such that there is an efficient method

for multiplying this matrix by a vector (after an LLT factorization of the matrix LN
h (p)). For each

fixed p ≥ 0, we have to find all eigenvalues (βN
h )2 = (βN

h )2(p) of the problem (3) from the given
interval (p2/(1− ε∞/ε+), β2

max) and the corresponding eigenvectors HN
h = HN

h (p). There are many
methods that solve problem (3) subject to the constraints specified above. We used the Lanczos
method.

After solution of the problem (3) we can find HN
3,h = βN

h (LN
h (p))−1ChHN

h . The pair (βN
h ,HN

h ),
where HN

h = (HN
h , HN

3,h), is the discrete solution of the problem (2). A theorem analogous to the
theorem 3 on the existence of the discrete solutions for h small enough was proved in [10]. The
convergence of the numerical method is justified by the following theorem.

Theorem 4 (see [10]). Let for p ≥ 0 a pair (β(p), H(p)) be a solution of the problem (2) and
β(p) has the multiplicity is equal to one. Let (βN

h (p), HN
h (p)) be a corresponding solution of discrete

problem. Then for h small enough and N ≥ c0 ln(1/h), c0 = m/ ln(R/R0), the following assertions
hold:

‖H(p)−HN
h (p)‖1,Ω ≤ c(p)hm, |β(p)− βN

h (p)| ≤ c(p)h2m.
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Figure 2: The dispersion curves for the three-circle waveguide (on the left) and the level curves of the
function |H| = (H ·H)1/2 corresponding to β4 = 3.6532 and p = 0.2 (on the right).

Table 1: Calculation error e = h−2|β4 − βN
4,h|/|β4| against N and Nh, where β4 is the approximate value of

the propagation constant obtained with 6006 grid nodes.

N |Nh 78 335 1093
1 0.5 23.3 92.5
3 0.619 1.67 1.56
5 0.62 1.67 1.57
7 0.62 1.67 1.57
15 0.62 1.67 1.57
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Here R0 is the minimal radius of the circumscribed circle Γ (see Fig. 1 on the left).
An analogous result holds for β which has a finite multiplicity [10].
To demonstrate the universality of the proposed method, we numerically solved the problem

for the domain Ωi consisting of three circles of radius 0.4 tangent to each other. The center of the
domain Ωi coincided with the center of the circle Ω of radius 1.5. The dielectric permittivity within
Ωi was ε = 2, and ε∞ = 1. For each fixed p in the interval from 0 to 3, the first six (with account
for the multiplicity) eigenvalues β2 of problem (3) and the corresponding eigenvectors were found.
The calculations were based on the linear triangular finite elements (m = 1) and were performed
for the number Nh of the grid nodes in Ω in the range from 78 to 6006. Table 1 presents the results
for the forth eigenvalue β4 for p = 1. From this table we can conclude that it is enough to use only
five of the Fourier harmonics, N = 5, at that |β4 − βN

4,h|/|β4| ≈ 1.6h2.
The dispersion curves for the three-circle waveguide are shown in Fig. 2 on the left. There

are only four dispersion curves because the upper and the lower curves are multiple due to the
symmetry of the problem: β1 = β2 and β5 = β6. Fig. 2 on the right shows, for p = 0.2, the
level curves of the function |H| = (H · H)1/2 corresponding to β4 = 3.6532. The calculations were
performed with 3150 grid nodes within Ω.
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