Effect of Selective Blockade of α₂-Adrenoceptor Subtypes on Cardiovascular System in Rats

T. L. Zefirov, L. I. Khisamieva, N. I. Ziyatdinova, and A. L. Zefirov*

Translated from Byulleten Eksperimental inti Biologii i Meditsiny, Vol. 158, No. 10, pp. 406-408, October, 2014 Original article submitted January 8, 2014

Selective blockade of various a_2 -adrenoceptors exerts various effects on the cardiovascular system in rats. Blockade of $a_{2,0}$ -adrenoceptors in experimental animals decelerates and then accelerates HR. Blockade of $a_{2,c}$ -adrenoceptors produces a negative chronotropic effect, blockade of $a_{2,c}$ -adrenoceptors has a positive chronotropic effect. Administration of selective blockers of $a_{2,0}$ -adrenoceptors causes hypotension, while selective blockade of a_{∞} -adrenoceptors increases BP.

Key Words: heart; chronotropy; blood pressure; rat

 α_2 -Adrenoreceptors (α_c -AR) are located in the vasomotor center in the medulla oblongata, on presynaptic membranes of adrenergic fibers, and on postsynaptic membranes of different cells including cardiomyocytes [5,6,9]. Molecular genetic studies have identified three α_c -AR subtypes: α_{2A} (α_{20} in rats), α_{30} , and α_{3c} [3,4,7]. However, understanding the role of individual receptor subtypes in regulating specific physiological functions was perplexed for a long time due to lack of subtype-specific ligands.

It was shown that α_1 -AR are present in vascular smooth muscles. Inhibiting sympathetic regulatory influences, α_1 -AR can reduce systemic BP [11]. The dominant role of $\alpha_{2,h}$ -AR in the regulation of the cardiovascular system is confirmed by studies demonstrating elevation of BP and HR after elimination of the gene encoding $\alpha_{2,h}$ -AR [2]. Presynaptic $\alpha_{2,h}$ - and $\alpha_{2,c}$ -AR regulate norepinephrine release in cardiac sympathetic nerve endings [10], while their knockout leads to heart hypertrophy and failure due to chronic increase in norepinephrine release in the heart and increased secretion of epinephrine from the adrenal glands [1,8]. $\alpha_{2,n}$ -AR are located mainly on the post-

Department of Anatomy, Physiology and Human Health Protection, Kazan (Volga Region) Federal University, "Department of Normal Physiology, Kazan State Medical University, Russia, Address for correspondence: activo/tiemail.n.r. L. Zeftiere synaptic membrane [10] and are possibly involved in the development of acute coronary pathology [12]. Further studies of α₂-AR subtypes will help to clarify their role in the regulation of body functions and develop drugs blocking or activating different α₂-AR subtypes. Here we studied the effect of selective blockade

Here we studied the effect of selective blockade of α,-AR subtypes on heart chronotropy and BP in adult rats.

MATERIALS AND METHODS

The study was carried out on 20-week-old white outbred rats (n=40). The animals were narcotized with 25% urethane (800 mg/kg body weight intraperitoneally). α₂-AR antagonist (yohimbine, 1 mg/kg; Sigma), selective α_{2,8,0}-AR antagonist (RX 821002; 0.1 mg/ kg), α_m-AR blocker (imiloxan hydrochloride; 1 mg/ kg), and α_{2c}-AR blocker (IP-1302; 0.3 mg/kg) were injected into the right femoral vein; all blockers were from Toeris. ECG was recorded and processed on a computer continuously throughout the experiment. BP was measured using SDK-1 device for non-invasive evaluation of systolic BP. The data were transferred from the device to the computer and processed using LGraf soft.

The obtained data were statistically processed using Student's t test and nonparametric Wilcoxon's test.