
Improved Graphical User Interface for Crawler
Robot Servosila Engineer

1st Alexandra Dobrokvashina
Laboratory of Intelligent Robotic Systems (LIRS)

Intelligent Robotics Department
Institute of Information Technology and Intelligent Systems

Kazan Federal University
Kazan, Russia

dobrokvashina@it.kfu.ru

2nd Ramil Safin
Laboratory of Intelligent Robotic Systems (LIRS)

Intelligent Robotics Department
Institute of Information Technology and Intelligent Systems

Kazan Federal University
Kazan, Russia

safin.ramil@it.kfu.ru

3rd Yang Bai
Information Science and Engineering Department

Ritsumeikan University
Kyoto, Japan

yangbai@fc.ritsumei.ac.jp

4th Roman Lavrenov
Laboratory of Intelligent Robotic Systems (LIRS)

Intelligent Robotics Department
Institute of Information Technology and Intelligent Systems

Kazan Federal University
Kazan, Russia

lavrenov@it.kfu.ru

Abstract—Robots are widely used in many areas of modern
life, and a teleoperated control plays a significant role in criti-
cal mission applications. For such applications Graphical User
Interface (GUI) is one of the most popular interfaces for robot
navigation and manipulation manual control. In this article, we
present an improved GUI for a Russian crawler robot Servosila
Engineer, which provides an operator with images from four
cameras of the robot, a 3D view of a current configuration and
an ability to control every joint of the robot. In addition to minor
adjustments and extensions of a previous version of the GUI, a
special attention is paid for modelling and control of the robot
gripper.

Index Terms—crawler robot, modeling, Servosila Engineer,
GUI, graphical user interface, 3D model, controller, video stream,
QT

I. INTRODUCTION

Today robots could be found in a different part of our
life. Robots learning to drive cars [1], they clean our houses,
work on manufactures [3], help surgeons to do complicated
surgeries in more safe and easy ways [2]. They are used in
places and areas where humans are forbidden to be, such as
dangerous manufactures or radioactive zones. Manipulators
present productivity as no human alive could. They could work
through all day and night seven days a week, easy lift cars and
their parts.

Different types of robots are used for various purposes in
different degrees of autonomous [4], [5]. Some of them are
used in fully autonomous mode, for example, robots house
cleaners. On the other hand, there are teleoperated robots.
They are used in conditions of important tasks, where it is
necessary to coordinate every movement manually according
to the situation. For example, in surgeries or urban search
and rescue tasks [6]. In such conditions, it is very important

Fig. 1. Operator screen with support information from ”Scott 1” [11].

to have a stable connection to the robot and a comfortable
way to communicate with it. Our goal is to make operator
job maximally productive. That is why receiving data from
sensors and cameras of the robot and sending commands to
move should be easy to process.

One of the most popular ways to interact with robots is a
computer or mobile app with a graphical user interface (GUI).
It is one of the cheapest and the easiest solutions which suits
most of the cases. There are many examples of such interfaces,
such in Fig. 1-3.

These examples are used for different tasks. Some of them
show only information about the current configuration of the
robot. Others also send a notification if there are any problems,
e.g. danger of falling, as in Fig. 1. Another doesn’t receive
any information from the robot but allows controlling robot
movement, for instance, Fig. 2. Third combines all of the
previous statements, so that operator receives the ability not

20
21

 In
te

rn
at

io
na

l S
ib

er
ia

n
C

on
fe

re
nc

e
on

 C
on

tro
l a

nd
 C

om
m

un
ic

at
io

ns
 (S

IB
C

O
N

) |
 9

78
-1

-7
28

1-
85

04
-0

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

SI
B

C
O

N
50

41
9.

20
21

.9
43

89
26

Authorized licensed use limited to: Kazan Federal University. Downloaded on June 28,2021 at 10:45:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. GUI for operator of 4WD Smart Car Robot [10].

Fig. 3. GUI for the operator of Android-based Car Robot [9].

only to move the robot but to see everything that the robot
can sense with its sensors and cameras e.g. Fig. 3.

This article presents the next step of work [8] on a graphical
user interface for the Russian crawler robot Servosila Engineer.
It already gives the ability to control the robot by sending data
with commands for every joint. Also, it shows the current robot
configuration via a 3D model and data from built-in cameras.

II. CRAWLER ROBOT SERVOSILA ENGINEER

A. System setup

Mobile crawler-type robot Servosila Engineer (Fig. 4) was
made by Russian company Servosila [12]. It was designed
to be exploited in dangerous for human environments. Hav-
ing an insulated and waterproof shell it could be used in
situations with different weather conditions e.g. in extreme
circumstances such as floods or even firefighting. Due to built-
in sensors and cameras Servosila Engineer could be used rather
in autonomous mode, so in teleoperation mode. It has an IMU
sensor and 4 cameras: stereo pair, one camera with zoom
and one camera in the back. Also head of the robot contains
a lantern. It could be useful while having operation during
the night or in half-light rooms. More than that Servosila
Engineer is equipped with laser scan on moving platform. It
could measure distance not only for positive obstacles but by

Fig. 4. Servosila Engineer crawler-type mobile robot.

changing angle it also could give information about negative
obstacles [13].

The modular construction of the robots shows them as
a good education platform. With the help of cameras, Ser-
vosila Engineer could be applied in tasks of computer vision.
A manipulator with a gripper allows interacting with the
environment around it. And tracks with flippers give good
traversability on uneven terrains [14]. All of these features
give a lot of possible ways to use this robot.

B. Previous GUI version

As already been mentioned this article continued the theme
of the user interface for Servosila Engineer. A big amount
of work was done already, such as controlling the robot via
remote control packages [7]. Basic things in the graphical
user interface also were done. These are sliders for controlling
joints and tracks movements, the first version of the 3D view
of the model of the robot. The 3D model shows its current
configuration [8].

In this article, we continued this development and improved
several elements of GUI such as the 3D model and its mobility.
Also, we improved video widgets with pictures from cameras.

III. GUI IMPROVEMENTS

A. Model improvement

The first version of the 3D model of the robot in our GUI has
several differences from the real one. And that may become not
only a visual issue but practical. That is because the size of the
model was smaller than the present robot. It could cause some
misspelling in the current configuration or possible workspace.
That is the reason why changing the 3D model was one of the
first tasks in this research.

The new model was created using the same meshes that
were also used for simulation of the Servosila Engineer in
the Gazebo environment. The final version of the model with
comparing to the first version of the model shown in Fig. 6.

Authorized licensed use limited to: Kazan Federal University. Downloaded on June 28,2021 at 10:45:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Previous version of GUI for Servosila Engineer.

Fig. 6. Comparing old 3D model(right) for GUI and new(left).

The other problem that appears with the model was about
the 3D view itself. The first version of GUI was made with Qt
in Ubuntu 16 via a self-written OpenGL widget. After updating
Ubuntu to 18 version there was found an issue that OpenGL
in some cases shows nothing. To workaround that problem 3D
view was replaced with the new widget which based on built-
in Qt3D modules [15]. It presents a simple way to create a
3D scene with the model inside and by simple manipulations
move any part of that model in the necessary position [16],
[17] .

The created solution makes the program more universal
because of fewer side modules inside it. And manipulation
with the object on the 3D scene became much simpler than
before.

B. Gripper movement

Another problem with the 3D model was the gripper. In the
old model, it was connected with the model of the head of
the robot so it couldn’t move. So one of the tasks was to split
the mesh of the head into several different parts to give the
gripper ability to move.

Finally model of the head turned into seven parts. These
are the head itself and three parts for each of two sides of the
end-effector. To move that part simultaneously the way they

move on the real robot it is necessary to move all six parts of
the gripper in one moment. To open end-effector with some
unknown angle β parts need to move according to the scheme
illustrated in Fig. 7.

The next step was to make the gripper move the same
way as on the robot. As already been mentioned created user
interface provides operator information about the current state.
For that purposes it use telemetry packet (Table I). These
packets contain information about cameras and servo drives.
Every motor sends information about itself with the structure
of Motor Data (Table II). This information is used for moving
the 3D model the same way as the Servosila Engineer itself.

TABLE I
SERVOSILA ENGINEER TELEMETRY PACKET.

Field Type Size

Frame type ID unit8 1 byte

Tick number unit64 8 bytes

Number of motors unit8 1 byte

Motor data #0 struct 24 bytes

...

Motor data #9 struct 24 bytes

Not used - 25 bytes

TABLE II
SERVOSILA ENGINEER MOTOR DATA STRUCTURE.

Field Type Size

Device ID unit8 1 byte

Device state unit8 1 byte

Operation mode unit8 1 byte

Position unit32 4 bytes

Speed int16 2 bytes

Electric current
(amperes)

int16 2 bytes

Status bits int16 2 bytes

Position command unit32 4 bytes

Speed commands int16 2 bytes

Electric current
command (amperes)

int16 2 bytes

The gripper also sends information about its position, and
it presents as a good way to know about the current end-
effector configuration. In this step, we faced the problem
with the data. The parameter server on the robot sends bad
data about gripper position. The position of the gripper on
the server is measured with the wrong boundaries. They are

Authorized licensed use limited to: Kazan Federal University. Downloaded on June 28,2021 at 10:45:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Scheme of gripper movement by angle.

Fig. 8. Correlation of position of the gripper from time.

smaller than the real position interval. In a such situation
information about positions of the end-effector through the
time of moving between extreme points makes about twenty
circles in the boundaries of the parameter server. Correlation
of position from the time shown in Fig. 8. And there were
several ways to solve this problem.

The first way is to count the current position of the gripper
on the operators computer. If the position of the gripper is
known from frame to frame the new position could be counted
by addition or deduction from previous. So if the position steps
over server boundaries we just compute the difference from
the previous position to one bound and add the difference from
the second bound to the new position. That also means that
in the moment of launch gripper firstly needs to move to the
start point, for example in a fully open state.

The described way is shown as a good math solution for
the designated problem. But while trying this method we faced
the next problem. Telemetry packages that were received by
the operator were sent too rare. This causes jumping through
server position intervals and losing data, which makes the
gripper on the model desynchronize with the real one.

On the other hand, we have another possible solution that

doesn’t correlate with position data but uses time stamps. Now
we count the current position of the gripper from the time of
moving. Maximal time is the time needed for the gripper to
move from the fully opened position to closed. And the current
time is calculated from the time of sending the command to
open or to close. Again as in the previous method in the
beginning we need to move the end-effector in an extreme
position as the start point. So based on the time of changing
state we increase the angle if closing the gripper or decrease
the angle if opening it. Now gripper is better synchronized
with the real robot because of not appealing to the position
data of the gripper. But this solution still could have issues.

Working on the parameter server and fixing the bug of the
gripper position seems like a better solution, but this is a
complicated task that could be exposed in another work.

C. Video streaming

As mentioned before Servosila Engineer has four onboard
cameras: three in the front and one rear. Images from them
sending via video server [18] with hardware encoding [19].
One of the abilities of our GUI is to show images from all
cameras. Also, it gives the operator information about the
robots surrounding. Part of the work has been already done in
the previous version.

In the first version of the program, there were some prob-
lems with connecting views to the main window. Videos
from the cameras are always opened in separate windows
as in Fig. 9. Working with video stream carried out by side
application - MPlayer [20], which is widely used for working
with audio and video stream [21]. It can be launched in so-
called ”slave mode”. In that mode, all of the commands are
sending with the command line. In the program, we launch
this player with several arguments to improve the quality of
the picture and draw its picture as part of the main window for
each of four streams. But still, pictures are not always shown
properly.

To solve this problem we improved this widget, changed
the window hierarchy so that every instance of player has its
own instance of the widget with proper id. So the final view of
the created graphical user interface with views from cameras
is shown in Fig. 10 The same window in full-screen mode
presented in Fig. 11.

IV. CONCLUSION

Creating a graphical user interface for the robots is a
very complicated task that is including graphical part on the
operator side, transfer of the data from robot to operator, and
sending commands to the robot.

In this paper, we presented an improved graphical user
interface for the crawler-type robot Servosila Engineer. We
created a more realistic model, improved the 3D viewport
using Qt3D modules, added a moving gripper to the model,
and synchronize its position with the robot. We added some
changes in the visualization of the video stream from the
cameras of Servosila Engineer. Also, there were done little
improvements in layout.

Authorized licensed use limited to: Kazan Federal University. Downloaded on June 28,2021 at 10:45:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Video from a camera in a separate window.

Fig. 10. New GUI with four streaming cameras view.

Fig. 11. New GUI in a full-screen mode of a single streaming camera view
(selection by an operator).

ACKNOWLEDGMENT

This work was supported by the Russian Foundation for
Basic Research (RFBR), project ID 19-58-70002. The third
author acknowledges the support of the Japan Science and
Technology Agency, the JST Strategic International Collabo-
rative Research Program, Project No. 18065977.

REFERENCES

[1] A. Paolillo, P. Gergondet, A. Cherubini, M. Vendittelli and A. Kheddar,
Autonomous car driving by a humanoid robot, Journal of Field Robotics
35(2),pp. 169-186, 2018.

[2] J. Isogaki, S. Haruta, M. Man-i, K. Suda, Y. Kawamura, F. Yoshimura
and K. Taniguchi, Robot-assisted surgery for gastric cancer: experience
at our institute, Pathobiology 78(6), pp. 328-333, 2011.

[3] T. Martinec, J. Mlýnek and M. Petrů, Calculation of the robot trajectory
for the optimum directional orientation of fibre placement in the manu-
facture of composite profile frames, Robotics and Computer-Integrated
Manufacturing 35, pp. 42-54, 2015.

[4] Pecka, M., Zimmermann, K. and Svoboda, T. Fast simulation of vehicles
with non-deformable tracks. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (pp. 6414-6419). IEEE.

[5] Shimchik, I., Sagitov, A., Afanasyev, I., Matsuno, F. and Magid, E. Golf
cart prototype development and navigation simulation using ROS and
Gazebo. In MATEC Web of Conferences, Vol. 75, p. 09005, 2016. EDP
Sciences.

[6] J. Wang, M. Lewis, and J. Gennari, USAR: A game based simulation
for teleoperation, In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting Vol. 47 No. 3, pp. 493-497, 2003.

[7] I. Mavrin, R. Lavrenov, M. Svinin, S. Sorokin, and E. Magid, Remote
control library and GUI development for Russian crawler robot Servosila
Engineer, MATEC Web of Conferences, vol. 161, 2018, pp. 03016.

[8] I. Mavrin, R. Lavrenov, and E. Magid, Development of a Graphical
User Interface for a Crawler Mobile Robot Servosila Engineer, 11th
International Conference on Developments in eSystems Engineering
(DeSE), IEEE, 2018.

[9] Oros N., Krichmar JL., Smartphone based robotics: Powerful, flex-
ible and inexpensive robots for hobbyists, educators, students and
researchers, IEEE Robotics & Automation Magazine, 2013.

[10] R. F. Siregar, R. Syahputra and M. Y. Mustar, Human-Robot Interaction
Based GUI, Journal of Electrical Technology UMY, 1(1), pp. 10-19,
2017.

[11] S. Suzuki, S. Hasegawa and M. Okugawa Remote control system of
disaster response robot with passive sub-crawlers considering falling
down avoidance, Robomech J 1 (20), 2014.

[12] Servosila official site. https://www.servosila.com/en/index.html
[13] J. Larson, and M. Trived, Lidar based off-road negative obstacle de-

tection and analysis, 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC), pp. 192-197, 2011.

[14] E. Magid and T. Tsubouchi, Static Balance for Rescue Robot Navigation:
Translation Motion Discretization Issue within Random Step Environ-
ment, International Conference on Informatics in Control, Automation
and Robotics (ICINCO), Portugal, 2010, pp 415-422.

[15] Qt 3D Overview. https://doc.qt.io/qt-5/qt3d-overview.html
[16] S. Harmer, Qt 3D: a data-driven renderer for mortals, ACM SIGGRAPH

2016 Talks, 2016, pp. 1-2.
[17] G. Lazar, and R. Penea, Mastering Qt 5. Packt Publishing Ltd, 2016,

pp.196-222.
[18] R. Safin, R. Lavrenov, T. Tsoy, M. Svinin and E. Magid, Real-Time

Video Server Implementation for a Mobile Robot, 11th International
Conference on Developments in eSystems Engineering (DeSE), pp. 180-
185, 2018.

[19] Safin, R., Garipova, E., Lavrenov, R., Li, H., Svinin, M. and Magid,
E. Hardware and software video encoding comparison. In 2020 59th
Annual Conference of the Society of Instrument and Control Engineers
of Japan (SICE) (pp. 924-929). IEEE.

[20] M. Team, Mplayer – the movie player. https://mplayerhq.hu
[21] R. Dantas, C. Exton, and A. Le Gear, Comparing network performance

of mobile voip solutions, 6th IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering (MobileCloud), pp. 43-50,
2018.

Authorized licensed use limited to: Kazan Federal University. Downloaded on June 28,2021 at 10:45:20 UTC from IEEE Xplore. Restrictions apply.

		2021-05-23T15:41:28-0400
	Preflight Ticket Signature

