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Rescue robotics is the application of robotics to the search and rescue domain, aimed at extending the capa-
bilities and increasing the safety of the rescuers. Deployed on a site during a rescue mission, a mobile robot is
teleoperated by a human operator from a safe place. To suggest to the operator a good direction to traverse the
three-dimensional (3D) debris environment, we develop a pilot system, which requires a special path search
algorithm on debris and a proper definition of a search tree. Although the main goal of the algorithm is to keep
the robot maximally stable at every step of its path, in some cases we need the robot to change a 3D orientation
discontinuously through losing its balance. Losing balance on purpose is an essential feature for safe climb-
ing up and going down debris, and it is the central issue of this paper. Exhaustive simulations were used to
structure and analyze data. Experiments with a real robot verified our approach to removing unsuitable search
directions from the search tree and gave important feedback to the algorithm. C© 2011 Wiley Periodicals, Inc.

1. INTRODUCTION

Rescue robotics is the application of robotics to a broad
number of domains where there is a requirement to ex-
tend the capabilities of human rescuers and increase their
safety: urban search and rescue (USAR), planetary and un-
derground exploration, military applications, etc. During a
rescue mission a robot teleoperated from a safe place is de-
ployed at the disaster site for initial exploration purposes,
substituting for a human scouting team. The teleoperated
system consists of a remote operation station [Figure 1(a)]
and a mobile robot platform [Figure 1(b)], connected by a
wireless LAN.

To find a good trade-off between teleoperation and full
autonomy of a rescue robot is a serious challenge (Birk
& Kenn, 2002), and due to the complexity of the task in
a real-world rescue scenario, teleoperation control mode
(Choi et al., 2007) is still preferable to autonomous (Baltes &
Anderson, 2003; Birk, Markov, Delchev, & Pathak, 2006) or
semiautonomous (Ohno, Morimura, Tadokoro, Koyanagi,
& Yoshida, 2007; Suthakorn et al., 2009) rescue robot sys-
tems. Teleoperation, manual control by a human operator
at a distance that is too great for the operator to see what
the robot is doing (Murphy, 2000), requires a constant inter-
action of the robot with the operator for a path and vic-
tims search. The off-site operator cannot use any of the
natural biological sensors as if he/she was a driver inside
the rescue vehicle. Instead, the operator has to judge the

next move on the basis of the limited visual information
from the cameras and his/her previous operational expe-
rience, taking subjective and time-consuming path choice
decisions. While searching a path, the operator has to re-
member, recognize, and diagnose the scene, considering the
camera’s positions and orientations; predict the situation
of a robot getting stuck; and identify the victims, keeping
in mind that any operational error could be fatal for the
victim.

Various solutions to decrease the pressure on the op-
erator include improving the operational graphical user
interface (GUI), the development of a three-dimensional
(3D) mapping sensory system (Zhang, Guo, Nejat, &
Huang, 2007), gravity-referenced attitude display (Lewis
& Wang, 2007), and improved interfaces with input in-
formation filtering (Schilling & Driewer, 2005). Another
approach is to assist the operator through automation
of particular tasks such as victim detection (Bahadori,
Iocchi, Nardi, & Settembre, 2005), extraction of an occu-
pancy grid map from a ranger finder sensor’s data (Birk &
Carpin, 2006), and even providing a basic autonomous sys-
tem for both navigation and victim detection (Birk et al.,
2006). Our proposed solution is an automatic pilot sys-
tem, suggesting to the operator a fairly safe path between
the current location and the target, which is our main
long-term research goal. It will calculate the path with
regard to the robot’s static and dynamic properties and
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Figure 1. Standard framework includes operator (a) and rescue robot on RSE (b); we propose enhancing the standard scheme
with our pilot system (c).

suggest to the operator a good path by means of GUI
[Figure 1(c)]. Yet the final decision as to which path to
apply in a real scenario driving the robot is taken by the
operator.

In this paper we present the estimation of losing bal-
ance on purpose within a simulated debris environment,
called random step environment (RSE) or random step field
[Figure 1(b)] proposed by the National Institute of Stan-
dards and Technology (NIST) (Jacoff, Messina, & Evans,
2001). While searching a safe path through dangerous and
unstable 3D debris, the main goal of any path search algo-
rithm is to keep the robot maximally stable at every step of
its path. However, in some specific cases the robot must be
able to lose its balance and to change discontinuously its 3D
orientation. Without this kind of transition the robot cannot
successfully climb obstacles and in general is not suitable
for debris exploration. To decrease the number of search
directions and make the search feasible, we discretize the
robot’s motion and the huge real state space before the
actual search (Magid & Tsubouchi, 2010b). A search algo-
rithm utilizes a search tree (Cormen, Leiserson, Rivest, &
Stein, 2001); for our problem a dynamically created search
tree cannot be explicitly presented as a skeleton (Russell &
Norvig, 2003). To present it as a function F (Args) = Res, we
need a proper definition of guiding the tree search function
F ; here arguments Args are the robot’s current configura-
tion and the local environment map and output Res is a
set of configurations accessible within one step. The prop-
erly defined function F becomes a branching function of

Steepest Ascent Hill Climbing, Dijkstra, A∗, or any other
path search algorithm, which is out of scope of this pa-
per. This paper presents the particular part of function F

responsible for losing balance on purpose. Predictable bal-
ance loss transitions become a part of the path, and not
enough predictable cases are excluded, gaining a control
at each posture of the path. Our theoretical results were
confirmed with exhaustive simulations and experiments,
removing all unsuitable directions of the search from the
search tree. A gap between the exhaustive simulations and
the real-world experiments (Magid, Tsubouchi, Koyanagi,
& Yoshida, 2010) provided us valuable feedback, which im-
proved the algorithm for final detection and usage permis-
sions of controlled balance losing transitions within the pi-
lot system.

The rest of the paper is organized as follows: The sys-
tem overview is provided in Section 2. Section 3 deals with
the search space discretization issue. We discuss the issue
of static equilibrium and present the qualitative estima-
tion of an expected posture and posture’s color labeling in
Section 4. On the basis of our previous work (Magid et al.,
2010), we extended our considerations for controlled bal-
ance losing motion. We describe the details of the controlled
balance losing in Section 5 and categorize inertial transition
groups in Section 6; these sections are the heart of the paper.
Exhaustive simulations and experiments are described in
Section 7. Section 8 presents new updates for posture-type
detection, whose necessity was revealed by Magid et al.
(2010). Finally, we conclude in Section 9.

Journal of Field Robotics DOI 10.1002/rob



934 • Journal of Field Robotics—2011

2. THE SYSTEM SETUP

Specific mobility requirements of the USAR domain make
crawler-type robots the most suitable choice; wheeled
(Sato, Matsuno, & Shiroma, 2008), legged (Campbell &
Buehler, 2003), and snake-type (Arai, Tanaka, Hirose,
Kuwahara, & Tsukui, 2008) rescue solutions have a more
limited usage. In the huge variety of crawler robot modi-
fications in the USAR field (Carlson & Murphy, 2005), one
of the state-of-the -art robots in the field is the Kenaf robot
(de Hoog, Cameron, & Visser, 2010; Nagatani, Tokunaga,
Okada, & Yoshida, 2008; Yoshida et al., 2010) and similarly
configured robots (Mihankhah, Kalantari, Aboosaeedan,
Taghirad, & Moosavian, 2009; Ohno et al., 2007; Suthakorn
et al., 2009) with a heavy main body, consisting of two
large tracks with a small gap in between and four support-
ing subcrawlers. For our simulation pilot system and ex-
periments, we exploit a simple tractor-like crawler, nonre-
configurable robot with the centroidal location of robot’s
center of mass (CM) corresponding to the main body of
Kenaf without subcrawlers [Figure 1(b)]. The specifications
of Kenaf fully equipped for a rescue search mission in this
basic configuration are presented in Table I.

USAR implies a dangerous, unstable debris site of a
building heavily damaged by a disaster, and one of the
most popular debris environment models is the so-called
RSE or random step field, proposed by NIST (Jacoff et al.,
2001). RSE is a set of random steps with equal width
and depth but different heights [Figure 1(b)]. Similar to
real debris behavior, a big variety of optional assemblies,
easy setup, and storage made RSE attractive test arenas
for evaluation of USAR robot performance and an oblig-
atory test arena for RoboCup Rescue competitions (Sheh,
Kadous, Sammut, & Hengst, 2007; Suthakorn et al., 2009;
Wang, Lewis, & Gennari, 2003). Each rescue group uses
its own RSE setup, which is more or less similar to an
official RoboCup Rescue version. Our RSE is assembled
from 85 × 85 mm wooden blocks of 0-, 90-, 180-, 270-, or
360-mm height; 0-mm height corresponds to the ground
level around the RSE patch.

Table I. Kenaf specifications.

Parameter Measurement

Maximal inclination
Dynamic 60 deg
Static 80 deg

Main body length 584 mm
Main body width 336 mm
Track width 150 mm
Height 270 mm
Weight 19.6 kg

3. SEARCH SPACE AND SEARCH TREE

Search tree function F (Args) decides on possible next steps
of the robot from a given current location and orientation.
In a standard two-dimensional (2D) navigation with each
cell of the state space defined as “free” or “occupied” (ob-
stacle), a transition between two free cells is automatically
legal (Latombe, 1991). In our case of a 3D environment,
“possible” states refer to statically stable and “impossible”
states to statically unstable postures, as we will explain in
Section 4. But even in the case of two adjacent “possible”
states, the transition between them is not always possible:
after checking two adjacent postures of the path, we must
confirm the transition between them as well. To decrease
the number of search directions, we discretize the robot’s
motion and the state space before the search; we have to
admit losing some generality to make the actual path plan-
ning possible. We studied several levels of search space dis-
cretization for XY coordinates of the environment and con-
cluded that discretizing each 85 × 85 mm cell of RSE into
5 × 5 cells of the internal robot map with the cell size of
17 × 17 mm is the best choice for our problem solu-
tion (Magid & Tsubouchi 2010b); we refer to it as DISC5
discretization.

Translation and rotation are the two motion patterns
of the Kenaf robot. The translation step is defined as a one-
cell-length step forward in the direction of the robot lo-
cal frame’s axis XL (Figure 2). The rotation step is a 5-deg
change in robot orientation θ , rotating the XL axis clock-
wise (right) or counterclockwise (left) with respect to ZL

(Figure 2). At each node of the search tree, the branching
function validates a three-neighborhood of the node—go
straight or turn left/right. All impossible search directions,
different for rotation and translation steps, are immediately
cut off from the search tree, and the path search proceeds in
a most promising direction. When a proper discretization
level is chosen and search tree branching function F is well
defined, a search algorithm based on F successfully oper-
ates in a discretized RSE.

4. STATIC BALANCE AND POSTURE ESTIMATION

In a 3D debris environment with a complicated definition
of an obstacle, the path search algorithm should be able to
tell whether a specific robot configuration is possible. This
includes obstacle collision avoidance and situations when
the robot is to keep the current configuration without slid-
ing or turning upside down, i.e., the robot’s posture must
be stable.

4.1. Static Stability

For general vehicle stability a minimal necessary condi-
tion is static stability. In most papers dealing with sta-
bility and balance issues, the authors consider a legged
robot walking on uneven terrain (Bretl & Lall, 2006; Hong
& Cipra, 2006; Klein & Kittivatcharapong, 1990; Mason,
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Figure 2. Steepness θX and moment θY . XG, YG,ZG and
XL, YL,ZL are global and local frame axes, respectively. Xp, Yp

are projections of XL, YL on the XY plane formed by XG, YG.

Rimon, & Burdick, 1997); in these cases a robot avoids
falling by applying contact forces with its feet on the
ground to compensate for gravity without causing a slip (a
so-called static equilibrium). Assuming a slow enough mo-
tion to neglect inertia, the robot always must be able to
achieve static equilibrium. Whereas for a flat terrain some
simple heuristic tests are enough to check stability, an irreg-
ular and steep debris environment requires a check that the
robot is in equilibrium at every posture.

To check static stability, we utilize a support polygon.
Extending a legged robot’s definition to our crawler robot,
we define a support polygon as a 2D convex hull of the
ground projection of all expected contact points of the
robot’s crawlers with the RSE. If the ground projection of
a robot’s CM stays inside the support polygon, we know
that contact forces exist that achieve equilibrium, and we
do not have to compute them explicitly. The specific fea-
tures of RSE result mainly in the number of contact points,
rather than the entire track contact, and constrain all con-
tact points to lie on the edges and at the vertices of the en-
vironment cells and on the perimeter of the robot crawlers.
Assuming sufficient friction between the crawlers and an
obstacle surface, we define an appropriate posture of the
robot, based on the literature survey and mobility exper-
iments (Magid, Ozawa, Tsubouchi, Koyanagi, & Yoshida,
2008). If at least one of conditions A is not satisfied at pos-
ture K , posture K is not appropriate:

1. Both crawlers contact a terrain, and there are no con-
tacts in the gap between them, thus escaping situations
of getting stuck.

2. There are at least three distinct noncollinear contact
points.

3. A surface inclination does not result in slipping or turn-
ing upside down.

4. A proper location of the robot’s CM: no tip over due to
CM displacement.

4.2. Qualitative Posture Estimation

In Magid et al. (2008) we presented an algorithm for static
balance posture estimation of the robot’s posture in a spec-
ified configuration, assuming the centroidal location of the
robot’s CM. In this section we briefly describe the static bal-
ance posture types and assign them color labels.

From the point of view of static balance estimation, we
distinguish six posture types, presented in Table II. We de-
fine the red state that presents a forbidden posture. At the
magenta state the robot has to climb up or to slide down a
vertical slope of the environment (Figure 3). The cyan state
is assigned for a robot’s jumping up/down. To distinguish
statically stable green and yellow states [Figure 4(a)] we ap-
ply normalized energy stability margin (NESM) (Hirose,
Tsukagoshi, & Yoneda, 1998), which shows how statically
stable the posture is: high-quality balance (G) or average
quality (Y).

Last, orange state is something between red and green
states. This posture is possible, but not stable. It does not
result in a robot’s turning upside down but does not guar-
antee a single stable posture because there exist two op-
tions, and the real one depends on the preceding posture
and moving direction. Figure 4(b) demonstrates a side view

Table II. Color label explanation.

Label Balance quality Technical details

Red Turn upside down or
get stuck

Pitch > π/4 or roll
> π/6 or at least
one of conditions A
(Section 4.1) is not
satisfied

Orange Lose balance on
purpose

Two optional postures
exist

Magenta Climb up or slide down Oscillations in
posture estimation
algorithm

Cyan Jump down Jump of CM between
two stable postures
< 50 mm

Yellow Fair NESM parameter < 1
Green Good NESM parameter ≥ 1

Journal of Field Robotics DOI 10.1002/rob
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Figure 3. Magenta state: In climbing up mode robot moves
from (a) to (d); in sliding down mode from (d) to (a).
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Figure 4. (a) Green state presents a stable posture. (b) Orange
state is unstable because the robot‘s CM location results in two
optional postures: O1 (left) and O2 (right).

of an orange state with two possible postures. The orange
state is very important, because it allows the robot to lose
balance on purpose when, for example, the robot traverses
the barrier. Traversing the barrier includes climbing up and
going down with losing balance twice on top of the barrier.
We denote by O1 the first part of the orange posture be-
fore the robot loses its balance. O2 is the second part, which
occurs after the robot has lost its initial balance; the robot
changes its posture discontinuously at that point and ob-
tains balance again in a different body orientation. Starting
at O1 posture, we immediately obtain O2 as a result of iner-
tia, and there is no way to obtain O2 posture without pre-
viously obtaining O1 posture. Orange state is a very gentle
state and should be used with special care in the translation
motion step (Magid & Tsubouchi, 2010b; Magid et al., 2010)
and be completely forbidden for a rotational step (Magid
& Tsubouchi, 2010a). Orange posture is the central issue of
this paper.

Further, we denote by R posture a posture in which
static balance corresponds to a red state type, O posture
for orange, M posture for magenta, Y posture for yellow,
G posture for green, and C posture for cyan state type. The
reader should not be confused by Z posture, which is not re-

lated to the color label and is described in detail at the end
of Section 4.3. For verifying the proposed qualitative pos-
ture estimation, we constructed a simulation in a Matlab
environment. The path proposed by the human operator in
the given environment was analyzed with respect to static
stability and compared with the expected results. Then the
path evaluated as “good” by the simulator was repeated by
the operator in a set of environments identical to the simu-
lated ones, confirming that our qualitative discretization of
the posture types is proper (Magid et al., 2008).

4.3. Describing a Posture

To characterize a robot’s posture qualitatively, we use the
color labels. To decide on legal transitions between two
successive states, we use a combination of the five follow-
ing variables.1 Steepness θX is the angle showing the steep-
ness of the RSE at the current robot configuration and rota-
tional moment around the robot’s transversal YL axis (Fig-
ure 2). Moment θY is the angle indicating the current rota-
tional moment around robot’s lateral XL axis. The choice
of θX corresponding to YL and θY to XL emphasizes the
tip-over direction in case of a failure. Contact points qual-
ity (CPQ) depends on the angle θCPQ between the robot’s
crawlers and the edges of the RSE cells and affects the
robot’s ability to climb obstacles, losing balance on pur-
pose and going down safely. Inclination (Inc) is the steep-
ness angle θX sign—positive while ascending and negative
while descending. With respect to this parameter, we spec-
ify three groups of posture sets: a climbing up the steps of
the RSE posture QUinc , a going down posture QDinc , and a
neutral inclination posture QZinc . Thus, with respect to in-
clination, the postures are categorized into three types: Z
(neutral), U (climbing up), and D (going down). M sign
(MS) is the moment angle θY sign; similarly group SPMS is
for all postures with positive M sign, and SNMS with nega-
tive and SZMS with neutral postures.

Inc and MS signal about discretization problems,
pointing to a missed posture between two successive pos-
tures; three other variables are emphasized for the experi-
mental work. Combining Inc and MS, we define a neutral
Z posture, a posture with the robot’s body parallel to a hor-
izontal patch of RSE: QZinc

⋂
SZMS . Further we denote each

posture as Col[Inc], where Col is the color and Inc is incli-
nation. For example, we define G[Z] as a green neutral Z
posture, G[U] as a G posture with Uinc, and G as a G pos-
ture, covering all Inc cases if no other technical details are
explicitly specified.

5. CONTROLLED BALANCE LOSING STATE

Kenaf supports translation and rotation types of motion,
and the controlled balance-losing state naturally appears

1In Magid and Tsubouchi (2010a and 2010b) and Magid et al. (2010)
we used six variables; however, after generalizing translation and
rotation cases, we simplified this to five variables.
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in both cases. In practice rotational motion in the simula-
tion and in the real world differ a lot. The quality of the
surface, the number of real contact points due to compli-
cated interaction between an obstacle and a rubber crawler,
the robot’s speed, the accumulated error in the control sys-
tem, communication delay, etc., could result in a high level
of imprecision. To ensure that the simulated path could be
repeated by a human operator in a real scenario, we for-
bid any dangerous and unpredictable transitions between
two states. Appearance of the O posture is a nontrivial and
hardly predictable situation, so we completely forbid it for
rotational motion and further deal only with a translation
case.

5.1. Orange Posture Contact Type

We distinguish three main types of O posture with regard
to the physical characteristics of the contact of the robot’s
crawlers with the RSE:

Accidental O posture (AOP) is obtained while passing
through the corner of the RSE cell.2 If the robot posture
(x, y, θ ), preceding AOP, would become (x ± δx , y ± δy , θ )
with δx, δy ∈ (0, εshift], this AOP will not be obtained at the
next translation step, but a differently colored posture will
arise from posture shift in any direction by δ. Inertial tran-
sition through AOP is theoretically possible, but when the
simulated path containing AOP is to be repeated in the real-
world scenario by the operator, any small deviation will re-
sult in drastic path change and even in the robot’s turning
upside down. A detailed discussion on εshift choice is pre-
sented in Section 7.2. For Matlab simulations in Section 7.1,
only eight main directions of the numerical posture shift
(x ± δx , y ± δy ) are chosen based on the properties of RSE:
O-posture occurrence is strongly related to edges and ver-
tices of RSE cells, and particular signs of AOP presence are
described in Section 5.2.

Inevitable O-posture IOP-1 appears when the robot is
passing through an edge of RSE in close vicinity to the RSE
corner. Thus, a shift by δ in one direction preserves the cur-
rent O posture, whereas a shift in any other direction pro-
duces a differently colored posture.

Inevitable O-posture IOP-2 appears when the robot is
passing through an edge of RSE far enough from the RSE
corner. In this case, shift of CM in two opposite directions
by δ creates an identical O posture, whereas other directions
produce G posture (mainly) or M/R posture (rarely).

2From here further we explain the idea of AOP, IOP, and O1 → O2

transition groups of Section 6 with simple examples, whereas in
both the simulation and real-world experiments the cases may be
much more complicated.
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Figure 5. Discretization issue: (a) Shift for AOP/IOP detec-
tion, (b) explicit O posture, and (c) missed O posture.

Figure 5(a) presents eight numerical posture shift di-
rections and two practical posture shift directions for the
robot’s body (the gray rectangle), explained in detail in
Section 8. Figures 5(b) and 5(c) present the idea of discretiz-
ing a continuous path and evaluating the robot’s postures
at sample points: Figure 5(b) shows an explicit appearance
of O posture between two G postures at t − 1 and t + 1 sam-
ples; Figure 5(c) displays a missed O posture due to a poor
discretization level. AOP can rarely appear explicitly, but
in most of the cases it is missed, being a kind of point-type
singularity, and both types of IOP have to be continuous in
at least one of the practical directions.

5.2. Discretization Issue and Forbidden Sequences

On the basis of a large set of experiments with the
Kenaf robot in several RSEs and exhaustive simulations,
we summarized the main properties of O posture. Be-
cause O1 → O2 transitions should be applied with spe-
cial care, we restrict the appearance of O postures within
the search tree neighborhood definition function F . Ow-
ing to the level of discretization, in some cases we miss
the explicit appearance of O postures. To overcome the
imperfectness of the discretization and detect a missed O
posture, we carefully compare any suspicious successive
postures P1 and P2 (Magid & Tsubouchi, 2010b). The re-
sults showed that there is a missed intermediate O pos-
ture between first posture P1 and second posture P2 of
the pair for G[Z] → G[D] (Figure 6) and G[U] → G[Z]
translations. With an infinite level of discretization at a
specific point of interest at the edge instead of sequence
G[Z] → G[D] (Figure 6), we would obtain a chain G[Z]→
O1[Z] → O2[D] → G[D] with the only difference between
G[Z] and O1[Z]: whereas for a human observer the robot’s
posture looks completely the same, the closer the robot
gets from G[Z] to O1[Z] the more unstable the posture be-
comes and finally at O1[Z] the balance will be lost. Sim-
ilarly, the posture gradually becomes more stable while
moving away from O2[D] to G[D]. In the three following

Journal of Field Robotics DOI 10.1002/rob
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Figure 6. Translation from G[Z] (a) to G[D] (b), missing intermediate O posture; black arrows show the moving direction.
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Figure 7. A hypothetically possible transition between two stable postures postures from (a) to (b) has a missing intermediate
AOP type O posture, which means that the real transition is impossible.

cases there is a missed AOP between P1 and P2, both G or
Y postures.

Missed AOP Transitions:

1. If there is a sign change for θX or θY between P1 and P2
(Figure 7).

2. If a change in θX and/or θY between P1 and P2 ex-
ceeds the predefined thresholds |�θX| > TMAX, |�θY | >

ε, where TMAX
.= 8 and ε

.= 1 deg.
3. If for θX or θY |�θX|, |�θY | ∈ [TMIN, TMAX], where

TMIN
.= 3.5 deg.

Another two special cases in which a rarely appearing
missed O posture cannot be detected with the previously
suggested methods (Magid & Tsubouchi, 2010b; Magid

et al., 2010) are translations G[U] → G[U] and G[D] →
G[D]. To solve this problem, we extend the previously de-
clared cases as follows.

Extended Uniform Transitions:

1. Uniform climbing: G[U] → G[U], θX(P2) ≥ θX(P1),
|�θX| ≤ TMAX, |�θY | ≤ ε.

2. Missed M posture at climbing: G[U] → G[U], θX(P2) ≥
θX(P1), |�θX| > TMAX, |�θY | ≤ ε.

3. Missed O posture at climbing: G[U] → G[U], θX(P2) ≤
θX(P1), |�θY | ≤ ε; further AOP/IOP check is done (Sec-
tion 8).

4. Uniform descending: G[D] → G[D], θX(P2) ≤ θX(P1),
|�θX| ≤ TMAX, |�θY | ≤ ε.
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Figure 8. O1 → O2 transition verification while climbing up (a) and going down (b).

5. Missed M posture at descending (i.e., sliding down):
G[D] → G[D], θX(P2) ≤ θX(P1), |�θX| > TMAX,
|�θY | ≤ ε.

6. Missed O posture at descending: G[D] → G[D],
θX(P2) ≥ θX(P1), |�θY | ≤ ε; further AOP/IOP check is
done (Section 8).

7. Missed AOP: G[U] → G[U] or G[D] → G[D] with
|�θY | > ε.

Even though extended uniform transitions of types 3 and 6
appeared only a few times among a total 6 million cases in
the exhaustive simulation of the RSE, we expect a greater
appearance in a real-world scenario. For all simulations we
used a discretization DISC5. We calculated TMIN by maxi-
mizing the difference �θX between two successive G pos-
tures with the optimization method, updated it through a
set of simulations, and finally set it to TMIN

.= 3.5 deg; sim-
ilarly TMAX

.= 8 deg.
The three cases of missed AOP transitions together

with extended uniform transitions of type 7 and transition
pairs M → O, O → O,3 and O → M are considered to be
dangerous sequences and are recolored into R postures. As
an example, consider a pair O → O: within just one step
the robot will have to lose balance twice; this mean climb-
ing and going down through a corner of the RSE cell with a
very small contact square between one of the crawlers and
a cell, being close to the AOP case.

O posture is more important and has a higher cost in
path planning, so in the case of O posture miss due to the
discretization issue, we recolor the second posture P2 of the
sequence into O color and then determine its type. Because
there are no real data for deciding on the O-posture type
in this case, we initially had to use an approximation. On
the final stage of adjusting the loop theory—simulation—
experiments, a more complicated detection mechanism was
developed (see Section 8).

To ensure a smooth transition from O1 posture to O2,
we verify that there is no danger to the robot’s sensors due
to significant changes in θx, θy (Figure 8). All newly ob-
tained contact points of the robot’s crawlers with the RSE

3Two consequent distinct O postures, not O1 → O2 transition.

at O2 are allowed to change their Z coordinate for a value
within a predefined safety interval with regard to corre-
sponding contact points at O1. We defined experimentally
two intervals of the change: safe interval as [0 mm, 90 mm]
and dangerous interval as [90 mm, 180 mm]. Maximal Z

coordinate change for one of the contact points is the one
that defines the interval for the whole posture. Although
safe interval is preferable and dangerous should be mini-
mized, any higher Z coordinate change will definitely de-
stroy the sensors.

6. ORANGE TRANSITION GROUPS

Using parameters presented in Section 4.3, we define 10 dis-
tinct groups of all optional O1 → O2 transitions resulting
from inertia of translational movement.

(OO1): O[Z] → O[D]. The robot being in a neutral pos-
ture on a flat pattern of the RSE approaches an edge of a
barrier or RSE cell, loses its balance at the edge, and
switches to going down mode. We expect high appear-
ance of this type of transition. Figure 9 demonstrates the
IOP-1 climbing case, when the robot’s CM is too close
to the vertex of RSE cell. Figure 10 demonstrates a safe
IOP-2 climbing case, which is the most usual case of
OO1.

(OO2): O[Z] → O[U]. The robot being in a neutral pos-
ture on a flat pattern cannot lose its balance so that it will
switch to climbing up mode.

(OO3): O[U] → O[D]. The robot cannot immediately
switch from climbing up to going down; even in the AOP
case, it must pass through a neutral posture, i.e., this change
is physically impossible.

(OO4): O[U] → O[U]. A rare case, when the robot
slightly changes orientation while climbing from one cur-
rent obstacle to another. Usually the difference in orienta-
tion is so small that it is hardly noticed visually but only
analytically in the transformation matrices. For example,
two rotation matrices4 O1

Z R and O2
Z R for the OO4 case are

4Rotation from neutral posture Z to the actual posture O1 or O2.
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Figure 9. IOP-1: Robot’s CM is too close to the vertex of RSE cell. OO1: Going down from (b) to (a). OO5: Climbing up from (a)
to (b).
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Figure 10. IOP-2. OO1: Regular safe descent from (b) to (a). OO5: Regular safe climb from (a) to (b).

as follows:

O1
Z R =

⎛
⎝

0.9993 0.0361 0
−0.0308 0.8526 0.5216
0.0188 −0.5213 0.8532

⎞
⎠ ,

O2
Z R =

⎛
⎝

0.9995 0.0263 0.0161
−0.0308 0.8526 0.5216

0 −0.5218 0.8531

⎞
⎠ .

Further, we distinguish two subtypes of this transition:

A. If θX(P2) < θX(P1), the robot will keep climbing up,
and at the transition point the slope of the environ-
ment becomes less steep.

B. If θX(P2) ≥ θX(P1), the transition is physically impos-
sible.

(OO5): O[U] → O[Z]. The robot started to climb up a
barrier and upon reaching the top, as the CM approaches an
edge of the barrier/RSE cell, it switches to a neutral posture

on a flat pattern. Similar to OO1, this is the most regular
case.

(OO6): O[D] → O[D]. A rare case, when the robot
slightly changes its orientation while going down from a
current obstacle to another. Similar to case OO4, the change
in orientation usually could hardly be noticed visually, and
two subtypes of the transition are as follows:

A. If θX(P2) > θX(P1), the robot will keep descending and
at the transition point the slope of the environment
becomes more steep.

B. If θX(P2) ≤ θX(P1), the transition is physically impos-
sible;

(OO7): O[D] → O[U]. Similar to OO3, this change is
impossible due to the RSE rules. In simulation both OO3
and OO7 appear very rarely and only due to accumulated
numerical errors.
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Figure 11. OO9 AOP case.
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Figure 12. OO9 IOP-2 case.

(OO8): O[D] → O[Z]. The robot while in going down
mode cannot immediately switch to a neutral posture by
losing the balance.

(OO9): A group of postures in which the θy differ-
ence between O1 and O2 exceeds 5 deg and neither O1
nor O2 is neutral. In some cases the OO9 transition arises
due to accumulated numerical errors, and after an ad-
ditional posture check it turns out to be not O posture
but G posture. In other cases it is AOP, a big point-type
change with unpredictable behavior (Figure 11). Simula-
tions showed that this case is a rare one, and we decided
to forbid it completely for IOP1 and try to avoid it for IOP2
(Figure 12).

(OO10): O posture appears between two identically
orientated G postures and gives us a hint on a missed M
posture between O2 and the next G posture (Figure 13).

We group OO cases into three clusters:

1. OO1 and OO5 are the two most regular cases of losing
balance while climbing up and going down.

2. Cases OO4A, OO6A, OO9, and OO10 are rare cases,
which we would like to avoid, yet they could be in-
cluded as a part of the path if no better option exists.

3. Cases OO2, OO3, OO4B, OO6B, OO7, and OO8 theoreti-
cally could not exist in RSE and may appear in the simu-
lation due to discretization and accumulated numerical
error issues.

Because O posture is very important, we must take
care to distinguish and partially forbid the appearance of
AOP, IOP1, and IOP2 cases for regular and undesirable
groups (Section 7.1); the detection procedure is described
in Section 8.

7. SIMULATION AND EXPERIMENTS

The only real proof of any theoretical hypothesis is an
experimental proof. Thousands of different situations can
occur in a completely random RSE, and it is physically
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Figure 13. OO10 IOP-2 case: A missed M posture between O-posture inertial sequence O1(a) → O2 (b) and the next G posture (c).
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Figure 14. A complicated environment of size 71 × 71 cells, covering all main types of environmental obstacles.

impossible to execute such a huge number of experiments.
The exhaustive simulations helped to confirm our hypoth-
esis on impossible situations due to the physical rules
of RSE. Pairs of postures impossible in the real world
are also impossible within the simulation. Because the re-
verse is not true, the simulator cannot substitute for the
experiments but helps to structure the data and remove
the impossible types of sequences, saving time and ef-
fort. Exhaustive simulations for environment existence in
MATLAB and experiments with the Kenaf robot in RSE
gave valuable feedback for our theory and finally pro-
duced a branch cutting condition for the path search al-
gorithm. Successive transition patterns of O1 → O2 will
be integrated in the search algorithm as a part of the
neighbor opening and branch cutting function F (Args) =
Res. At the end of this section we present a set of ex-
periments in an unstructured 3D debris environment,
which confirmed our results for RSE and pointed out
some differences between unstructured real-world and RSE
approximations.

7.1. Simulation Summary

To simulate all possible combinations of two sequent pos-
tures, we created a huge environment of 71 × 71 cells
(Figure 14) that includes all typical obstacles, usually ap-
pearing in the RSE: horizontal and diagonal barriers, pairs
of parallel barriers, valleys, and traversable and non-
traversable pikes and holes. An exhaustive check of all pos-
sible pairs of neighboring postures connected with a trans-
lation step was done with voting for each group. For first
robot posture of the pair, we took every node of the grid as
CM location5; a second posture of the pair was calculated
as a 1-unit-length change of CM’s location in the direction
of the robot’s heading direction θ . The simulation included
91 robot orientations θ ∈ {0, π/180, 2π/180, . . . , 89π/180,
π/2}. In addition to pointing at the impossible (empty)
cases, the simulation reveals the rare cases and the most
common.

5The nodes too close to the borders of the map were excluded.
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Table III. Orange transition types distribution.

Transition type Appearance percentage

OO1 44.38
OO2 0.05
OO3 0.14
OO4 0.37
OO5 53.22
OO6 0.5
OO7 0.04
OO8 0.08
OO9 0.85
OO10 0.38

Table IV. Main, undesirable, and forbidden transitions.

Transitions Appearance percentage

Main 93.47
Undesirable 1.54
Forbidden 4.99

The total number of posture pairs was more than
6 million. Among them O posture appeared in 1.34% of the
pairs—1.3% of them were further processed for detection
of the O-transition type, and only 0.04% were immediately
forbidden, as was explained in Section 5.2. As we expected,
most of the O1 → O2 transitions are of OO1 and OO5 type;
they cover 97.6% of all cases; rare cases appear in only 2.1%
of the cases, whereas the rest (0.2%) are forbidden cases
(Table III). To distinguish IOP and AOP cases theoretically
within the simulation, we used δx = δy = 0.0017 mm; the
choice of δ for practical use is explained in Section 7.2.

The results of the simulation are summarized in the
next tables, corresponding to the appearance of O postures.
We listed as main transitions IOP1 and IOP2 cases of OO1
and OO5 (Table IV). Undesirable transitions include IOP1
and IOP2 cases of OO4,6 OO6, OO10, and IOP2 cases of
OO9 because we prefer to avoid those transitions until we
do not have another choice. Forbidden transitions are all
AOP cases, IOP1 cases of OO9 and all cases of OO2, OO3,
OO7, and OO8. We manually checked a large number of
forbidden transitions appearing in the simulator and our
expectations were confirmed—all of them appeared due to
the accumulated numerical errors. Whereas the IOP-1 case
of the OO9 group is not a numerical error, this kind of
transition is very dangerous and is also treated as a forbid-
den case. Forbidding dangerous and suspicious transitions,
which still may be theoretically possible in some rare cases,

6On the initial stage of the simulation, OO4 and OO6 were treated
as undesirable, and only after the experimental stage were they
subdivided into A and B subgroups.

Table V. IOP-2 transition type posture distribution.

Transition type Appearance percentage

OO1 41.69
OO2 0.05
OO3 0.14
OO4 0.25
OO5 50.71
OO6 0.37
OO7 0.04
OO8 0.08
OO9 0.54
OO10 0.37

limits our path choice but increases security for the practi-
cal use.

In total, IOP2 is 94.24% of all O1→ O2 transitions and
again 92.4% of them are OO1 and OO5 (Table V); IOP1 is
1.07% and AOP is 4.68%. This means that forbidding the
dangerous 4.68% of all AOP appearances and the unsuit-
able 0.31% cases of IOP1 and IOP2, we still have enough
freedom for losing balance on purpose—95%, including
1.54% of undesirable appearances of OO4, OO6, OO9, and
OO10.

7.2. Experimental Definition of AOP and IOP

To decide which εshift and δ to choose for the defini-
tion of AOP and IOP, we initially conducted a set of
simulations. Simulations are very time consuming, so we
could not repeat the execution of all 6 million pairs
with different choices of δ. As a test group we have
chosen four orientations: {0,15,45,71} deg, and unfor-
tunately we could not establish a clear dependence of
AOP/IOP-1/IOP-2 appearance for different choices of δ ∈
{17,8.5,4.25,1.7,0.17,0.017,0.0017} mm. This points again to
the important issue of discretization and vulnerability of
the computer simulation to accumulating numerical errors.
Any value for ε alone cannot guarantee a proper decision
on AOP/IOP-1/IOP-2 type. Shifting the O posture itself
and then taking a decision on the type is not effective—we
must also check the behavior of the previous and next to
O posture poses of the path. If 3D orientations of previous
and next postures shifted in two opposite directions would
be coincident with the nonshifted ones up to some level, we
got a IOP-2-type O posture. If only one direction works, it is
IOP-1; otherwise, it is AOP. Our small theoretical shift like
0.0017 mm (0.001 units at DISC5) is not an option repeat-
able by the human operator, so the final choice of εshift limit
and δ for further pilot assistance was done experimentally.

For these experiments we created two types of RSE—
a flat pattern and a horizontal barrier—and marked start
S and target T postures (Figure 15). In the first set of ex-
periments the robot traversed RSE from S to T at a given
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Figure 15. Side shift detection experiments: (a) start,
(b) target, and (c) three different shifts at the target position.

orientation, and we measured the side shift of the robot’s
corner points relative to the desired posture T. In the sec-
ond set the robot went to the target posture T and back,
and the shift at start posture S was measured after return-
ing. Twenty-eight experiments were conducted for orienta-
tions θ = 45 and 90 deg for a path length of 117 cm (two
robot lengths), which is initially set as a short distance path
planning range. In the worst case the shift was 77 mm to-
gether with a significant orientation change, whereas in
all other cases the shift stayed within 20-mm range. Fig-
ure 15 demonstrates the side shift detection experiments at
θCPQ = 90 deg at a flat pattern RSE: start (a) and target (b)
positions and three different shift results of the front right
corner point of the crawler (c) at the target posture. Finally,
we concluded that a side shift of 20 mm is a good choice for
short-range path planning.

7.3. Experimental Constraints on Inertial
Transitions

The goal of this set of experiments was to confirm the
proper CPQ angles θCPQ for the main OO1 and OO5 cases.
Whereas the choice of climbing up at OO5 is restricted by
the climbing abilities of the Kenaf robot at M postures,7

the choice at OO1 depends purely on the O1 → O2 inertial
transition. For both going down at OO1 and climbing up at
OO5, the best CPQ angle θCPQ choice is a straight angle of
90 deg, whereas there exist angles �1

b1 and �2
b1 so that

• for all CPQ angles θCPQ ∈ [0,�1
b1], climbing up is impos-

sible.
• for all CPQ angles θCPQ ∈ [0, �2

b1], the robot has a high
probability of turning upside down while losing balance

7For the OO5 sequence the controlled balance losing follows imme-
diately the climbing up process, which must succeed to advance
the CM toward the O posture at the edge before the inclination of
the robot’s body becomes critical.

Figure 16. Going down through CBL OO1 posture at θCPQ =
87.5 deg, using a tricky horizontal barrier.

on the edge of the barrier when it switches to a going
down mode.

To detect experimentally �1
b1 and �2

b1, we performed 60 ex-
periments with a simple RSE horizontal barrier for climb-
ing up and 58 experiments with a very tricky horizontal
barrier for going down. A tricky barrier idea (Figure 16)
was to make Kenaf turn upside down easily at most of the
orientations, so that forbidding all of them would minimize
the risks while navigating in real environments. Starting
from 45 deg for the θCPQ angle, we explored the interval
[0, 90] deg in both directions to decide on the approximate
values of �1

b1 and �2
b1, decreasing the search interval each

time after success or failure by 2. For each orientation the
experiment was repeated three to four times.

Climbing up experiments at angles close to a straight
angle showed that for θCPQ in a range of [80, 100] deg
Kenaf is slipping on the spot for a while, adjusting its ori-
entation, and starts climbing only after obtaining almost a
straight angle value of θCPQ. So we decided to forbid CPQ
angles in ranges [80, 90) and (90, 100] deg. A small inessen-
tial adjustment within a few degrees of a straight angle
sometimes occurred after the first contact of the crawlers
with the barrier when experimenting in the range [80,
60] deg. At θCPQ less than 20 deg instead of climbing up
Kenaf slipped on the spot, gradually increasing its θCPQ
angle. As θCPQ reached 35–45 deg, Kenaf started climbing
and after the OO5 transition on top of the obstacle it al-
ready had a different orientation θ and θCPQ. This behavior
was repeated in all cases; whereas initially for climbing we
were using the slow speed of 7 cm/s, trying to rush the
barrier at a higher speed led to the same results. Figure 17
demonstrates a climbing up experiment at θCPQ = 19 deg;8

black lines show the RSE cell orientation and the initial
Kenaf orientation [Figure 17(a)]. As the robot climbed the

8Angle’s high level of precision was obtained after processing the
photographs and videos of the experiment.
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Figure 17. Significant orientation change while climbing up a
horizontal barrier at θCPQ = 19 deg: (a) initial configuration and
(b) final configuration at the top (result) vs. expected.

barrier, its orientation significantly changed from the initial
one [Figure 17(b)] and the θCPQ angle change was 24.9 deg,
increasing θCPQ to 43.9 deg; white lines show the RSE cell
orientation and the final Kenaf orientation; black line the
initial orientation, which was expected on the top of the
barrier. At angles θCPQ ∈ [20, 40] deg a significant adjust-
ment up to 15 deg toward a 45-deg angle occurred in about
half the cases for each experiment. At angles θCPQ ∈ [40, 45],
the adjustment was relatively small. In all cases the maxi-
mal self-adjusted θCPQ after climbing up the barrier was 44–
45 deg, which defined the lower boundary of the successful
climbing up interval �1

b1 = 40 deg. Thus, a good choice of
CPQ angle θCPQ for climbing up and for O1 → O2 transi-
tion at OO1 is θCPQ ∈[40,80]

⋃
90 deg.

For OO1 at angles θCPQ = 75 deg and less, instead of
switching to going down mode Kenaf was very close to
turning upside down; Figure 16 shows the example of the
OO1 experiment. Finally we set �2

b1 = 80 deg; this leaves
only a 20-deg interval for successful going down CPQ an-
gles θCPQ ∈[80, 100]. However, on the top of the barrier, we
usually have a possibility to adjust the orientation and θCPQ
with a few rotational steps so that the further process of los-
ing balance on purpose while going down will be smooth
and safe.

7.4. Experimental Proof of Existence for
Undesirable Inertial Transitions in RSE

The goal of this set of experiments was to confirm with
a number of examples that undesirable transitions OO4,
OO6, OO9, and OO10 in RSE are still possible but danger-
ous and hard to repeat by a human operator. Because these
situations are rare relative to the common OO1 and OO5
cases, as an input we used appearances of the undesirable
transitions within the simulator and had each time to re-
arrange the RSE configuration, respectively. For this reason
such experiments have a serious lack of spanning a gen-

Figure 18. Identical to simulation experiment for OO10 IOP-2
case: (a) front view and (b) side view.

eral generic case but could only confirm the possibility of
a particular transition. Figure 18 shows front (a) and side
(b) views of the experiment on the OO10 IOP-2 case, cor-
responding to a simulated example of Figure 13. Each ex-
periment for the existence was repeated 10–15 times, be-
cause even positioning Kenaf more or less precisely at the
start posture S did not give exactly the same results ev-
ery time, emphasizing the complexity of repeating those
types of O1 → O2 transitions by the human operator. In ad-
dition transitions of the OO10 type in some cases showed
an unstable behavior; for example, during the experiment
presented in Figure 18 we repeated the same transition 16
times, and in five trials the robot succeeded in skipping a
controlled balance losing O posture and next climbing up
M posture and continuing toward the next G posture due
to the motion’s inertia and some displacement of CM from
the ideal assumption.

7.5. Unstructured 3D Debris Field Experiments

The goal of conducting a set of experiments in an unstruc-
tured 3D debris field was to confirm the results obtained in
RSE and to estimate the level produced by the RSE approxi-
mation with regard to a real-world rescue scenario. For this
set of experiments, we created a garbage pile of about 2.5
× 2 m [Figure 19(a)], consisting of wooden blocks (cells of
RSE) and concrete blocks (A, F, G), pipes of different diame-
ters (I, J), metal plates (D, H), bricks and stones (B), pieces of
furniture (E), clothes (K) and other litter. Prior to the exper-
iments we defined a number of points of interest [marked
with red dots in Figure 19(a)], where inertial (or some prob-
lematic) transitions were expected, and planned particular
paths through those points. We conducted six types of ex-
periments, trying to pass the pile from different directions
[white arrows in Figure 19(a)] through the points of inter-
est, and each type consisted of 5–10 trials with slightly dif-
ferent orientations.
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Figure 19. (a) Experimental pile: Red dots with letters mark points of special interest, and white arrows show six traversal direc-
tions. (b) OO5 IOP1, appearing at point B.

The main features of RSE that were reflected in our ap-
proach to deal with controlled balance losing inertial tran-
sitions are presence of sharp edges and corners of RSE
blocks, straight angles, parallel to the ground, flat patterns,
and a known a priori minimal size of each block. A real-
world rescue scene may contain all these features as well
but is not so strictly constrained. Sharp edges of real de-
bris will produce exactly the same behavior as in RSE in
some cases; for example, Figure 19(b) presents an appear-
ance of OO5 IOP1 inertial transition at point B of Fig-
ure 19(a), where any shift right would preserve the pos-
ture, whereas shifting left will turn the robot upside down.
Appearance of rear in RSE transitions such as OO4A and
OO6A will significantly increase after removing the simu-
lation limitations (Figure 20). Absence of the minimal cell
size enables two inertial transitions in a row for traversing a
thin, 10–20-mm-width barrier, such as the one appearing at
point E [Figure 19(a)]. Together with the surfaces nonparal-
lel to the ground, the lack of this limitation produces tran-
sitions OO3 (forbidden in RSE) while climbing up a very

Figure 20. OO4A transition appears at point G: (a) O1[U] and
(b) O2[U].

thin, few-millimeter barrier [like the one demonstrated in
Figure 21 occurring at point H; Figure 19(a)] or losing bal-
ance on the sharp edge of an inclined obstacle [e.g., at point
F or G; Figure 19(a)]. In other cases of the obstacles signifi-
cantly different from RSE rules, Kenaf did not demonstrate
any special behavior: it successfully climbed the rounded
surfaces of the pipes of the restricted (Section 7.3) heights
[Figure 19(a), I and J] and passed through nonrigid clothes
without seizing [Figure 19(a), K].

8. EXPERIMENTAL FEEDBACK

The experimental results in Magid and Tsubouchi (2010b)
revealed that a proposed AOP and IOP detection method
is insufficient for practical purposes when a number of
missed O postures significantly dominates over explicit O-
posture appearances. A more complicated detection mech-
anism is required that is less dependent on search space dis-
cretization drawbacks and involves estimation of neighbor-
ing postures in the εshift range from the point of interest.

Figure 21. OO3 transition, forbidden in RSE, appears at point
H: (a) O1[U] and (b) O2[D].
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Experiments (Section 7.2) showed that a side shift of
20 mm is a good practical choice for short-range path plan-
ning, whereas frontal shift in the moving direction strongly
depends on the experience of the operator and in general
is easier to control.9 Setting both shift variables to εshift
= 20 mm, we use the following AOP/IOP detection algo-
rithm:

1. Define P1 and P2 as follows:
a. If O posture appears explicitly [Figure 5(b)] at time t

as posture P(t), set P1 = P(t − 1) and P2 = P(t + 1).
b. If a missed O posture is detected in a time in-

terval [t − 1, t] between postures P(t − 1) and P(t)
[Figure 5(c)], set P1 = P(t − 1) and P2 = P(t).

2. Shift P1 by εshift = 20 mm in two opposite directions10

orthogonal to the robot moving direction—left PL
1 and

right PR
1 shift [Figure 5(a), practical shift].

3. Estimate relationship between P1, PL
1 , and PR

1 using
θX, θY angles. For each shifted posture PS

1 ,
S ∈ {L,R} if |θX(P1) − θX(P S

1 )| ≤ ε and |θY (P1) −
θY (P S

1 )| ≤ ε, we report on a repeating posture; oth-
erwise P1 and its shift are considered to be different.
Then:
a. If both PL

1 and PR
1 are different from P1, report AOP

presence and exit.
b. If one shifted posture PS

1 repeats P1, we conclude on

IOP-1 at P1. Shifted direction is defined as
−−−→
P1P

S
1 . Pro-

ceed to step 4.
c. If both PL

1 and PR
1 repeat P1, we conclude on IOP-2 at

P1. Shifted direction is defined as
−−−−→
P L

1 P R
1 . Proceed to

step 4.
4. Repeat step 2 for P2.
5. Repeat step 3 for P2.

a. Repeat step 3a for P2.
b. Repeat step 3b for P2. If shift directions at P1 and at

P2 are the same,11 conclude on IOP-1 at P2 and pro-
ceed to step 6. Otherwise report AOP and exit.

c. Repeat step 3c for P2. Proceed to step 6.
6. If there was no report on AOP, make a decision on the

IOP-1 or IOP-2 type referring to Table VI.

This simple detection mechanism successfully closes the
gap between initial theoretical simulations trials with a nu-
merical detection of the posture type at explicit appear-

9Permitting the robot to follow a path chosen by the operator au-
tonomously in our future work will decrease a maximal frontal
shift to few millimeters at a single straight segment of the path.
10Whereas in the theoretical algorithm we used eight shift direc-
tions at the explicit O posture itself with a very small shift value of
εshift = 0.0017 mm to detect the numerical change, we verified that
two significant shifts with εshift = 20 mm are enough in practical
application.
11If P1 has

−−−→
P L

1 P R
1 shift direction, any shift direction at P2 is suitable.

Table VI. Decision on the O-posture type.

P1 type P2 type Decision on O posture

IOP-1 IOP-1 IOP-1
IOP-1 IOP-2 IOP-1
IOP-2 IOP-1 IOP-1
IOP-2 IOP-2 IOP-2

ances only and practical requirements revealed by the ex-
periments.

Another important feedback is received from the set
of experiments conducted within the unstructured 3D de-
bris environment (Section 7.5). In particular, the absence
of any physical constraints or assumptions on the envi-
ronment makes possible the inertial transition forbidden
in RSE OO3 or two inertial transitions in a row following
one another and significantly increases the number of tran-
sitions rare for RSE (OO4A and OO6A). This set of exper-
iments marked future work directions for transferring the
“pilot system” from a simplified RSE simulation of a rescue
scene to a general elevation map approximation of a real-
world rescue scenario.

9. CONCLUSIONS AND FUTURE WORK

The final target of our research is to provide an assistant pi-
lot system for an operator of a rescue robot, decreasing the
burden on the human operator. As soon as a robot obtains
data from the environment and creates an internal world
model, a path selection within the internal model should be
done, followed by applying this path in the real-world sce-
nario. Because usually there exists more than just a single
path, the path search algorithm needs a good instrument to
evaluate the quality of each path.

The search algorithm within the graph requires a
proper definition of neighboring states to ensure smooth
exploration of the search tree. In this paper we presented
our results on estimation of inertial loss of balance on
purpose transition possibilities between two consecutive
states. It is an important step toward a proper definition of
a search tree neighborhood function F (Args) = Res, where
arguments Args are the robot’s current configuration and
the environment and output Res is a set of configurations
accessible within one step.

The experiments revealed much difference between
the statistical simulation and experimental results in the
definition of AOP and IOP states. The goals of the simu-
lation were to model all possible cases of the robot’s behav-
ior on RSE, to collect enough statistical data to split up all
possible cases into legal and illegal transitions groups, and
to structure and to analyze our theoretical approach. The
experiments were used for the confirmation of the group
distribution and updating the simulation with real-world
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results. The gap between RSE experiments and simulation
refined the pilot system and produced a system update for
the detection algorithm of different types of controlled bal-
ance losing transitions. Moreover, while closing the gap we
redefined several permissions on acceptable and forbidden
controlled balance losing transitions for the pilot system.
Dangerous and unpredictable cases of losing balance on
purpose during the path search will be excluded from the
search tree, whereas well-predictable and structured cases
will become important turning points of a path. The set
of experiments conducted in the unstructured 3D debris
environment marked future work directions for transfer-
ring the pilot system from RSE to an elevation map approx-
imation of a general rescue scene. Even though our solu-
tion deals only with the static stability of a vehicle and suf-
fers from a number of drawbacks and limitations such as
strong assumptions on rigid and stable environment, ab-
sence of slippery and external disturbances, centroidal lo-
cation of the robot’s center of mass, and loss of some gen-
erality of the proposed path due to environment discretiza-
tion, we believe that our unique approach to the path plan-
ning in RSE from the stability point of view and in par-
ticular the important property of losing balance on pur-
pose makes a significant contribution to the rescue robotics
domain.
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