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THE TRACE AND INTEGRABLE COMMUTATORS
OF THE MEASURABLE OPERATORS AFFILIATED
TO A SEMIFINITE VON NEUMANN ALGEBRA
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Abstract—Assume that τ is a faithful normal semifinite trace on a von Neumann algebra M , I is
the unit of M , S(M , τ) is the ∗-algebra of τ -measurable operators, and L1(M , τ) is the Banach
space of τ -integrable operators. We present a new proof of the following generalization of Putnam’s
theorem (1951): No positive self-commutator [A∗, A] with A ∈ S(M , τ) is invertible in M . If τ
is infinite then no positive self-commutator [A∗, A] with A ∈ S(M , τ) can be of the form λI + K,
where λ is a nonzero complex number and K is a τ -compact operator. Given A,B ∈ S(M , τ) with
[A,B] ∈ L1(M , τ) we seek for the conditions that τ([A,B]) = 0. If X ∈ S(M , τ) and Y = Y 3 ∈ M
with [X,Y ] ∈ L1(M , τ) then τ([X,Y ]) = 0. If A2 = A ∈ S(M , τ) and [A∗, A] ∈ L1(M , τ) then
τ([A∗, A]) = 0. If a partial isometry U lies in M and Un = 0 for some integer n ≥ 2 then Un−1 is
a commutator and Un−1 ∈ L1(M , τ) implies that τ(Un−1) = 0.
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1. Introduction

Given a complex Hilbert space H , denote the identity operator on H by I and the Schatten–
von Neumann ideals in B(H ) by Sp, where 0 < p < +∞. An operator X ∈ B(H ) is a commutator
whenever X = [A,B] = AB−BA for some A,B ∈ B(H ). If dimH < +∞ then the following conditions
on X ∈ B(H ) are equivalent:

(i) X has the zero diagonal in some basis for H ;
(ii) tr(X) = 0;
(iii) X is a commutator.
The proof of (i)⇔(ii) is in [1, Chapter I, Problem 209] and the proof of (ii)⇔(iii) is in [2] or [3,

Problem 230]. See [4, 5] for the further studies regarding (ii)⇔(iii). See [6, 7] for interesting applications
of zero-trace matrices. As [8] shows, considering (ii)⇔(iii), we can choose nilpotent matrices A and B
in X = [A,B].

If H is a separable space with dimH = +∞ then X ∈ B(H ) is a commutator if and only if X
cannot be expressed as λI +K, where λ ∈ C \ {0} and K ∈ B(H ) is a compact operator [9, Theorem 3;
3, Corollary to Problem 230]; in the nonseparable case the picture is similar, but instead of compact
operators we have to use a maximal ideal J of B(H ); see [9] and [10]. Thus, every compact operator
K ∈ B(H ) is of the form K = [A,B] for some A,B ∈ B(H ). Choosing K in the class S1 of trace-class
operators, we obtain [A,B] ∈ S1 with tr([A,B]) �= 0. Curiously, for X ∈ S1 we still have (i)⇔(ii); see [11,
Corollary 1]. It is shown in [12] that a compact hermitian operator X ∈ B(H ) is the self-commutator
[A∗, A] of a compact operator A ∈ B(H ) if and only if (i) holds. For hermitian operators X ∈ B(H )
Theorem 2 of [13] establishes that (i) ⇔ tr(X+) = tr(X−), where X+ = (|X|+X)/2 and X− = |X|−X+.
In [14] the results of [13] are applied for X ∈ B(H ) to show that

(i) ⇔ tr(Re(eiθX)+) = tr(Im(eiθX)−) for all θ, 0 ≤ θ < 2π.

†) Dedicated to Anatolii Nikolaevich Sherstnev (27.01.1938–25.05.2023).
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Consider a von Neumann algebra M of operators on a Hilbert space H and a faithful normal
semifinite trace τ on M . Denote the ∗-algebra of all τ -measurable operators by S(M , τ) and the Banach
space of all τ -integrable operators by L1(M , τ). Assume that τ(I) = +∞ and take A,B ∈ S(M , τ).
If B = B3 or B = C + X, where C = C2 ∈ S(M , τ) and X is τ -compact then [A,B] cannot be of
the form λI + K, where λ ∈ C \ {0} and K is τ -compact; see [15, Theorem 3] or [16, Theorem 3] and
[17, Proposition 4] respectively. The commutators of τ -measurable operators are the values of inner
derivations of S(M , τ) (see [18–20]).

Given A,B ∈ S(M , τ) and [A,B] ∈ L1(M , τ), we look for the conditions that τ([A,B]) = 0.
If τ(I) < +∞ then τ([A,B]) = 0 ⇔ ‖I + z[A,B]‖1 ≥ τ(I) for all z ∈ C; see [21, Theorem 4.8]. Some
cases with τ([A,B]) = 0 are indicated in [22–24].

If U ∈ B(H ) is a nonunitary isometry and (I − UU∗)H is finite-dimensional then the canonical
trace of [U∗, U ] = I − UU∗ is also nonzero. If U = X + iY is the Cartesian decomposition of U
with X,Y ∈ B(H )sa, then [U∗, U ] = 2i[X,Y ], i.e., there exist bounded selfadjoint operators whose
commutator lies in S1 and has nonzero canonical trace. However, if X ∈ B(H )sa and Y ∈ B(H ) is
a compact operator with [X,Y ] ∈ S1 then tr([X,Y ]) = 0 by [25, Lemma 1.3]. In [26, Lemma 8] for
a normal operator T ∈ B(H ) and X ∈ S2 with [T,X] ∈ S1 it is shown that tr([T,X]) = 0. In [27]
this result is generalized to certain nonnormal operators. In [28, Theorems 4 and 5] for T ∈ B(H ) and
X ∈ S2 with [T,X] ∈ S1 it is shown that tr([T,X]) = 0 under either of the two conditions: (a) T 2 is
normal; (b) Tn is normal for some integer n > 2 and [T ∗, T ] ∈ S1.

The main results of this article are obtained in the context of semifinite von Neumann algebras M , but
some of them are new even in the case of the algebra M = B(H ) endowed with the trace τ = tr. If X ∈
S(M , τ) and Y = Y 3 ∈ M with [X,Y ] ∈ L1(M , τ) then τ([X,Y ]) = 0; see Theorem 2. We generalize
the classical Putnam Theorem for bounded hyponormal operators [29] (see also [3, Problem 236]) to
the case of τ -measurable unbounded hyponormal operators: No positive self-commutator [A∗, A] with
A ∈ S(M , τ) is invertible in M ; see Theorem 6. If τ(I) = +∞ then no positive self-commutator [A∗, A]
with A ∈ S(M , τ) can be of the form λI + K, where λ ∈ C \ {0} and K is a τ -compact operator; see
Theorem 7. If A2 = A ∈ S(M , τ) and [A∗, A] ∈ L1(M , τ) then τ([A∗, A]) = 0; see Theorem 8. Given
a partial isometry U ∈ M with Un = 0 for some integer n ≥ 2, the operator Un−1 is a commutator
and Un−1 ∈ L1(M , τ) implies that τ(Un−1) = 0; see Theorem 11. If U ∈ L1(M , τ) and the projections
P = U∗U and Q = UU∗ are mutually orthogonal then U2 = 0. Therefore, U is a commutator and
τ(U) = 0; see Corollary 13.

2. Definitions and Notation

Denote a von Neumann algebra of operators on a Hilbert space H by M ; the lattice of projections
(P = P 2 = P ∗) in M by M pr; and the cone of positive elements of M by M+. Put P⊥ = I − P
for P ∈ M pr. An operator A ∈ M is unitary, whenever A∗A = AA∗ = I, while A is an isometry
whenever A∗A = I, and A is a partial isometry whenever A∗A ∈ M pr.

A mapping ϕ : M+ → [0,+∞] is a trace whenever ϕ(X + Y ) = ϕ(X) + ϕ(Y ) and ϕ(λX) = λϕ(X)
for all X,Y ∈ M+, where λ ≥ 0; furthermore, 0 · (+∞) ≡ 0, and ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ M .
A trace ϕ is

• faithful whenever ϕ(X) > 0 for all X ∈ M+ with X �= 0;
• normal whenever Xi ↗ X with Xi, X ∈ M+ implies that ϕ(X) = supϕ(Xi);
• finite whenever ϕ(I) < +∞;
• semifinite whenever ϕ(X) = sup{ϕ(Y ) : Y ∈ M+, Y ≤ X, ϕ(Y ) < +∞} for each X ∈ M+; see

[30, Chapter V, Section 2].
An operator on H , not necessarily bounded or densely defined, is affiliated to a von Neumann alge-

bra M whenever it commutes with all unitary operators in the commutant M ′ of M . Henceforth τ stands
for a faithful normal semifinite trace on M . A closed operator X affiliated to M whose domain D(X)
is dense in H is τ -measurable whenever, given ε > 0, there exists P ∈ M pr such that PH ⊂ D(X)
and τ(P⊥) < ε. The set S(M , τ) of all τ -measurable operators is a ∗-algebra under the taking of adjoint
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operators, multiplication by scalars, which is furnished with the strong addition and multiplication ob-
tained as the closure of the ordinary operations [31, Chapter IX]. Given a family L ⊂ S(M , τ), denote
by L + and L h the positive and hermitian parts of L . Denote by ≤ the partial order on S(M , τ)h

generated by the proper cone S(M , τ)+. If X ∈ S(M , τ) and X = U |X| is the polar decomposition

of X then U ∈ M and |X| =
√
X∗X ∈ S(M , τ)+. An operator A ∈ S(M , τ) is hyponormal whenever

A∗A ≥ AA∗. Recall that the formula SP = 2P −I establishes a bijection between the sets of idempotents
(P 2 = P ) and symmetries (S2 = I) in S(M , τ). Denote the commutator of operators A,B ∈ S(M , τ)
by [A,B] = AB − BA. The self-commutator of A ∈ S(M , τ) is [A∗, A] = A∗A − AA∗. Two operators
A,B ∈ S(M , τ) anticommute provided that AB = −BA.

Denote by μ(t;X) the function of singular values of X ∈ S(M , τ), meaning the nonincreasing right-
continuous function μ(·;X) : (0,+∞) → [0,+∞) defined as

μ(t;X) = inf{‖XP‖ : P ∈ M pr, τ(P⊥) ≤ t}, t > 0.

Lemma 1 [32]. Take X,Y ∈ S(M , τ), A,B ∈ M , and unitary U, V ∈ M . Then
(i) μ(t;X) = μ(t; |X|) = μ(t;X∗) = μ(t;UXV ) for all t > 0;
(ii) if |X| ≤ |Y | then μ(t;X) ≤ μ(t;Y ) for all t > 0;
(iii) μ(t;AXB) ≤ ‖A‖ ‖B‖μ(t;X) for all t > 0;
(iv) μ(s+ t;X + Y ) ≤ μ(s;X) + μ(t;Y ) for all s, t > 0;
(v) μ(t; f(|X|)) = f(μ(t;X)) for all continuous functions f : R+ → R+ with f(0) = 0 and t > 0.

Denote the Lebesgue measure on R by m. Given 0 < p < +∞, we can define the noncommutative
Lebesgue Lp-space associated to (M , τ) as

Lp(M , τ) = {X ∈ S(M , τ) : μ(·;X) ∈ Lp(R
+,m)}

with the F -norm ‖X‖p = ‖μ(·;X)||p for X ∈ Lp(M , τ) which is a norm for 1 ≤ p < +∞. Denote the
unique extension of τ to a linear functional on the whole L1(M , τ) by the same letter τ .

If M = B(H ) and τ = tr is the canonical trace then S(M , τ) and S0(M , τ) coincide with B(H )
and the ideal S∞ of compact operators on H respectively. We have

μ(t;X) =
∞∑

n=1

sn(X)χ[n−1,n)(t), t > 0,

where {sn(X)}∞n=1 is the sequence of s-numbers of the compact operator X and χA is the indicator
of a set A ⊂ R [33, Chapter II]. Then the space Lp(M , τ) is the Schatten–von Neumann ideal Sp for
0 < p < +∞.

If M is abelian, i.e., commutative; then M � L∞(Ω,Σ, ν) and τ(f) =
∫
Ω f dν, where (Ω,Σ, ν) is

a localizable measure space, the ∗-algebra S(M , τ) coincides with the algebra of all measurable complex
functions f on (Ω,Σ, ν) bounded beyond a set of finite measure. The function μ(t; f) coincides with
a nonincreasing rearrangement of |f |; for the properties of rearrangements; see [34]. The algebra M lacks
nonzero compact operators if and only if ν is atomless [35, Theorem 8.4].

3. The Main Results

Lemma 2 [31, Chapter IX, Theorem 2.13]. If X ∈ M and Y ∈ L1(M , τ) then XY, Y X ∈ L1(M , τ).

Lemma 3 [36, Theorem 17]. If X,Y ∈ S(M , τ) and XY, Y X ∈ L1(M , τ) then τ(XY ) = τ(Y X).

Theorem 1. If X ∈ L1(M , τ) and U ∈ M is an isometry then τ(X) = τ(UXU∗).

Proof. Step 1. Observe that μ(t;X) = μ(t;UXU∗) for all t > 0. Indeed, U∗UXU∗U = X and

μ(t;X) = μ(t;U∗UXU∗U) ≤ ‖U∗‖‖U‖μ(t;UXU∗)

= μ(t;UXU∗) ≤ ‖U‖‖U∗‖μ(t;X) = μ(t;X)
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for all t > 0 by claim (iii) of Lemma 1 and the equalities ‖U∗‖ = ‖U‖ = 1. For X ≥ 0 we infer from [37,
Proposition 3.9(c)] that

τ(X) =

+∞∫

0

μ(t;X) dt =

+∞∫

0

μ(t;UXU∗) dt = τ(UXU∗).

Step 2. For X = X∗ consider the Jordan decomposition X = X+−X−. Then X+, X− ∈ L1(M , τ)+

and, since τ continues linearly to the whole space L1(M , τ), Step 1 yields

τ(X) = τ(X+)− τ(X−) = τ(UX+U
∗)− τ(UX−U

∗) = τ(UXU∗).

Step 3. If X ∈ L1(M , τ) is an arbitrary operator and X = ReX + i ImX is its Cartesian decom-
position, then ReX = (X +X∗)/2 and ImX = (X −X∗)/(2i) lie in L1(M , τ)h and, since τ continues
linearly to the whole space L1(M , τ), Step 1 yields

τ(X) = τ(ReX) + iτ(ImX) = τ(U · ReX · U∗) + iτ(U · ImX · U∗) = τ(UXU∗). �

Corollary 1. If A ∈ S(M , τ) and U ∈ M is unitary with A−UAU∗ ∈ L1(M , τ) then U∗AU −A ∈
L1(M , τ) and τ(U∗AU −A) = τ(A− UAU∗).

Proof. We have τ(U∗AU −A) = τ(U∗(A− UAU∗)U). �
Corollary 2. If X ∈ S(M , τ) and U ∈ M is unitary with U2 = −I then X−UXU∗ ∈ L1(M , τ) ⇔

[X,U ] ∈ L1(M , τ) and, furthermore, τ(X − UXU∗) = τ([X,U ]) = 0.

Proof. Observe that U∗ = −U . If X − UXU∗ ∈ L1(M , τ) then

[X,U ] = (X − UXU∗)U ∈ L1(M , τ);

if [X,U ] ∈ L1(M , τ) then
X − UXU∗ = [X,U ]U∗ ∈ L1(M , τ)

by Lemma 2. Under these conditions, Theorem 1 implies that

τ(X − UXU∗) = τ(X + UXU) = τ(U(X + UXU)U∗) = −τ(U(X + UXU)U)

= −τ(UXU +X) = −τ(X − UXU∗);

therefore, τ(X − UXU∗) = 0. Similarly,

τ(XU − UX) = τ(U(XU − UX)U∗) = −τ(U(XU − UX)U)

= −τ(−UX +XU) = −τ(XU − UX),

and so τ(XU − UX) = 0. �
Corollary 3. If U ∈ M and A ∈ S(M , τ) satisfies [U∗, A] ∈ L1(M , τ) then for the projection

P = UU∗ we have
τ(U∗AU −A) = τ(PA− UAU∗) = τ(PAP − UAU∗).

Proof. Lemma 3 with X = U∗A−AU∗ and Y = U yields

τ(U∗AU −A) = τ((U∗A−AU∗)U) = τ(U(U∗A−AU∗)) = τ(PA− UAU∗),

and then
τ(U∗AU −A) = τ(U(U∗AU −A)U∗) = τ(PAP − UAU∗)

by Theorem 1. Since PA−UAU∗ and PAP −UAU∗ lie in L1(M , τ), it follows that PAP⊥ ∈ L1(M , τ)
and τ(PAP⊥) = 0. �
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Theorem 2. If X ∈ S(M , τ) and Y = Y 3 ∈ M with [X,Y ] ∈ L1(M , τ) then τ([X,Y ]) = 0.

Proof. Step 1. Suppose that Y = Y 2 ∈ M . Since

2Y XY − Y X −XY = Y [X,Y ]− [X,Y ]Y ∈ L1(M , τ),

the claim follows from the expansion

[X,Y ] = Y (2Y XY − Y X −XY )− (2Y XY − Y X −XY )Y

and Lemma 3 for the pair of Y and B = 2Y XY − Y X −XY .

Step 2. Suppose that Y = Y 3 ∈ M and Y = P −Q for two idempotents P and Q in M satisfying
PQ = QP = 0; see [38, Proposition 1]. Then Y 2 = P +Q is an idempotent and

[X,P ] + [X,Q] = [X,Y 2] = [X,Y ]Y + Y [X,Y ] ∈ L1(M , τ)

since [X,P ]−[X,Q] = [X,Y ] ∈ L1(M , τ) by assumption. The last two relations show that [X,P ], [X,Q] ∈
L1(M , τ), and since τ continues linearly to the whole space L1(M , τ), Step 1 yields

τ([X,Y ]) = τ([X,P ])− τ([X,Q]) = 0− 0 = 0. �

Corollary 4. If X ∈ S(M , τ) and S ∈ M with S2 = I then X − SXS ∈ L1(M , τ) ⇔ [X,S] ∈
L1(M , τ) and, furthermore, τ(X − SXS) = τ([X,S]) = 0.

Proof. If X −SXS ∈ L1(M , τ) then [X,S] = (X −SXS)S ∈ L1(M , τ); if [X,S] ∈ L1(M , τ) then
X − SXS = [X,S]S ∈ L1(M , τ) by Lemma 2. Under these conditions

(XS − SX)S − S(XS − SX) = 2(X − SXS)

and Lemma 3 for the pair of [X,S] and S, we have τ(X − SXS) = 0. The equality τ([X,S]) = 0 follows
from Theorem 2 because S3 = S. �

Corollary 5. If A,B ∈ S(M , τ)h and C = C3 ∈ M sa with A − BC ∈ L1(M , τ) then [B,C] ∈
L1(M , τ), while τ([B,C]) = 0 and τ(A−BC) ∈ R.

Proof. We have
[B,C] = (A−BC)∗ − (A−BC) ∈ L1(M , τ)

and τ([B,C]) = 0 by Theorem 2. Furthermore,

τ(A−BC) = τ(A−BC + CB − CB) = τ(A− CB)− τ([B,C])

= τ(A− CB) = τ(A−BC),

where the bar indicates complex conjugation; thus, τ(A−BC) ∈ R. �
Theorem 3. If A,B,C ∈ S(M , τ)h and A−BC ∈ L1(M , τ) then [B,C] ∈ L1(M , τ). Moreover, if

A−AC ∈ L1(M , τ) then τ(A−BC), τ(A−AC) ∈ R and τ([B,C]) = 0.

Proof. We have [B,C] = (A−BC)∗− (A−BC) ∈ L1(M , τ). Furthermore, if A−AC ∈ L1(M , τ)
then A − BC = A(I − C) + (A − B)C and (A − B)C ∈ L1(M , τ). Theorem 3.1 of [39] implies that
τ(A(I − C)), τ((A−B)C) ∈ R. Therefore, τ(A−BC) ∈ R.

Since τ(X∗) = τ(X) for all X ∈ L1(M , τ), we have

τ([B,C]) = τ(A− CB −A+BC) = τ(A− CB)− τ(A−BC)

= τ(A−BC)− τ(A−BC) = 0,

as required. �

526



Theorem 4. If Y, P ∈ S(M , τ) with P 2 = P and X = [Y, P ], while SP = 2P − I; then
(i) SPX = −XSP ;
(ii) if Xk, SPX

kSP ∈ L1(M , τ) for some odd k ∈ N then τ(Xk) = τ(SPX
kSP ) = 0;

(iii) if P = P ∗ then Xk ∈ L1(M , τ) ⇔ SPX
kSP ∈ L1(M , τ) and, furthermore, [|X|, P ] = 0.

Proof. (ii): Assume that k = 1. From (i) we infer that X = −SPXSP , and Lemma 3 for the pair
of SPX and SP yields

τ(SPXSP ) = τ(AB) = τ(BA) = τ(X);

i.e., τ(X) = τ(−X) = −τ(X) = 0. For k = 2n+ 1 ≥ 3 from

X2 = XSP · SPX = −SPX · −XSP = SPX
2SP

we infer that

X2n+1 = X2 ·X2 · · · · ·X2
︸ ︷︷ ︸

n

·X = SPX
2SP · SPX

2SP · · · · · SPX
2SP︸ ︷︷ ︸

n

·X

= SPX
2n · SPX = −SPX

2n+1SP .

By Lemma 3 for the pair of SPX
2n and XSP we see that

τ(SPX
2n+1SP ) = τ(AB) = τ(BA) = τ(X2n+1);

i.e., τ(X2n+1) = −τ(X2n+1) = 0.
(iii): If P = P ∗ then Xk ∈ L1(M , τ) ⇔ SPX

kSP ∈ L1(M , τ) by Lemma 2. Passing to the adjoints,
by claim (i) we obtain X∗SP = −SPX

∗ and SPX
∗SP = −X∗. Therefore,

|X|2 = X∗X = −SPX
∗SP · −SPXSP = SP |X|2SP

and |X|2SP = SP |X|2, and so |X|2P = P |X|2. Consequently, |X|P = P |X| by the spectral theorem. �
Theorem 4.8 of [21] has the following corollary.

Corollary 6. Suppose that τ(I) = 1. Then
(i) under the conditions of Theorem 3 we have ‖I + z[B,C]‖1 ≥ 1 for all z ∈ C;
(ii) under the conditions of claim (ii) of Theorem 4 we have

‖I + zX2n−1‖1 ≥ 1, ‖I + zSPX
2n−1SP ‖1 ≥ 1

for all n ∈ N and z ∈ C.

Theorem 5. Suppose that X,Y ∈ S(M , τ)h and A = A3 ∈ M sa. If AX − Y A ∈ L1(M , τ) then
τ(AX − Y A) ∈ R.

Proof. Take A = P − Q, where P,Q ∈ M pr with PQ = QP = 0; see [38, Proposition 1]. Then
A2 = P +Q is a projection. The operators

PXP − PY P = P (AX − Y A)P, QXQ−QY Q = −Q(AX − Y A)Q

lie in L1(M , τ)h by Lemma 2. The operators

QXP +QY P = −Q(AX − Y A)P, PXQ+ PY Q = (QXP +QY P )∗

also lie in L1(M , τ). By Lemma 3 for the pair of I −A2 and AX − Y A and for the pair of 2A2 and

AX −A2Y A−AXA2,
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since τ continues linearly to the whole space L1(M , τ), we obtain

τ(AX − Y A) = τ(A2(AX − Y A) + (I −A2)(AX − Y A))

= τ(A2(AX − Y A)) + τ((I −A2)(AX − Y A))

= τ(A2(AX − Y A)) + τ((AX − Y A)(I −A2))

= τ(2AX −A2Y A−AXA2) = τ(2A3X −A2Y A−A3XA2)

= τ(2A2(AX −A2Y A−AXA2)) = τ((AX −A2Y A−AXA2)2A2)

= τ(AXA2 −A2Y A) = τ((P −Q)X(P +Q)− (P +Q)Y (P −Q))

= τ(PXP − PY P ) + τ(−QXQ+QY Q) + τ(PXQ+ PY Q)− τ(QXP +QY P ) ∈ R,

because τ(PXP − PY P ), τ(QXQ−QY Q) ∈ R and

τ(PXQ+ PY Q) = τ(P (PXQ+ PY Q)) = τ((PXQ+ PY Q)P ) = τ(0) = 0.

Similarly, τ(QXP +QY P ) = 0. �
Corollary 7. Under the conditions of Theorem 5 we have

[A,X + Y ] ∈ L1(M , τ), τ([A,X + Y ]) = 0.

Proof. Since XA−AY = (AX − Y A)∗ ∈ L1(M , τ), it follows that

τ(XA−AY ) = τ(AX − Y A) ∈ R.

Observe that
[A,X + Y ] = AX − Y A− (XA−AY ). �

The next proposition generalizes the classical Putman Theorem for bounded hyponormal opera-
tors [29] (see also [3, Problem 236]) to the case of τ -measurable unbounded hyponormal operators.

Theorem 6. No positive self-commutator A∗A−AA∗ for A ∈ S(M , τ) is invertible in M .

Proof. Suppose that for some A ∈ S(M , τ) the operator A∗A−AA∗ has an inverse in M ; i.e.,

A∗A−AA∗ ≥ εI (1)

for some ε > 0. Multiplying both parts of (1) on the left by A and on the right by A∗, we obtain

A2A∗2 ≤ (AA∗)2 − εAA∗.

Therefore, for each number t > 0 we have

μ(t;A2)2 = μ(t;A∗2)2 = μ(t;A2A∗2) ≤ μ(t; (AA∗)2 − εAA∗)

≤ μ(t; (AA∗)2) = μ(t;AA∗)2 = μ(t;A)4 (2)

by claims (ii) and (v) of Lemma 1.
Multiplying both sides of (1) on the left by A∗ and on the right by A, we obtain

A∗2A2 ≥ (A∗A)2 + εA∗A. (3)

Introduce the function f(x) = x2 + εx of x ∈ R+. Then for all t > 0 we have

μ(t;A2)2 = μ(t;A∗2A2) ≥ μ(t; (A∗A)2 + εA∗A) = μ(t; f(A∗A))

= f(μ(t;A∗A)) = μ(t;A∗A)2 + εμ(t;A∗A) = μ(t;A)4 + εμ(t;A)2 (4)

by (3) and claims (v) and (ii) of Lemma 1. Now (2) and (4) yield

μ(t;A)4 ≥ μ(t;A2)2 ≥ μ(t;A)4 + εμ(t;A)2 for all t > 0.

We arrive at a contradiction. �
Note that the author obtained the claim of Theorem 6 by a different method in Theorem 2 of [15];

see also [16].
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Theorem 7. If τ(I) = +∞ then no positive self-commutator A∗A − AA∗ for A ∈ S(M , τ) can be
of the form λI +K, where λ ∈ C \ {0} and K is a τ -compact operator.

Proof. Suppose that A∗A − AA∗ = λI +K ≥ 0 for some A ∈ S(M , τ) with a suitable λ > 0 and
K ∈ S0(M , τ). Assume without loss of generality that λ = 1. Then A∗A−K = AA∗ + I. Since μ(t;A)
is nonincreasing and A /∈ S0(M , τ), we have the limit

lim
t→+∞

μ(t;A) = a > 0.

Observe that μ(t;AA∗ + I) = 1 + μ(t;AA∗) for each real t > 0 since

μ(t;X) = inf{s > 0 : τ(P |X|(s,+∞)) ≤ t}

for each operator X ∈ S(M , τ), where |X| =
∫ +∞
0 uP |X|(du) is the spectral decomposition of |X| and

the infimum is attained [32, Proposition 2.2]. Therefore, for each t > 0 we have

1 + μ(t;A)2 = 1 + μ(t;AA∗) = μ(t;AA∗ + I) = μ(t;A∗A−K)

≤ μ(t/2;A∗A) + μ(t/2;K) = μ(t/2;A)2 + μ(t/2;K)

by claims (iv) and (v) of Lemma 1. Passing in the resulting inequality

1 + μ(t;A)2 ≤ μ(t/2;A)2 + μ(t/2;K), t > 0,

to the limit as t → +∞, we obtain 1 + a2 ≤ a2 + 0 = a2, which is a contradiction. �
Theorems 6 and 7 imply the following:

Corollary 8. If X,Y ∈ S(M , τ)h and B := i[X,Y ] ≥ 0 then
(a) B cannot be invertible in M ;
(b) for τ(I) = +∞ B cannot be of the form λI +K, where λ ∈ C \ {0} and K ∈ S0(M , τ).

Proof. It is easy to see that B = 1
2(A

∗A−AA∗) for A = X + iY . �
The self-commutator of an arbitrary operator Y ∈ S(M , τ) is of the form A−UAU∗, where A = Y ∗Y

and U is the partial isometry in the polar decomposition Y = U |Y |.
Theorem 8. If A ∈ S(M , τ)+ and U ∈ M is an isometry thenX := A−UAU∗ is a self-commutator.

For τ(I) < +∞ every self-commutator is of this form.

Proof. If X = A− UAU∗ then A1/2U∗ = (UA1/2)∗ and X = [A1/2U∗, UA1/2].
Suppose that τ(I) < +∞ and that X ∈ S(M , τ)h is a self-commutator, meaning X = Y ∗Y − Y Y ∗

for some operator Y ∈ S(M , τ). If Y = V |Y | is the polar decomposition of Y then the partial isometry V
“extends” to a unitary operator U ∈ M with the property Y = U |Y |; see the proof of Theorem 2 of [40].
Then Y Y ∗ = U |Y |2U∗ = UY ∗Y U∗, and we can choose A := Y ∗Y . �

Theorems 6–8 yields the following:

Corollary 9. For A ∈ S(M , τ)+ and an isometry U ∈ M , put X := A− UAU∗ ≥ 0. Then
(a) X cannot be invertible in M ;
(b) for τ(I) = +∞, X cannot be of the form λI +K, where λ ∈ C \ {0} and K ∈ S0(M , τ).

Lemma 4. If A,B ∈ S(M , τ), while B is normal and AB = BA, then [A∗ −B∗, A−B] = [A∗, A].

Proof. The Fuglede–Putnam Theorem for τ -measurable operators [41, Theorem 6] shows that
AB∗ = B∗A. Therefore,

BA∗ = (AB∗)∗ = (B∗A)∗ = A∗B.

Note that for the algebra LS(M ) of all locally measurable operators affiliated to a von Neumann alge-
bra M of type I or type III, the Fuglede–Putnam Theorem was established in [42, Theorem 1] and [43,
Theorem 1]. �
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Theorem 9. If A2 = A ∈ S(M , τ) and [A∗, A] ∈ L1(M , τ) then τ([A∗, A]) = 0.

Proof. For A = A2 ∈ S(M , τ) there exists a unique decomposition A = P + Z, where P ∈ M pr

and the operator Z with Z2 = 0 lies in S(M , τ) and satisfies ZP = 0 and PZ = Z [44, Theorem 2.23].
By assumption, the operator

Z + Z∗ + Z∗Z − ZZ∗ = [A∗, A] (5)

lies in L1(M , τ). Since Z∗P = (PZ)∗ = Z∗, the operators

Z∗ − ZZ∗ = [A∗, A]P, Z + Z∗Z = [A∗, A]P⊥ (6)

lie in L1(M , τ) as well. Therefore,

Z∗ + Z∗Z = (Z + Z∗Z)∗ ∈ L1(M , τ)

and the first equality in (6) yields

ZZ∗ + Z∗Z ∈ L1(M , τ).

Then Z∗Z ∈ L1(M , τ) and the second equality in (6) yields Z ∈ L1(M , τ). By Lemma 3 with X = P
and Y = Z we obtain

τ(Z) = τ(PZ) = τ(ZP ) = τ(0) = 0.

Thus, τ(Z∗) = τ(Z) = 0. Using the equalities

τ(X) =

+∞∫

0

μ(t;X) dt (X ∈ S(M , τ)+),

see [37, Proposition 3.9(c)], and claims (i) and (v) of Lemma 1, we find that

τ(A∗A−AA∗) = τ(Z + Z∗ + Z∗Z − ZZ∗) = τ(Z) + τ(Z∗) + τ(Z∗Z)− τ(ZZ∗)

= 0 + 0 +

+∞∫

0

μ(t;Z∗Z) dt−
+∞∫

0

μ(t;ZZ∗) dt

=

+∞∫

0

(μ(t;Z)2 − μ(t;Z∗)2) dt =

+∞∫

0

0 dt = 0.

The proof of Theorem 9 is complete. �

Corollary 10. If X = X3 ∈ S(M , τ), the operator X2 −X is hermitian, and [X∗, X] ∈ L1(M , τ),
then τ([X∗, X]) = 0.

Proof. By [38, Proposition 1] we have X = A − B, where the idempotents A = (X2 +X)/2 and
B = (X2 − X)/2 satisfy AB = BA = 0. Since B = B∗, Lemma 4 yields [X∗, X] = [A∗, A], and then
Theorem 8 applies. �

Corollary 11. If X ∈ S(M , τ) with X2 = I and [X∗, X] ∈ L1(M , τ) then τ([X∗, X]) = 0.

Proof. Given A := (I + X)/2, we have A2 = A and X∗X − XX∗ = 4(A∗A − AA∗). Thus,
τ([X∗, X]) = 0. �

Corollary 12. Suppose that τ(I) = 1 and A ∈ S(M , τ). If [A∗, A] ∈ L1(M , τ) and A2 ∈ {A, I}
then ‖I + z[A∗, A]‖1 ≥ 1 for all z ∈ C.
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Proposition 1. If X,Y ∈ S(M , τ) with XY = λY X for some λ ∈ C and [X,Y ] ∈ L1(M , τ) then
τ([X,Y ]) = 0.

Proof. For λ = 1 the claim holds, and so we assume that λ �= 1. We have

(λ− 1)Y X = [X,Y ] ∈ L1(M , τ);

hence Y X,XY ∈ L1(M , τ). Lemma 3 yields

τ(Y X) = τ(XY ) = λτ(Y X) = 0,

and so τ([X,Y ]) = 0. �
Some examples of operators X,Y ∈ S(M , τ) with XY = λY X are given in claim (i) of Theorem 4;

see also [45].

Theorem 10. Consider A,B ∈ S(M , τ) with An = 0 for some integer n ≥ 2. For k,m ∈ N with
k+m ≥ n the operator AkBAm is a commutator and AkBAm ∈ L1(M , τ) implies that τ(AkBAm) = 0.

Proof. We have
AkBAm = AkB ·Am −Am ·AkB = [AkB,Am].

If AkBAm ∈ L1(M , τ) then Lemma 3 with X = AkB and Y = Am yields

τ(AkB ·Am) = τ(Am ·AkB) = τ(0) = 0, k +m ≥ n.

Observe that for 2k ≥ n the operators [Ak, B] and Ak anticommute, while AkB+BAk and Ak commute.
In particular, in the case τ(I) = 1 we have

‖I + zAkBAm‖1 ≥ 1

for all z ∈ C and k,m ∈ N with k +m ≥ n. �
Theorem 11. If a partial isometry U lies in M and Un = 0 for some integer n ≥ 2 then Un−1 is

a commutator and Un−1 ∈ L1(M , τ) implies that τ(Un−1) = 0.

Proof. Since U = UU∗U by [3, Corollary 3 to Problem 98], for n ≥ 2 we have

Un−1 = Un−2 · UU∗U = Un−1 · U∗U − U∗U · Un−1 = [Un−1, U∗U ];

if n = 2 then U = U · U∗U − U∗U · U = [U,U∗U ].
Assume that Un−1 ∈ L1(M , τ). For n ≥ 2 Lemma 3 with X = U∗Un−1 and Y = U and the equality

U = UU∗U yield
0 = τ(0) = τ(U∗Un) = τ(U · U∗U · Un−2) = τ(Un−1);

if n = 2 then similarly
0 = τ(0) = τ(U∗U2) = τ(UU∗U) = τ(U).

In particular, if τ(I) = 1 then ‖I + zUn−1‖1 ≥ 1 for all z ∈ C. �
Corollary 13. Given a partial isometry U ∈ L1(M , τ), if the projections P = U∗U and Q = UU∗

are mutually orthogonal then U2 = 0. Therefore, U is a commutator and τ(U) = 0.

Proof. Lemma 3 with X = U and Y = U∗2U shows that

0 = τ(0) = τ(QP ) = τ(UU∗2U) = τ(U∗2U2) = τ(U2∗U2) = τ(|U2|2).
Since the trace τ is faithful, we infer that |U2|2 = 0; thus, |U2| = 0 and U2 = 0. �
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vol. 339, no. 2, 717–750 (1993).
38. Bikchentaev A.M. and Yakushev R.S., “Representation of tripotents and representations via tripotents,” Linear

Algebra Appl., vol. 435, no. 9, 2156–2165 (2011).
39. Bikchentaev A.M., “Concerning the theory of τ -measurable operators affiliated to a semifinite von Neumann

algebra,” Math. Notes, vol. 98, no. 3, 382–391 (2015).
40. Bikchentaev A.M., “Minimality of convergence in measure topologies on finite von Neumann algebras,” Math.

Notes, vol. 75, no. 3, 315–321 (2004).
41. Ber A., Chilin V., Sukochev F., and Zanin D., “Fuglede–Putnam theorem for locally measurable operators,”

Proc. Amer. Math. Soc., vol. 146, no. 4, 1681–1692 (2018).
42. Ahramovich M.V., Chilin V.I., and Muratov M.A., “Fuglede–Putnam theorem in the algebra of locally mea-

surable operators,” Indian J. Math., vol. 55, 13–20 (2013).
43. Ahramovich M.V., Muratov M.A., and Chilin V.I., “The Fuglede–Putnam theorem for locally measurable

operators,” Dinam. Sist. (Simferopol’), vol. 4(32), no. 1–2, 3–8 (2014).
44. Bikchentaev A.M., “On idempotent τ -measurable operators affiliated to a von Neumann algebra,” Math. Notes,

vol. 100, no. 4, 515–525 (2016).
45. Akhmadiev M., Alhasan H., Bikchentaev A., and Ivanshin P., “Commutators and hyponormal operators on

a Hilbert space,” J. Iran. Math. Soc., vol. 4, no. 1, 67–78 (2023).

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and insti-
tutional affiliations.

A. M. Bikchentaev

Lobachevsky Institute of Mathematics and Mechanics

of Kazan (Volga Region) Federal University, Kazan, Russia

https://orcid.org/0000-0001-5992-3641

E-mail address: Airat.Bikchentaev@kpfu.ru

533


