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Introduction 

Upland soil erosion and riverine suspended 
sediment transport have greatly intensified during 
the past decades by the expansion of diverse 
human activities (e.g., deforestation, land 
reclamation, grazing, mining, construction 
activities, and urbanization), which consequently 
threatens the sustainable use of fertile land 
resources, reduces crop productivity, deteriorates 
water quality and degrades aquatic habitats 
(Walling and Fang 2003; Gao 2008). The situation 
is even worse in densely-populated agricultural 
regions where intensive disturbances induced by 
human activities have exerted great influences on 
regional soil erosion and riverine suspended 
sediment delivery. Understanding land denudation 
processes and assessing the contribution of natural 
and anthropogenic driving forces to fluvial 
suspended sediment yields (SSY) affords a 
theoretical basis for the design and implementation 
of effective catchment management strategies and 
mitigation measures for soil conservation and 
sediment abatement.   

Although being spatially distant, the Upper 
Yangtze River Basin in southwestern China and the 
Volga River Basin in the Eastern-European Plain 
represent typical large-scale geographical 
environments suffering from diverse human 
disturbances. Both environments are characterized 
by a sparsely-populated upstream highland area 
with minimal agricultural activity and a densely 
populated middle-lower sub-basin with extensive 
agriculture. Construction of cascade dams since the 
1950s has substantially changed channel 
connectivity and sediment conveyance. Both 
nature- and human-induced denudation processes 
are responsible for the change of riverine 
suspended sediment discharge, and hence may be 
used to determine the possible intensity of 
reservoir sedimentation, which is an engineering 
concern for hydropower plants around the world 
(Fan and Morris 1992; Palmieri et al. 2001).  

In the present study, the effects of natural 
factors and diverse human activities on the 
spatiotemporal variation of the intensity of 
denudation processes in the Upper Yangtze River 

Basin and Volga River Basin are comparatively 
assessed, and the contribution of individual 
denudation processes to fluvial SSY are evaluated 
according to an analysis of various factors and the 
quantitative assessment of some of the processes 
available for the Upper Yangtze Basin and the 
Volga River Basin. The main reason for the 
selection of these two basins is the possibilities to 
demonstrate the differences of natural factors and 
human activity influence on erosion rates  and 
suspended sediment yield based on quantitative 
spatial-temporal data available for both basins 
(with similar area and spatial distribution of 
anthropogenic impact).   

1    Study Area 

1.1 The upper Yangtze River basin 

The Upper Yangtze River originates from the 
Qinghai-Tibetan highland, extends over a 4300 km 
main channel to Yichang and drains a catchment of 
approximately 1.05 million km2 in southwestern 
China. It typically comprises four major tributaries. 
The Jinsha has a main channel of 2316 km 
(upstream Yibin) and covers a catchment of 
128,000 km2. The Min-Tuo has a main channel of 
793 km, flows into the Yangtze main channel at 
Yibin from the left bank and collects a watershed of 
160,860 km2. The Jialing has a main channel of 
1119 km, enters the main channel at Chongqing 
from the left bank and drains a catchment of 
160,000 km2. The Wu extends over a main channel 
of 1037 km through the Karst area on the Guizhou 
Plateau, drains into the Three Gorges Reservoir at 
Fuling from the right bank and collects a 
catchment of 87,900 km2. There are also many 
small tributaries that directly drain into the main 
channel between Yibin and Yichang (Figure 1).  

This Basin contains 12 latitudinal degrees (24° 
N - 36° N) and 22 longitudinal degrees (90° E - 112° 
E) with an altitude ranging between 100 and 7500 
m. The regional landform is characterized by three 
structural sub-regions: the Qinghai-Tibetan 
Plateau, the Yunnan-Guizhou Plateau and the 
Sichuan Depression, which are separated by two 
tectonically active mountainous areas. Regional 
land use is substantially determined by population 
density and local topography. Arable lands are 
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and Bogdanova 1998). Glacial deposits occupy the 
northern part of the basin and loam loess 
dominates in the southern part.  

Before the reservoir cascade construction, the 
Volga River annually exported large volumes of 
transported matter into the Caspian Sea, 
approximately equal to 26 × 106 t of suspended 
sediment and 45 × 106 t of dissolved materials. The 
respective SSY are 19 t·km-2·yr-1 for suspended 
sediment and 33 t·km-2·yr-1 for dissolved materials. 
Presently, sediment entrapment by large reservoirs 
has resulted in a decreased SSY at the basin outlet 
(8 × 106 t·yr-1). Meanwhile, a general increase in 
water pollution has caused a dramatic increase in 
dissolved material yield (65-70 × 106 t·yr-1) 
(Gavrilova and Bogdanova 1998). 

2    Materials and Methods 

Datasets concerning upland soil erosion and 
riverine SSY were assembled in the present study. 
Long-term records of riverine water discharge and 
sediment load at major gauging stations in the 
Upper Yangtze River Basin are available from the 
Ministry of Water Resources of China (http://www. 

mwr.gov.cn).  
The data of soil erosion rates on experimental 

runoff plots at spatially-distributed observation 
stations have been collected since the mid-1980s. 
Unfortunately, methodological and technical errors 
were made at the beginning, leading to incorrect 
results during the first two years of observation 
(Table 1). The results obtained on runoff plots have 
been reasonable since 1986, but opinions on the 
extremely high erosion rates on cultivated fields in 
the Upper Yangtze River Basin appear to be based 
on those initial results (Shi 1998; Yin et al. 1998; 
Yang et al. 2003; Wang et al. 2004). The results of 
recent observations of runoff plots (Lin et al. 2009) 
and small catchments (Yang et al. 2009) 
demonstrate much lower rates of soil losses, but 
the duration of the given observations has been too 
short to characterize the mean erosion rates for a 
relatively long time period.  

It is possible to exclusively use indirect 
methods to assess the mean annual soil 
redistribution rates on cultivated fields, 
uncultivated slopes and small slope catchments for 
the period since 1963. The 137Cs tracing technique 
affords a simple means for evaluating soil erosion 
and sediment redistribution rates since 1963, and 

Table 1 Soil erosion observation on runoff plots in the Sichuan Basin (The office of soil and water 
conservation committee of Sichuan Province 1991) 
Year (runoff 
times) 

Precipitation during 
runoff events (mm) 

Runoff 
index 

Runoff 
depth(mm) 

Soil erosion rates 
(t·km-2·yr-1) 

Annual 
precipitation(mm) 

Plot 5° (sloping cultivated land; crops: sweet potato + wheat ) 
1984 (6) 406.1 0.11 46.5 4485.2 654.9 
1985 (12) 642.1 0.3 194.4 3700.9 1243 
1986-1989      
Plot 10°(sloping cultivated land; crops: sweet potato + wheat) 
1984 (11) 499.1 0.12 57.8 8764.9 654.9 
1985 (12) 642.1 0.26 170.2 5115.1 1243 
1986-1989 No runoff and sediment were detected 
Plot 15°(sloping cultivated land; crops: sweet potato + wheat ) 
1984 (12) 510.6 0.14 69.4 13,343.3 654.9 
1985 (12) 642.1 0.41 260.0 8744.2 1243 
1986 (1) 124.9 0.11 14.1 211.6 911.2 
1987 (1) 124.9 0.10 12.8 100.5 884.6 
1988-1989 No runoff and sediment were detected 
Plot 20°(sloping cultivated land; crops: sweet potato + wheat ) 
1984 (11) 493.1 0.11 55.1 17,504.4 654.9 
1985 (12) 642.1 0.34 220 11,619.2 124. 
1986 (1) 124.9 0.04 43.3 66.5 911.2 
1987 (1) 124.9 0.1 12.2 190.6 884.6 
1988-1989 No runoff and sediment were detected 
Plot 25° 
1984 (12) 510.6 0.14 70.3 23,563.8 654.9 
1985 (12) 642.1 0.3 194.8 15,895.3 1243 
1986 (2) 222.8 0.23 45.4 733.2 911.2 
1987 (1) 124.9 0.28 34.9 408.2 884.6 
1988-1989 No runoff and sediment were detected 
Plot 5°下面的 1986-1889 后面没有数字也没有注释，是不是和 Plot 10°中的 1986-1989 一样情况？！ 
Plot 25°后面没有注释,是不是和前面一样的情况?!如果是的话,这些注释可以在表后注明即可,表中的可删掉。 
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Table 2 Soil erosion rates on cultivated land obtained using 137Cs tracing technique 

Region Location Precip. 
(mm) 

Land 
type 

Slope 
length 
(m) 

Slope 
angle 
(°) 

Soil 

137Cs 
reference 
inventory 
(Bq/m2) 

137Cs 
effective 
reference 
inventory 
(Bq/m2) 

137Cs content (Bq/m2) 

No. of 
profile 

ASER 
(t·km-2·yr-1) Range Aver.  

The Lower 
Jinsha-
Jiang 
River 
Basin 

Muding 850.6 CS_L 13 20 P_soil 919.8 643.9 88.0-488.0 204.9 14 6271 
terrace 10 0 P_ soil 919.8 815.5-10.56.3 915.8 5 No erosion 

Zhenba 917 CS_L 21 25 P_soil 1510.4 1057.3 84.8-632 326.1 8 8543 
terrace 10 0 P_soil 1510.4 1510.4 1338.2-1636.7 1523.8 4 No rosion 

Zhenbay 613.8 
CS_L 25 15 

R_soil 620.9 
558.8 229.3-773.1 367.6 13 2740 

CS_L 70 5 558.8 338.0-567.0 425.3 8 1405 

The Three 
Gorge 
Reservoir 
Region 

Zhigui  1048 CS_L 29 31 Clayey soil 2377.2 1664.0 160.1-2906.5 1340.7 9 2059 

Zhenba ？？ 

CS_L 10 25 

P_soil 1924.6 
1347.2 

125.0-927.6 382.5 4 9452 
CS_L 5 25 13.0-1202.3 499.3 3 7481 
CS_L 8 25 161.0-692.6 362.2 4 9854 
terrace 10 0 1924.6 1050.4-3080.7 1875.1 4 No erosion 

The 
Middle 
and Lower 
Jialing 
River 
Basin 

Nanchong 1000 
CS_L= 17 0-11 P_soil 

2035.8 
1425.1 28.5-2378.6 709.5 5 4663 

CS_L= 9 5 P_soil 1730.4 312.0-2286.4 1443.4 4 758 
CS_L= 24.7 14 P_soil 1425.1 439.5-693.4 528.2 5 6780 

Zhenba 1250 
CS_L= 27 10 Y_soil 

2375.0 
1662.5 86.8-1119.8 513.9 16 7467 

CS_L= 54 34 Stony soil 2137.5 863.5-2784.6 1847.7 17 985 
CS_L= 8 7 Y_soil 2018.8 541.5-1827.0 850.4 8 4200 

The Upper 
Jialing 
River 
Basin 

Tianshui 605.7 

CS_L= 20 19.3 Loess 

2573.2 2573.2 

111.0-2606.5 885.9 6 4598 
CS_L= 19 18 Loess 137.9-1681.2 761.6 6 5310 
CS_L= 34 12.8 Loess 245.6-3479.6 1318.9 9 2864 
CS_L= 15 31 Loess 207.9-690.5 408.7 4 8216 
terrace 25 0 Loess 1845.7-3410.7 2675.4 4 No erosion 

Notes: ASER means Average soil erosion rates. CS_L= Cultivated sloping land; P_soil=Purple soil; R_soil=Dry red soil; Y_soil=Yellow soil. 
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Table 3 Soil erosion rates from uncultivated lands based on application of 137Cs tracing technique. 

Region Location Precipi. 
(mm) 

Land 
type 

Slope 
length 
(m) 

Slope 
angle 
(°) 

Soil 
Vegetation 
coverage 
(%) 

137Cs 
reference 
inventory 
(Bq/m2) 

137Cs content (Bq/m2) 
No. of 
profile 

ASER 
(t·km-2·yr-1) Range Aver. 

The Lower 
Jinsha-
Jiang River 
Basin 

Muding  850.6 F_L 63.5 14 P_soil 90 919.8 782.7-1227.1 967.1 6 No erosion 

Yiliang  800 F_L 25 5 P_soil 80 1510.4 1460.9-1542.6 1516.5 3 No erosion 

Yuanmou  613.8 
G_L 20 21 

R_soil 
60 620.9 38.8-663.3 329.7 5 876 

G_L 30 30 90 620.9 576.0-1159.9 821.5 6 No erosion 

The Three 
Gorge 
Reservoir 
Region 

Zigui  1048 
F_L 53 25 P_soil 90 2377.2 65.7-1495.4 960.8 6 310 

F_L 25 25 P_soil 80 2377.2 531.8-1473.8 962.6 5 306 

Kaixian  1200 G_L 3.5 25 P_soil 60 1924.6 798.1-942.0 869.7 3 688 

The Middle 
and Lower 
Jialing River 
Basin 

Nanchong  1000 G_L 5 5 P_soil 30 2035.8 107.7-124.6 119.0 3 4435 

Zhenba  1250 F_L 82 10 Y_soil 90 2375.0 1065.1-3993.8 2301.4 12 No erosion 

The Upper 
Jialing River 
Basin 

Tianshui  605.7 F_L  
30 20.4 

Loess 
40 

2573.2 
1308.4-3038.3 2071.5 6 588 

32 22.6 70 2212.3-3106.5 2560.3 6 No erosion 

Notes: ASER means Average soil erosion rates. F_L=Forest land; G_L=Grass land; P_soil=Purple soil; R_soil=Dry red soil; Y_soil=Yellow soil. 
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observed (R2 = 0.89) (Wu et al. 2008), indicating 
that the chemical weathering in the Jinsha River 
Basin is controlled by the physical erosion. 
However, the weathering in the Jinsha Basin is not 
strong enough to greatly affect K-feldspar, 
compared with some large tropical rivers, and 
losses of Ca, Na and Sr are the main form of silicate 
weathering. Observations have supported the 
classic viewpoint that climate is the predominant 
factor controlling the silicate weathering in the 
Upper Yangtze River Basins (Yang et al. 2004). 
Debris flows are responsible for sediment transport 
from first order catchments to the main river 
valleys. Based on direct observation in the 
Xiaojiang River Basin, the majority of debris flow 
basins are located within an elevation range of 
700-1500 m and have an area of <5 km2 (He et al. 
2003). The intensive gravitational processes (rock 
fall, scree) are widespread here due to the extensive 
physical weathering of rocks on the steep barren 
slopes of small valleys with high gradient bottoms. 
The intensity of weathering in particular increases 
due to fractured rocks and favorable climate 
conditions, including high day-night and seasonal 
temperature gradients and intense rainstorms. 
Moreover, the lower Jinsha Basin is located in an 
area with a high recurrence of earthquakes, which 
makes landslides and rock falls widespread.  

An active contemporary tectonic processes belt 
surrounds the Sichuan Hilly Basin from the West, 
Northwest and North within the zone, with 
absolute elevations of 1000-2000 m a.s.l.. 
Combined with intense weathering, specific 
processes prompt the intensification of different 
gravitational processes, particularly landslides and 
rock falls (Jin et al. 2009). However, the 
recurrence of debris flows is lower here compared 
with the southern part of the Lower Jinsha River.   

The middle and high mountainous regions 
(2000-4000 m) located between the Qinghai-Tibet 
Plateau and the Lower Jinsha River Basin in the 
West are characterized by a cold and relatively dry 
climate with the main sediment production area in 
a glacial zone with very active physical weathering. 
Thus, the highest sediment concentrations are 
found in the upstream parts of rivers in the given 
region (Qin et al. 2006), mainly the right-hand 
tributaries of the Dadu and Yalong Rivers and the 
middle reach of the Jinsha River Basins. The 
Middle and Upper Jinsha River Basins are not 

affected by anthropogenic influence due to very low 
population densities. A very good correlation 
between water discharge and sediment 
concentration is confirmed for the Yalong and 
Jinsha Rivers at the Panzhihua since the beginning 
of the observation (Figure 8). 

A completely different situation was observed 
in the area of carbonate rocks (karst area) 
occupying the southeastern part of the Upper 
Yangtze Basin, which belongs to the Wu River 
Basin. Chemical weathering is dominant there, 
with almost no surface runoff due to shallow soils 
and carbonate mother rocks with very high 
infiltration rates (Peng and Wang 2012). Only the 
upper part of the Wu River Basin lying outside of 
the karst is the main sediment production area due 
to high physical weathering and intensive 
gravitational processes. The SSY of the Wu River 
can be used as an indicator of suspended sediment 
formation from the area located within low 
mountains (700-1000 m a.s.l.) due to the lack of 
sediment input from anthropogenic and river-bank 

Figure 8 Temporal dynamic of mean water discharge 
and sediment concentrations for period of observation 
(location of gauging station in Figure 8A): (a) Luning 
station (Yalong River), controlling area-108,100 km2; 
(b) Panzhihua station (Jinsha River), controlling area-
285,000km2. 
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Table 5 Characteristics of regions with different contribution of natural and anthropogenic denudation processes. 

Sub-regions 
Area  
(104  

km2) 
Relief  Geology Climate  

Population 
density 
(people·km-2) 

Forest 
coverage 
(%) 

Arable 
land 
ratio  

Hilly Sichuan 
Basin  10.5 Hills with elevation 

between 200-500 m 

Horizontal bedding 
Mesozoic sedimentary 
rocks  

Eastern Asia Subtropical climate 
with annual precipitation between 
900 mm-1100 mm and mean 
temperature of 14-16oc.  

400-700 15-30 0.4-0.6 

Surrounding 
mountain area  20.9 

Low-medium 
mountains with 
elevation between 
500->2000 m  

Paleozoic and Mesozoic 
sedimentary rocks, a 
few crystalline rocks. 
Folds and faults are well 
developed 

Eastern Asia Subtropical climate. 
annual precipitation: 1000mm-
1800 mm; mean temperature: 12-
15oc. 

100-300 20-40 0.1-0.25 

Loessic 
mountain   4.1 

Low-medium 
mountains. 
Elevation:600 m-
>2000 m 

Paleozoic sedimentary 
rocks, a few crystalline 
rocks covered with loess 
deposits. Folds and 
faults are well 
developed 

Eastern Asia Subtropical climate. 
Annual precipitation: 600 mm-860 
mm; mean tempreture:11oC -13oC. 

100-150 20-40 0.1-0.15 

Hengduan 
Mountains 19.6 

Medium-high 
mountains. Elavation: 
1000 m->3500 m 

Paleozoic and Mesozoic 
sedimentary rocks, a 
few crystalline rocks 
and protozoa 
metamorphic rocks. 
Folds and faults are well 
developed  

Subtropical mountain climate with 
dry and warm valleys and cold and 
wet mountains. annual 
precipitation: 500mm-1600 mm; 
mean temperature: <0oC-15oC 

50-100 20-40 0.05-0.15 

Lower Jinsha  
mountain    7.2 

Deeply dissected 
Medium-high 
mountains. Elavation: 
500 m->3500 m 

Paleozoic and Mesozoic 
sedimentary rocks, a 
few crystalline rocks 
and protozoa 
metamorphic rocks. 
faults are well 
developed and very 
active 

Subtropical mountain climate with 
dry and warm valleys and cold and 
wet mountains. annual 
precipitation: 500 mm-1100 mm; 
mean temperature: 10oC-21oC. 

50-200 10-35 0.05-0.25 

Tibet Plateau 30.2 High plateau. 
Elevation:>3500 m  

Mesozoic metamorphic 
rocks and crystalline 
rocks, a few Paleozoic 
sedimentary rocks. 
Folds and faults are well 
developed 

Sub-frigid plateau   climate. 
annual precipitation: 200 mm-700 
mm; mean temperature: -4 oC - 6 

oC. 

1-10 <5 <0.01 

Karst Plateau 7.5 Plateau. Elevation: 
1000 m-1500 m 

Paleozoic- Triassic 
carbonate rocks, mostly 
horizontal bedding 

Subtropical plateau climate 
precipitation: 1000 mm-1400 mm; 
mean temperature: 13 oC -15 oC. 

200-300 15-35 0.2-0.3 
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load produced in the Upper Yangtze River Basin is 
sourced from natural denudation processes as an 
integrated product of concentrated rainstorms, 
complex landforms and tectonic activities, with the 
exception of the central Sichuan Hilly area, where 
soil losses from cultivated hillslopes contribute 
significantly to fluvial sediment yield. 
Deforestation is another anthropogenic factor 
responsible for increasing the denudation rate. It 
was found that 15%-18% of the forest destruction in 
the Upper Min River Basin during the 1970s did 
not significantly influence river discharge (Cheng 
1999). Hence, it is unlikely that deforestation 
notably changes evaporation rates. It is more likely 
that soil losses increase after logging due to the 
destruction of vegetation cover that provides soils’ 
resistance to erosion. Thus, the intensity of 
denudation might be higher within the right-hand 
tributaries of the Lower Jinsha River due to a dry, 
hot climate compared with other parts of the Upper 
Yangtze River. The evaporation intensity increased 
in given climate conditions after deforestation, 
which made it more difficult for vegetation to 
recover and promoted increased physical and 
chemical weathering. Surface runoff also increased 
considerably, which lead to an increase in sediment 
transport from the basin areas to the river channels. 

The intensive deforestation of the Upper 
Yangtze River area began in the 1950s, with a sharp 
increase in the Lower Jinsha River Basin beginning 
in the 1960s due to mining and industrial 
development in the region. For example, the forest 
coverage in Zhaotong County decreased from 32.8% 
in the 1950s to 17.5% in 1974 and 14.1% in 1980; 

coverage in Dongchuan County went from 30% in 
the 1950s to 8.9% in the 1980s; and coverage in the 
Chuxiong Minority went from 55% in the 1950s to 
24.1% in the 1980s. Clearly, this has led to an 
intensification of weathering, gravitational 
processes and slope gully formation in drainage 
regions in the southern part of the Lower Jinsha 
River Basin. As a result, the quantity of sediment 
delivered from catchment areas increased 
considerably. For example, the sediment 
concentration in the upper and lower reaches of the 
Longchuan River increased 2-2.5 times between 
the 1960s and the 1980s, with a decrease in water 
discharge (Figure 10). Serious decreases in water 
discharge during a given time interval confirms an 
increase in evaporation due to deforestation 
(Cheng 1999). Since the 1990s, sediment 
concentration has been relatively stabilized due to 
conservation measures (reforestation). 
Simultaneously, river water discharge has 
increased (Figure 10). This is a typical situation for 
southern tributaries of the Lower Jinsha River. A 
different situation has been observed for the 
northern tributaries of the Lower Jinsha River, 
with a relatively high correlation between water 
discharge and sediment concentration from the 
1950s through the beginning of the 2000s (Figure 
11). However, some increase in sediment 
concentration with decreasing water discharge was 
also observed for a shorter time interval. There are 
two reasons for the given types of sediment 
concentration fluctuations. First, a wetter climate 
compared with southern tributaries has made it 
much easier for vegetation to recover after logging.   

Table 6 The relative contribution of natural denudation processes and soil loss from agricultural 
land for the individual classified sub-regions. 

Region SSY* 
(t·km-2·a-1) 

Relative contribution (%) Principal denudation 
processes  Soil losses from 

agricultural lands 
Natural denudation 
processes  

Sichuan Hilly Basin 500-600 50-60 40-40 Soil erosion from 
cultivated lands 

Mountain area around 
the Sichuan Basin   

400-500 15-25 75-85 Landslide, scree, rock fall 

Karst area 300-400 <5 >95 Bank and gully  erosion 
Lower Jinsha River 
mountain area 

800-1200 5-10 90-95 Scree, rock fall, slope 
gully erosion  

Hengduan mountain area 500-600 <5 >95 Rock fall, landslide 
solifluction  

Loess Mountain 1000-1500 10-15 85-90 Gully erosion 
Qinghai-Tibet Plateau <200 <1 >99 Bank erosion, solifluction 

Note: * indicates mean values during 1954-2005 for river basins with area less than 20,000 km2. 
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of the sediment transported by debris flows to the 
Xiao River valley was delivered to the Jinsha River 
(Dai and Tan, 1996). It is more likely that in reality 
the proportion of sediment delivered to the Jinsha 
River is even less. This situation is very typical for 
the other tributaries of the Lower Jinsha River; 
however, a detailed analysis of the SSY and water 
discharges for the tributaries of the Lower Jinsha 
River confirms the remarkable influence of 
deforestation on denudation intensification. 

During the past decades, implementation of 
diverse soil conservation measures (e.g., 
reforestation, terracing, orchards introduction and 
check dams) has considerably reduced upland soil 
erosion and denudation rates, particularly in the 
regions with the highest SSY (e.g., the Sichuan 
Hilly Basin, the Lower Jinsha Basin and the upper 
part of the Jialing Basin). 

3.2 The Volga River Basin 

Water erosion on cultivated hillslopes is the 
predominant land denudation process which gave 
rise to fluvial sediment fluxes in the Volga River 
Basin. Major factors influencing the spatial 
distribution pattern and the magnitude of 
antropogenic soil erosion are climate, local 
topography, land cover and land use types. 

Intense rainstorm events caused significant soil 
erosion. Medvedev and Shabaev (1991) measured an 
erosion occurrence with a magnitude of 53.5 t·ha-1 on 
the Privolzhskaya Upland during the spring of 1974 
when rainfall combined with melt-water runoff was 
observed. About 55 mm of rainfall in the Tula Region 
(Srednerusskaya Upland) during 2 hours on August 
10, 1997 brought about a soil loss of 22-59 t·ha-1 
(Belyaev et al. 2008). Such runoff and rainfall events 
with 10-20 year return periods produce 70%-80% of 
the total long-term sheet and rill erosion. 

Soil erosion intensity in the arable lands of the 
Volga River Basin varies from 0.1 to 30 t·ha-1·yr-1. 
The spatial distribution of the erosion rates for the 
cultivated hillslopes in the entire basin is presented 
in Figure 5a and is controlled by numerous factors, 
of which the most important is a zonal index of 
rainfall erosivity R (as used in the USLE). It varies 
from 3.5-4.0 in the northern part of the basin to 
8.0-9.0 in the Srednerusskaya Upland (the western 
part of the basin). Further south, the values of R 
decrease again to about 1.5-2.0 in the lower parts of 

the basin. Water storage in snow by the beginning 
of the snowmelt period is another important 
parameter influencing soil erosion intensity during 
spring snowmelt. This is maximal in the northern 
part of the basin (120-140 mm) and decreases 
southward to 20-40 mm in the lower part of the 
basin.  

Within climatically uniform territories, local 
topography is the most important factor controlling 
soil erosion rates. Large areas with the highest 
erosion rates occupy the Smolensko-Moskovskaya, 
Srednerusskaya and Privolzskaya Uplands and 
those of the eastern part of the basin, along with 
the piedmonts of the Urals. The topographical 
control of erosion is considered in the USLE-based 
approach by introducing the LS factor, which 
incorporates the influence of slope length (L) and 
gradient (S) on erosion rates. The northern parts of 
the Volga River Basin with arable land, dominantly 
located on uplands and relatively steep valley 
slopes, are characterized by LS factor values 
varying from 1.0 to 2.5. The central part of the 
basin is characterized by alternation between vast 
uplands and lowlands, such that the values of the 
LS factor decrease. In the southern part of the 
basin in the Prikaspiyskaya Lowland, a uniformly 
flat topography with very low slope gradients 
determines extremely low values of the LS factor 
(0.1-0.3). 

Soil erodibility E is a value characterizing soils’ 
susceptibility to erosion, opposite its erosional 
resistance, which falls under the effect of the unit 
rainfall erosivity R. It varies significantly 
depending mainly on soil texture, humus content 
and composition. Easily erodible (highest E values 
of 4.0-4.5) are soddy, podzolic soils on loessy 
loams. Similar soils on glacial boulder clays are 
already less erodible (E = 3.0-3.5). The least 
erodible soils are humus-rich chernozems with 
heavy texture and E values in a range of 0.7-2.0. 
The erodibility of gray forest soils varies from 1.5 to 
3.0 and that of chestnut soils varies from 1.8 to 2.5. 
Light chestnut soils are characterized by high 
erodibility (E = 3.0). 

On the glacial upland landforms the erosion 
rate reaches 10-12 t·ha-1·yr-1 while on the glacial-
lake and glaciofluvial plains the rate is -2 t·ha-1·yr-1. 
Similar relationships are found between the soil 
loss from uplands and lowlands, located within the 
loam loess zone: the Srednerusskaya Upland at 7-8 



J. Mt. Sci. (2015) 12: – 
  
 

 17

t·ha-1·yr-1 and the Oksko-Donskaya Lowland at 0.5-
2.0 t·ha-1·yr-1.  

In terms of the contributions made by 
snowmelt runoff and rainfall to total soil erosion 
rates, most of the Volga River Basin is characterized 
by important contributions from both. Snowmelt 
runoff is responsible for the majority of the average 
annual soil loss in the northern part of the basin and 
the northwestern piedmonts of the Urals. To the 
south, the contribution of rainfall runoff becomes 
dominant. During the last two decades, water 
erosion during snowmelt has decreased 
considerably within the European part of Russia due 
to warm winters and a sharp decrease in surface 
runoff during snowmelt (Petelko et al. 2007). In 
addition, the cultivated lands have decreased 
considerably, particularly in the forest landscape 
zone. The Lower Volga and surrounding territories 
are zones in which water erosion generally decreases 
significantly due to low the frequency of high-
magnitude rainfall events. In those areas, wind 
erosion becomes the dominant process of sediment 
redistribution on slope surfaces. 

It is well known that the erosion rates in small 
river catchments are closely related to the 
percentage of cultivated land (Harvey 2002; 
Golosov & Panin 2006). This generally increases 
from north to south, becoming maximal in the 
steppe zone and decreasing abruptly again toward 
the semi-desert and desert areas. The so-called 
patchy cultivation zone is located in the northern 
part of the basin, where cultivated lands form 
individual, separate ‘islands’ in large woodland 
areas. Under such circumstances, the sediment 
yield from eroded arable hillslopes does not exert a 
significant effect on suspended sediment 
concentrations in river waters, although some 
individual hillslopes can be severely eroded due to 
the presence of eroded soils, the sufficient 
availability of surface water and favorable 
topography. To the south of the taiga zone the 
intensity of soil erosion on arable slopes remains 
high and the percentage of arable land increases. In 
forest-steppe and steppe zones the highest 
percentage of arable land is combined with 
significant potential erosion rates on cultivated 
slopes. Minimal erosion rates characterize the 
Prikaspiyskaya Lowland and the southeastern part 
of the basin. 

Generally, the suspended sediment flux in 

rivers is principally contributed by the soil erosion 
and sediment transport that occur in the southern-
central part of the basin, whereas the contribution 
from the north is relatively minor. Channel bank 
retreats and bed incisions are the main contributors 
to suspended sediment in local fluvial systems. 

Gully erosion is another contributor to riverine 
suspended sediment load in the Volga River Basin. 
The whole basin can be generally divided into four 
sub-areas (Litvin et al. 2003) according to the 
genesis and density of gully occurrence (Figure 5b): 

1. The belt where gullies represent extremely 
uncommon and isolated phenomena (<2 gullies/100 
km2), with no or very low percentage of cultivated 
land and flat or rolling relief in the northern (>57° N 
- 58° N) part of the forest zone or lowlands with 
weakly incised valleys <10 m deep. 

2. The belt of low gully density varying between 
2 and 25 gullies/100 km2 over most of the area. Such 
areas have relatively low relief range and forested flat 
interfluves. They occupy the forest zone south of 57° 
N - 58° N, the flat forested upland areas of the 
Smolensko-Moskovskaya and Srednerusskaya 
Uplands and part of the Oksko-Donskaya Lowland. 
In the southern part of the forest zone, gully density 
gullies can reach 25-50/100 km2. Most of the gullies 
presently found in forests were formed during 
periods of much wider expansion in the cultivation of 
former arable lands. 

3. The main belt of gullying in the forest-steppe 
and steppe zones. The main anthropogenic factor in 
gully formation here is the cultivation of almost the 
entire area. Gullying is also promoted by favorable 
natural conditions such as substantial volumes of 
melt water and rainfall, relatively erodible loessy 
subsoil parent materials and a relatively high 
topographical range. When these areas were first 
cultivated, intensive tillage led to the formation of 
gully systems of the greatest extent and density, 
compared to other regions. The topographical range 
and land use pattern differentiate the gully density 
within the belt. Areas with moderate gully density 
(25-50/100 km2) typically occupy relatively flat 
interfluves and uplands with low topographic range 
(the Smolensko-Moskovskaya Upland), in addition 
to lower rolling plains (the Tambov Range, the 
Oksko-Donskaya Lowland and the western part of 
the Obshchiy Syrt Upland). Areas of advanced 
agricultural development with relatively favorable 
natural conditions for gully formation are 
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characterized by deeply dissected relief and high 
gully density (50-100/100 km2). Such regions 
include the central parts of the upland country such 
as the Srednerusskaya and Privolzhskaya Uplands. 
Areas with very high gully density (>100/100 km2) 
are found in a relatively small region in the middle of 
the upland country and along the steep slopes of the 
main valleys, comprising <10% of the entire territory 
affected by gully erosion. 

4. The southern belt with very low gully density. 
This region includes the greater part of the 
Prikaspiyskaya Lowland. 

Kosov (1970) collected more than 300 gully 
growth-rate measurements in the European part of 
the former USSR for various land use types (Table 7). 
About 45% of these data show gully growth over 1-5 
years, 35% show growth up to 10 years and the 
others for longer periods up to 170 years. The gullies 
on arable land are characterized mainly by medium 
growth (50% of the gullies have a maximum growth 
rate <5 m·yr-1). Catastrophic (>100 m·yr-1) rates of 
gully development are more typical in the areas of 
forest cutting and industrial development. 

Despite strong fluctuations in gully headcut 
retreat rates between individual years, their 
tendency to decrease is observed in most of the 
long-cultivated regions of the Volga River Basin 
(Rysin 1998). It should be noted, however, that this 
tendency is most applicable for gullies being 
developed on former arable land for relatively long 
periods (up to 200-300 years) and presently 
reaching a quasi-stable state. There are, in contrast, 
areas in which new (and therefore very active) 
gullies are being formed, mainly as a result of the 
negative effects of human activities and current 
land use changes. Large stabilized gullies can also 
develop active branches if there are catchment 
areas available (Litvin et al. 2003). 

In addition to the internal gully system 
threshold of reaching the minimal headcut 
catchment area, other reasons for the observed 
tendency are as follows: 1) the positive effects of 

soil conservation measures applied in the 1950s-
1980s; 2) a general decrease in arable areas from 
the 1990s-2000s; 3) a shift to more soil-protective 
crop rotations with a high percentage of perennial 
grasses from the 1990s-2000s; and 4) a decrease in 
surface runoff irregularity (lower extremes), 
snowmelt intensity and snowmelt runoff 
discharges from the 1990s-2000s. 

The SSC map shows five area categories 
(Figure 6a) based on the changes in typical SSC 
values. The boundaries of these areas were drawn 
to consider the spatial patterns of surface lithology 
and soil cover in the Volga River Basin. The lowest 
SSC (<50 g·m-3) characterizes the rivers of the 
upper Volga Basin, those north of the northwestern 
part of the Oka River Basin, the left-hand 
tributaries of the middle Volga River, the rivers of 
the middle Vyatka River Basin and those in the 
northern part of the Kama River Basin. The areas 
of lowest SSC form an almost continuous belt 
across the northern part of the Volga River Basin, 
with an irregular southern boundary. The lowest 
SSC values are also observed for the rivers in the 
eastern part of the Kama River Basin flowing from 
the Ural Mountains and their foothills. In general, 
this zone is limited to forest with soddy podzolic 
soils, and to mountainous regions. This area is 
characterized by a low area of arable lands (<20%-
30%), so it is likely that the bank and bottom 
erosion of the river channels are the main sources 
of sediment. South of the above zone there are few 
separated areas characterized by SSC values in a 
range from 50-100 g·m-3. The territories 
characterized by SSC values in a range of 100-200 
g·m-3 are located in the southern forest-steppe part 
of the Oka River Basin (the Srednerusskaya 
Upland), the central and southern parts of the 
Kama River Basin (dissected upland areas of the 
Ufimskoe Plateau and Sarapulskaya, Bugulmino-
Belebeevskaya, Verhnekamskaya and Vyatskiy Uval 
Uplands). All of these areas are characterized by a 
high percentage of arable land (40%-60% and 

Table 7 Distribution of gullies with different growth rates in the Volga River Basin (Kosov 1970) 

Land uses Total gully number 
Maximum annual (seasonal) growth 

<5 m 6-15 m 20-40 m 50-80 m >100 m  
Agriculture 269 50% 25% 15% 8% 2% 
Logging 15 25% 18% 25% 7% 25% 
Road building 17 15% 25% 30% 25% 5% 
Industrial development 19 20% 20% 25% 10% 25% 
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higher) and a high risk of soil erosion. 
The steppe areas along the lower Volga River 

typically have higher SSC values, from 200-500 
g·m-3 (Figure 6a). A high SSY can be explained by 
the intensive cultivation of upland landscapes. 
Areas with even higher SSC values include the 
Mesha River Basin (interfluve between the Volga 
and Kama Rivers), the small rivers of the 
Privolzskaya Upland and the upper reaches of the 
Buzuluk, Samara, Tok, Sok and Bolshoy Kinel 
Rivers with a high proportion of cultivated lands 
and high relative relief (Chalov and Shtankova 
2003). 

The spatial distribution of the SSY values 
generally resembles that of the SSC values, 
although the pattern is somewhat more mosaic 
(Figure 6b). There is a general tendency of increase 
in the SSY values from north to south, a dynamic 
that is most evident within the Kama River Basin, 
which has quasi-longitudinal elongation through a 
number of landscape zones from taiga to dry 
steppes. In the Oka River Basin that tendency is 
rather unclear because it is located entirely in the 
southern part of the forest zone, which is elongated 
in a quasi-latitudinal direction. Most of the rivers 
in the upper Volga Basin are characterized by the 
lowest SSY values. 

The variety of conditions influencing sediment 
mobilization and routing in the western part of the 
Volga River Basin (mainly in the Oka River Basin) is 
reflected in changes in the SSY values along the 
larger rivers (Figure 6b). Along the Oka River, the 
SSY values decrease downstream as it receives 
tributaries (the Zhizdra and Ugra Rivers and the 
rivers of the Mecherskaya Lowland) due to low 
suspended sediment concentrations. Along the 
Moksha River, the SSY values also initially decrease 
downstream (toward the central part of the Oksko-
Donskaya Lowland), but then increase further 
downstream. Along the Klyazma River, the SSY 
values initially increase downstream as the river 
flows through the Vladimirskoe Opolye with its high 
proportion of arable lands, and then begin to fall 
once the river leaves the actively eroded areas. 

In the Kama River Basin, the highest SSY 
values (30-40 t·km-2·yr-1) are found in the central 
and lower parts, including the upper and lower 
parts of the Vyatka River Basin and most of the 
Belaya River Basin. The lowest values (<10 t·km-2·yr-1) 
correspond to the mountainous areas and the 

central parts of the Bugulmino-Belebeevskaya 
Upland with a low proportion of cultivated lands. 
Intermittent SSY values are observed in the 
northern part of the Kama River Basin under the 
taiga forests and the slopes of the Bugulmino-
Belebeevskaya Upland toward the Kuibyshevskoe 
Reservoir on the Volga River. 

In the lower part of the Volga River Basin, the 
left-hand tributaries flow through the lowland 
areas while the right-hand tributaries descend from 
the short, steep slopes of the Privolzhskaya Upland. 
Consequently, the latter are characterized by 
higher SSY values (20-30 t·km-2·yr-1) in the 
Tereshka River and the middle reach of the Sviyaga 
River. On the left side of the basin, however, there 
is also a localized area of very high SSY values (40-
60 t·km-2·yr-1), most likely associated with local 
geomorphological factors (more dissected 
topography). This area of high SSY values coincides 
with a zone of maximum SSC values (upper reaches 
of the Samara, Bolshaya Kinel and Sok Rivers). The 
low reach of the Sviyaga River and the entire 
Mesha River are characterized by absolutely 
maximal SSY values (>60 t·km-2·yr-1), in 
accordance with maximum SSC values. 

The lowest (<5 t·km-2·yr-1) SSY values are 
typical for the rivers in the upper part of the Volga 
River Basin and those in the central part of the Oka 
River Basin. In the eastern part of the Volga River 
Basin (mainly in the Kama River Basin) such low 
SSY values have not been observed, while 
maximum SSY values (>40 t·km-2·yr-1) have been 
observed on the steppes of the lower part of the 
Volga River Basin (Chalov and Shtankova 2003). 

A clear trend of decreasing SSY in most rivers 
in the Volga Basin has been observed during last 
two decades, which can be ascribed to the rapid 
growth of abounded cultivated lands within the 
Central part of the Volga River basin (Belyaev et al. 
2009) and increases in winter temperature, which 
have decreased surface runoff during snowmelt 
(Petelko et al. 2007). Also it leads to decreasing of 
soil losses, gully growth and sediment transport 
from the basin areas to the river channels.  

4    Conclusion 

By assembling the available data of soil 
erosion on cultivated and uncultivated hillslopes 
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and decoupling with the natural and anthropogenic 
controlling factors operating on the individual 
denudation processes, this paper subdivided the 
whole Upper Yangtze River Basin into seven sub-
regions with different proportional inputs of 
principal denudation processes into fluvial 
suspended sediment yields. Natural factors 
comprising topography, climate, lithology and 
tectonic activity are responsible for the spatial 
variations in denudation rates across the basin.  

However, land use change due to deforestation 
and land reclamation has played an important role 
in the intensification of sediment production in the 
Upper Yangtze River Basin. In particular, in the 
most densely-populated Sichuan Hilly Basin with a 
cultivated land ratio exceeding 50%, soil losses 
from cultivated lands are the main source area for 
sediment production. The influence of 
deforestation affected the Lower Jinsha River 
Basin, especially the southern part of this area 
where deforestation intensity and denudation 
processes increased considerably due to 
unfavorable climate conditions for vegetation 
recovery. The application of national soil 
conservation programs during the recent decades 
promoted a significant reduction in soil losses and 
sediment production. However, the same effect is 
difficult to achieve among the tributaries of the 
Lower Jinsha River due to the huge amount 
sediment accumulated in the river valley bottoms 
and re-mobilized through river channel migration.  

In the Volga River Basin, anthropogenic sheet, 
rill and gully erosion are the predominant 

denudation processes in the southern part. The 
bank and bottom erosion of the river channels is 
the main source of sediment in the northern part of 
the Volga River Basin where the SSY is 
considerably lower than that in the southern part. 
The proportion of cultivated lands is the key 
parameter controlling denudation intensity within 
the basin. However, local relief characteristics also 
considerably influence erosion rates and SSY in the 
southern half of the Volga River Basin. Lithology, 
soil cover and climate conditions are determined 
by the spatial distribution of sheet, rill and gully 
erosion intensity, but they play a secondary role in 
SSY spatial distribution. 

Finally it is possible to conclude that natural 
denudation processes are mostly responsible for 
high SSY in the Upper Yangtze River basin. The 
opposite situation is observed in the Volga River 
basin, where a high proportion of cultivated lands 
in the southern half of the basin lead to intensive 
sheet, rill and gully erosion in particular within 
uplands. Intensity of basin erosion is comparable 
with that observed in the Upper Yangtze River 
basin, which is recently well-known as the area 
with one of the highest erosion rates. 
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