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Abstract: We study the universe evolution starting from the sub-Planckian scale to present times. The
requirement for an exponential expansion of the space with the observed metric as a final stage leads
to significant restrictions on the parameter values of a function f (R). An initial metric of the universe
should be maximally symmetric with the positive curvature.
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1. Introduction

It is generally believed that our universe originated from Planck energies and evolved
by expanding and cooling to its present state. The initial stage of quick expansion starting
from the sub-Planckian energy density seems inevitable. We regard the sub-Planck scale
as the highest energy scale in which classical behavior can dominate. The Planck scale is
characterized by complete dominance of quantum fluctuations. The spontaneous creation
of an inflationary universe is described in detail, for example, in Reference [1]. At the
same time, the effects associated with the quantization of gravity may be responsible for
model parameter alternation if the energy scale is large enough. Additionally, the gravity
quantization leads to a nonlinear geometric extension of the Einstein–Hilbert action. The
first and most successful formulation of the inflationary model, the Starobinsky model [2],
considers nonlinear geometric terms belonging to the f (R) class of theories. Gravity
with higher derivatives is widely used in modern research, despite the internal problems
inherent in this approach [3,4]. Attempts were made to avoid Ostrogradsky instabilities [5],
and f (R)-gravity was one of the simplest extensions of Einstein–Hilbert gravity free from
Ostrogradsky instability. A necessary element of such models is the fitting of the model
parameters to reconstruct the Einstein–Hilbert gravity at low energies [6]. For example,
in Reference [7], the authors reconstructed the form of the function f (R) using the boundary
conditions imposed on the scale factor so that it satisfied the observations in the early
and late stages of the evolution of the universe. A variety of ways to study the nonlinear
multidimensional gravity was discussed in Reference [8].

A wide variety of functions f (R) are presented in the literature. As explicit examples,
it is worth citing a couple of functions that relate to a wide range of f (R) functions. The
specific model of f (R) gravity

f (R) = R− 2Λ
(

1− e−
βR
2Λ

)[
1− γR

2Λ
log

R
4Λ

]
(1)

is considered in Reference [9]. This model unifies the early time inflationary era and
the late time acceleration of the universe expansion. The authors investigated the viability
of the model and obtained corresponding constraints on free parameters.
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The Tsujikawa model [10] is in agreement with the cosmological observations [11] but
is slightly different from the ΛCDM model predictions. The function f (R) chosen there
has the following form:

f (R) = R− λRc tanh
R
Rc

, Rc , λ > 0 . (2)

Other attempts were undertaken to describe the whole period of evolution of the
universe with the multiparametric f (R) function; see References [12–17].

The uncertainty in the parameter values is one of the common questions for such
models. To determine or at least to limit them, the authors used cosmological and astro-
physical observational data, laboratory and solar system tests [10,18], binary pulsars, and
GWobservations (see References [19–25] and references therein).

In this article, we discuss the restrictions on the parameters of the following models
based on the known behavior of the scale factor starting from the sub-Planck scale:

1. f (R) = R− 2Λ ,
2. f (R) = a2R2 + R + a0 ,
3. f (R) = a3R3 + a2R2 + R + a0 ,
4. f (R) = a4R4 + a3R3 + a2R2 + R + a0,

In the last three cases, we neglect the cosmological constant compared to the energies
we deal with and use a0 = 0.

We assume that quantum fluctuations nucleate compact Planck-sized manifolds. Here,
we rely on the quantum field theory, where a quantum transition is usually suppressed
exponentially by a volume of nucleated systems. As the spatial part of the considered
four-dimensional metric, we choose the metric of the three-dimensional sphere as the
simplest representative:

ds2 = dt2 − e2α(t)
(

dx2 + sin2 x dy2 + sin2 x sin2 y dz2
)

(3)

Other metrics are also nucleated on equal footing, and we plan to study some of them
(compact hyperbolic and torus metrics) in the future.

Constraints on the parameters of the considered models of f (R) gravity, under which
exponential growth of the scale factor is possible, are investigated. It is also necessary to
determine the conditions under which the exponential growth of the scale factor is replaced
by the observed stage of slow expansion. The parameters of the model are also limited by
the condition that the current size of space must exceed the visible size of the universe.

During our study, we kept in mind the following issues:

– the requirement of model stability, i.e., f ′(R) > 0 and f ′′(R) > 0;
– the quick growth of the space size. It must exceed the size of the visible universe,

∼ 1028 cm; and
– extremely small space expansion at the present time.

These requirements are in addition to those usually imposed on the models by the
observations at low energies, in particular, inside the solar system.

2. Basic Equations

Consider the theory described by action:

S[gµν] =
m2

Pl
2

∫
d4x
√
|g| f (R) . (4)

The corresponding extended field equations are as follows:

fRRµν −
1
2

f gµν +
[
∇µ∇ν − gµν�

]
fR = 0 , � ≡ gµν∇µ∇ν , fR = d f /dR . (5)



Symmetry 2021, 13, 313 3 of 7

This system of equations coincides with Einstein’s field equations for f (R) = R.
Throughout this paper, we use the conventions for the curvature tensor Rβ

µνα = ∂αΓβ
µν −

∂νΓβ
µα + Γβ

σαΓσ
νµ − Γβ

σνΓσ
µα, and the Ricci tensor is defined as Rµν = Rα

µαν .
Let us suppose that the action and metric have the forms (4) and (3) consequently.

In this case, the nontrivial Equation (5) acquirse the following form:

6α̇Ṙ fRR − 6
(

α̈ + α̇2
)

fR + f (R) = 0 , (6)

2Ṙ2 fRRR + 2
(

R̈ + 2α̇Ṙ
)

fRR −
(

2α̈ + 6α̇2 + 4e−2α
)

fR + f (R) = 0 , (7)

where Equation (6) correspond to the (tt)-component and Equation (7) corresponds to the
coinciding components (xx) = (yy)=(zz) of system (5). The definition of the Ricci scalar for
metric (3) is

R = 12α̇2 + 6α̈ + 6e−2α. (8)

Substituting α̈ from (8) into the Equation (6), we obtain an equation that does not
contain the second derivatives of the functions α and R:

6α̇Ṙ fRR +
(

6α̇2 + 6e−2α − R
)

fR + f (R) = 0 , (9)

There are three Equations (6)–(8) with respect to the unknown functions α(t) and R(t),
but only two of them are independent. It is technically easier to solve Equations (7) and (8).
Equation (9) plays the role of a restriction to the solutions of second-order differential
Equations (7) and (8). This equation was used twofold. Firstly, this equation should be
the identity when the solution of systems (7) and (8) are substituted. Secondly, applied at
t = 0, it was used to fix one of the initial variables.

We look for those solutions to this system of equations that have “correct" asymptotic
behavior. The latter are those that could describe our universe at present time. The space
size should be not smaller than the size of the universe. Therefore, space should expand
extremely quickly, at least in the beginning. The asymptotic value of the Hubble parameter
should not be bigger than the observable one. Due to its smallness, compared to the

sub-Planckian energies, we use H t→∞−−→ 0. That means α(t) t→∞−−→ const and the asymptotic

value of the Ricci scalar R(t) t→∞−−→ 0. We also assume that α(t → ∞) > 140, where the
value e140m−1

Pl corresponds to the horizon scale 1028cm at present time.
Knowledge of the asymptotic behavior facilitates the analysis. We sought for the

solutions with asymptote α(t) t→∞−−→ Ht. Therefore, R(t) t→∞−−→ 12H2 + 6e−2Ht and

Ṙ(t) t→∞−−→ −12He−2Ht. A t the end of the asymptotic regime, R(t = ∞) = Rc = const and
Ṙ(t = ∞) = 0. In this case (R = const), the trace of system (5) leads to the algebraic equa-
tion

fR(Rc)Rc − 2 f (Rc) = 0 . (10)

Several solutions of this equation could take place for specific values of the physical
parameters of function f (R). The Ricci scalar averaged over large scale is negligibly small
at present time. Therefore, our aim is the asymptotic solution Rc = RUniverse ' 0.

Let us fix the initial conditions for systems (7) and (8)

α(0) = α0 , α̇(0) = α1 , Ṙ(0) = R1 . (11)

Restriction (9) is used to fix the initial value of the curvature R(0) = R0.
We are interested in the dynamics of the maximally symmetric manifold starting from

the sub-Planck scale. Therefore, the natural choice of the initial conditions is

α0 ∼ ln H−1
sub-Planck , α1 ∼ Hsub-Planck , Hsub-Planck . mPl . (12)

Further, we work in the Planck units, mPl = 1.



Symmetry 2021, 13, 313 4 of 7

The sections below describe the rate of space growth for several forms of the f (R)
function depending on the initial data and physical parameters.

3. The Dependence of the Universe Expansion on the Lagrangian Parameters
3.1. R—Gravity

In the case f (R) = R− 2Λ, we have a well-known solution:

e2α =
3
Λ

cosh2

(√
Λ
3

t

)
, Λ > 0 . (13)

The observations indicate [26] that the parameter Λ ∼ 10−122 in the Planck units.
Therefore, the initial size of the manifold nucleated is of the order 1061. The nucleation
probability of such a huge volume due to the quantum effects is negligible. Therefore, this
model does not satisfy the considered assumptions.

3.2. R2—Gravity

For a well-studied model
f (R) = a2R2 + R, (14)

the asymptote of the curvature is zero (Rc = 0), which is the solution of Equation (10).

That means that α(t) t→∞−−→ const. The question is what is the size of the finite space?
Let us find numerically the solution of systems (7) and (8) starting from the sub-

Planckian scale, i.e., with initial conditions (12) and the value of the parameter a2 chosen
according to the Starobinsky model, a2 = 1/6m2 ' 109, where m/mPl ∼ 10−5 [27]. The
result is shown in Figure 1. The space size is of the order ∼ exp (106÷7)m−1

Pl by the end of
the inflationary stage, which exceeds the size of the visible part of the universe and, hence,
does not contradict observations.

Figure 1. The solution of the system with parameters a2 ' 109 and the initial conditions α0 = 2.3, α1 = 0.1, R0 = 0.24, and
R1 = 0 (left side) and α0 = 4.6, α1 = 0.01, R0 = 0.002, and R1 = 0 (right side).

The model predicts the substantial growth of the space size that looks quite evident.
Nevertheless, the model parameter a2 is too large to be natural. This means that there are
some processes that occur above the inflationary scale that strongly influence the parameter
value. It is the nontrivial subject of future research.

3.3. R3—Gravity

Our next choice is the function

f (R) = a3R3 + a2R2 + R . (15)

There are three types of asymptotes following from algebraic Equation (??)

Rc

(
a3R2

c − 1
)
= 0 ⇒ {Rc}1 = 0 , {Rc}2,3 = ± 1√

a3
. (16)

The first one is realized in our universe. Our immediate task is to find the solutions to
Equations (6) and (7) that lead to the observed universe. The aim is to impose restrictions
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on the model parameters a2 and a3 by the analysis of the metric dynamic starting from
the sub-Planckian scale. It is assumed that nucleated manifolds should expand up to
the observable size.

The necessary conditions for the behavior of solutions to equations are listed in the
Introduction. In short, not only should the criterion be Rc = 0 but also the solution should
be stable, should grow rapidly from the very beginning, and should strive for a constant
at the final stage. The numerical solution was found by the Rosenbrock method for the
Cauchy problem in the Maple computer mathematics system.

The numerical analysis leads to the following limits represented in the phase diagram
of Figure 2. The acceptable region obtained here is marked in gray. Those values of a3
are not acceptable since the other conditions are not satisfied (the solution Rc = 0 is not
stable and/or the space growth is too slow). The boundaries are smooth due to a possible
variation in the initial conditions in Equation (12). It is assumed that the manifolds are
nucleated due to the quantum effects at the sub-Planckian scale so that the probability of
large sized manifolds is negligible. The part of the acceptable parameter region derived
in Reference [28] is marked by a black dashed line (the right panel). The common area
belonging to both restrictions is much less than each of them.

Figure 2. The range of values of the parameters a2 and a3 that leads to the space of a size larger than the visible part of the
universe. The initial conditions were chosen as α0 = 2.3, α1 = 0.1, and R1 = 0. The intersection of the constraints obtained
in our analysis and by the authors in [28] occurs in the approximate range of value a3 ∈ [−109, 10−6].

Appropriate results can be obtained not only for the trivial initial condition Ṙ(0) =
R1 = 0; see as an example Figure 3 with Ṙ(0) = R1 = 0.01.

Figure 3. The solution of the system with parameters a3 = −108 and a2 = 109 (left side); a3 = −1 and a2 = 109 (right side);
and the initial conditions α0 = 2.3, α1 = 0.1, R0 = 0.29, and R1 = 0.01.

3.4. R4 - Gravity

As a final example, consider the function

f (R) = a4R4 + a3R3 + a2R2 + R , (17)

with the most realistic estimation of the parameter a2 ∼ 109 according to the discussion
in Section 3.2. A typical behavior of the metric is shown in Figure 4. The phase diagram
for parameters a4 and a3 at fixed a2 ∼ 109 is presented in Figure 5. The space expands
sufficiently if the parameter values (a3, a4) belong to the gray area. The area borders are
slightly smoothed if the initial conditions are varied. The boundary shift is small and does
not influence the conclusion.
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Figure 4. The solution of the system with parameters a4 = −102, a3 = −105, and a2 = 109 and the initial conditions
α0 = 2.3, α1 = 0.1, R0 = 0.28, and R1 = 0.01.

a3

a4

Figure 5. The range of the acceptable parameter values a4 and a3. The initial conditions are α0 = 2.3, α1 = 0.1, and R1 = 0.

4. Conclusions

In this paper, we discuss new restrictions imposed on the parameters of some f (R)
models of the gravity. These restrictions are the result of studying the universe evolution
at high energies. We suppose that our universe was nucleated with the size of the Planck
scale order. It must expand rapidly to reach a size no smaller than that of our universe at
present time. We also choose the 3 dimensional spherical metric from the very beginning
as the additional assumption.

These suppositions being quite natural lead to new restrictions compared to limits
based on the observations in the solar system. For example, the parameter range of R3

gravity is severely tightened if we apply both our restriction and those in the paper of [28].
In all models discussed here, the parameter ranges depend on the initial conditions that
lead to their slight uncertainties. Nevertheless, these restrictions should be taken into
account in the considered models based on gravity with higher derivatives. It is worth
mentioning that the pure Einstein–Hilbert gravity with the Λ term is not realized in the
framework of our approach.
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