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Abstract We study the notions of conditional probabilities, independence and ε-indepen-
dence for states on symmetric logics. We prove that a non-atomic state on the logic with the
Lyapunov’s property is determined by its specification of independent events. We present the
examples of (1) �-subadditive but is not subadditive and (2) two-valued non �-subadditive
states on symmetric logic. We investigate the independence relation transitivity for a �-
subadditive state.

We also study continuity properties of conditional probabilities and ε-independence rela-
tion with respect to natural pseudometric for �-subadditive state. Finally, we pose two open
problems.

Keywords Quantum logic · State · Conditional probability · Independence · Symmetric
difference

1 Introduction and Preliminaries

Measure theory problems for quantum logics (particulary, Boolean algebras and σ -algebras)
of sets are an actual field of mathematical activity cf. [6, 7, 15, 16] and references therein.
The notion of conditional probability is the principle instrument of the classical probability
theory (cf., e.g., [5, Chap. V]).

This paper continues the first author’s study begun in [2]; so we retain the notation and
terminology used there. Our aim is to study the notions of conditional probabilities, indepen-
dence and ε-independence for states on symmetric logics. We prove that a non-atomic state
on the logic with the Lyapunov’s property is determined by its specification of independent
events.
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We present the examples of (1) �-subadditive but not subadditive and (2) two-valued
non �-subadditive states on symmetric logics.

We investigate the independence relation transitivity for �-subadditive states. We also
study continuity properties of conditional probabilities and ε-independence relation with
respect to natural pseudometric for �-subadditive state. We prove that in this pseudometric
space any “triangle” possesses a “perimeter” less than or equal to 2.

Finally, we pose two open problems.
Let us recall [6] that the set E of subsets of Ω is called a concrete quantum logic if the

following conditions hold true:

(1) Ω ∈ E ;
(2) A ∈ E ⇒ Ac = Ω \ A ∈ E ;
(3) A,B ∈ E , A ∩ B = ∅ ⇒ A ∪ B ∈ E .

Let S(Ω) be the set of all subsets of Ω . Let us consider the following condition for
E ⊂ S(Ω):

(4) A,B ∈ E , A ⊂ B ⇒ B \ A ∈ E .

It is seems clear that a family E ⊂ S(Ω) is a concrete quantum logic if and only if
conditions (1) and (4) hold.

We say that the mapping m : E → [0,1] is a state (or a probability measure) on the
concrete logic E , if m(Ω) = 1 and m(A ∪ B) = m(A) + m(B) for all A,B ∈ E , A ∩ B = ∅.
Let us denote by P (E) the set of all states on logic E . Recall that the state m ∈ P (E) is called
subadditive ([15], p. 829) if for each A,B ∈ E there exists a set C ∈ E such that C ⊃ A ∪ B

and, moreover, m(C) ≤ m(A) + m(B).
In what follows the elements of E will be called events. Every minimal element of E \ {∅}

with respect to inclusion is called an atom in E .
Let ν : E →R

n+ (n ≥ 1) be a (vector) measure (ν(A∪B) = ν(A)+ν(B) for all A,B ∈ E ,
A ∩ B = ∅). An event A ∈ E is ν-atom if ν(A) > 0 and if for any event B ⊂ A, either
ν(B) = ν(A) or ν(B) = 0. A (vector) measure ν is nonatomic if it has no ν-atoms.

The set S(Ω) is a group with respect to the symmetric difference operation: A�B =
(A \ B) ∪ (B \ A). Since (X�Y)�Z = X�(Y�Z) for arbitrary X,Y,Z ∈ S(Ω) one can
write X�Y�Z without brackets which we need to order operations. Thus

Ac�B = (Ω�A)�B = A�(Ω�B) = Ω�(A�B) = (A�B)c,

Ac�Bc = (Ω�A)�(Ω�B) = (Ω�A�Ω)�B = (
(Ω�Ω)�A

)
�B = A�B.

A concrete logic E is said to be symmetric [12, Definition 3.2], if

(5) A,B ∈ E ⇒ A�B ∈ E .

These logics were investigated e.g. in [2, 4, 8, 9, 12, 13]. A family E ⊂ S(Ω) is a sym-
metric logic if and only if conditions (1) and (5) hold [2, Proposition 1].

Example 1.1 Let n ∈N and Ω = {1,2, . . . ,2n}. Then the family

Ωeven = {
A ⊂ Ω : card(A) = 2k, k = 0,1,2, . . . , n

}

is a symmetric logic on Ω .

Example 1.2 Let E ⊂ S(Ω) be a concrete quantum logic and A ∈ Ω , A �= ∅. Then the family
EA = {B ∈ E : B ⊂ A} is a concrete quantum logic with the greatest element A. Moreover,
if E is a symmetric logic, then EA is also a symmetric logic.
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2 Conditional Probability and Independence

In what follows E will be a symmetric logic on Ω . Let m ∈ P (E). For A,B ∈ E we define [2]

m̃(A,B) = m(A) + m(B) − m(A�B)

2
.

Thus m̃(A,A) = m(A), m̃(A,B) = m̃(B,A), m̃(A,B)+m̃(Ac,B) = m(B), and m̃(A,B) =
0 if A ∩ B = ∅.

Definition 2.1 [2] Let m ∈ P (E) and A,B ∈ E . Let us say that the conditional probability
of an event B under condition of another event A with m(A) > 0 is the value

m̃(A,B)

m(A)
,

which will be denoted by m(B | A).

Conditional probabilities may take negative values as well as positive ones. They are
indefinite if m(A) = 0. If m is a probability on some Boolean algebra E , then

m̃(A,B) = m(A ∩ B), m(B | A) = m(A ∩ B)

m(A)
,

thus our definition coincides with the classical one.

Definition 2.2 [2] Let m ∈ P (E) and A,B ∈ E . Then two events A and B are independent
if

m̃(A,B) = m(A)m(B).

It is proved in Theorem 1 of [2] that the following conditions are equivalent:

(a) events A and B are independent;
(b) events A and Bc are independent;
(c) events Ac and B are independent;
(d) events Ac and Bc are independent.

Since m̃(A,Ω) = m(A) = m(A)m(Ω), events A and Ω are independent. The events A

and B are independent if and only if m(A | B) = m(A | Bc) [2, Theorem 2]. Two events A

and B are independent if m(A | B) = m(A) [2, p. 103].

Theorem 2.3 Let m ∈ P (E) and A,B ∈ E , 0 < m(A) < 1. The following conditions are
equivalent:

(i) m(B | A) = m(B);
(ii) m(B | Ac) = m(B);

(iii) m(Bc | A) = m(Bc);
(iv) m(Bc | Ac) = m(Bc).

Proof All these conditions are equivalent to the independence of A (respectively Ac) and B

(respectively Bc). �
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Proposition 2.4 Let A,B,C ∈ E and C ⊂ B ⊂ A, m(B) > 0. Then

m(C | A) = m(C | B)m(B | A).

Proof As A, B , C are contained in a Boolean subalgebra of E , the classical proof works. �

If m(A) > 0 and m(B) > 0, then we obtain an analogue of Bayes formula:

m(A | B) = m(A)m(B | A)

m(B)
.

If 0 < m(A) < 1, then m(B) = m(B | A)m(A) + m(B | Ac)m(Ac).

Proposition 2.5 Let E be a symmetric logic and m ∈ P (E), A,B ∈ E and m(A),m(B) ∈
(0,1). The following conditions are equivalent:

(i) events A,B , and A�B are pairwise independent;
(ii) m(A) = m(B) = m(A�B) = 1/2.

Proof (i) ⇒ (ii). We have

m(A) + m(B) − m(A�B) = 2m(A)m(B), (1)

m(A) + m(A�B) − m(B) = 2m(A)m(A�B), (2)

m(B) + m(A�B) − m(A) = 2m(B)m(A�B). (3)

The sum of formulas (1) and (2) allows us to have the reduction m(B) + m(A�B) = 1;
similarly combination of formulas (1) and (3) provides us with the relation m(A) +
m(A�B) = 1. Thus m(A) = m(B). Again combination of formulas (2) and (3) gives us
m(A) + m(B) = 1.

The implication (ii) ⇒ (i) can be verified by direct computation. �

Proposition 2.6 If m is a nonatomic state on the symmetric logic E and A ∈ E , m(A) > 0,
then there exist events B ⊆ A, C ⊆ A such that m̃(B,C) = m(B)m(C).

Proof Coincides with the proof of [3, Lemma 1]. �

Proposition 2.7 Let E be a symmetric logic and m ∈ P (E). If A,B ∈ E , A ∩ B = ∅ and
m(A)m(B) > 0, then the events A and B are dependent.

Proof We have

0 = m(A) + m(B) − m(A�B)

2
�= m(A)m(B). �

3 Independence and Determination of States

We say that m,μ ∈ P (E) have identical independent events, if, for any pair of events A

and B , m̃(A,B) = m(A)m(B) if and only if μ̃(A,B) = μ(A)μ(B).
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Definition 3.1 A symmetric logic E has the Lyapunov’s property (write E ∈ (LP)) if for
every pair m,μ ∈ P (E) such that the vector measure ν = (m,μ) is nonatomic, the range of
ν is convex.

Theorem 3.2 Let E ∈ (LP) and m,μ ∈ P (E) be so that at least one of them is nonatomic.
If they have identical independent event pairs, then they coincide.

Corollary 3.3 Let E ∈ (LP) and m,μ ∈ P (E) be so that at least one of them is nonatomic. If
they have identical mutually favorable events in the following sense: for any pair of events A

and B , m̃(A,B) ≥ m(A)m(B) if and only if μ̃(A,B) ≥ μ(A)μ(B), then m and μ coincide.

Corollary 3.4 Let E ∈ (LP) and m,μ ∈ P (E) be so that at least one of them is nonatomic.
If

m(A) = 1/2 ⇐⇒ μ(A) = 1/2,

then m = μ.

Proof of Theorem 3.2 coincides with the second proof of Theorem 1 from [3] (we use
our Proposition 2.5). It suffices to consider 2 independent events. Proofs of Corollaries 3.3
and 3.4 coincide with the proofs of Corollaries 1 and 2 of [3], respectively. A wide class of
quantum structures with the Lyapunov’s property was considered in [1].

4 �-Subadditive States on Symmetric Logics

Let us say that a state m ∈ P (E) is �-subadditive [4] if

m(A�B) ≤ m(A) + m(B) for any pair A,B ∈ E .

In [2] this term was introduced without the prefix �. But since the usual subadditivity differs
from this notion we feel obliged to correct ourselves.

The set of all �-subadditive states is convex. A state m ∈ P (E) is �-subadditive if and
only if conditional probabilities are non-negative on it.

Let E be a Boolean algebra, m ∈ P (E) and A,B1,B2 ∈ E . If B1 ⊂ B2, then

m(B1 | A) ≤ m(B2 | A),

i.e. the conditional probability is monotonic. A state m on a symmetric logic E is �-
subadditive if and only if the conditional probability is monotonic [2, Theorem 3].

It is proved in Lemma 1 of [2] that a state m ∈ P (E) is �-subadditive if and only if

m(A�B) ≤ m(A�C) + m(C�B) for all A,B,C ∈ E . (4)

For a �-subadditive state m ∈ P (E) via (4) we get

m̃(A,B) + m̃(A,C) − m̃(B,C) ≤ m(A) for all A,B,C ∈ E .

Example 4.1 Let Ω = {1,2,3,4}. Let us define the two-valued state m on symmetric logic
Ωeven by its values on atoms as follows:

m
({1,2}) = m

({1,3}) = m
({1,4}) = 0.

Author's personal copy
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Fig. 1 Scheme of the sets
A�B1, A�B2 and A,
A�(B1 ∪ B2)

Then m is not �-subadditive:

1 = m
({3,4}) = m

({1,3}�{1,4}) > m
({1,3}) + m

({1,4}) = 0.

The space of �-subadditive states is a tetrahedron (a convex combination of 4 extreme
states), the conditional probabilities achieve values between 0 and 1 exactly on this set.

Let E be a Boolean algebra, m ∈ P (E) and A,B1,B2 ∈ E . If the event A does not depend
on the events B1, B2 and B1 ∩ B2 = ∅, then the events A and B1 ∪ B2 are independent.

Theorem 4.2 Let E be a symmetric logic of subsets of a set Ω , A be a Boolean algebra of
subsets of Ω , E ⊂ A and A,B1,B2 ∈ E . Let a state m on E allow for an extension, m, over
A as a signed measure. If the event A does not depend on the events B1, B2 and B1 ∩B2 = ∅,
then the events A and B1 ∪ B2 are independent.

Proof Let B = B1 ∪ B2. Since

m(A) + m(B1) − m(A�B1) = 2m(A)m(B1),

m(A) + m(B2) − m(A�B2) = 2m(A)m(B2),

we have

2m(A) + m(B) − m(A�B1) − m(A�B2) = 2m(A)m(B). (5)

Since (see Fig. 1)

m(A�B1) + m(A�B2)

= m(A) + m(B1) − 2m(A ∩ B1) + m(A) + m(B2) − 2m(A ∩ B2)

= m(A) + m(A�B),

we have via (5) the relation m(A) + m(B) − m(A�B) = 2m(A)m(B). This completes the
proof. �

Let n ∈ N and Ω = {1,2, . . . ,2n}. By Theorem 2.1 [4] every m ∈ P (Ωeven) can be ex-
tended to a signed measure m over S(Ω), the (Boolean) power algebra of Ω . Thus Theo-
rem 4.2 holds for any state m on Ωeven.

Example 4.3 Let Ω = {0,1,2,3,4,5} and the symmetric logic E contain the sets

A = {1,2,3}, B1 = {0,1}, B2 = {3,4}, C = {2,5},
D = {0,2,3}, E = {1,2,4}, F = {0,2,4}, Ω

Author's personal copy
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and their complements. The logic E has 16 elements. Let m be a �-subadditive state on E
such that

m(A) = m(D) = m(E) = 1/2, m(B1) = m(B2) = 1/3, m(F ) = 3/8.

Then the event A does not depend on the events B1, B2, but the events A and B1 ∪ B2 are
not independent. Since {0} = Ec ∩ F = Ac ∩ D, {1} = A ∩ B1, {2} = A ∩ C, {3} = B2 ∩ Fc ,
{4} = Ac ∩B2, and {5} = C ∩Dc , the Boolean algebra generated by E is S(Ω). Note that m

cannot be extended as a signed measure on S(Ω).

Example 4.4 Let Ω = {1,2,3,4,5,6}. Again we define the state m on the symmetric logic
Ωeven by its values on atoms as follows:

m
({1,2}) = 2

3
, m

({1,3}) = m
({1,4}) = 2

9
, m

({1,5}) = 1

3
,

m
({1,6}) = m

({2,3}) = m
({2,4}) = 4

9
, m

({2,5}) = 5

9
,

m
({2,6}) = 2

3
, m

({3,4}) = 0, m
({3,5}) = 1

9
, m

({3,6}) = 2

9
,

m
({4,5}) = 1

9
, m

({4,6}) = 2

9
, m

({5,6}) = 1

3
.

Then m is �-subadditive.
If E is a symmetric logic, then every subadditive state m ∈ P (E) is �-subadditive (hint:

C ⊃ A ∪ B ⊃ A�B), but the reverse implication is not true in general. The state m from
Example 4.4 is �-subadditive and is not subadditive: for A = {3,4}, B = {1,2,4,5} we have
the unique set C = {1,2,3,4,5,6} such that C ⊃ A ∪ B and 1 = m(C) > m(A) + m(B) =
0 + 7/9 = 7/9.

Theorem 4.5 Let m ∈ P (E). The following conditions are equivalent:

(i) m is �-subadditive;
(ii) m̃(A,B) ≤ min{m(A),m(B)} for all A,B ∈ E .

Proof (i) ⇒ (ii). We have B = (B�A)�A, therefore m(B) ≤ m(A�B) + m(A), i.e.
m(B) − m(A�B) ≤ m(A). The latter inequality is equivalent to the inequality m̃(A,B) ≤
m(A).

(ii) ⇒ (i). We have m(B)−m(A)−m(A�B) ≤ 0 for all A,B ∈ E . We replace B by Bc;
then m(Bc) − m(A) − m(A�Bc) ≤ 0, i.e. 1 − m(B) − m(A) − 1 + m(A�B) ≤ 0. This
completes the proof. �

Theorem 4.6 Let m ∈ P (E) be �-subadditive and A,B,C ∈ E . Then |m̃(A,B) −
m̃(A,C)| ≤ m(B�C).

Proof We have B = (B�C)�C and C = (B�C)�B , therefore m(B) ≤ m(B�C) + m(C)

and m(C) ≤ m(B�C) + m(B), i.e.

∣
∣m(B) − m(C)

∣
∣ ≤ m(B�C). (6)
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By (4) we get m(A�B) ≤ m(A�C) + m(C�B) and m(A�C) ≤ m(A�B) + m(B�C),
therefore

∣
∣m(A�C) − m(A�B)

∣
∣ ≤ m(B�C). (7)

Now we have via triangle inequality and formulas (6), (7) the relations

∣
∣m̃(A,B) − m̃(A,C)

∣
∣ = |m(B) − m(C) − m(A�B) + m(A�C)|

2

≤ |m(B) − m(C)|
2

+ |m(A�C) − m(A�B)|
2

≤ m(B�C). �

Theorem 4.7 Let m ∈ P (E) be �-subadditive and A1,A2, . . . and B1,B2, . . . be two se-
quences of events, where m(Bn) → 1 as n → ∞. Then

(I) limn→∞ m(An) = limn→∞ m̃(An,Bn) under the following condition: there exists at least
one of indicated limits;

(II) if

lim inf
n→∞ m(An) ≥ a > 0, (8)

then

lim
n→∞

m(An)

m̃(An,Bn)
= 1.

Proof (I) We have

m(An) = m̃(An,Bn) + m̃
(
An,B

c
n

)
for all n ∈ N. (9)

By Theorem 4.5, 0 ≤ m̃(An,B
c
n) ≤ m(Bc

n) → 0 as n → ∞. Hence m̃(An,B
c
n) → 0 as

n → ∞ and limn→∞ m(An) = limn→∞ m̃(An,Bn).
(II) Let i ∈ N be so that m(An) ≥ a/2 for all n ≥ i, and let j ∈ N be so that m(Bn) ≥

1 − a/4 for all n ≥ j . We have for n ≥ max{i, j}

m̃(An,Bn) = m(An) + m(Bn) − m(An�Bn)

2
≥ a/2 + 1 − a/4 − 1

2
= a

8
.

Then for n ≥ max{i, j} via (9) and Theorem 4.5 the relations

1 = m(An)

m(An)
≤ m(An)

m̃(An,Bn)
= m̃(An,Bn) + m̃(An,B

c
n)

m̃(An,Bn)
= 1 + m̃(An,B

c
n)

m̃(An,Bn)
≤ 1 + 8

a
m

(
Bc

n

)

hold. Since m(Bc
n) → 0 as n → ∞, this completes the proof. �

Example 4.8 Condition (8), in general, cannot be omitted. Consider Ω = [0,1], Borel
σ -algebra E ⊂ S(Ω) with Lebesgue measure m and the events An = [0,1/n], Bn =
[1/(2n),1].
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5 On Independent Events

The notion of independence is fundamental in probability theory.

Theorem 5.1 Let m ∈ P (E) be �-subadditive. The following conditions are equivalent:

(i) all the events from E are mutually independent;
(ii) m(A) ∈ {0,1} for all A ∈ E ;

(iii) the independence relation on E is transitive.

Proof (i) ⇒ (ii). Assume that there exists A ∈ E with 0 < m(A) < 1. Then we have 0 <

m(Ac) < 1 and

m̃
(
A,Ac

) = m(A) + m(Ac) − m(A�Ac)

2
= 0 �= m(A)m

(
Ac

)
. (10)

(ii) ⇒ (i). Step 1. Let m(A) = m(B) = 0. Then

0 ≤ m(A�B) ≤ m(A) + m(B) = 0 (11)

and m̃(A,B) = 0 = m(A)m(B).
Step 2. Let m(A) = 0, m(B) = 1. Then m(Bc) = 0 and by Step 1 the events A and Bc

are independent. Therefore, the events A and B are independent via Theorem 1 of [2].
Step 3. Let m(A) = m(B) = 1. Then m(Ac) = m(Bc) = 0 and by Step 1 the events Ac

and Bc are independent. Therefore, the events A and B are independent via Theorem 1
of [2].

The implication (i) ⇒ (iii) is obvious.
(iii) ⇒ (ii). Assume that the independence relation on E is transitive and there exists

A ∈ E with 0 < m(A) < 1. Then (a) A is independent of ∅; (b) ∅ is independent from Ac ,
but A dependent from Ac by (10). We obtain a contradiction. This completes the proof. �

Proposition 5.2 Let E be a symmetric logic and m ∈ P (E) be �-subadditive. Then the
family Em = {A ∈ E : m(A) ∈ {0,1}} also form a symmetric logic.

Proof Since Ω ∈ Em, it suffices to show that A�B ∈ Em for all A,B ∈ Em.
If m(A) = m(B) = 0, then m(A�B) = 0 by (11) and A�B ∈ Em.
If m(A) = m(B) = 1, then m(Ac) = m(Bc) = 0 and m(Ac�Bc) = 0 by (10). Since

Ac�Bc = A�B , we have A�B ∈ Em.
If m(A) = 1 and m(B) = 0, then m(Ac) = 0 and m(A�B) = 1 − m(Ac�B) = 1. �

From Theorem 5.1 and Proposition 5.2 we have

Corollary 5.3 Let E be a symmetric logic and m ∈ P (E) be �-subadditive. Then all events
from Em are mutually independent and the independence relation on Em is transitive.

6 On ε-Independent Events

Definition 6.1 Let m ∈ P (E) and A,B ∈ E . For ε > 0 two events A and B are ε-
independent, if

∣
∣m̃(A,B) − m(A)m(B)

∣
∣ ≤ ε.
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Proposition 6.2 If an event A is ε-independent with itself for 0 < ε ≤ 1/4, then either
m(A) ≤ 2ε or m(A) ≥ 1 − 2ε.

Proof We have m̃(A,A) = m(A) and
∣
∣m̃(A,A) − m(A)m(A)

∣
∣ = ∣

∣m(A) − m(A)m(A)
∣
∣ = ∣

∣m(A)
(
1 − m(A)

)∣∣ ≤ ε.

By solving this quadratic inequality with respect to m(A), we get

m(A) ≤ 1 − √
1 − 4ε

2
or m(A) ≥ 1 + √

1 − 4ε

2
.

Finally, we apply the following inequalities for 0 < ε ≤ 1/4:

1 − √
1 − 4ε

2
≤ 2ε,

1 + √
1 − 4ε

2
≥ 1 − 2ε. �

Theorem 6.3 Let m ∈ P (E) and A,B ∈ E . The following conditions are equivalent:

(i) events A and B are ε-independent;
(ii) events A and Bc are ε-independent;

(iii) events Ac and B are ε-independent;
(iv) events Ac and Bc are ε-independent.

Proof Since Xcc = X (X ∈ S(Ω)), it suffices to show that (i) ⇒ (ii). The following relations
prove it:

∣
∣m̃

(
Ac,B

) − m
(
Ac

)
m(B)

∣
∣

=
∣∣
∣∣
1 − m(A) + m(B) − 1 + m(A�B)

2
− (

1 − m(A)
)
m(B)

∣∣
∣∣

= ∣
∣−m̃(A,B) + m(A)m(B)

∣
∣ ≤ ε. �

It seems useful to compare Theorems 2.3 and 6.3 with Theorem 1 of [2]. Also the fol-
lowing assertion can be compared with Proposition 2.7.

Proposition 6.4 Let m ∈ P (E) be �-subadditive and A ∈ E be so that m(A) ≤ ε or m(A) ≥
1 − ε. Then A and an arbitrary event B are ε-independent.

Proof If m(A) ≤ ε, then m(A)m(B) ≤ ε and by Theorem 4.5 we have also m̃(A,B) ≤
m(A) ≤ ε. Therefore,

∣
∣m̃(A,B) − m(A)m(B)

∣
∣ ≤ max

{
m̃(A,B),m(A)m(B)

} ≤ ε.

If m(A) ≥ 1 − ε, then m(Ac) ≤ ε and, consequently, Ac and an arbitrary event B are
ε-independent. By Theorem 6.3, A and an arbitrary event B are also ε-independent. This
completes the proof. �

If m ∈ P (E) is �-subadditive, then the mapping dm : E × E → [0,∞), defined by the
formula dm(A,B) = m(A�B) (A,B ∈ E) is a pseudometric on E [2, Theorem 4]. Via (2) a
state m is uniform continuous on 〈E, dm〉. Theorem 4.6 shows us that for every fixed A ∈ E
the mapping X �→ m̃(A,X) (X ∈ E) is uniform continuous on 〈E, dm〉.
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Theorem 6.5 Let m ∈ P (E) be �-subadditive, A,An,B,Bn ∈ E (n ∈ N). If An → A, Bn →
B (n → ∞) on 〈E, dm〉 and the events An and Bn are ε-independent for any n ∈N, then the
events A and B are ε-independent.

Proof It follows from Theorem 4 of [2] that m(An) → m(A) and m(Bn) → m(B) as
n → ∞. Via Theorem 5 of [2] we have m(An�Bn) → m(A�B) as n → ∞. Therefore
m̃(An,Bn) → m̃(A,B) as n → ∞ and the inequality

∣
∣m̃(A,B) − m(A)m(B)

∣
∣ ≤ ε

holds. This completes the proof. �

Proposition 6.6 Let m ∈ P (E) be �-subadditive. Then

dm(A,B) + dm(B,C) + dm(C,A) ≤ 2 for all A,B,C ∈ E . (12)

Proof We have

m(A�B) = 1 − m
(
A�Bc

)
,

m(B�C) = 1 − m
(
Bc�C

)
,

m(C�A) = 1 − m
(
Ac�C

)
.

Thus dm(A,B) + dm(B,C) + dm(C,A) = 3 − m(A�Bc) − m(Bc�C) − m(Ac�C). Since

1 = m
(
Ac�A

) ≤ m
(
Ac�C

) + m(C�A) ≤ m
(
Ac�C

) + m
(
C�Bc

) + m
(
Bc�A

)
,

we have (12). �

Corollary 6.7 Let E be a symmetric logic and m ∈ P (E) be �-subadditive. Then

m̃(A,B) + m̃(B,C) + m̃(C,A) ≥ m(A) + m(B) + m(C) − 1 for all A,B,C ∈ E .

7 Open Problems

If E is a Boolean algebra then any state m ∈ P (E) is subadditive. There exists a concrete
quantum logic which is not a Boolean algebra and all of its states are subadditive. The result
was established in [14] with substantial help from the techniques developed in [10] and [11]
(see also [15], p. 831).

Problem 7.1 Let E be a symmetric logic such that any state m ∈ P (E) is �-subadditive. Is
it true that E is a Boolean algebra?

If E is a σ -algebra then the pseudometric space 〈E, dm〉 is complete for any state
m ∈ P (E).

Problem 7.2 Let E be both a symmetric logic and a σ -class, m ∈ P (E) be �-subadditive.
Is it true that the pseudometric space 〈E, dm〉 is complete?
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