Mathematical Methods

Coordinate Systems, Points, Vectors

A vector in a coordinate system is a directed line between two points. It has magnitude and direction. Once we define a coordinate origin, each particle in a system has a position vector (e.g. $-\vec{A}$) associated with its location in space drawn from the origin to the physical coordinates of the particle (e.g. - $\left(A_{x}, A_{y}, A_{z}\right)$):

$$
\vec{A}=A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z}
$$

The position vectors clearly depend on the choice of coordinate origin. However, the difference vector or displacement vector between two position vectors does not depend on the coordinate origin. To see this, let us consider the addition of two vectors:

$$
\vec{A}+\vec{B}=\vec{C}
$$

Note that vector addition proceeds by putting the tail of one at the head of the other, and constructing the vector that completes the triangle.

Vector

If we are given a vector in terms of its length (magnitude) and orientation (direction angle(s)) then we must evaluate its cartesian components before we can add them (for example, in 2D):

$$
\begin{array}{ll}
A_{x}=|\vec{A}| \cos \left(\theta_{A}\right) & B_{x}=|\vec{B}| \cos \left(\theta_{B}\right) \\
A_{y}=|\vec{A}| \sin \left(\theta_{A}\right) & B_{y}=|\vec{B}| \sin \left(\theta_{B}\right)
\end{array}
$$

This process is called decomposing the vector into its cartesian components.

The difference between two vectors is defined by the addition law. Subtraction is just adding the negative of the vector in question, that is, the vector with the same magnitude but the opposite direction. This is consistent with the notion of adding or subtracting its components.

Scalar

When we reconstruct a vector from its components, we are just using the law of vector addition itself, by scaling some special vectors called unit vectors and then adding them. Unit vectors are (typically perpendicular) vectors that define the essential directions and orientations of a coordinate system and have unit length. Scaling them involves multiplying these unit vectors by a number that represents the magnitude of the vector component. This scaling number has no direction and is called a scalar.

$$
\vec{B}=C \vec{A}
$$

where C is a scalar (number) and \vec{A} is a vector. In this case, $\vec{A} \| \vec{B}(\vec{A}$ is parallel to $\vec{B})$.

\vec{B}

Let's define products that multiply two vectors together

The first product creates a scalar (ordinary number with magnitude but no direction) out of two vectors and is therefore called a scalar product or (because of the multiplication symbol chosen) a dot product.

$$
\begin{gathered}
|\vec{A}|=+\sqrt{\vec{A} \cdot \vec{A}} \\
\vec{A} \cdot \vec{B}=A_{x} * B_{x}+A_{y} * B_{y} \ldots=|\vec{A}||\vec{B}| \cos \left(\theta_{A B}\right)
\end{gathered}
$$

A scalar product is the length of one vector (either one, say $|\vec{A}|$) times the component of the other vector $\left(|\vec{B}| \cos \left(\theta_{A B}\right)\right)$ that points in the same direction as the vector \vec{A}.
This product is symmetric and commutative (\vec{A} and \vec{B} can appear in either order or role).

$|\vec{A}| \cos (\theta)$

A vector product

The other product multiplies two vectors in a way that creates a third vector. It is called a vector product or (because of the multiplication symbol chosen) a cross product.

$$
\begin{aligned}
& \qquad \vec{A} \times \vec{B}=\left(A_{x} * B_{y}-A_{y} * B_{x}\right) \hat{z}+\left(A_{y} * B_{z}-A_{z} * B_{y}\right) \hat{x}+\left(A_{z} * B_{x}-A_{x} * B_{z}\right) \hat{y} \\
& |\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \left(\theta_{A B}\right) \\
& \qquad \vec{A} \times \vec{B}=-\vec{B} \times \vec{A}
\end{aligned}
$$

Let the fingers of your right hand lie along the direction of the first vector in a cross product (say \vec{A} below). Let them curl naturally through the small angle (observe that there are two, one of which is larger than π and one of which is less than π) into the direction of \vec{B}. The erect thumb of your right hand then points in the general direction of the cross product vector - it at least indicates which of the two perpendicular lines should be used as a direction, unless your thumb and fingers are all double jointed or your bones are missing or you used your left-handed right hand or something.

$\overrightarrow{\boldsymbol{B}} \times \overrightarrow{\boldsymbol{A}}=-\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$

