
Network failure detection and autonomous return
algorithms for a crawler mobile robot navigation

Neil Alishev
Intelligent Robotic Systems Laboratory

Kazan Federal University
Kazan, Russia

alishev.neil@gmail.com

Kuo-Lan Su
Department of Electrical Engineering
National Yunlin University of Science

and Technology
Douliu City,Taiwan

sukl@yuntech.edu.tw

Roman Lavrenov
Intelligent Robotic Systems Laboratory

Kazan Federal University
Kazan, Russia

lavrenov@it.kfu.ru

Evgeni Magid
Intelligent Robotic Systems Laboratory

Kazan Federal University
Kazan, Russia

magid@it.kfu.ru

Kuo-Hsien Hsia
Department of Electrical Engineering

Far East University
Tainan City, Taiwan

khhsia@mail.feu.edu.tw

Abstract—In this paper we present an algorithm for a mobile
robot autonomous return. The algorithm involves a network
failure detection module, which is based on analysis of incoming
UDP packets. Simultaneous Localization and Mapping (SLAM)
and path planning algorithms were used as an integral part of the
autonomous return algorithm. The algorithms were integrated
into Russian mobile robot Servosila Engineer, and experiments
were conducted in order to determine the best configuration of
the algorithm parameters.

Keywords—Ground mobile robot, algorithm, autonomous
return, network failure detection, path planning, ROS.

I. INTRODUCTION
 Robots often operate in conditions that are hardly suitable
for human beings, including blockages, contaminated areas,
and narrow spaces. Some robots use tether communication
between a robot and a human operator, while other robots rely
on wireless communication. In a case of the network failure or
tether abruption there exists a high risk of losing a robot. In the
course of robot exploitation network failure may occur in the
following cases: thick walls or other obstacles between a robot
and an operator; strong magnetic or radio interference; long
distance between a robot and an operator so that the robot goes
out of a range of a radio transmitter.

 In this research, we developed and integrated into Russian
mobile robot Servosila Engineer control system our
autonomous return algorithm, which helps solving the problem
of robot loss in a case of network failure. Problem of
autonomous return was decomposed into two subproblems [1-
3] (Fig. 1): Simultaneous Localization and Mapping (SLAM)
on the outward way and autonomous navigation on the return
way. On the outward way, when network connection functions

properly, the robot is being teleoperated to a target point.
During that procedure, the robot activates SLAM algorithm,
stores a generated map and localizes itself on that map. When
our algorithm detects that network connection is lost, the robot
uses path-planning algorithm to autonomously navigate back to
the starting point.

 Efficiency and accuracy of an autonomous return algorithm
depends on the efficiency and accuracy of underlying
algorithms. For example, if SLAM algorithm is not providing
detailed maps, the robot will fail to accurately reach the starting
point. In addition, SLAM algorithm should be resource
efficient in order to run locally on the robot. Same holds true
for all other algorithms, including the network failure detection
algorithm. There are multiple ways to detect network
connection disruptions between robot and the operator. In this
research we present a way to detect the network failure, which
is both accurate and resource efficient in our robot system
setup. Also, this algorithm doesn’t use any additional devices
and rely only on the existing robot hardware.

 Figure 1. Autonomous return illustration.

169

2018 11th International Conference on Developments in eSystems Engineering (DeSE)

978-1-5386-6712-5/18/$31.00 ©2018 IEEE
DOI 10.1109/DeSE.2018.00040

II. SYSTEM SETUP
Servosila Engineer (Fig. 2) is a Russian crawler-type

mobile robot [4], which was designed for various applications
including urban search and rescue operations, operations within
dangerous or inaccessible for a human environments and other
areas. The robot in its original configuration is equipped with
an optical zoom camera and a pair of stereo vision cameras.
The robot is resistant to harsh conditions and is water and dust
proof. It is operated with the original interface in a
teleoperation mode only and an operator controls velocities of
servos and positions of the robot’s parts.

Figure 2. Servosila Engineer crawler-type robot with a Hokuyo UTM-30LX-
EW LRF mounted on its top.

For SLAM purposes we used Hokuyo UTM-30LX-EW
laser range finder (LRF). We designed and constructed with a
3D printer a special static stand for the LRF with an option to
select an inclination of a scanning beam toward the locomotion
surface of an environment. Due to mounting with adjustable
angle it is possible to use the LRF in overcoming obstacles and
solving the problems of static and dynamic balance [5]. The
stand was attached to the top of the robot head (Fig. 3).

Figure 3. Hokuyo laser on a stand. Laser is parallel to the surface of the floor.

 In addition to the original server and software, which were
provided by the manufacturer, we installed Robot Operating
System (ROS), Indigo version, in order to run ROS nodes,

which are required for the LRF output data streaming and LRF
SLAM algorithms. Even though newer versions of ROS, e.g.,
Kinetic Kame, are already available, we were restricted to use
ROS Indigo version because Sevosila Engineer robot operates
with Ubuntu 14.04, which is specially tailored to the robot’s
operator interface, hardware, and drivers.

III. NETWORK FAILURE DETECTION ALGORITHM
Before implementing our own network failure detection

algorithm, we researched existing approaches to solving this
problem. In [6-7] researchers utilized a special device for
measuring a signal strength. When the signal strength drops
below some threshold it is considered unacceptable and a
special behavior is triggered (e.g., stopping robot’s servo
drives). Figure 4 shows a relation between the signal strength
and robot’s distance from a radio transmitter. Three distance
zones with regard to the signal strength are distinguished: a
safety zone, a controlled zone and a forbidden zone. The safety
zone is an area where the signal strength is acceptable and a
robot functions properly. The controlled zone is an area where
the special behavior is triggered. The forbidden zone is an area
with a low level of signal, which disappears completely as the
distance increases.

 Derbakova et.al. in [8] solved a problem of network failure
detection when a single human operator controls multiple
robots simultaneously. In their configuration robots were
connected to the operator and also were connected to each
other. Instead of using a special signal strength measuring
device the researchers monitored a hop count value of packets
that were passing through the robots of the group. When one of
the robots experienced network problems and went down the
overall hop count value decreases by 1.

Figure 4. Illustration that shows relation between signal strength and distance
from the radio transmitter [6].

 Hsieh et.al. [9] were sending units of data every time
interval. They defined a successful transaction as a
transmission of such a unit of data by a sender followed by a
receipt of acknowledgment, which was further sent by a
receiver. Then, based on a desired transaction rate, i.e., number
of successful transactions per time interval, the sender,
periodically evaluates its connection with the receiver.

170

 Our approach to the network failure detection is coming
from our system setup and Servosila Engineer robot’s software
features. To implement network failure detection algorithm, we
started off by investigating Servosila remote control protocol
that is responsible for communication between a user and the
robot during the teleoperation. It turned out that this protocol
consists of two independent system processes:

 Vehicle process

 Operator Control Unit (OCU) process

 The vehicle process runs on an on-board control computer
of the robot. It receives commands from an OCU and executes
the commands by commanding servo drives and chassis motors
of the robot. The vehicle process also sends a compressed video
stream and telemetry information back to the OCU computer.

 The OCU process runs on a portable OCU computer. It
transmits joystick commands to the vehicle process running on
an on-board control computer of a robot. The OCU process
receives and displays via a graphical user interface a video
stream and telemetry information coming from the vehicle
process. The vehicle and OCU processes communicate with
each other by exchanging UDP packets. The diagram in Fig. 5
shows a remote control protocol in action.

Figure 5. Servosila Remote Control Protocol diagram.

 Remote Control Packet is a packet that an operator’s device
is sending to the robot’s computer. This packet contains all
information regarding robot movement (e.g., values of desired
robot axis). We use a self-made Graphical User Interface to
convert human inputs into the axis angle values and send it as a
remote control packet [19]. Telemetry packet, on the other
hand, is a packet that the robot sends back to the operator, and
it contains data from the robot’s encoders.

If the vehicle process does not receive any packet from an
OCU within an interval of 1.00 second, the vehicle process
assumes that a radio communication to the OCU have been
lost. The vehicle process then automatically shuts down all
servo motors and chassis motors for safety. This means that the
OCU process has to continuously send packets to the vehicle
process in order to maintain continuous motion of the robot's
motors. In our GUI, which converts user inputs to remote
control packets, we send packets to the vehicle process with the
5 Hz rate. This rate was selected empirically during
experiments. It turned out that at remote control packet sending
rates lower than 5 Hz the robot cannot be operated smoothly. It

is also worth noting that those packets are sent even if there are
no input commands from the user.

 Considering our robot system setup and remote control
software features we decided to monitor incoming UDP
packets to detect a network failure. The task was to detect
incoming UDP packets, which are remote control packets, and
to monitor them in time. If for some time (e.g., 5 seconds) there
are no incoming remote control packets, it means that the
connection with the client is lost and the robot should switch to
autonomous return mode. To parse incoming UDP packets we
created a python script (Fig. 6), which gets an incoming packet
and determines if it is a UDP packet. Next, a UDP packet is
verified for being a remote control packet. When a connection
is restored (e.g., when the robot approaches the operator in
autonomous return mode), incoming UDP remote control
packets are detected and a manual control is returned to the
operator. The move_base function goal of returning to the
starting point is been canceled.

 Our network failure detection algorithm does not require an
additional device in order to detect signal strength and does not
consume significant system resources. This is possible due to
the fact that we do not send additional “is alive” packets to the
robot, but use existing remote control packets that are already
being sent.

Figure 6. Remote control UDP packet parsing code snippet.

IV. AUTONOMOUS RETURN
A network failure detection algorithm is only a part of the

autonomous return algorithm. To successfully return to a
starting point after a network failure, we need to perform
SLAM-based navigation on the outward way and to perform
path planning and autonomous navigation on the return way.
The workflow of our system as whole is shown in Fig. 7.

First step in establishing SLAM for the robot was to get a
data stream from the LRF. ROS package urg_node was used
for these purposes. This package allows to run a ROS node,
which reads data from the LRF and publishes LaserScan
messages to the /scan topic. Next, laser_scan_matcher package
[10] was used to obtain odometry from laser scans. This

171

package compares consecutive LaserScan messages to estimate
position of the LRF in space. Laser-based odometry turned out
to be quite accurate. After getting odometry, we aimed to
perform mapping and localization for our robot.

Figure 7. Our system workflow diagram.

Before running SLAM algorithms [11] on the real robot, we
conducted a set of trials in Gazebo simulation in order to
identify the most suitable for our purposes LRF-SLAM
algorithm [12]. We had tested gmapping [13], Google
Cartographer [14] and Hector SLAM [15] algorithms on
prerecorded rosbagfiles with laser range data and concluded
that Gmapping and Hector SLAM significantly outperformed
Google Cartographer algorithm. Thus, gmapping and Hector
SLAM algorithms were selected as the LRF-SLAM algorithms
for further experiments with the real robot.

Gmapping SLAM package is implemented using Rao-
Blackwellized particle filter. Each particle in this algorithm is a
separate Dynamic Bayesian Network that stores its’ own
version of a map. Rao-Blackwellized particle filter is applied to
these particles in order to pick out the most plausible
information about the environment [16]. Also, the process
called marginalization is used to reduce the number of
particles. This process solves the main challenge when using
the particle filter. It groups similar particles into one particle in
some area R. This reduces the number of particles and allows
faster execution of the algorithm and lower memory costs [17].
Hector SLAM, on the other hand, uses a different approach to
perform mapping and localization of a robot. A 2D robot pose
is estimated based on a scan matching process. The scan
matching algorithm used in Hector SLAM is based on Gauss-
Newton approach. The algorithm seeks to find the optimum
alignment of laser scan’s endpoints with the constructed map
by finding a rigid transformation ξ = (px,py,ψ)T that minimizes:

where the function M(Si(ξ)) returns the map value at Si(ξ),
which is the world coordinates of the scan endpoint.

 After establishing gmapping for our robot with default
parameters, real-world experiments were conducted in order to
determine the quality of mapping and localization. During the
experiments, the robot was teleoperated from a start point to a
target point while performing LRF-SLAM and a generated map
was stored. First, RBPF–SLAM algorithm was tested. RBPF–
SLAM algorithm has a lot of parameters, which depend on

laser frequency and range, odometry information source and
level of sensor shaking when the robot moves. These
parameters should be finely tuned for each particular case in
order to obtain the best mapping and localization quality.
Figure 8 demonstrates a map of a same area (doorway), that
was obtained in two experiments: before and after parameter
tuning. The left picture shows a map defect in the area behind a
left wall, while the picture on the right does not contain such
defect. Parameter estimation and RBPF–SLAM algorithm
configuration was performed during numerous experiments in
different environments.

 Next, Hector SLAM experiments were conducted. After
several experiments, although RBPF-SLAM parameters were
finely tuned, it turned out that in our setup Hector SLAM
algorithm gives better results than the RBPF–SLAM. Thus, all
subsequent experiments were conducted using Hector SLAM
algorithm. The long corridor was selected as a next experiment
location because such locations are the most challenging ones
when an odometry is coming from a LRF. In the experiment,
the robot was teleoperated along the corridor from the start
point to the target point, and the generated map was stored.
Although the corridor itself does not contain a large number of
feature points, algorithm succeeded to construct a map without
any significant errors. After that, Hector SLAM algorithm was
used to create a map of the entire building floor. The resulting
map is demonstrated in Fig. 9.

Figure 8. Experiments within the same area before and after parameters tuning.

Figure 9. Higher Institute for Information Technology and Information Systems
floor map. Created in a single run. Legs of school desks are marked as multiple
points in periodic shapes.

 After establishing SLAM for our robot on the outward way
we proceeded to path planning and autonomous navigation. For
path planning we used A* algorithm, which demonstrated the
best performance during experiments with regard to other path
planning algorithms. It was used to build a path to the starting
point when a connection with the operator was lost. The path
was built on the map, which had been generated on the outward
way. The example of path is shown in Fig. 10.

172

 Figure 10. A* algorithm path example.

 In ROS, the best practice for implementing autonomous
navigation is implementing the move_base [18] module. To
implement this module, we completed the following steps:

- local_costmap and global_costmap configurations are
used to correctly track obstacles in the environment.
In addition, robot footprint information falls into this
configuration.

- local_planner and global_planner configurations ase
used to build local and global path plans.

- Encapsulate previous configurations into move_base
module.

 When we publish a goal to the move_base module, it starts
to publish messages to the cmd_vel topic. This topic contains
velocity in free space being split into its linear and angular
parts. After completing above-mentioned steps, we got
move_base module output as geometry_msgs/Twist type
message in the cmd_vel topic.

 The next step in building autonomous navigation for the
robot is implementing base_controller. This module is
subscribing to the cmd_vel topic and converts Twist velocity
messages to individual commands for the robot’s servo drives.
This step is the most challenging because base_controller
implementation is different from one robot to another and
depends greatly on a robot’s physical arrangement. The fact
that Servosila Engineer is a crawler-type robot made the task
more complicated since we cannot map directly between
cmd_vel velocity commands (e.g., turning left with the speed of
0.1 m/s) and robot’s servo drive commands. Therefore, all
conversions between cmd_vel velocities and real servo drive
commands were done through numerous experiments.

 After completing base_controller we aimed to the real-life
navigation experiments. We set move_base goal and monitored
robot’s autonomous navigation accuracy. At first, the robot was
lacking accuracy, sometimes accidentally went into recovery
behavior mode and sometimes oscillated back and forth in the
final point because fault tolerance values were not set.
Experimentally we picked up configuration values, which gave
us the best navigation accuracy. The configuration values are
shown in Table 1.

TABLE I. NAVIGATION CONFIGURATION VALUES

Parameter name Parameter value
max_vel_x 0.6 m/s

min_vel_x 0.2 m/s

max_vel_y 0.0 m/s

min_vel_y 0.0 m/s

min_rot_vel 0.2 rad/s

acc_lim_theta 10.0 rad/s2

acc_lim_x 10.0 m/s2

sim_time 0.5 s

yaw_goal_tolearnce 0.15 rad

xy_goal_tolearnce 0.15 m

path_distance_bias 50

trans_stopped_vel 0.2 m/s

rot_stopped_vel 0.2 rad/s

stop_time_buffer 0.1 s

dwa true

meter_scoring true

holonomic_robot false

V. CONCLUSION
Autonomous return is an important feature that helps to

prevent losing a mobile robot due to disruption of its wired or
wireless connection with the operator. In this research we
proposed the algorithm of autonomous return, which involves
network failure detection algorithm, SLAM algorithm,
navigation and path planning algorithms. Combination of these
algorithms allowed us to solve the task of autonomous robot
return in a case of a network failure. All algorithms were
integrated into the Russian mobile robot Servosila Engineer
control system and are launched automatically on robot startup.

ACKNOWLEDGMENT
This work was partially supported by the Investment and

Venture Fund of the Republic of Tatarstan, project ID
13/43/2018. This work was performed according to the Russian
Government Program of Competitive Growth of Kazan Federal
University.

REFERENCES

[1] Shimizu, T., Awai, M., Yamashita, A., & Kaneko, T. Mobile robot
system realizing human following and autonomous returning using laser
range finder and camera. Proceedings of the 18th FCV, pp. 97-102,
2012.

[2] Tsuda, N., Harimoto, S., Saitoh, T., & Konishi, R. Mobile robot with
following and returning mode. In Robot and Human Interactive
Communication. The 18th IEEE International Symposium on, pp. 933-
938, 2009.

[3] Awai, M., Shimizu, T., Kaneko, T., Yamashita, A., & Asama, H. Hog-
based person following and autonomous returning using generated map
by mobile robot equipped with camera and laser range finder. In
Intelligent Autonomous Systems 12, pp. 51-60, 2013.

[4] Sokolov, M., Afanasyev, I., Lavrenov, R., Sagitov, A., Sabirova, L., &
Magid, E. (2017). Modelling a crawler-type UGV for urban search and

173

rescue in Gazebo environment. In Artificial Life and Robotics (ICAROB
2017), International Conference on, pp. 360-362, 2017.

[5] Magid E. & Tsubouchi T. Static balance for rescue robot navigation:
Discretizing rotational motion within random step environment. In Int.
Conf. on Simulation, Modeling, and Programming for Autonomous
Robots, pp. 423-435, 2010.

[6] Tardioli, D., Mosteo, A. R., Riazuelo, L., Villarroel, J. L., & Montano,
L. Enforcing network connectivity in robot team missions. The
International Journal of Robotics Research, 29(4), pp. 460-480, 2010.

[7] Mong-ying, A. H., Cowley, A., Kumar, V., & Taylor, C. J. Towards the
deployment of a mobile robot network with end-to-end performance
guarantees. In Robotics and Automation, ICRA 2006. Proceedings 2006
IEEE International Conference on, pp. 2085-2090, 2006.

[8] Derbakova, A., Correll, N., & Rus, D. Decentralized self-repair to
maintain connectivity and coverage in networked multi-robot systems. In
Robotics and Automation, 2011 IEEE International Conference on, pp.
3863-3868, 2011.

[9] Hsieh, M. A., Cowley, A., Kumar, V., & Taylor, C. J. Maintaining
network connectivity and performance in robot teams. Journal of field
robotics, 25(1‐2), pp. 111-131, 2008.

[10] Laser scan matcher, ROS package:
http://wiki.ros.org/laser_scan_matcher

[11] Ohno, K., & Tadokoro, S. Dense 3D map building based on LRF data
and color image fusion. In Intelligent Robots and Systems (IROS 2005),
pp. 2792-2797, 2005.

[12] Alishev, N., Lavrenov, R., & Gerasimov, Y. Russian mobile robot
Servosila Engineer: designing an optimal integration of an extra laser
range finder for SLAM purposes. In Int. Conf. on Artificial Life and
Robotics, pp. 204-207, 2018.

[13] Quigley, M., Stavens, D., Coates, A., & Thrun, S. Sub-meter indoor
localization in unmodified environments with inexpensive sensors. In
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, pp. 2039-2046, 2010.

[14] Barnard, K. D. (2002). U.S. Patent No. 6,456,938. Washington, DC:
U.S. Patent and Trademark Office.

[15] Kohlbrecher, S., Meyer, J., Petresen, K., & Graber, T. Hector SLAM for
robust mapping in USAR environments. ROS RoboCup Rescue Summer
School Graz, 2012.

[16] He, M., Takeuchi, E., Ninomiya, Y., & Kato, S. Precise and efficient
model-based vehicle tracking method using Rao-Blackwellized and
scaling series particle filters. In Intelligent Robots and Systems, 2016
IEEE/RSJ International Conference on, pp. 117-124, 2016.

[17] Doucet, A., De Freitas, N., Murphy, K., & Russell, S. Rao-Blackwellised
particle filtering for dynamic Bayesian networks. In Proceedings of the
Sixteenth conference on Uncertainty in artificial intelligence, pp. 176-
183, 2000.

[18] move_base, ROS package: http://wiki.ros.org/move_base
[19] Mavrin, I., Lavrenov, R., Svinin, M., Sorokin, S., & Magid, E. Remote

control library and GUI development for Russian crawler robot Servosila
Engineer. In MATEC Web of Conferences (Vol. 161, p. 03016), 2018.

174

