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Abstract—In this paper we present an algorithm for a mobile 
robot autonomous return. The algorithm involves a network 
failure detection module, which is based on analysis of incoming 
UDP packets. Simultaneous Localization and Mapping (SLAM) 
and path planning algorithms were used as an integral part of the 
autonomous return algorithm. The algorithms were integrated 
into Russian mobile robot Servosila Engineer, and experiments 
were conducted in order to determine the best configuration of 
the algorithm parameters. 

Keywords—Ground mobile robot, algorithm, autonomous 
return, network failure detection, path planning, ROS. 

I. INTRODUCTION 
 Robots often operate in conditions that are hardly suitable 
for human beings, including blockages, contaminated areas, 
and narrow spaces. Some robots use tether communication 
between a robot and a human operator, while other robots rely 
on wireless communication. In a case of the network failure or 
tether abruption there exists a high risk of losing a robot. In the 
course of robot exploitation network failure may occur in the 
following cases: thick walls or other obstacles between a robot 
and an operator; strong magnetic or radio interference; long 
distance between a robot and an operator so that the robot goes 
out of a range of a radio transmitter. 

 In this research, we developed and integrated into Russian 
mobile robot Servosila Engineer control system our 
autonomous return algorithm, which helps solving the problem 
of robot loss in a case of network failure. Problem of 
autonomous return was decomposed into two subproblems [1-
3] (Fig. 1): Simultaneous Localization and Mapping (SLAM) 
on the outward way and autonomous navigation on the return 
way. On the outward way, when network connection functions 

properly, the robot is being teleoperated to a target point. 
During that procedure, the robot activates SLAM algorithm, 
stores a generated map and localizes itself on that map. When 
our algorithm detects that network connection is lost, the robot 
uses path-planning algorithm to autonomously navigate back to 
the starting point. 

 Efficiency and accuracy of an autonomous return algorithm 
depends on the efficiency and accuracy of underlying 
algorithms. For example, if SLAM algorithm is not providing 
detailed maps, the robot will fail to accurately reach the starting 
point. In addition, SLAM algorithm should be resource 
efficient in order to run locally on the robot. Same holds true 
for all other algorithms, including the network failure detection 
algorithm. There are multiple ways to detect network 
connection disruptions between robot and the operator. In this 
research we present a way to detect the network failure, which 
is both accurate and resource efficient in our robot system 
setup. Also, this algorithm doesn’t use any additional devices 
and rely only on the existing robot hardware. 

 

 
 Figure 1. Autonomous return illustration. 
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II. SYSTEM SETUP 
Servosila Engineer (Fig. 2) is a Russian crawler-type 

mobile robot [4], which was designed for various applications 
including urban search and rescue operations, operations within 
dangerous or inaccessible for a human environments and other 
areas. The robot in its original configuration is equipped with 
an optical zoom camera and a pair of stereo vision cameras. 
The robot is resistant to harsh conditions and is water and dust 
proof. It is operated with the original interface in a 
teleoperation mode only and an operator controls velocities of 
servos and positions of the robot’s parts. 

 
Figure 2.  Servosila Engineer crawler-type robot with a Hokuyo UTM-30LX-
EW LRF mounted on its top. 

For SLAM purposes we used Hokuyo UTM-30LX-EW 
laser range finder (LRF). We designed and constructed with a 
3D printer a special static stand for the LRF with an option to 
select an inclination of a scanning beam toward the locomotion 
surface of an environment. Due to mounting with adjustable 
angle it is possible to use the LRF in overcoming obstacles and 
solving the problems of static and dynamic balance [5]. The 
stand was attached to the top of the robot head (Fig. 3). 

 

 
Figure 3. Hokuyo laser on a stand. Laser is parallel to the surface of the floor. 

 In addition to the original server and software, which were 
provided by the manufacturer, we installed Robot Operating 
System (ROS), Indigo version, in order to run ROS nodes, 

which are required for the LRF output data streaming and LRF 
SLAM algorithms. Even though newer versions of ROS, e.g., 
Kinetic Kame, are already available, we were restricted to use 
ROS Indigo version because Sevosila Engineer robot operates 
with Ubuntu 14.04, which is specially tailored to the robot’s 
operator interface, hardware, and drivers. 

III. NETWORK FAILURE DETECTION ALGORITHM 
Before implementing our own network failure detection 

algorithm, we researched existing approaches to solving this 
problem. In [6-7] researchers utilized a special device for 
measuring a signal strength. When the signal strength drops 
below some threshold it is considered unacceptable and a 
special behavior is triggered (e.g., stopping robot’s servo 
drives). Figure 4 shows a relation between the signal strength 
and robot’s distance from a radio transmitter. Three distance 
zones with regard to the signal strength are distinguished: a 
safety zone, a controlled zone and a forbidden zone. The safety 
zone is an area where the signal strength is acceptable and a 
robot functions properly. The controlled zone is an area where 
the special behavior is triggered. The forbidden zone is an area 
with a low level of signal, which disappears completely as the 
distance increases. 

 Derbakova et.al. in [8] solved a problem of network failure 
detection when a single human operator controls multiple 
robots simultaneously. In their configuration robots were 
connected to the operator and also were connected to each 
other. Instead of using a special signal strength measuring 
device the researchers monitored a hop count value of packets 
that were passing through the robots of the group. When one of 
the robots experienced network problems and went down the 
overall hop count value decreases by 1.  

Figure 4. Illustration that shows relation between signal strength and distance 
from the radio transmitter [6]. 

 

 Hsieh et.al. [9] were sending units of data every time 
interval. They defined a successful transaction as a 
transmission of such a unit of data by a sender followed by a 
receipt of acknowledgment, which was further sent by a 
receiver. Then, based on a desired transaction rate, i.e., number 
of successful transactions per time interval, the sender, 
periodically evaluates its connection with the receiver. 
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 Our approach to the network failure detection is coming 
from our system setup and Servosila Engineer robot’s software 
features. To implement network failure detection algorithm, we 
started off by investigating Servosila remote control protocol 
that is responsible for communication between a user and the 
robot during the teleoperation. It turned out that this protocol 
consists of two independent system processes: 

 Vehicle process 

 Operator Control Unit (OCU) process 

 The vehicle process runs on an on-board control computer 
of the robot. It receives commands from an OCU and executes 
the commands by commanding servo drives and chassis motors 
of the robot. The vehicle process also sends a compressed video 
stream and telemetry information back to the OCU computer.  

 The OCU process runs on a portable OCU computer. It 
transmits joystick commands to the vehicle process running on 
an on-board control computer of a robot. The OCU process 
receives and displays via a graphical user interface a video 
stream and telemetry information coming from the vehicle 
process.  The vehicle and OCU processes communicate with 
each other by exchanging UDP packets. The diagram in Fig. 5 
shows a remote control protocol in action. 

 
Figure 5. Servosila Remote Control Protocol diagram. 

 

 Remote Control Packet is a packet that an operator’s device 
is sending to the robot’s computer. This packet contains all 
information regarding robot movement (e.g., values of desired 
robot axis). We use a self-made Graphical User Interface to 
convert human inputs into the axis angle values and send it as a 
remote control packet [19]. Telemetry packet, on the other 
hand, is a packet that the robot sends back to the operator, and 
it contains data from the robot’s encoders. 

If the vehicle process does not receive any packet from an 
OCU within an interval of 1.00 second, the vehicle process 
assumes that a radio communication to the OCU have been 
lost. The vehicle process then automatically shuts down all 
servo motors and chassis motors for safety. This means that the 
OCU process has to continuously send packets to the vehicle 
process in order to maintain continuous motion of the robot's 
motors. In our GUI, which converts user inputs to remote 
control packets, we send packets to the vehicle process with the 
5 Hz rate. This rate was selected empirically during 
experiments. It turned out that at remote control packet sending 
rates lower than 5 Hz the robot cannot be operated smoothly. It 

is also worth noting that those packets are sent even if there are 
no input commands from the user. 

 Considering our robot system setup and remote control 
software features we decided to monitor incoming UDP 
packets to detect a network failure. The task was to detect 
incoming UDP packets, which are remote control packets, and 
to monitor them in time. If for some time (e.g., 5 seconds) there 
are no incoming remote control packets, it means that the 
connection with the client is lost and the robot should switch to 
autonomous return mode. To parse incoming UDP packets we 
created a python script (Fig. 6), which gets an incoming packet 
and determines if it is a UDP packet. Next, a UDP packet is 
verified for being a remote control packet. When a connection 
is restored (e.g., when the robot approaches the operator in 
autonomous return mode), incoming UDP remote control 
packets are detected and a manual control is returned to the 
operator. The move_base function goal of returning to the 
starting point is been canceled. 

 Our network failure detection algorithm does not require an 
additional device in order to detect signal strength and does not 
consume significant system resources. This is possible due to 
the fact that we do not send additional “is alive” packets to the 
robot, but use existing remote control packets that are already 
being sent. 

 

 
Figure 6. Remote control UDP packet parsing code snippet. 

IV. AUTONOMOUS RETURN 
A network failure detection algorithm is only a part of the 

autonomous return algorithm. To successfully return to a 
starting point after a network failure, we need to perform 
SLAM-based navigation on the outward way and to perform 
path planning and autonomous navigation on the return way. 
The workflow of our system as whole is shown in Fig. 7. 

First step in establishing SLAM for the robot was to get a 
data stream from the LRF. ROS package urg_node was used 
for these purposes. This package allows to run a ROS node, 
which reads data from the LRF and publishes LaserScan 
messages to the /scan topic. Next, laser_scan_matcher package 
[10] was used to obtain odometry from laser scans. This 
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package compares consecutive LaserScan messages to estimate 
position of the LRF in space. Laser-based odometry turned out 
to be quite accurate. After getting odometry, we aimed to 
perform mapping and localization for our robot. 

 
Figure 7. Our system workflow diagram. 

Before running SLAM algorithms [11] on the real robot, we 
conducted a set of trials in Gazebo simulation in order to 
identify the most suitable for our purposes LRF-SLAM 
algorithm [12]. We had tested gmapping [13], Google 
Cartographer [14] and Hector SLAM [15] algorithms on 
prerecorded rosbagfiles with laser range data and concluded 
that Gmapping and Hector SLAM significantly outperformed 
Google Cartographer algorithm. Thus, gmapping and Hector 
SLAM algorithms were selected as the LRF-SLAM algorithms 
for further experiments with the real robot. 

Gmapping SLAM package is implemented using Rao-
Blackwellized particle filter. Each particle in this algorithm is a 
separate Dynamic Bayesian Network that stores its’ own 
version of a map. Rao-Blackwellized particle filter is applied to 
these particles in order to pick out the most plausible 
information about the environment [16]. Also, the process 
called marginalization is used to reduce the number of 
particles. This process solves the main challenge when using 
the particle filter. It groups similar particles into one particle in 
some area R. This reduces the number of particles and allows 
faster execution of the algorithm and lower memory costs [17]. 
Hector SLAM, on the other hand, uses a different approach to 
perform mapping and localization of a robot. A 2D robot pose 
is estimated based on a scan matching process. The scan 
matching algorithm used in Hector SLAM is based on Gauss-
Newton approach. The algorithm seeks to find the optimum 
alignment of laser scan’s endpoints with the constructed map 
by finding a rigid transformation ξ = (px,py,ψ)T that minimizes: 

 
where the function M(Si(ξ)) returns the map value at Si(ξ), 
which is the world coordinates of the scan endpoint. 

 After establishing gmapping for our robot with default 
parameters, real-world experiments were conducted in order to 
determine the quality of mapping and localization. During the 
experiments, the robot was teleoperated from a start point to a 
target point while performing LRF-SLAM and a generated map 
was stored. First, RBPF–SLAM algorithm was tested. RBPF–
SLAM algorithm has a lot of parameters, which depend on 

laser frequency and range, odometry information source and 
level of sensor shaking when the robot moves. These 
parameters should be finely tuned for each particular case in 
order to obtain the best mapping and localization quality. 
Figure 8 demonstrates a map of a same area (doorway), that 
was obtained in two experiments: before and after parameter 
tuning. The left picture shows a map defect in the area behind a 
left wall, while the picture on the right does not contain such 
defect. Parameter estimation and RBPF–SLAM algorithm 
configuration was performed during numerous experiments in 
different environments. 

 Next, Hector SLAM experiments were conducted. After 
several experiments, although RBPF-SLAM parameters were 
finely tuned, it turned out that in our setup Hector SLAM 
algorithm gives better results than the RBPF–SLAM. Thus, all 
subsequent experiments were conducted using Hector SLAM 
algorithm. The long corridor was selected as a next experiment 
location because such locations are the most challenging ones 
when an odometry is coming from a LRF. In the experiment, 
the robot was teleoperated along the corridor from the start 
point to the target point, and the generated map was stored. 
Although the corridor itself does not contain a large number of 
feature points, algorithm succeeded to construct a map without 
any significant errors. After that, Hector SLAM algorithm was 
used to create a map of the entire building floor. The resulting 
map is demonstrated in Fig. 9. 

 

 
Figure 8. Experiments within the same area before and after parameters tuning. 

 

 
Figure 9. Higher Institute for Information Technology and Information Systems 
floor map. Created in a single run. Legs of school desks are marked as multiple 
points in periodic shapes. 

 After establishing SLAM for our robot on the outward way 
we proceeded to path planning and autonomous navigation. For 
path planning we used A* algorithm, which demonstrated the 
best performance during experiments with regard to other path 
planning algorithms. It was used to build a path to the starting 
point when a connection with the operator was lost. The path 
was built on the map, which had been generated on the outward 
way. The example of path is shown in Fig. 10.  
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 Figure 10. A* algorithm path example. 

 In ROS, the best practice for implementing autonomous 
navigation is implementing the move_base [18] module. To 
implement this module, we completed the following steps: 

- local_costmap and global_costmap configurations are 
used to correctly track obstacles in the environment. 
In addition, robot footprint information falls into this 
configuration. 

- local_planner and global_planner configurations ase 
used to build local and global path plans. 

- Encapsulate previous configurations into move_base 
module. 

 When we publish a goal to the move_base module, it starts 
to publish messages to the cmd_vel topic. This topic contains 
velocity in free space being split into its linear and angular 
parts. After completing above-mentioned steps, we got 
move_base module output as geometry_msgs/Twist type 
message in the cmd_vel topic. 

 The next step in building autonomous navigation for the 
robot is implementing base_controller. This module is 
subscribing to the cmd_vel topic and converts Twist velocity 
messages to individual commands for the robot’s servo drives. 
This step is the most challenging because base_controller 
implementation is different from one robot to another and 
depends greatly on a robot’s physical arrangement. The fact 
that Servosila Engineer is a crawler-type robot made the task 
more complicated since we cannot map directly between 
cmd_vel velocity commands (e.g., turning left with the speed of 
0.1 m/s) and robot’s servo drive commands. Therefore, all 
conversions between cmd_vel velocities and real servo drive 
commands were done through numerous experiments. 

 After completing base_controller we aimed to the real-life 
navigation experiments. We set move_base goal and monitored 
robot’s autonomous navigation accuracy. At first, the robot was 
lacking accuracy, sometimes accidentally went into recovery 
behavior mode and sometimes oscillated back and forth in the 
final point because fault tolerance values were not set. 
Experimentally we picked up configuration values, which gave 
us the best navigation accuracy. The configuration values are 
shown in Table 1. 

 

TABLE I.  NAVIGATION CONFIGURATION VALUES 

Parameter name Parameter value 
max_vel_x 0.6 m/s 

min_vel_x 0.2 m/s 

max_vel_y 0.0 m/s 

min_vel_y 0.0 m/s 

min_rot_vel 0.2 rad/s 

acc_lim_theta 10.0 rad/s2 

acc_lim_x 10.0 m/s2 

sim_time 0.5 s 

yaw_goal_tolearnce 0.15 rad 

xy_goal_tolearnce 0.15 m 

path_distance_bias 50 

trans_stopped_vel 0.2 m/s 

rot_stopped_vel 0.2 rad/s 

stop_time_buffer 0.1 s 

dwa true 

meter_scoring true 

holonomic_robot false 

V. CONCLUSION 
Autonomous return is an important feature that helps to 

prevent losing a mobile robot due to disruption of its wired or 
wireless connection with the operator. In this research we 
proposed the algorithm of autonomous return, which involves 
network failure detection algorithm, SLAM algorithm, 
navigation and path planning algorithms. Combination of these 
algorithms allowed us to solve the task of autonomous robot 
return in a case of a network failure. All algorithms were 
integrated into the Russian mobile robot Servosila Engineer 
control system and are launched automatically on robot startup. 
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