

Peculiar Aspects in Influence of α_1 -Adrenoceptor Stimulation on Isolated Rat Heart

T. L. Zefirov, I. I. Khabibrakhmanov, N. I. Ziyatdinova, and A. L. Zefirov*

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 162, No. 7, pp. 7-10, July 2016
 Original article submitted December 23, 2015

The study examined the effect of α_1 -adrenoceptor stimulation with methoxamine on chronotropic function of isolated heart perfused *ex vivo* according to Langendorff and cardiac chronotropy *in vivo*. Stimulation of α_1 -adrenoceptors in isolated heart induced gradually developing bradycardia, which progressed during several minutes. Similar stimulation *in vivo* produced a short-term bradycardia probably terminated by the compensatory influences in the whole organism. Comparison of the data obtained in both experimental paradigms during α_1 -adrenoceptor stimulation revealed unidirectional changes in cardiac chronotropy characterized with time-related peculiarities.

Key Words: heart; chronotropy; α_1 -adrenoceptor; methoxamine; rat

The heart has a wide repertoire of receptors, which interact with transmitters and modulate intensity of intracellular signaling systems. It is an accepted view that the catecholamines activate predominantly β_1 -, β_2 -, and α_1 -adrenoceptors (ARs), which interact with G proteins and modulate the second messenger systems. All ARs are metabotropic and coupled to G proteins. At this, β_1 -ARs activate predominantly Gs proteins, while α_1 -ARs and β_2 -ARs stimulate Gq and Gi proteins, respectively [4-7].

Involvement of individual types of β -ARs in the control of cardiac rhythm and myocardial contractility, as well as their effects on pathological processes in the myocardium had been extensively studied [1,3,10-12]. However, the novel studies focused on the effects of combined blockade of several types of ARs on the cardiac activity harvested new data and showed that the combined blockade of β_1 -, β_2 -, and α_1 -ARs was more effective than the selective block of β -ARs, which is widely used in the treatment of cardiac pathologies [4]. This finding prompted a view about significant effect of α -ARs on genesis of cardiac failure. Specifically, it had been shown that α -ARs

are implicated in physiological hypertrophy in male mice [8]. In neonatal rats, stimulation of α -ARs with phenylephrine provokes hypertrophy of ventricular cardiomyocytes triggered via Gq protein- and protein kinase C-dependent pathways [4]. Stimulation of α_1 -ARs elevates the concentration of myofibrillar proteins due to up-regulation of protein synthesis. In addition, α_1 -ARs are involved in the development of myocardial hypertrophy via protein kinase C pathways [8]. The effects of blockade of various subtypes of α -ARs are age-dependent [2,13,14]. Probably, the cardiac α_1 -ARs control numerous adaptive processes such as up-regulation of inotropy, gene transcription, protein synthesis, and glucose metabolism in parallel with inhibition of apoptosis [9]. These findings attest to the need of further studies to develop the novel approaches in the treatment of arrhythmias [8].

This work was designed to compare the effects of stimulation of α_1 -ARs on cardiac chronotropic function *in vivo* and *ex vivo*.

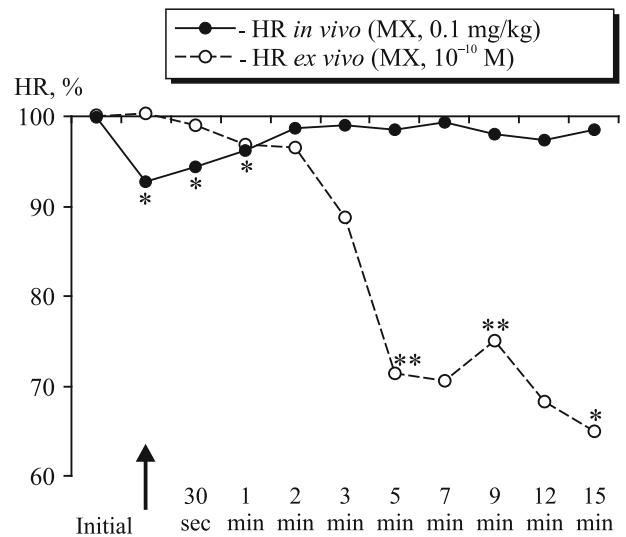
MATERIALS AND METHODS

The experiments were carried out on random-bred albino rats weighing 200-250 g and aging 20 weeks ($n=28$). The rats were anesthetized intraperitoneally with 25% urethane (800 mg/kg body weight). In the

Department of Human Health Protection, Kazan (Volga Region) Federal University; *Department of Normal Physiology, Kazan Federal Medical University, Kazan, the Republic of Tatarstan, Russia.
 Address for correspondence: zefirovt@mail.ru. T. L. Zefirov

in vivo series, methoxamine (MX, an agonist affecting all subtypes of α_1 -ARs, Sigma) was injected into the right femoral vein in a dose of 0.1 mg/kg. During experiments, ECG was recorded and processed on-line with a PC.

In the *ex vivo* series, the heart was rapidly isolated and completely arrested by placing it into cold physiological saline (2-5°C). Aorta was cannulated with caution to prevent touching and injuring the aortic valve and to exclude penetration of the test solution into the lumen of left ventricle. The heart was perfused in a Langendorff System (ADIInstruments) with carbogen-oxygenated Krebs-Henseleit solution containing (in mM): 118.0 NaCl, 4.7 KCl, 25.0 NaHCO₃, 1.2 MgSO₄, 2.5 CaCl₂, 1.2 KH₂PO₄, 5.5 glucose (pH 7.3-7.4) at 37°C. The retrograde perfusion was driven by constant hydrostatic pressure of 60-65 mm Hg. To stimulate α_1 -ARs, MX had been used at the concentrations of 10⁻¹⁰, 10⁻⁹, and 10⁻⁸ M. To measure the intraventricular pressure, a latex water-filled balloon was placed into the lumen of the left ventricle via an orifice made posterior to the left atrial auricle. The end-systolic pressure was set at the level of 10-15 mm Hg. The left ventricular pressure was recorded with a MLT844 pressure transducer (ADIInstruments) and used to calculate the HR. The signals were recorded in a PowerLab 8/35 system (ADIInstruments) with the help of LabChart Pro 8.0 software.


The data were processed statistically using Microsoft Excel software and Student's *t* test.

RESULTS

In the *in vivo* series, MX (0.1 mg/kg) decreased HR from 347±21 to 321±18 bpm (*n*=5, *p*<0.05). On postinjection seconds 30 and 60, HR values were 327±21 and 334±21 bpm, respectively (Fig. 1). This short-term bradycardia was followed by recovery of initial cardiac activity. On postinjection minute 2, HR was 343±20 bpm, and it remained rather stable to the end of experiment (Fig. 1). On postinjection minutes 15 and 30, the HR values were 342±20 and 349±11 bpm, respectively.

In the *ex vivo* series, the chronotropic action of MX was examined at smaller concentrations of this agent (10⁻¹⁰, 10⁻⁹, and 10⁻⁸ M). Prior to MX, the control Krebs-Henseleit solution was applied which produced no effect on HR.

In contrast to *in vivo* experiments, the lowest tested concentration of MX (10⁻¹⁰ M) produced no significant effect on HR during the first 2 min postinjection (*n*=7, Fig. 1). Then, HR gradually decreased and attained 28% initial value to postinjection minute 5 (*p*<0.01, Fig. 1). On postinjection minutes 7 and 9, HR was below the initial level by 29% (*p*<0.001) and

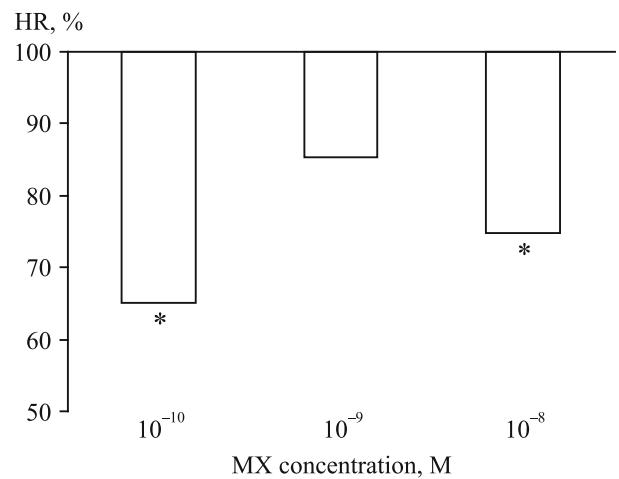


Fig. 1. Effect of MX on HR *in vivo* and *ex vivo*. The arrow indicates HR measured during 0-30 sec postinjection. HR shown at 30 sec was measured during 30-60 sec postinjection. **p*<0.05, ***p*<0.01 in comparison with initial level.

25% (*p*<0.01), respectively. The maximum drop of HR by 35% (*p*<0.05) was observed on postinjection minute 15 (Figs. 1, 2).

Perfusion of isolated heart with MX (10⁻⁹ M, *n*=7) produced no significant chronotropic effect (Fig. 2). In 2 min after agonist application, HR slightly increased from 222±10 to 229±14 bpm. The maximum changes in HR were observed on minute 12: HR dropped to 190±20 bpm.

When tested at a concentration of 10⁻⁸ M (*n*=9), MX significantly decreased HR. However, it produced a transient and insignificant increase in HR in 30 sec after administration from 169±30 to 173±29 bpm. Then, HR gradually decreased: in 2 min this parameter was below the baseline by 17%. On minute 3 after MX administration, HR decreased to 137±26 bpm

Fig. 2. Effect of MX on HR of the hearts isolated from 20-week-old rats. **p*<0.05 in comparison with initial level.

($p<0.05$). Bradycardia peaked on minute 7 after administration with HR of 126 ± 22 bpm, *i.e.* 25% of the baseline ($p<0.05$, Fig. 2).

Although the density of α_1 -ARs in the heart is lower than that of β -ARs, the former play a rather important role in the regulation of cardiac functions. According to common view, activation of α_1 -ARs up-regulates the myocardial contractility in the normal heart, although the opposite effect was also reported [6]. The present study showed that stimulation of α_1 -ARs with MX induced bradycardia both in isolated heart and *in vivo*. However, the periods needed for the development of MX-induced bradycardia were significantly different in both experimental paradigms. In isolated heart, bradycardia developed gradually during several minutes. In contrast, the *in vivo* experiments demonstrated a short-term bradycardia, which can be explained by engaging the reflexive compensatory mechanisms of the whole organism. Paradoxically, the block of α_1 -ARs with prazosin also induced bradycardia [2,14]. Similar cardiac effect induced by stimulation and block of α_1 -ARs can result from a number of reasons. On the one hand, α_1 -ARs can trigger various systems of second messengers exerting the opposite effects on cardiac rhythm. On the other hand, block of α_1 -ARs can activate the intracellular mechanisms not directly implicated into performance of these receptors.

The study was supported by the Russian Foundation for Basic Research (grant No. 15-04-05384).

REFERENCES

- Zefirov TL, Ziyatdinova NI, Gainullin AA, Zefirov AL. Blockade of hyperpolarization-activated channels modifies the effect of beta-adrenoceptor stimulation. *Bull. Exp. Biol. Med.* 2002;133(5):425-427.
- Zefirov TL, Ziatdinova NI, Khisamieva LI, Zefirov AL. Comparative analysis of the impact of $\alpha 1$ - and $\alpha 2$ -adrenoreceptor blockade on cardiac function in rats during postnatal ontogeny. *Bull. Exp. Biol. Med.* 2011;151(6):664-666.
- Bisognano JD, Weinberger HD, Bohlmeier TJ, Pende A, Raynolds MV, Sastravaha A, Roden R, Asano K, Blaxall BC, Wu SC, Communal C, Singh K, Colucci W, Bristow MR, Port DJ. Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. *J. Mol. Cell. Cardiol.* 2000;32(5):817-830.
- Jensen BC, O'Connell TD, Simpson PC. Alpha-1-adrenergic receptors: targets for agonist drugs to treat heart failure. *J. Mol. Cell. Cardiol.* 2011;51(4):518-528.
- Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca^{2+} clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker. *Circ. Res.* 2010;106(4):659-673.
- Myslivecek J, Nováková M, Klein M. Receptor subtype abundance as a tool for effective intracellular signalling. *Cardiovasc. Hematol. Disord. Drug Targets.* 2008;8(1):66-79.
- Salameh A, Krautblatter S, Baessler S, Karl S, Rojas Gomez D, Dhein S, Pfeiffer D. Signal transduction and transcriptional control of cardiac connexin 43 up-regulation after alpha 1-adrenoceptor stimulation. *J. Pharmacol. Exp. Ther.* 2008. Vol. 326(1):315-322.
- Shannon R, Chaudhry M. Effect of alpha1-adrenergic receptors in cardiac pathophysiology. *Am Heart J.* 2006;152(5):842-850.
- Simpson P. Lessons from knockouts: the alpha1-Ars. The Adrenergic Receptors in the 21st Century. Perez DM, eds. Totowa, 2006):207-240.
- Steinfath M, Chen YY, Lavický J, Magnussen O, Nose M, Rosswag S, Schmitz W, Scholz H. Cardiac alpha 1-adrenoceptor densities in different mammalian species. *Br. J. Pharmacol.* 1992;107(1):185-188.
- Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. *J. Am. Coll. Cardiol.* 2009;54(19):1747-1762.
- Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, Devic E, Kobilka BK, Cheng H, Xiao RP. Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca^{2+} /calmodulin kinase II. *J. Clin. Invest.* 2003;111(5):617-625.
- Ziyatdinova NI, Dementieva RE, Fashutdinov LI, Zefirov TL. Blockade of different subtypes of $\alpha(1)$ -adrenoceptors produces opposite effect on heart chronotropy in newborn rats. *Bull. Exp. Biol. Med.* 2012;154(2):184-185.
- Ziyatdinova NI, Zefirov AL, Zefirov TL. Age-related peculiarities of the effect of alpha-adrenoreceptor blockade on cardiac function in rats. *Bull. Exp. Biol. Med.* 2002;133(6):532-534.