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АЛГЕБРА В КАЗАНСКОМ УНИВЕРСИТЕТЕ

М.М. Арсланов, А.Н. Абызов

Работы по алгебре в Казанском университете ведут свое начало от Н.И. Лобачев-
ского. Ряд оригинальных результатов Н.И. Лобачевского по алгебре был изложен
в его замечательном учебнике «Алгебра или вычисления конечных» (1834). В нем
представлен новый метод отделения корней (так называемый метод Лобачевского-
Греффе), исследованы круговые многочлены, метод решения n линейных уравне-
ний с n неизвестными, совпадающий, по существу, с методом определителей, ко-
торый не был тогда еще завершен. В своей книге Н.И. Лобачевский подверг глубо-
кому логическому анализу основные понятия алгебры. Как показывает следующая
выдержка из предисловия к его учебнику «Алгебра» (1825), Н.И. Лобачевский пред-
восхитил основные идеи абстрактной алгебры. «Для науки надобно всегда желать,
чтобы она стала на твердом основании, чтобы строгость и ясность сохранялась в
самых ее началах, как они делаются первым его достоинством в продолжении. . .
Лагранж в своей теории аналитических функций старается избежать употребления
бесконечно малых; между тем он не усомнился ввести в свои исчисления вообража-
емый корень, который сам собою не существует, а только может быть понимаем в
его свойствах: последнего уже и довольно. . . Положить первые и твердые основания
вообще для всех родов вычислений употребительных в математике – главная цель
алгебры».

Существенное влияние на научную активность казанских математиков с 80-х го-
дов XIX века в области теории чисел оказал воспитанник Петербургского универ-
ситета А.В. Васильев. В Казанском университете А.В. Васильев работал с 1874 по
1907 гг. Находясь в заграничных командировках (1879 и 1882 гг.), он слушал лекции
Л. Кронекера и К. Вейрштрасса (Берлин), Ш. Эрмита (Париж) и Ф. Клейна (Лейпциг).
Его магистерская диссертация «О функциях рациональных, аналогичных с функ-
циями двоякопериодическими» (Казань, 1880) посвящена рассмотрению функций
инвариантных относительно конечных дробно-линейных инвариантных подстано-
вок, где он вплотную подошел к открытию автоморфных функций. В докторской
диссертации «Теория отделения корней систем алгебраических уравнений» (1884)
А.В. Васильев развивает и применяет метод характеристик Кронекера, причем он
использует геометрию многомерных пространств. А.В. Васильев был организато-
ром и душой Казанского физико-математического общества, основанного в 1880 г.
В изданиях Казанского физико-математического общества публиковались наибо-
лее интересные статьи отечественных и зарубежных математиков, оригинальные
работы по математике. По теории чисел наиболее значительные результаты в тот
период были получены П.С. Порецким, П.В. Преображенским и А.В. Васильевым.
Особо стоит отметить большую заслугу А.В. Васильева в освещении жизни и дея-
тельности Н.И. Лобачевского, популяризации его идей.

Казанская алгебраическая школа была основана выдающимся математиком, чле-
ном-корреспондентом АН СССР Н.Г. Чеботаревым, он же руководил основанной им
в 1934 г. кафедрой алгебры вплоть до своей кончины в 1947 г.

На 30-е и 40-е годы приходится период расцвета алгебраических исследований
в университете. В это время зарождалась Казанская алгебраическая школа, посте-
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пенно превратившая Казань в один из мировых алгебраических центров. Основную
роль в формировании этой школы сыграл организованный Н.Г. Чеботаревым алгеб-
раический семинар, участниками которого в те годы были, кроме Николая Григо-
рьевича, его ученики И.Д. Адо, В.В. Морозов, Н.Н. Мейман, аспиранты Николая Гри-
горьевича А.И. Гаврилов, В.Н. Цапырин, А.В. Дороднов. Именно на этом семинаре
определились основные направления научно-исследовательской деятельности кол-
лектива, часть из которых продолжает развиваться в Казанском университете и в
настоящее время.

Прежде всего, крупные результаты во многих областях алгебры были получены
самим Н.Г. Чеботаревым. В теории Галуа им была определена структура абсолютной
группы Галуа полей классов и установлены ограничения, наложенные на простые
делители числа классов. В теории групп Ли Н.Г. Чеботарев дал доказательство вы-
сказанного еще в 1894 г. Картаном предположения, что подгруппы простых групп
максимального порядка регулярны, и нашел аналитический признак наличия меры
у заданного представления группы Ли.

Целый ряд работ Н.Г. Чеботарева относится к проблеме сведения решения алгеб-
раических уравнений высших степеней (не разрешимых в радикалах) к решению
уравнений возможно более простого вида, известной под общим названием “про-
блема резольвент”.

В терминах суперпозиций проблема резольвент формулируется так: для произ-
вольного натурального числа n найти такое наименьшее число k, что корень общего
уравнения n-ой степени как функция от его коэффициентов представляется в виде
суперпозиции алгебраических функций от k переменных. Проблема резольвент в
такой формулировке связана с тринадцатой проблемой Гильберта из его знамени-
той серии, состоящей из двадцати трех проблем математики, решение которых, по
словам самого Гильберта, “может значительно стимулировать дальнейшее разви-
тие науки”.

Н.Г. Чеботарев проблеме резольвент посвятил целую серию работ. За совокуп-
ность работ в этой области ему посмертно была присуждена Сталинская премия
1-ой степени (1948). Н.Г. Чеботарев при работе над проблемой резольвент столкнул-
ся с вопросом “об одевании” конечных групп группами Ли. Эту задачу он предложил
своему ученику И.Д. Адо, который блестяще справился с поставленной задачей, по-
лучив точное конечномерное представление конечномерных алгебр Ли над полем
характеристики нуль (1935). Этот результат был настолько важен в доказательстве
эквивалентности групп и алгебр Ли, что И.Д. Адо была присуждена степень докто-
ра физ.-мат. наук при защите им кандидатской диссертации. В.В. Морозову Н.Г. Че-
ботарев предложил проблему классификации примитивных групп, поставленную
еще Софусом Ли. И в 1938 г. В.В. Морозов добивается замечательных успехов, по-
лучив общие и полные результаты для пространств произвольной размерности. В
том же году он защищает кандидатскую диссертацию в Московском государствен-
ном университете. Занимаясь классификацией примитивных групп, он естественно
приходит к проблеме классификации всех однородных примитивных пространств.
Эта проблема была сведена им к проблеме классификации всех максимальных под-
групп полупростых групп Ли. В.В. Морозов дал полную классификацию максималь-
ных неполупростых подгрупп полупростых групп Ли и в 1943 г. защитил доктор-
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скую диссертацию. В дальнейшем, в 1951 г. Е.Б. Дынкин в своей докторской диссер-
тации получил классификацию полупростых максимальных подгрупп полупростых
групп Ли. Таким образом, усилиями В.В. Морозова и Е.Б. Дынкина была полностью
решена поставленная еще в XIX веке С. Ли проблема классификации комплексных
однородных примитивных многообразий. Основу метода В.В. Морозова составляет
доказанная им замечательная теорема, утверждающая регулярность всякой макси-
мальной неполупростой подалгебры полупростой алгебры Ли. Первоначальное до-
казательство этой теоремы в докторской диссертации было довольно громоздким.
Позднее, в 1950 г., В.В. Морозов нашел изящное общее доказательство этой важной
теоремы.

Ряд учеников Н.Г. Чеботарева изучали поставленную им проблему продолжае-
мости полиномов. Полином f (x) называется M-продолжаемым, где M — некото-
рое множество комплексных чисел, если путем добавления к нему членов высших
порядков можно получить полином, все корни которого будут принадлежать M .
А.И. Гаврилов доказал, что всякий полином является M-продолжаемым, если M -
– окружность ненулевого радиуса, центр которого находится в начале координат.
Другой аспирант Николая Григорьевича Н.Н. Мейман исследовал случай, когда M
является множеством вещественных чисел. В этом случае проблема продолжаемо-
сти полинома сводится к проверке выполнения бесконечного числа неравенств.
Н.Н. Мейману удалось разработать алгоритм, с помощью которого за конечное чис-
ло шагов удается определить, выполняются ли эти условия. За эти исследования
Н.Н. Мейману также была присуждена степень доктора наук, минуя кандидатскую.

В 1934 г. в процессе работы над книгой «Основы теории Галуа» Н.Г. Чеботарев об-
ратился к одной из классических задач древности – задаче перечисления всех кру-
говых луночек, квадрируемых при помощи циркуля и линейки.

Знаменитой задачей древности, известной как задача о квадратуре круга, явля-
ется задача о построении с помощью циркуля и линейки квадрата, равновелико-
го данному кругу. Попытки решения задачи о квадратуре круга, продолжавшиеся в
течение тысячелетий, неизменно оканчивались неудачей. Если взять радиус круга
за единицу, то сторона равновеликого этому кругу квадрата равна корню из числа
Пи. Таким образом, задача сводится к построению с помощью циркуля и линейки
отрезка, длина которого равна корню из числа Пи. Нетрудно доказать, что с помо-
щью циркуля и линейки можно построить только такие отрезки, числовые значения
длин которых могут быть получены из рациональных чисел с помощью операций
извлечения квадратного корня, а также сложения и умножения. Также легко дока-
зывается, что все такие числа являются алгебраическими, т. е. для каждого из них
можно построить многочлен с целыми коэффициентами, корнями которых они яв-
ляются. Однако, как установил в 1882 г. немецкий математик Ф. Линдеман, число
Пи — трансцендентное число, т. е. не является корнем никакого алгебраического
уравнения с целыми коэффициентами, значит трансцендентен и корень из числа
Пи.

Таким образом, задача квадратуры круга неразрешима. В отличие от этой задачи,
задача о квадрируемых луночках имеет решения. Круговой луночкой называется
замкнутая фигура, образованная дугами двух окружностей. Круговая луночка квад-
рируема, если с помощью циркуля и линейки можно построить равновеликий ей
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квадрат, то есть если ее площадь имеет значение, алгебраически выражаемое через
входящие в их построение линейные элементы. Частным случаем круговых луно-
чек являются луночки Гиппократа – найденные древнегреческим геометром Гип-
пократом Хиосским (V в. до н. э.) квадрируемые луночки. (С помощью этих луночек
Гиппократ пытался справиться с задачей о квадратуре круга). Существуют три квад-
рируемые луночки Гиппократа. Одна из них строится следующим образом: берется
четверть круга O AC и на хорде AC , соединяющей концы радиусов O A и OC , описы-
вается как на диаметре внешняя по отношению к четверти круга полуокружность.
Нетрудно проверить, что площадь луночки равна площади треугольника AOC . Та-
ким образом, луночка квадрируема. Д. Бернулли указал условие, которому должны
удовлетворять квадрируемые луночки, и привел уравнение, которому удовлетворя-
ет еще одна (четвертая) квадрируемая луночка.

Задача перечисления всех квадрируемых луночек привлекала внимание многих
крупнейших математиков разных времен. Существенное продвижение в решении
этой проблемы было достигнуто самим Н.Г. Чеботаревым. Прежде всего, он свел за-
дачу к случаю, когда отношение угловых мер α и β дуг, ограничивающих луночку,
соизмеримо и равно m/n (т.е. для некоторого t , α= m\t , β= n\t ), где m,n взаимно
простые натуральные числа, и составил алгебраическое относительно cos t уравне-
ние, которому должны удовлетворять квадрируемые луночки, а это означает, что
уравнение должно решаться при помощи извлечения квадратных корней. Послед-
нее, в свою очередь, означает, что группа Галуа неприводимых множителей этого
уравнения должна иметь порядок, равный степени двойки. Н.Г. Чеботарев подроб-
но исследовал случай, когда числа m и n – нечетные взаимно простые натуральные
числа. Его ученик А.В. Дороднов позднее (1948) разобрал случай, когда одно из этих
чисел четное. Таким образом, задача перечисления всех квадрируемых луночек по-
лучила окончательное решение. В конечном итоге выяснилось, что существуют все-
го пять видов квадрируемых луночек.

Работы Н.Г. Чеботарева и его учеников получили широкое признание во всем ми-
ре. В 30-е годы Казань становится одним из мировых центров алгебраических ис-
следований, возникает авторитетная Казанская алгебраическая школа, задающая
тон мировым исследованиям по многим направлениям современной алгебры, а ее
глава Н.Г. Чеботарев приглашается с обзорными докладами на крупнейшие матема-
тические форумы того времени: по теории алгебраических чисел -– на первый Все-
союзный математический съезд (Харьков, 1930); по теории Галуа – на Всемирный
математический конгресс (Цюрих, 1932) и на второй Всесоюзный математический
съезд (Ленинград, 1934).

Теория групп и алгебр Ли развивалась в работах учеников В.В. Морозова. Иссле-
дованиями по теории групп Ли занимались два ученика В.В. Морозова – Я.И. За-
ботин и Л.Д. Эскин. Я.И. Заботин описал импримитивные группы преобразований
4-х мерного комплексного пространства. После защиты кандидатской диссертации
по этой тематике он перешел к изучению задач линейного и выпуклого програм-
мирования и их применению к различным экономическим вопросам. Л.Д. Эскин
вначале занимался теорией представлений групп Ли. Им были построены опера-
торы Лапласа на группе комплексных унитарных матриц и с их помощью исследо-
вались матричные элементы неприводимых бесконечномерных унитарных пред-
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ставлений группы Лоренца. В цикле работ, выполненных в 60-е годы, Л.Д. Эскин по-
строил фундаментальные решения уравнения теплопроводности на многообрази-
ях комплексных полупростых групп Ли и симметрических римановых пространств.
Полученные результаты Л.Д. Эскин применил к построению преобразований Вей-
ерштрасса на симметрических римановых пространствах и получил новый метод
вычисления меры Планшереля для этих пространств. В последние годы Л.Д. Эскин
развивал методы построения асимптотических разложений в окрестности сингу-
лярных точек для инвариантных решений ряда нелинейных задач математической
физики. В 70-е годы задачами по теории групп Ли занимался ученик Л.Д. Эски-
на – Е.Л. Столов. При реализации представлений классических групп появляют-
ся новые специальные функции, обобщающие известные специальные функции.
Эти функции возникают как матричные элементы соответствующих представле-
ний. При этом получаются как известные соотношения между старыми специаль-
ными функциями, так и новые формулы. Е.Л. Столов изучал асимптотические свой-
ства этих функций.

Среди работ по теории алгебр Ли в первую очередь следует отметить работы
Г.Н. Мубаракзянова и Э.Н. Сафиуллиной, посвященные описанию нильпотентных
и разрешимых алгебр Ли малых размерностей. В 50-е годы В.В. Морозов начинает
привлекать своих учеников к исследованию алгебр Ли над полями положительной
характеристики. Уже в 1952 г. в ДАН СССР выходит работа А.В. Сульдина, в кото-
рой он доказывает существование точного конечномерного представления конеч-
номерной алгебры Ли над полем положительной характеристики, т. е. переносит
результат И.Д. Адо на случай модулярных алгебр Ли (так принято обычно называть
алгебры Ли над полем положительной характеристики). Затем изучением алгебр Ли
над полями положительной характеристики занимался А.Х. Долотказин. Обобщая
результаты И. Капланского и Р. Блока, он описал строение модулярных алгебр Ли
ранга 1. В 70-е годы теорией модулярных алгебр Ли начал заниматься еще один уче-
ник В.В. Морозова – Ю.Б. Ермолаев. Его первые работы были посвящены изучению
центра универсальной обертывающей алгебры для алгебры Витта и алгебры Цас-
сенхауза. Строение центра универсальной обертывающей алгебры существенным
образом определяет вид неприводимых модулей над этой алгеброй Ли. Ю.Б. Ермо-
лаев нашел образующие и определяющие соотношения между этими образующи-
ми для центра универсальной обертывающей алгебры алгебр Витта и Цассенхауза.
В дальнейшем Ю.Б. Ермолаев исследовал проблему классификации простых конеч-
номерных алгебр Ли над полем положительной характеристики. Кроме Ю.Б. Ермо-
лаева задачами классификации занимались М.Ю. Целоусов (ученик В.В. Морозова)
и Г.О. Эльстинг (ученик Л.Д. Эскина). М.Ю. Целоусов описал алгебры дифференци-
рований всех алгебр Ли картановского типа. Г.О. Эльстинг занимался переносом
некоторых фактов, определенных для градуированных алгебр Ли на алгебры Ли с
фильтрацией.

В завершающей стадии реализации проекта по классификации простых моду-
лярных алгебр Ли принял участие выпускник кафедры алгебры, ученик чл.-кор.
АНСССР А.И. Кострикина– С.М. Скрябин, который получил глубокие результаты по
исследованию алгебр Ли картановского типа и выполнил работу по классификации
простых алгебр Ли положительной характеристики и представлений алгебр Ли. Эти
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результаты легли в основу его докторской диссертации, защищенной в 1999 г. в МГУ.
Наряду с вопросами классификации простых модулярных алгебр Ли рассматри-

валась задача описания представлений этих алгебр. Этой проблематикой занимал-
ся ученик Ю.Б. Ермолаева – Н.А. Корешков. Им получено описание неприводимых
представлений p-алгебр Ли картановского типа в терминах индуцированных. Для
изучения некоторых вопросов, связанных с неприводимыми модулями, например,
для вычисления максимальной размерности неприводимых представлений, необ-
ходимо рассмотреть структуру центра универсальной обертывающей алгебры со-
ответствующей алгебры Ли. Н.А. Корешков нашел некоторые серии элементов цен-
тра, а для гамильтоновой алгебры ранга один описал множество всех порождающих
центра ее универсальной обертывающей алгебры.

Полиадическими числами занимался ученик В.В. Морозова – Е.В. Новоселов.
Полиадические числа впервые появились в работе у немецкого математика Хан-
са Прюфера, опубликованной в 1925 г. Конструкции полиадических чисел предла-
гали также Герн Гензель, Дж. Фон Нейман. Кольцо полиадических чисел является
прямым произведением колец целых p-адических чисел по всем простым числам.
Е.В. Новоселов определял кольцо полиадических чисел эквивалентным способом:
множество целых чисел можно рассматривать как топологическое кольцо относи-
тельно метризуемой топологии, полная систем окрестностей у которой имеет вид
n +mZ , тогда кольцо полиадических чисел определяется как пополнение этого то-
пологического кольца. Им была изучена арифметика колец полиадических чисел и
построена теория меры и интеграла на таких кольцах. Разработанную теорию Е.В.
Новоселов применяет в различных вопросах теории чисел, в частности, им были
изучены проблемы, связанные с распределением значений арифметических функ-
ций. Отметим также, что результаты, полученные Е.В. Новоселовым, подробно из-
ложены в известной книге А.Г. Постникова «Введение в аналитическую теорию чи-
сел» (Москва, 1971). В настоящее время арифметические свойства полиадических
чисел изучаются В.Г. Чирским и его учениками. Также кольцо полиадических чисел
под названием кольца целых универсальных чисел находит глубокие приложения в
теории абелевых групп (П.А. Крылов, А.А. Фомин).

По инициативе В.В. Морозова его ученик И.И. Сахаев занялся проблематикой, от-
носящейся к теории колец и модулей. В 60-е годы И.И. Сахаев изучал кольца, над ко-
торыми каждый правый конечнопорожденный плоский модуль является проектив-
ным. Такие кольца в настоящее время называются правыми S-кольцами. В 1960 г.
Басс получил характеризацию совершенных справа колец, т.е. колец над которыми
проективны все правые плоские модули. Проблемой характеризации S-колец за-
нимались многие известные специалисты по теории колец и модулей, например,
С. Эндо, В. Васкенселос, С. Йондруп. Изучая S-кольца, И.И. Сахаев разработал глу-
бокую технику работы с регулярными в кольцах последовательностями. Используя
эту технику, ему удалось получить полное описание правых S-колец. Эти результа-
ты легли в основу его кандидатской диссертации, защищенной в 1969 г. в МГУ.

В 1974 г. Лазаром была выдвинута гипотеза о конечной порожденности каждо-
го проективного модуля, у которого фактормодуль по радикалу Джекобсона конеч-
нопорожден. Для коммутативных колец эта гипотеза была доказана самим Лаза-
ром. Справедливость этой гипотезы для PI -колец была установлена С. Йондрупом.
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И.И. Сахаевым были получены необходимые и достаточные условия, при которых
гипотеза Лазара верна. В 1984 г. была опубликована совместная работа В.Н. Гера-
симова и И.И. Сахаева, в которой был построен пример полулокального кольца,
для которого гипотеза Лазара не выполняется. Эти и другие его результаты лег-
ли в основу докторской диссертации И.И. Сахаева, защищенной в 1994 г. в Санкт-
Петербургском университете.

Очередное существенное повышение научной активности в области алгебры и ее
приложений приходится на 90-е годы. Начиная с 90-х годов научно-исследователь-
ская работа на кафедре (новое название кафедры – кафедра алгебры и математи-
ческой логики) проводится по нескольким направлениям. Это – традиционные для
кафедры направления по алгебрам Ли и их применениям, по алгебрам Хопфа, тео-
рии операд, по теории колец и модулей, теории полуколец и полумодулей, а также
по теории вычислимости и вычислимым алгебрам.

Алгебры Хопфа, их действия и кодействия на ассоциативных алгебрах представ-
ляют значительный интерес не только как объекты с весьма богатой алгебраической
структурой, но и в связи с возможными приложениями в математической физи-
ке. С.М. Скрябиным установлен ряд важных теоретико-кольцевых свойств произ-
вольной артиновой ассоциативной алгебры, вытекающих исключительно из отсут-
ствия ненулевых нильпотентных идеалов этой алгебры, устойчивых относительно
действия некоторой алгебры Хопфа. Были получены результаты о проективности
и плоскостности алгебры Хопфа как модуля над подалгебрами Хопфа и коидеаль-
ными подалгебрами, а также более общие результаты о проективности эквивари-
антных и коэквивариантных модулей. Разработана теория, обобщающая категор-
ные эквивалентности, связанные с категориями квазикогерентных пучков на одно-
родном пространстве, в духе некоммутативной алгебраической геометрии. В сов-
местной работе с М.С. Еряшкиным доказано существование наибольшей подалгеб-
ры Хопфа в любой слабо конечной биалгебре.

Лиевы пучки были введены в работах И.Л. Кантора и Д.Б. Персица в 1989 г. Кон-
струкция лиевых пучков связана с нахождением первых интегралов некоторых га-
мильтоновых систем. Н.А. Корешковым было показано, что для лиевых пучков име-
ет место аналог теоремы Ли. Также им был найден критерий нильпотентности для
лиевых пучков, который является аналогом теоремы Энгеля. С использованием
этого критерия удалось доказать существование Картановской подалгебры в лю-
бом лиевом пучке, которая, как и в алгебрах Ли, определяется как нильпотентная
подалгебра, совпадающая со своим нормализатором. Оказывается, необходимым
свойством обладает нулькомпонента регулярной пары. В настоящее время Н.А. Ко-
решковым проводятся исследования, связанные с классификацией простых лиевых
пучков. Были получены результаты при ограничениях на размерность лиевых пуч-
ков или размерность их нулькомпоненты.

Учениками И.И. Сахаева в настоящее время проводятся исследования по теории
операд и теории колец и модулей. Была решена проблема, поставленная И.И. Сахае-
вым, об описании колец, над которыми каждый правый модуль является слабо регу-
лярным. Аспирантом Д.Т. Тапкиным для ряда широких классов колец формальных
матриц была исследована проблема изоморфизма. Исследованиям по теории опе-
рад посвящены работы С.Н. Тронина. Его кандидатская диссертация была посвя-
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щена проективным алгебрам, т.е. ретрактам свободных алгебр многообразий ли-
нейных алгебр. В дальнейшем были работы по категориям частных, эквивалентно-
сти Мориты, алгебраической теории информации, и с 2000 г. цикл работ по теории
операд, который привел в 2011 г. к защите докторской диссертации. Особенностью
подхода С.Н. Тронина к теории операд (и более общим образом к теории мультика-
тегорий) является то, что рассматриваются операды не только над симметрически-
ми группами, но и над гораздо более общими объектами – вербальными категория-
ми. Благодаря этому класс обычных (симметрических и несимметрических) операд
существенно расширяется, и в него попадают, например, все абстрактные клоны.
Таким образом, вся теория многообразий универсальных алгебр может рассматри-
ваться как раздел теории операд, и соотношение между традиционным подходом
и подходом операдным напоминает соотношение между комбинаторной теорией
групп и общей теорией групп. Помимо этого, С.Н. Тронин построил общую теорию
всех возможных супералгебр (мультиоператорных). При этом также использовалась
теория операд. В последнее время С.Н. Тронин обратился к алгебраической крипто-
графии и совместно со своими аспирантками К.А. Петуховой и А.Р. Гайнуллиной по-
лучил ряд новых результатов. Найдены далеко идущие алгебраические обобщения
классической криптосистем RSA и некоторых криптосистем, основанных на труд-
ности проблемы о дискретном логарифме. В последнем случае были использованы
операдные методы.

Полукольца и полумодули являются одним из наиболее естественных и при этом
весьма широких обобщений колец и модулей, что обуславливает интерес к изуче-
нию вопросов о том, в какой мере те или иные классические результаты теории
колец и модулей могут быть перенесены на случай полуколец и полумодулей. В
частности, развивается так называемая «гомологическая» классификация полуко-
лец, направленная на изучение и описание различных классов полуколец с задан-
ными свойствами полумодулей над ними, – эта область исследований отражена в
ряде работ зарубежных математиков, таких как Y. Katsov, X. Wang, A. Patchkoria,
O. Sokratova, J.Y. Abuhlail, T.G. Nam и др. С 2006 г. в этом же направлении работа-
ет сотрудник кафедры алгебры и математической логики КФУ доцент С.Н. Ильин,
опубликовавший в центральных российских и зарубежных журналах по этой тема-
тике порядка 10 статей, в том числе совместно с некоторыми из перечисленных вы-
ше математиков.

Ю.А. Альпин и С.Н. Ильин провели исследования по линейной алгебре и теории
матриц. Ими доказано существование рациональных процедур для ряда важных
задач линейной алгебры, найдены новые области локализации собственных зна-
чений матриц и корней полиномов, установлен критерий унитарной эквивалент-
ности матричных семейств. В ходе исследования матричных полуколец полностью
описаны обратимые матрицы над положительно упорядоченными полукольцами,
и найден критерий регулярности полного матричного полукольца. Получены точ-
ные оценки числовых характеристик знаковых портретов вещественных матриц,
дана формула для наименьшего из рангов бесконечных продолжений теплицевой
матрицы.

Научная деятельность коллектива под руководством М.М. Арсланова связана с
исследованиями в области теории вычислимости, науки, развивающейся на стыке
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алгебры и математической логики. В своей докторской диссертации М.М. Арсланов
исследовал тьюринговые степени, содержащие функции без т.н. “неподвижных то-
чек”, с их помощью сформулировав критерии полноты множеств в арифметической
иерархии. Эти его работы положили начало целому направлению исследований в
этой области с участием многих математиков, работающих в теории вычислимо-
сти. Теперь эти критерии хорошо известны в литературе как критерии полноты Ар-
сланова. Ему также принадлежат первые результаты в разработке структурной тео-
рии тьюринговых степеней неразрешимости, принадлежащих разностной иерар-
хии множеств, хорошо известной как иерархия Ершова, в частности доказательство
элементарной неэквивалентности полурешеток степеней перечислимых множеств
и степеней, содержащих первого за этим уровнем уровня иерахии. Впоследствии
им совместно со своим учеником И.Ш. Калимуллиным и профессором С. Лемп-
пом (США) был установлен такой результат и для следующей пары уровней иерар-
хии, что решает проблему, долгое время остававшей открытой. В настоящее вре-
мя И.Ш. Калимуллин исследует алгоритмические свойства алгебраических струк-
тур, а также связанных с ними алгоритмических сводимостей. Среди его основ-
ных результатов решение проблемы элементарной эквивалентности элементар-
ных полурешеток n-в.п. степеней по перечислимости при различных n, доказатель-
ство определимости операции скачка в степенях по перечислимости, классифи-
кация различных сводимостей массовых проблем представимости алгебраических
структур (равномерные и неравномерны варианты, всюду определенные и частич-
ные массовые проблемы). Совместно со своим учеником М.Х. Файзрахмановым им
построена иерархия спектров семейств на различных уровнях комулятивной иерар-
хии фон Неймана, ими также найдены алгебраические структуры, спектры которых
состоят из дополнений классов степеней, низких на фиксированном предельном
уровне гиперарифметической иерархии.

М.Х. Файзрахманов в своей кандидатской диссертации исследовал уровни иерар-
хии Ершова, содержащие тьюринговые скачки множеств. Ему удалось дать полное
описание уровней иерархии, содержащие тьюринговые скачки, не принадлежащие
меньшим уровням. Он также изучает так называемые обобщенно вычислимые ну-
мерации -– нумерации семейств, вычислимых с помощью оракула. В этом направ-
лении им были получены критерии существования универсальных обобщенно вы-
числимых нумераций конечных семейств.

В 2000-х годах на кафедре алгебры и математической логике начинает актив-
но развиваться направление вычислимых линейных порядков. Первые результаты
этого направления были получены в кандидатской диссертации А.Н. Фролова, еще
одного ученика М.М. Арсланова. В своих первых работах А.Н. Фролов разрабатывал
технику построения вычислимых представлений для линейных порядков, в алго-
ритмическом смысле близких к вычислимым и называемых низкими. Им (в неко-
торых случаях в совместных работах) был получен целый ряд результатов, позво-
ляющих получить описание самого широкого известного на данный момент клас-
са низких линейных порядков, имеющих вычислимые представления (этот вопрос
был поставлен Р. Доуни в 1998 году).

А.Н. Фроловым также изучается вопрос описания спектров представлений ли-
нейных порядков. Первые результаты в этом направлении им были получены еще
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кандидатской диссертации. Впоследствии им был получен ряд примеров ограни-
ченных спектров линейных порядков, построены примеры спектров линейных по-
рядков, содержащих в точности все n-высокие степени, а также все степени, не яв-
ляющиеся n-низкими для n > 1. Все эти результаты легли в основу его докторской
диссертации, защищенной в 2014 году.

Ученик Арсланова и Фролова М.В. Зубков исследовал связь между вычислимы-
ми линейными порядками, предельно монотонными функциями и эта-представ-
лением. В кандидатской диссертации он дал описание сильно эта-представимых
тьюринговых степеней, в терминах псевдовозрастающих на множестве рациональ-
ных числе предельно монотонных функций. Им также изучались уровни разност-
ной иерархииΣ−0−2-множеств, содержащие сильно эта-представимые множеcтва.

В 2015 году под руководством А.Н. Фролова защитил кандидатскую диссертацию
Р.И. Бикмухаметов. В ней он доказал алгоритмическую независимость ряда отно-
шений на вычислимых линейных порядках. В частности, им были рассмотрены та-
кие естественные отношения, как отношение соседства, блока, предельности слева
и справа, плотности. Также эти отношения рассматривались на начальных сегмен-
тах линейных порядках. Одним из основных результатов диссертационной работы
Р.И. Бикмухаметова является доказательство того, чтоΣ−0−2-начальные сегменты
вычислимых линейных порядков исчерпывают все Σ−0−2-степени и все вычисли-
мые порядки без наибольшего элемента.

Н.Н. Корнеева изучает сложности бесконечных последовательностей над конеч-
ным алфавитом относительно различных типов автоматной сводимости, таких как
конечно-автоматная и асинхронно автоматная сводимости, и возникающие при
этом степени неразрешимости. В кандидатской диссертации она исследовала
структурные свойства множества степеней асинхронно автоматных преобразова-
ний. В частности, было установлено существование континуума атомов, вложи-
мость любого конечного линейно-упорядоченного множества как начального сег-
мента. Также был получен отрицательный ответ на вопрос дополняемости вверх
и положительный ответ на вопрос дополняемости вниз как в множестве степеней
асинхронно автоматных преобразований, так и в множестве степеней конечно-
автоматных преобразований. В настоящее время Н.Н. Корнеева изучает подструк-
туры указанных степенных структур. В частности, структурные свойства степеней
конечно-автоматных и асинхронно автоматных преобразований последовательно-
стей с разрешимой монадической теорией и последовательностей со свойством
префиксной разрешимости.



МАТЕМАТИЧЕСКИЙ АНАЛИЗ В КАЗАНСКОМ УНИВЕРСИТЕТЕ

Ф. Г. Авхадиев, С. Р. Насыров

Научные исследования в области теории функций и математического анализа в
Казанском университете начались с его основания в 1804 г., однако серьезная ма-
тематическая школа сформировалась с образованием в 1934 г. кафедры математи-
ческого анализа и связана, прежде всего, с личностью первого заведующего этой
кафедрой профессора Бориса Михайловича Гагаева (1897-1975), возглавлявшего ее
в течение сорока лет. Всемирную известность принесло ему решение важной про-
блемы, поставленной Н.Н. Лузиным: Б.М. Гагаев доказал, что тригонометрическая
система функций на отрезке – единственная система ортогональных функций, диф-
ференцирование и интегрирование которой приводит опять (с точностью до посто-
янных множителей) к той же системе функций.

Гагаев дал путёвку в большую науку огромному количеству своих учеников, мно-
гие из них возглавили авторитетные научные школы в России и ближнем зарубе-
жье. Среди учеников, активно работавших в Казани, можно отметить Ф.Д. Гахова,
впоследствии действительного члена академика АН Белорусской ССР, профессоров
Б.Г. Габдулхаев (Казань), А.Д. Ляшко (Казань), среди иногородних – академика РАН
В.Н. Монахова (Новосибирск), профессоров Я.В. Быкова (Фрунзе), Ю.Г. Борисовича
(Воронеж), К.С. Сибирского (Кишинёв).

Исследования по математическому анализу в Казанском университете прово-
дились также на воссозданной в 1948 г. кафедре дифференциальных уравнений (в
становление которой важную роль сыграл Ф.Д. Гахов), отделившейся от кафедры
математического анализа кафедре теории функций и приближений, основанной
членом-корреспондентом АН Республики Татарстан Б.Г. Габдулхаевым, и в НИИ ма-
тематики и механики им. Н.Г. Чеботарева (зав. отделом математического анализа –
Ф.Г. Авхадиев). Основные направления – краевые задачи для аналитических функ-
ций и их обобщений, геометрическая теория функций комплексного переменного,
интегральные и интегродифференциальные уравнения, интегральные и изопери-
метрические неравенства, функциональный анализ.

Опишем кратко основные научные достижения в этих областях. Федор Дмитри-
евич Гахов известен тем, что он впервые дал полное решение классической задачи
Римана для аналитических функций. Им и его многочисленными учениками иссле-
дована разрешимость различных краевых задач, в том числе, на разомкнутых кон-
турах, в многосвязных областях, матричных краевых задач, а также сингулярных
интегральных уравнений с различными ядрами. После отъезда из Казани Ф.Д. Гахо-
ва кафедру дифференциальных уравнений возглавил С.Н. Андрианов, а затем – од-
на из лучших учеников Федора Дмитриевича – Л.И. Чибрикова. Ее основные дости-
жения связаны с исследованием краевых задач для автоморфных функций, на ри-
мановых поверхностях, на счетном множестве кривых, а также сингулярных инте-
гральных уравнений с автоморфными и квазиавтоморфными ядрами, с гипергео-
метрическими ядрами, с ядрами, имеющими одну или две подвижных особенно-
сти логарифмического или степенного типа и пр. Среди ее учеников – десятки кан-
дидатов наук, многие из которых защитили докторские диссертации. Эти ученики
составляют основу кафедры дифференциальных уравнений и в настоящее время.
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В.И. Жегалов исследовал различные краевые задачи для уравнений смешанного ти-
па. И.А. Бикчантаев изучал разрешимость краевых задач на произвольных неком-
пактных римановых поверхностях. Ю.В. Обносов решил ряд практически важных
краевых задач теории гетерогенных сред. Также сотрудниками кафедры изучает-
ся краевая задача Римана для счётного числа контуров и её приложения к задачам
теории упругости (И.Г. Салехова); задача факторизации матриц-функций в связи с
решением матричной краевой задачи Римана (С.Н. Киясов).

В 1962 г. в Казанском университете был создан научный семинар по геометри-
ческой теории функций комплексного переменного (руководитель – проф. Л.А. Ак-
сентьев). Он стал творческим объединением математиков из различных вузов Ка-
зани. Семинар сначала действовал при кафедре дифференциальных уравнений, а
с 1978 года по настоящее время работает при кафедре математического анали-
за. Участниками семинара защищено более тридцати кандидатских диссертаций,
большинство – под руководством Л.А. Аксентьева, и восемь докторских диссерта-
ций. Семинар по ГТФКП способствовал созданию научного коллектива, который
занимается исследованиями в области однолистных функций, краевых задач для
дифференциальных уравнений в частных производных и решением экстремальных
проблем методами геометрической теории функций комплексного переменного. С
начала 90-х годов в Казани регулярно, раз в два года, проводятся летние всероссий-
ские школы-конференции по теории функций, в организации которых принимают
активное участие члены кафедры математического анализа. Опишем основные до-
стижения коллектива, начиная с середины 80-х годов.

Казань является ведущим центром в России по исследованиям в области до-
статочных условий однолистности и p-листности аналитических функций. Их раз-
работке посвящены исследования Ф.Г. Авхадиева, Л.А. Аксентьева, И.Р. Каюмова,
И.Р. Нежметдинова, С.Р. Насырова, П.Л. Шабалина, Е.А. Широковой. Однолистность
имеет важные применения в краевых задачах с неизвестной (свободной) границей,
так называемых обратных краевых задачах. Одной из основных обратных краевых
задач для аналитических функций является внешняя задача по параметру s в по-
становке Ф.Д. Гахова, который нашел уравнение для определения полюса искомой
функции и доказал его разрешимость. По предложению Л.А. Аксентьева это уравне-
ние стало называться уравнением Гахова. Различным аспектам изучения разреши-
мости обратных краевых задач и уравнения Гахова для различных классов функ-
ций, в односвязных и многосвязных областях, связи его с конформным радиусом
плоских областей посвящены работы Ф.Г. Авхадиева, Л.А. Аксентьева, А.Н. Ахме-
товой, А.М. Елизарова, М.И. Киндера, А.В. Казанцева, А.В. Киселева, С.Р. Насырова,
Ю.Е. Хохлова, Е.А. Широковой и др. Смешанные обратные краевые задачи, в кото-
рых отыскивается область с частично известной границей, по различным парамет-
рам для аналитических функций и их обобщений на плоскости и на римановых по-
верхностях рассматривались А.М. Елизаровым, В.Н. Монаховым, С.Р. Насыровым.

На кафедре математического анализа были получены важные результаты по ис-
следованию (прямых) краевых задач для аналитических функций, а также их при-
менению в теории функций и прикладных вопросах. Так, Б.А. Кац впервые постро-
ил аппарат решения краевых задач теории аналитических функций для областей с
неспрямляемыми и фрактальными границами и описал влияние фрактальных раз-
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мерностей границы на разрешимость краевой задачи Римана. Им получены усло-
вия существования интеграла Коши по неспрямляемым и фрактальным кривым и
описаны граничные свойства такого интеграла. Кроме того, Б.А. Кац исследовал
преобразования Коши распределений с носителями на неспрямляемых кривых, что
позволило получить решения этой краевой задачи в замкнутом виде. С. Р. Миронова
построила решения краевой задачи Римана и сингулярных интегральных уравне-
ний с ядром Коши для счетного множества кривых и описала влияние фрактальных
размерностей этого множества на разрешимость указанных выше краевых задач и
уравнений. Ф.Н. Гарифьянов исследовал приложения теории краевых задач к раз-
личным проблемам из смежных областей комплексного анализа, таких как момен-
ты целых функций экспоненциального типа, представляющие системы мероморф-
ных функций, разностные уравнения и пр.

Ф.Г. Авхадиевым и С.Р. Насыровым получены некоторые необходимые и доста-
точные условия разрешимости задачи о построения римановой поверхности над
сферой по проекции края. Эта проблема, носящая топологический характер, ста-
вилась в работах Пикара, Левнера и Хопфа. С.Р. Насыровым введено и изучено
пространство римановых поверхностей, разветвленно накрывающих заданную по-
верхность, на нем введена сходимость к ядру по Каратеодори, топология и метрика.
С использованием емкостей Робена он решил обобщенную задачу М.А. Лаврентьева
о нахождении дужки максимальной подъемной силы при заданной длине и ограни-
чении на ее кривизну.

Исследования в области функционального анализа в Казанском университете на-
чали проводиться на базе научного семинара «Алгебры операторов и их приложе-
ния» (научный руководитель – А.Н. Шерстнев, зав. кафедрой математического ана-
лиза с 1973 по 1998 гг.), возникшего в недрах НИИММ им. Н.Г. Чеботарева в конце
60-х гг., а с 1974 г. переместившегося на кафедру математического анализа. Отме-
тим некоторые основные направления исследований участников семинара.

Некоммутативная теория меры и интеграла. В связи с прогрессом в теории ал-
гебр фон Неймана, расширением сферы ее приложений актуальной стала проблема
распространения некоммутативной теории интегрирования И. Сигала на нормаль-
ные веса, являющиеся нецентральными аналогами интегралов по неограниченным
мерам, заданных на классе ограниченных функций. Решение указанной проблемы
было получено проф. А.Н. Шерстневым и его учеником Н. В. Труновым. О.Е. Ти-
хоновым была построены аналоги пространств Lp , ассоциированных с весом, удо-
влетворяющим определенным условиям. А.М. Бикчентаев предложил общий метод
построения некоммутативных F -нормированных идеальных пространств (в част-
ности, пространств Орлича), ассоциированных с полуаддитивной мерой на про-
екторах алгебры фон Неймана. Н.В. Труновым и А.Н. Шерстневым развита теория
условного ожидания в пространстве L1 интегрируемых билинейных форм и уста-
новлена связь этого понятия с традиционным понятием условного ожидания в ал-
гебрах фон Неймана. О.Е. Тихоновым основные результаты теории интегрирова-
ния относительно следа и следовых неравенств на алгебрах фон Неймана перенесе-
ны на случай пространств в спектральной двойственности Å. Альфсена и Ф. Шуль-
ца. Г.Ш. Скворцовой и О.Е. Тихоновым получен некоммутативный аналог теоремы
Бухвалова-Лозановского. М.Р. Тимиршиным построены новые представления ал-
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гебр фон Неймана, ассоциированные с графиками замкнутых операторов. А.М. Бик-
чентаев получил представления линейных ограниченных операторов в бесконеч-
номерном гильбертовом пространстве в виде конечных сумм попарных произве-
дений ортопроекторов и исследовал измеримые операторы, присоединенные к ал-
гебре фон Неймана. О.Е. Тихонов и А.М. Бикчентаев установили интересные харак-
теризации следа в классе всех положительных функционалов на алгебре фон Ней-
мана.

Другое направление исследований семинара «Алгебры операторов и их приложе-
ния» – проблемы строения мер на ортопроекторах алгебры фон Неймана. Проблема
продолжения меры на проекторах алгебры фон Неймана до линейного функцио-
нала была успешно решена М.С. Матвейчуком. Г.Д. Луговой и А.Н. Шерстневым в
алгебре всех ограниченных операторов сепарабельного гильбертова пространства
полностью решена задача описания неограниченных мер; этот результат явился
обобщением на неограниченные меры классической теоремы Глисона. Ими же по-
строен пример неограниченной полуконечной конечно-аддитивной меры на про-
екторах алгебры фон Неймана без прямых слагаемых типа I2, которая не продолжа-
ется до веса, введены и изучены неограниченные аналоги векторных ортоаддитив-
ных мер на ортопроекторах алгебры фон Неймана со значениями в гильбертовом
пространстве. Изучены порядковые свойства ортогональных векторных полей и их
связи с топологическими свойствами. Е.А. Туриловой и А.Н. Шерстневым рассмот-
рены задачи изучения мер, заданных на замкнутых подпространствах унитарного
пространства E , присоединённых к алгебре фон Неймана, действующей в гильбер-
товом пространстве H – пополнении E . С.В. Дорофеевым и А.Н. Шерстневым изу-
чалась возможность обобщения теоремы Глисона для зарядов на алгебре всех огра-
ниченных операторов в гильбертовом пространстве.

Ортомодулярные упорядоченные множества. Класс ортопроекторов коммута-
тивной алгебры фон Неймана обладает естественной структурой булевской алгеб-
ры. Если алгебра фон Неймана не коммутативна, мы приходим к более общей струк-
туре, которую естественно рассматривать как аналог возможных высказываний
о подходящей квантово-механической системе. Абстрактный «булевский» аналог
этой структуры носит название ортомодулярного упорядоченного множества. Ис-
следование таких множеств в Казани начато в конце 60-х гг. А. Н. Шерстневым: тео-
рия размерности Лумиса для ортомодулярных решеток перенесена на произволь-
ные ОМУМ. Плодотворные исследования ОМУМ систематически велись затем П. Г.
Овчинниковым и Ф Ф. Султанбековым. В частности, предложена новая аксиоматика
для ОМУМ, описаны автоморфизмы упорядоченного множества косых проекторов
в гильбертовом пространстве, доказана известная гипотеза Птака-Пульманновой о
свойстве Яуха-Пирона, обобщена на гиперграфы теорема Биркгофа о бистохастиче-
ских матрицах, построен первый известный пример атомического неортоатомиче-
ского ОМУМ, найден точный топологический аналог понятия ортоупорядоченно-
го множества, построена общая теория меры и зарядов на конечных логиках мно-
жеств. А.М. Бикчентаев предложил универсальный метод построения квантовых
логик идемпотентов унитального кольца. Д.Х. Муштари доказал аналог теоремы
Глисона для зарядов на квантовой логике всех идемпотентных рациональных мат-
риц порядка выше 3. Аналогичный результат доказан также для матриц, элементы
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которых принадлежат простым конечным полям или полю из четырех элементов.
Одна из наиболее трудных и важных проблем в теории вероятностных распре-

делений в бесконечномерных линейных пространствах – проблема сигма-адди-
тивности цилиндрической вероятности. При решении этой и близких к ней задач
Д.Х. Муштари развил топологические методы исследования свойств слабой ком-
пактности и сигма-аддитивности цилиндрических вероятностей в банаховых про-
странствах. Эти методы позволили получить полное описание класса банаховых
пространств, для которых существует топологическое решение указанной пробле-
мы. Ряд важных результатов обобщен им на класс линейных топологических и ли-
нейных метрических пространств. Получен также ряд вероятностных характериза-
ций класса ядерных пространств Фреше, изучены устойчивые вероятности в бана-
ховых пространствах.

Как уже отмечалось, Б. Г. Габдулхаев организовал кафедру теории функций и при-
ближений. Он создал казанскую научную школу по теории аппроксимаций и инте-
гральным уравнениям», подготовил около сорока кандидатов, из них четверо ста-
ли докторами физико-математических наук. Из его основных достижений отме-
тим следующие. Он построил общую теорию приближенных методов, основанную
на односторонней обратимости аппроксимирующих операторов. На основе ее раз-
работал прямые и проекционные методы решения различных классов сингуляр-
ных интегральных и интегро-дифференциальных уравнений с ядрами Гильберта,
Коши, Адамара и с полярно-логарифмическими ядрами. Разработал основы поли-
номиальных и сплайновых приближений функций в пространствах Гёльдера, Ни-
кольского и Соболева. В настоящее время исследования Б.Г. Габдулхаева продол-
жают его ученики Ю.Р. Агачев, А.Ф. Галимянов, Е.К. Липачев и А.В. Ожегова. Ими
разработаны прямые и проекционные методы решения ряда новых типов интегро-
дифференциальных уравнений, включающих, в частности, интегралы дробного по-
рядка. Лидером этой группы является Ю.Р. Агачев, при кафедре работает организо-
ванный им семинар, в котором принимают участие молодые математики М.Ю. Пер-
шагин, Р.Р. Замалиев, Р.К. Губайдуллина и сотрудники других вузов Казани.

Отметим также некоторые результаты Ф.Г. Авхадиева и его учеников И.Р. Каюмо-
ва, Р.Г. Салахудинова, И.К. Шафигуллина и Р.Г. Насибуллина по решению ряда экс-
тремальных задач теории функций и их приложениям. Ф.Г. Авхадиевым получено
решение классической изопериметрической проблемы, восходящей к Коши и Сен-
Венану, о геометрическом эквиваленте жесткости кручения упругой балки с задан-
ным сечением, совместно с немецким математиком К.-Й. Вирсом построена теория
неравенств типа Шварца-Пика для высших производных аналитических функций.

И.Р. Каюмовым получены лучшие нижние оценки для знаменитого спектра ин-
тегральных средних, введенных Н.А. Макаровым при исследовании граничного по-
ведения конформных отображений. Из ряда результатов Р.Г. Салахудинова по изо-
периметрическим неравенствам следует выделить построение функционалов об-
ластей, обладающих свойством изопериметрической монотонности.

Ф.Г. Авхадиевым, Р.Г. Насибуллиным и И.К. Шафигуллиным построены и обосно-
ваны несколько новых интегральных неравенств типа Харди и Реллиха для функ-
ций, финитных в плоских или пространственных областях. В частности, Р.Г. Наси-
буллин доказал неравенства типа Харди с точными константами в случае, когда
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ядра имеют полярно-логарифмические особенности, И. К. Шафигуллин определил
точный порядок роста констант Харди в гипотезе Б.Е. Дэвиса, Ф.Г. Авхадиев постро-
ил несколько универсальных интегральных неравенств, справедливых для произ-
вольной области евклидова пространства.

ГЕОМЕТРИЯ В КАЗАНСКОМ УНИВЕРСИТЕТЕ

В. В. Шурыгин

Кафедра геометрии Казанского государственного университета организована в
1934 году после разделения кафедры математики на несколько специальных ка-
федр. Ее первым заведующим был выдающийся геометр Петр Алексеевич Широ-
ков (1895–1944). П.А. Широков одним из первых в нашей стране применил тен-
зорные методы в геометрических исследованиях, с помощью которых им был ре-
шен ряд важных проблем теории римановых и обобщенных пространств. В 1934 г.
вышла написанная им широко известная книга «Тензорное исчисление». П.А. Ши-
роковым был впервые выделен и исследован класс симметрических пространств,
характеризующихся обращением в нуль ковариантной производной тензора кри-
визны, им был открыт класс комплексных пространств с гибридными метриками,
названных им A-пространствами и впоследствии получивших название кэлеровых
пространств. Научные интересы П.А. Широкова во многом определили направле-
ние исследований на кафедре геометрии, им был воспитан ряд учеников, из кото-
рых Б.Л. Лаптев, И.П. Егоров, А.З. Петров, П.И. Петров стали докторами наук.

В 1945 г. кафедру геометрии возглавил Александр Петрович Норден (1904–1993),
один из самых ярких ученых Казанского университета, труды которого оказали су-
щественное влияние на направление геометрических исследований во второй по-
ловине ХХ века как в нашей стране, так и за рубежом. В 1937 году А.П. Норден за-
щитил докторскую диссертацию «О внутренних геометриях поверхностей проек-
тивного пространства», в которой им был предложен универсальный метод постро-
ения связностей на поверхностях проективного пространства, вошедший в исто-
рию науки как метод нормализации Нордена. Научные интересы А.П. Нордена бы-
ли чрезвычайно широки, они охватывали такие области геометрии как простран-
ства аффинной связности, биаксиальные и биаффинные пространства, конформ-
ная геометрия, линейчатая геометрия, теория сетей, научное наследие Н.И. Лоба-
чевского. В 1950 году в издательстве «Физматгиз» вышла монография А.П. Нордена
«Пространства аффинной связности», ставшая настольной книгой для нескольких
поколений геометров. Применение А.П. Норденом и его учениками коммутатив-
ных ассоциативных алгебр в геометрии обобщенных пространств и дифференциру-
емых многообразий привело к появлению нового научного направления – теории
многообразий над алгебрами, ставшего одним из основных направлений исследо-
ваний кафедры геометрии Казанского университета. А.П. Норденом были написа-
ны учебники «Краткий курс дифференциальной геометрии», переведенный на ряд
иностранных языков и «Теория поверхностей», в котором на современном языке,
с использованием тензорного анализа, изложены классические результаты теории
поверхностей. Под руководством А.П. Нордена защищено около 40 кандидатских
диссертаций. Семь его учеников Р.Г. Бухараев, В.И. Ведерников, В.В. Вишневский,
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А.И. Чахтаури, А.П. Широков, В.И. Шуликовский и В.В. Шурыгин стали докторами
наук.

В основу докторской диссертации Бориса Лукича Лаптева (1905–1989) легли его
исследования по теории пространств опорных элементов или, в другой термино-
логии, расслоения дифференциально-геометрических объектов. В изучаемых про-
странствах Б.Л. Лаптев развил аппарат дифференцирования Ли, указал приложения
этого аппарата к исследованию групп автоморфизмов полей дифференциально-
геометрических объектов различных типов, а также инвариантному вычислению
различного типа интегралов, развил теорию связностей и теорию дифференциаль-
ных инвариантов. Изучение различных специальных типов пространств опорных
элементов продолжили ученики Б.Л. Лаптева и в их числе Борис Никитович Шапу-
ков.

Алексей Зиновьевич Петров (1910–1915) защитил в 1943 году кандидатскую дис-
сертацию по проблеме геодезических отображений римановых многообразий. В
послевоенные годы его научные интересы переместились в область приложений
геометрических методов к теории физического поля. В 1952-1954 годах он устано-
вил, что в соответствии с алгебраической структурой тензора кривизны существует
только три типа четырехмерных пространств Эйнштейна сигнатуры Лоренца. Впо-
следствии в мировой литературе эти типы получили название типов Петрова. В
докторской диссертации А.З. Петрова были разработаны инвариантно-групповые
методы изучения полей тяготения. В 1960 году А.З. Петров возглавил организован-
ную им кафедру теории относительности и гравитации на физическом факультете
Казанского университета. Результаты исследований А.З.Петрова и его учеников во-
шли в монографии «Пространства Эйнштейна» (1961 г.) и «Новые методы в общей
теории относительности» (1966 г.), переведенные на многие иностранные языки.

Работы другого ученика П.А. Широкова, Петра Ивановича Петрова, посвящены
дифференциальным инвариантам римановых пространств. Им был построен наи-
простейший базис метрических скалярных дифференциальных инвариантов тре-
тьего порядка трехмерных римановых пространств.

Ученик А.П. Нордена Валентин Иванович Шуликовский (1922–1973) системати-
зировал и развил теорию сетей двумерных пространств аффинной связности. Ре-
зультаты его исследований вошли в монографию «Классическая дифференциальная
геометрия в тензорном изложении» (М. 1963).

Исследования Александра Петровича Широкова (1926–1998), сына П.А. Широко-
ва и ученика А.П. Нордена, заведующего кафедрой геометрии с 1980 по 1993 год,
принадлежат, главным образом, области геометрии пространств над алгебрами. Им
была развита общая теория дифференцируемых многообразий и пространств аф-
финной связности над ассоциативными коммутативными унитальными алгебра-
ми, введены структуры многообразий над локальными алгебрами на касательных
расслоениях высших порядков и расслоениях Вейля, что позволило естественным
образом построить теорию лифтов геометрических структур на эти расслоения. В
работах А.П. Широкова и его многочисленных учеников были исследованы различ-
ные аспекты теории пространств над алгебрами и ее приложений в линейчатой гео-
метрии, геометрии неевклидовых пространств, к теории касательных расслоений.
А.П. Широковым на основе конспекта лекций П.А. Широкова была опубликована
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монография «Аффинная дифференциальная геометрия» (ГИФМЛ, 1959), переведен-
ная на немецкий язык. Результаты А.П. Широкова и его учеников частично вошли
в книгу «Пространства над алгебрами» (Казан. ун-т, 1985), написанную совместно с
В.В. Вишневским и В.В. Шурыгиным.

Геометрии пространств над алгебрами посвящены и исследования ученика
А.П. Нордена Владимира Владимировича Вишневского (1929–2007). В докторской
диссертации «Пространства над алгебрами, определяемые аффинорами», им бы-
ла решена задача интерпретации дифференцируемого многообразия с заданной
на нем произвольной интегрируемой аффинорной структурой как вещественной
реализации дифференцируемого многообразия над алгеброй, была развита тео-
рия чистых и гибридных относительно инволюции в алгебре тензоров, построена
вещественная реализация тензорных операций в пространствах над фробениусо-
выми алгебрами. В дальнейшем В.В. Вишневским была построена универсальная
модель расслоенного пространства, несущего интегрируемую структуру нерегуляр-
ного представления алгебры плюральных чисел – полукасательное расслоение. Ре-
зультаты исследований В.В. Вишневского и его учеников частично вошли в указан-
ную выше книгу «Пространства над алгебрами» (Казан. ун-т, 1985).

Темой научных работ Алексея Семеновича Подковырина (род. в 1934 г.), ученика
А.П. Нордена, является геометрия поверхностей биаффинных и унитарных про-
странств. В его исследованиях также существенно используется метод нормализа-
ции А.П. Нордена.

Область научных интересов Бориса Никитовича Шапукова (1937–2007), учени-
ка Б.Л. Лаптева, заведующего кафедрой геометрии в 1993-2007 годах, – дифферен-
циальная геометрия расслоенных многообразий и их приложения. В своих рабо-
тах он развил общую теорию линейных связностей и дифференцирования Ли на
тотальных пространствах гладких расслоений, исследовал некоторые структуры,
естественным образом возникающие на расслоенных многообразиях, выяснил роль
симметрической группы в геометрии тензорных расслоений и показал, что всякое
тензорное расслоение обладает естественной почти алгебраической структурой. На
этом пути им было получено широкое обобщение результатов Б.Л. Лаптева. Б.Н. Ша-
пуковым была написана книга «Задачи по группам Ли и их приложениям» (М. НИЦ
«Регулярная и хаотическая динамика», 2002), переведенная на испанский язык.

Идеи А.З.Петрова развивались его учениками на кафедре теории относительно-
сти и гравитации Казанского университета.

Научные интересы Владимира Романовича Кайгородова (1936–2015) связаны
с применением инвариантно-групповых методов к исследованию римановых и
псевдоримановых пространств произвольной сигнатуры с рекуррентной структу-
рой тензора кривизны и их приложениями в теории тяготения. Используя метод
Ньюмена-Пенроуза и инвариантно-групповой подход, В.Р. Кайгородов и его учени-
ки решили проблему выделения точных решений уравнений Эйнштейна с космо-
логической постоянной и электродинамической правой частью для алгебраически
специальных полей тяготения.

Исследования Аси Васильевны Аминовой (род. в 1942 г.) и её учеников посвяще-
ны разработке инвариантно-групповых методов, а также методов финслеровой и
комплексной дифференциальной геометрии в теории проективных отображений
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пространственно-временных и фазовых многообразий с кэлеровой, кватернион-
ной и суперримановой структурами, развитию концепции суперсимметрии как ав-
томорфизма супергеометрической структуры и их приложениям в квантовой тео-
рии поля, космологии и теории гравитации. В трудах А.В. Аминовой решены про-
блема Ли и классическая геометрическая задача определения псевдоримановых
метрик с соответствующими геодезическими, развит инвариантно-групповой под-
ход к построению геометрической теории дифференциальных уравнений, установ-
лена тесная связь между проективными преобразованиями и группами симметрии
гамильтоновых систем и преобразованиями Ли-Беклунда уравнений Гамильтона-
Якоби с квадратичными гамильтонианами. По результатам исследований А.В. Ами-
новой опубликована монография «Проективные преобразования псевдоримано-
вых многообразий» (Москва, «Янус-К», 2003).

Ученик А.П. Широкова Виктор Егорович Фомин (род. в 1947 г.) защитил канди-
датскую диссертацию на тему «О дифференциальной геометрии банаховых мно-
гообразий», в которой им были построены основы дифференциальной геометрии
гладких многообразий банахова типа. Вместе с аспирантами им изучались много-
образия типа Фреше поточечно-конформных структур на гладких компактных мно-
гообразиях, многообразия компактных подмногообразий конечномерных гладких
многообразий, многообразия над банаховыми алгебрами, различные аспекты диф-
ференциальной геометрии гильбертова пространства.

Исследования Шурыгина Вадима Васильевича (род. в 1952 г.), ученика А.П. Нор-
дена, заведующего кафедрой геометрии в 2007-2016 годах, посвящены геометрии
и топологии многообразий над локальными алгебрами и их применению в диффе-
ренциальной геометрии высшего порядка. Им построен аналог когомологий Вай-
смана–Молино для многообразий над локальными алгебрами, с помощью которого
построены препятствия к существованию голоморфных связностей на этих много-
образиях, в терминах тривиальности когомологий с коэффициентами в некотором
неабелевом пучке получен ответ на вопрос об эквивалентности многообразия над
локальной алгеброй некоторому расслоению Вейля, в терминах когомологий Мо-
лино для некоторого слоеного главного расслоения им были представлены препят-
ствия для существования связностей Эресмана на многообразиях над локальной ал-
геброй. Вместе с аспирантами им изучаются обобщенные трансверсальные струк-
туры, возникающие на гладких многообразиях над локальными алгебрами, обоб-
щенные функторы Вейля на категориях многообразий, зависящих от параметров.

Научные интересы Михаила Арменовича Малахальцева (род. в 1961 г.), учени-
ка А.П.Нордена, руководителя отдела геометрии НИИММ имени Н.Г. Чеботарева
при Казанском университете в 1996-2011 годах, посвящены различным областям
дифференциальной геометрии и топологии и, в частности, геометрии и тополо-
гии слоений и гладких многообразий над алгебрами. Им построен аналог когомоло-
гий Дольбо для многообразий над алгеброй дуальных чисел, построенные когомо-
логии применены для описания пространства деформаций структур многообразия
над алгеброй дуальных чисел на торе, построены характеристические классы (X,G)-
слоений и указаны способы их вычисления, с помощью комплекса Спенсера произ-
водной Ли им построены тонкие резольвенты пучков инфинитезимальных симмет-
рий ряда G-структур, для многообразий, наделенных симплектической структурой



22 Геометрия в Казанском университете

с особенностями Мартине, построены тонкие резольвенты для пучков инфините-
зимальных симметрий 2-форм непостоянного ранга, изучены потоки Риччи на по-
верхностях трехмерного евклидова пространства, построены инварианты субрима-
нова многообразия размерности (3,2) вдоль поверхности неконтактности распреде-
ления.

Учеником М.А. Малахальцева Петром Николаевичем Иваньшиным (род. в 1979 г.)
защищена кандидатская диссертация на тему «Алгебры функций на группоиде сло-
ения, порожденного локально свободным действием группы». В настоящее время
им исследуется поведение чебышевского центра и других точек наилучшего при-
ближения в метрических пространствах неположительной кривизны, в том числе с
приложением к задачам механики.

Другой ученик М.А. Малахальцева, Шурыгин Вадим Вадимович (род. в 1980 г.), за-
щитил кандидатскую диссертацию на тему «Дифференциальные комплексы, ассо-
циированные с пуассоновыми многообразиями», в которой, в частности, исследо-
ваны пуассоновы структуры на расслоениях Вейля. В настоящее время им исследу-
ются дифференциальные инварианты дифференциальных уравнений относитель-
но действия различных псевдогрупп преобразований.

Научные интересы Сосова Евгения Николаевича (род. в 1959 г.), ученика А.П. Ши-
рокова, лежат в области метрической геометрии. В докторской диссертации на тему
«Геометрии выпуклых и конечных множеств геодезического пространства» им ре-
шен ряд актуальных задач геометрии геодезических пространств. В настоящее вре-
мя им исследуются геометрические свойства наилучших аппроксимирующих мно-
жеств для ограниченных множеств метрических пространств, метрические инвари-
анты метрических пространств с приложением к распознаванию образов, аппрок-
симируемых конечным числом точек.

Константин Борисович Игудесман (род. в 1974 г.), ученик В.Е. Фомина, защитил
кандидатскую диссертацию на тему «Дифференциальная геометрия бесконечно-
мерных многообразий над алгебрами». К области научных интересов К.Б. Игуде-
смана помимо пространств над алгебрами и бесконечномерных пространств при-
надлежат фрактальная геометрия, теория меры и нелинейная динамика. Им найден
критерий инвариантности меры при действии оснащенной многозначной транс-
формации, доказано, что рандомизированный алгоритм построения фракталов
применим также и для построения суперфракталов, исследовано распределение,
полученное в результате применения этого алгоритма.

Научные интересы Павла Игоревича Трошина (род. в 1983 г.), ученика К.Б. Игуде-
смана, принадлежат области фрактальной геометрии и стохастических динамиче-
ских систем. В кандидатской диссертации на тему «Многозначные динамические
системы и системы итерированных функций» им построены инвариантные меры
для семейства двузначных динамических систем на отрезке, исследованы системы
итерированных функций на комплексной плоскости и над телом кватернионов.
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НЕРАВЕНСТВА ТИПА ХАРДИ И РЕЛЛИХА
В ОБЛАСТЯХ ЕВКЛИДОВА ПРОСТРАНСТВА

Ф. Г. Авхадиев1

1Farit.Avhadiev@kpfu.ru, Казанский (Приволжский) федеральный университет

В докладе будут описаны недавние результаты о функционалах, определяемых
как точные константы в неравенствах типа Харди и Реллиха для полигармониче-
ских операторов. Основное внимание будет уделено следующим геометрическим
аспектам: а) критерии положительности констант и области с равномерно совер-
шенными границами; б) геометрическое описание областей, обладающих макси-
мальными константами.

ОБ АЛГЕБРАИЧЕСКИХ МЕТОДАХ
В НЕКОММУТАТИВНОЙ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Г. Г. Амосов1

1gramos@mi.ras.ru, Математический институт им. В.А. Стеклова

Квантовым каналом называется вполне положительное отображение на алгебре
всех ограниченных операторов, сохраняющее след. Каждый квантовый канал до-
пускает представление Крауса следующего вида

Φ(ρ) =∑
k

VkρV ∗
k ,

где линейные операторы Vk удовлетворяют условию∑
k

V ∗
k Vk = I .

Представление Крауса не является единственным. Подбирая операторы (Vk ) таким
образом, чтобы они удовлетворяли определённым алгебраическим соотношениям,
можно добиться возможности оценки выходных энтропийных характеристик кана-
ла [1,2]. При этом наиболее важной задачей является оценка выходных характери-
стик тензорного произведения фиксированного канала на произвольный.

Подпространство линейных операторов, натянутое на элементы V ∗
k Vm называ-

ется некоммутативным графом. Структура некоммутативного графа, соответству-
ющего некоторому квантовому каналу позволяет определить такие важные харак-
теристики канала как квантовая пропускная способность с нулевой ошибкой. Ал-
гебраические свойства графа [3] позволяют понять, как меняются свойства канала
при возведении его в некоторую тензорную степень.
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ПРИБЛИЖЕНИЕ АЛГЕБРАИЧЕСКИХ ФУНКЦИЙ РАЦИОНАЛЬНЫМИ,
ФУНКЦИОНАЛЬНЫЕ АНАЛОГИ ДИОФАНТОВЫХ ПРИБЛИЖЕНИЙ

А. И. Аптекарев1

1aptekaa@keldysh.ru, Институт прикладной математики им. М.В. Келдыша РАН

Пусть f — росток (степенное разложение) алгебраической функции в бесконеч-
ности. Мы обсудим предельные свойства функциональных дробей с полиномиаль-
ными коэффициентами для f (другие названия — диагональные аппроксимации
Паде или наилучшие локальные рациональные аппроксимации). Если сравнивать
такие функциональные непрерывные дроби для f с обычными непрерывными дро-
бями (с целыми коэффициентами) для действительных чисел, то степень многочле-
на, коэффициента функциональной дроби, будет аналогична величине целого ко-
эффициента числовой непрерывной дроби. В нашей работе с М. Ятцелевым [1] полу-
чена сильная (или типа Бернштейна-Сегё) асимптотика знаменателей подходящих
функциональной непрерывной дроби для аналитической функции с конечным чис-
лом точек ветвления (находящихся в общем положении в комплексной плоскости).
Одно из приложений, вытекающее из этого результата, доказательство справедли-
вости гипотезы Гончара–Чудновских–Шталя об ограниченности размеров (с эффек-
тивной точной оценкой) у блоков диагональных рациональных аппроксимаций Па-
де алгебраических функций. Эту гипотезу также называют сильным функциональ-
ным аналогом теоремы Туэ-Зигеля-Рота о скорости приближения алгебраических
чисел рациональными. Из справедливости этой гипотезы также следует ограничен-
ность неполных частных (т. е. ограниченность степени коэффициентов) функцио-
нальных непрерывных дробей алгебраических функций.
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ДОСТАТОЧНЫЕ УСЛОВИЯ И УРАВНЕНИЯ ДЛЯ НОРМАЛЬНЫХ
ГЕОДЕЗИЧЕСКИХ НА ГРУППАХ ЛИ С ЛЕВОИНВАРИАНТНОЙ

(СУБ)РИМАНОВОЙ МЕТРИКОЙ

В. Н. Берестовский1
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Далее d f — дифференциал гладкого отображения f .

Теорема 1.Пусть d — левоинвариантная (суб)финслерова метрика на группе ЛиG
с единицей e и алгеброй Ли g, определяемая вполне неголономным распределениемD на
G и нормой F на D(e), g (t ), t ∈ (−a, a), где 0 < a É +∞, — параметризованная длиной
дуги геодезическая (т.е. локально кратчайшая) на (G ,d). Тогда существуют непрерыв-
ная, нигде не обращающаяся в нуль функцияψ(t ) ∈ g∗ и измеримая функция u(t ) ∈ D(e),
t ∈ (−a, a), такие, что для почти всех t ∈ (−a, a),

g ′(t ) = dlg (t )(u(t )), F (u(t )) = 1, (1)

где lg (t ) — левый сдвиг группы ЛиG на элемент g (t );

(ψ(t )(v))′ =ψ(t )([u(t ), v]), v ∈ g; (2)

ψ(t )(u(t )) = max{ψ(t )(w) : w ∈ D(e),F (w) É 1} ≡ M0 Ê 0. (3)

Кривая g (t ), t ∈ (−a, a), в (G ,d), п.в. удовлетворяющая условиям (1), (2) и (3),
называется экстремалью в (G ,d). Экстремаль в (G ,d) называется нормальной, если
M0 > 0; анормальной, если M0 = 0; строго анормальной, если не существует ψ=ψ(t ),
для которой она является нормальной экстремалью. Геодезические субримановых
(G ,d) (когда F (u) =p

(u,u)) могут быть нормальными или (не) строго анормальны-
ми. Каждая нормальная экстремаль в субримановой (G ,d) — геодезическая.

Теорема 2. Пусть g = g (t ), t ∈ (−a, a), — параметризованная длиной дуги экстре-
маль в (G ,d), удовлетворяющая п.в. условиям (1), (2), (3) из теоремы 1, g0 := g (0) и
ψ(0) =Ad∗g0(ψ0), ψ0 ∈ g∗. Тогда

ψ(t ) =Ad∗g (t )(ψ0), t ∈ (−a, a).

Определим для произвольного вектора u из D(e) по индукции векторные под-
пространства в g: D0(u) = D(e), Di+1(u) = Di + [u,Di (u)].

Теорема 3. Пусть g = g (t ), t ∈ (−a, a), — экстремаль в (G ,d), параметризованная
длиной дуги и непрерывно дифференцируемая по t в некоторой окрестности точки t0.
Крометого, ġ (t0) = dlg (t0)(u0),u0 ∈ D(e), иDm(u0) = g для некоторого неотрицатель-
ного целого m. Тогда экстремаль g = g (t ), t ∈ (−a, a), нормальна.

Работа выполнена при финансовой поддержке гранта РФФИ 14-01-00068-а.
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OPERADS OVER POLYNOMIAL FIREWORKS
AND QUADRATIC DIFFERENTIALS

A. Vasiliev1
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We construct some operads in categories of polynomials and quadratic differentials as
well as morphisms between them. In the case of polynomials the construction is based on
the topology of lemniscates and the symmetries are given by an abelian subgroup of the
group of braids. In the case of quadratic differentials the operad is coloured and braided.
Joint work with Mirjam Solberg and Anastasia Frolova.

ГЕОМЕТРИЧЕСКАЯ ТЕОРИЯ ФУНКЦИЙ:
НОВЫЕ РЕЗУЛЬТАТЫ И ПЕРСПЕКТИВЫ

С. К. Водопьянов1

1vodopis@math.nsc.ru, Институт математики им. С. Л. Соболева СО РАН

Обсуждается связь между пространствами Соболева с первыми обобщенными
производными и свойствами отображений, индуцирующих по правилу замены пе-
ременной либо изоморфизмы, либо ограниченные операторы пространств Соболе-
ва.

На основе этой связи возникают новые двухиндексные шкалы отображений, со-
держащие в качестве частного случая квазиконформные отображения и некоторые
их обобщения.

Будут приведены свойства нового класса отображений, и их применения в гео-
метрии и теории упругости.

КОНСТРУКТИВНАЯ ТЕОРИЯ ПОЛЕЙ КЛАССОВ ДЛЯ МНОГОЧЛЕННЫХ
ФОРМАЛЬНЫХ МОДУЛЕЙ

С. В. Востоков1

1Санкт-Петербургский государственный университет

Приводится новая явная формула для формальных многочленных модулей.
Практически впервые удалось получить кососимметрическое спаривание для фор-
мальных групп и доказать необходимые свойства. Такого типа спаривания в даль-
нейшем будет применяться в теории эллиптических кривых и криптографии кото-
рое может найти применение в теории эллиптических кривых и криптографии

СТЕПЕНИ АВТОУСТОЙЧИВОСТИ

С. С. Гончаров1

1Институт математики им. С.Л. Соболева Сибирского отделения РАН
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НЕХАУСДОРФОВА ТОПОЛОГИЯ – ТОПОЛОГИЯ ДЛЯ ДИСКРЕТНОЙ
МАТЕМАТИКИ И ИНФОРМАТИКИ

Ю. Л. Ершов1

1Институт математики им. С.Л. Соболева Сибирского отделения РАН

АВТОМОРФИЗМЫ AT 4(4, 4, 2)-ГРАФА И ОТВЕЧАЮЩИХ ЕМУ СИЛЬНО
РЕГУЛЯРНЫХ ГРАФОВ

К. С. Ефимов1, А. А. Махнев2

1konstantin.s.efimov@gmail.com, Институт математики и механики им. Н.Н. Красов-
ского УрО РАН

2makhnev@imm.uran.ru, Уральский федеральный университет

Задача классификации локально GQ(s, t )-графов является классической. В работе
[1] классифицированы дистанционно регулярные локально GQ(5,3)-графы. Пусть Γ
является дистанционно регулярным графом, в котором окрестность каждой верши-
ны является обобщенным четырехугольником GQ(5,3). Тогда либо диаметр Γ ра-
вен 2 и Γ имеет параметры (322,96,20,32), либо Γ — граф с массивом пересечений
{96,75,16,1;1,16,75,96}.

Последний граф являются AT 4(4,4,2)-графом и по теореме из [3] AT 4(4,4,2)-граф
не является локально GQ(5,3)-графом. Однако существование AT 4(4,4,2)-графа, яв-
ляющегося локально псевдо GQ(5,3)-графом неизвестно.

Пусть Γ является дистанционно регулярным графом с массивом пересечений
{96,75,16,1;1,16,75,96}. Тогда антиподальное частное Γ̄— сильно регулярный граф с
параметрами (322,96,20,32). В работе найдены возможные автоморфизмы указан-
ных графов.
Теорема 1. Пусть Γ является сильно регулярным графом с параметрами

(322,96,20,
32), в котором окрестности вершин сильно регулярны с параметрами (96,20,4,4),
G = Aut(Γ), g —элементпростого порядка p изG иΩ= Fix(g ). Тогдаπ(G) ⊆ {2,3,5,7,23}
и верно одно из утверждений:

(1)Ω является пустым графом, либо p = 23,α1(g ) = 92, либо p = 7,α1(g ) = 140l−28,
либо p = 2, α1(g ) = 40t −8;

(2)Ω являетсяn-кликой, либо p = 3,n = 1,α1(g ) = 60t−24 илиn = 4,α1(g ) = 60t−12,
или n = 7, α1(g ) = 60t , либо p = 5, n = 2, α1(g ) = 100s +20 или n = 7, α1(g ) = 100s +40;

(3) Ω является l-кокликой, p = 2, l четно, 4 É l É 56 и α1(g ) = 20m +12+4l ;
(4) Ω содержит геодезический 2-путь и либо

(i ) [a] ⊂Ω, для некоторой вершины a, |Ω| = 97 и p = 3,5, либо
(i i ) p = 3, |Ω| = 3n +1, n = 1,2, . . . ,37, α1(g ) = 60l +12n;
(i i i ) p = 2, |Ω| = 2m, m = 4,6, . . . ,56, α1(g ) = 40s +4|Ω|−8.

Следствие. Сильно регулярный граф с параметрами (322,96,20,32), в котором
окрестности вершин сильно регулярны с параметрами (96,20,4,4), не является вер-
шинно транзитивным.
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Теорема 2. Пусть Γ является дистанционно регулярным графом с массивом пере-
сечений {96,75,16,1;1,16,75,96}, G = Aut(Γ), g — элемент простого порядка p из G и
Ω= Fix(g ). Тогда π(G) ⊆ {2,3,5,7,23} и верно одно из утверждений:

(1) Ω— пустой граф, либо
(i ) p = 2, α4(g ) = 4l , α2(g ) = 20−20l −80s, α1(g ) = 56m +18l +40s +32, α3(g ) =

592+2l +40s −56m, либо
(i i ) p = 7, α4(g ) = 0, α1(g ) = 140−140l +196t , α2(g ) = 280l +140, α3(g ) = 364−

196t −140l , либо
(i i i ) p = 23, α4(g ) = 0, α1(g ) =α3(g ) = 92 и α2(g ) = 460;

(2) Ω является объединением двух изолированных t-клик, либо p = 3, t = 1,4,7 и
α2(g ) = 40s −10t −20, либо p = 5, t = 2,7 и α2(g ) = 200s −10t +20;

(3)Ω содержит геодезический 2-путь, p = 2, |Ω| = 4m−α4(g ), α4(g ) = 14e+2s−78+
10n, α1(g ) = 8s, α2(g ) = 80n +20−20m и α3(g ) = 624−80n +16m −8s.

Работа выполнена при финансовой поддержке РНФ, проект 14-11-00061 (теоре-
ма 2 и следствие) и соглашения между Министерством образования и науки Россий-
ской Федерации и Уральским федеральным университетом от 27.08.2013,
№ 02.A03.21.0006 (теорема 1).
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ТЕОРИЯ АТТРАКТОРОВ УРАВНЕНИЙ ГИДРОДИНАМИКИ

В. Г. Звягин1

1zvg_vsu@mail.ru, Воронежский государственный университет

При изучении динамики систем и, в частности, систем гидродинамики особый
интерес представляет наряду с теоремами существования начально-краевых задач
и предельное поведение их решений, когда время стремится к бесконечности. При
этом часто встречаются системы со следующим свойством: “на бесконечности” их
динамика сосредотачивается на небольшой части фазового пространства, называ-
емой аттрактором. Понятие “аттрактор” возникло в теории динамических систем,
однако для применения теории аттракторов динамических систем требуется одно-
значная глобальная разрешимость задачи с заданным начальным условием. Но для
большинства моделей гидродинамики этого нет.

В работах М. И. Вишика и В. В. Чепыжова и независимо в работах Дж. Cеллом
был предложен подход, основанный на рассмотрении траекторных пространств и
траекторных аттракторов (см. обзор [1] и ссылки там). Основная идея этого под-
хода состоит в том, чтобы рассматривать слабые решения исследуемого уравне-
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ния как точки некоторого траекторного пространства, при этом на нем рассмат-
ривается некоторая полугруппа трансляций. Тогда, если траекторное пространство
трансляционно инвариантно и замкнуто, то к полугруппе трансляций можно при-
менять аналоги метода теории динамических систем. Однако, аттракторы множе-
ства моделей неньютоновой гидродинамики не удавалось исследовать с помощью
этой теории. Ограничительными оказались условия на траекторное пространство
трансляционной инвариантности и замкнутости. Д. А. Воротниковым и В. Г. Звяги-
ным [2, 3] был предложен другой метод доказательства существования аттракторов
уравнений, основанный не на аппарате ω–предельных множествах, как в теории
динамических систем и теории Вишика-Чепыжова-Селла, а на топологической лем-
ме Шуры-Буры и, на основе этого метода, доказано существование аттракторов для
большого числа автономных и неавтономных уравнений неньютоновской механи-
ки [3, 4].

Работа выполнена при финансовой поддержке Российского Научного Фонда
(проект № 14–21–00066, выполняемый в Воронежском государственном универси-
тете).
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МАКРОСКОПИЧЕСКИЕ УРАВНЕНИЯ ЭЙНШТЕЙНА ДЛЯ
КОСМОЛОГИЧЕСКОЙ МОДЕЛИ С λ - ЧЛЕНОМ

Ю. Г. Игнатьев1

1Казанский (Приволжский) федеральный университет

Показано, что модели Вселенной с первоначальной инфляцией физически
неустойчивы. Эта неустойчивость проявляется в трех видах: 1. Модели с ранней
инфляцией неустойчивы по отношению к добавлениям малых примесей физиче-
ской материи с уравнением состояния, отличающегося от инфляционного ε+P = 0.
При этом Вселенная приобретает начало в конечном прошлом, а масштабный фак-
тор в начале истории Вселенной растет по степенному закону, постепенно пере-
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ходя на экспоненциальный. 2. Модели с ранней инфляцией неустойчивы по отно-
шению к вырожденному решению с постоянным скалярным полем. При правиль-
ном решении полевых уравнений возникает Вселенная с конечным началом. 3. Мо-
дели с ранней инфляцией неустойчивы по отношению к поперечным гравитаци-
онным возмущениям, которые на ранних стадиях дают ультрарелятивистскую до-
бавку в энергию-импульс, что приводит к уничтожению де-Ситтеровской стадии
эволюции. Построена замкнутая система обыкновенных дифференциальных урав-
нений, описывающих космологическую эволюцию макроскопически однородной
изотропной Вселенной, заполненной гравитационным излучением в модели Эйн-
штейна с космологическим членом.

Получено асимптотическое решение космологических уравнений в ВКБ-прибли-
жении, описывающее переход с ультрарелятивистской фазы расширения на инфля-
ционную.

ФОРМУЛЫ ПЛОЩАДИ ДЛЯ ОТОБРАЖЕНИЙ НЕГОЛОНОМНЫХ СТРУКТУР

М. Б. Карманова1

1maryka84@gmail.com, Институт математики им. С.Л. Соболева СО РАН

Мы исследуем дифференциальные свойства отображений-графиков на пятимер-
ных субримановых и сублоренцевых структурах. Результаты применены к доказа-
тельству формул площади и к описанию экстремальных поверхностей.

Мы рассматриваем R5 с набором полей {X1, . . . , X5} и предполагаем, что группы
Гейзенберга H1 и H2 таковы, что TH1 = span{X1, X2, X3} и TH2 = span{X1, X4, X5}.
Для ϕ = (ϕ1,ϕ4,ϕ5) : H1 → H2 строится адаптированный базис {X̃ x

j }5
j=1, завися-

щий от значений ϕ(x) и Dϕ1(x). Несмотря на то, что отображение-график ϕΓ(x) =
exp

(
ϕ1(x)X1 +ϕ4(x)X4 +ϕ5(x)X5

)
(x) не является липшицевым, он обладает неко-

торым свойством регулярности: полиномиально субриманово дифференцируем в
точках hc-дифференцируемости ϕ.

Теорема. Для отображения-графика ϕΓ в каждой точке x существует отображе-
ниеLx , являющееся полиномом от координат элементов в окрестности x, и аппрок-
симирующее ϕΓ с точностью до величины o(·) относительно субриманова расстояния
до x.

Аналогичный результат справедлив и для классов композиций отображений;
отображение-график является их самым простым примером.

Опишем сублоренцево расстояние для точек на образе ϕΓ:

(d̃SL2∞ )2(v, y) = max
{
max{y2

1 , y2
2}− y2

4 , sg n(y2
3 − y2

5)
√

|y2
3 − y2

5 |
}
.

Для построения внутренней сублоренцевой меры Хаусдорфа мы применяем кон-
струкцию Каратеодори к соответствующим шарам, определяемым соотношением
(d̃SL2∞ )2 < r 2. Справедливы следующие результаты о субримановой и сублоренцевой
площади поверхности-графика классов липшицевых отображений и классов ком-
позиций липшицевых отображений.
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Теорема. Для ϕ : H1 → H2 справедлива следующая формула для вычисления внут-
ренней субримановойH 4

Γ
-меры поверхности-графикаH 4

Γ
(ϕΓ(Ω)):∫

Ω

√
1+ (X1ϕ4)2(x)+ (X2ϕ4)2(x)

√
1+ (X3ϕ5)2(x)dH 4(x).

Кроме того, сублоренцева внутренняя SL2H 4
Γ
-мера поверхности-графика

SL2H 4
Γ

(ϕΓ(Ω)) равна∫
Ω

√
1− (X1ϕ4)2(v)

√
1− (X2ϕ4)2(v)

√
1− (X3ϕ5)2(v)dH 4(v).

Эти результаты применены для вывода уравнений экстремальных поверхностей
в субримановой геометрии и сублоренцевой геометрии [1, 2]. Подробные описания
поверхностей и точные формулировки вышеперечисленных теорем см. в [1, 2].

Работа выполнена при финансовой поддержке РФФИ (проект 14-01-00768).
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ИНТЕГРИРОВАНИЕ ПО НЕСПРЯМЛЯЕМЫМ КРИВЫМ
И ЕГО ПРИЛОЖЕНИЯ

Б. А. Кац1

1Казанский (Приволжский) федеральный университет

Строится поток с носителем на неспрямляемой кривой, который можно рассмат-
ривать как обобщение котурного интегрирования на такие кривые.

Полученное обобщение позволяет дать решение ряда краевых задач в областях с
неспрямляемыми границами и имеет другие приложения.

ТЕОРЕМЫ ОБ ОГРАНИЧЕНИИ ОПЕРАТОРА
НА КООРДИНАТНОЕ ПОДПРОСТРАНСТВО

Б. С. Кашин1

1Математический институт им. В. А. Стеклова РАН
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ПРОСТЫЕ АЛГЕБРЫ ЛИ С НЕВЫРОЖДЕННЫМ ДИФФЕРЕНЦИРОВАНИЕМ

М. И. Кузнецов1

1Нижегородский университет им. Н.И. Лобачевского

Интерес к простым алгебрам Ли с невырожденным дифференцированием воз-
ник в связи с доказательством А. Шалева и Е.И. Зельманова гипотез о p-группах ко-
нечного кокласса. Дальнейшее развитие техники, связанной с алгебрами Ли, приве-
ло к возникновению нового направления в теории градуированных алгебр Ли. Над
полями характеристики p > 3 все простые алгебры Ли с невырожденным диффе-
ренцированием были найдены Дж. Бенкарт, А.И. Кострикиным и М.И. Кузнецовым
в 90-х годах.

В докладе будет дан обзор известных результатов, начиная с классической ра-
боты Н. Джекобсона об алгебрах Ли с невырожденным дифференцированием. Ос-
новное внимание будет уделено новому малоизученному классу простых неальтер-
нирующих гамильтоновых алгебр Ли. Одна из серий таких алгебр была построена
китайским математиком L. Lin. Эти алгебры Ли “живут” только в характеристике 2
и являются аналогами (бесконечномерных) гамильтоновых супералгебр Ли. С этой
точки зрения они изучались Д. Лейтесом и его учениками. В докладе будет дана об-
щая конструкция неальтернирующих гамильтоновых алгебр Ли, приведен ряд но-
вых результатов об этих алгебрах, в частности, будут построены новые серии про-
стых алгебр Ли, допускающих невырожденные дифференцирования, установлена
их связь с алгебрами Блока. Также планируется обсудить ряд результатов о дефор-
мациях классических алгебр Ли.

PROBLEMS ON STRUCTURE OF FINITE QUASIFIELDS
AND PROJECTIVE TRANSLATION PLANES

V. M. Levchuk1, O. V. Kravtsova2

1vlevchuk@sfu-kras.ru, SFU, Krasnoyarsk
2ol71@bk.ru, SFU, Krasnoyarsk

It is well-known that finite projective plane is coordinatized by a field iff it is desar-
guesian. Failure of commutativity and associativity of coefficients leads to concept of
semifield; it is a simple ring S in which non-zero elements form a loop S∗. The weaken-
ing of two-sided distributivity to one-sided leads to concepts of quasifield and translation
projective plane, that is coordinatized by quasifield.

The problem on solvability of collineation group for the finite non-desarguesian pro-
jective semifield plane is unsolved still. The structure of even well-known proper (i.e., it
isn’t a field) finite semifields and quasifields is little studied [1].

The report presents the investigations of problems on structure of finite quasifields
and semifields: the element orders of its loop, automorphisms and autotopisms, maxi-
mal subfields and their orders, the hypothesis that a loop S∗ is 1-generated for a finite
semifield S. Anomaly properties are shown by the structure of semifields of orders 32 and
64, which are counter-examples to Wene’s hypothesis.

The investigations are supported by RFBR, project 16-01-00707.
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COMPUTABILITY AND CLASSIFICATION PROBLEMS

A. Melnikov1

1Massey University, New Zealand

A large portion of classical mathematics is concerned with classifying structures, usu-
ally up to the right notion of similarity (i.e., isomorphism, homeomorphism etc). When
objects are algorithmically presented, it is natural to classify such objects using some
algorithmic tool.

We will discuss several classification-type results, some of these results have applica-
tions outside computability theory. Among other things. the talk will cover the recent
solution of Goncharov’s problem on Delta-alpha categorical torsion-free abelian groups
(M.), the recent description of computably categorical torsion abelian groups by M. and Ng
(thus solving a problem that goes back to Mal’cev in the important case of torsion groups),
and the positive solution to problem of Goncharov and Knight on Friedberg enumeration
of computable equivalence relations (Downey, M. and Ng) up to isomorphism.

ГОМОТОПИЧЕСКАЯ КЛАССИФИКАЦИЯ
ТРАНЗИТИВНЫХ АЛГЕБРОИДОВ ЛИ

А. С. Мищенко1

1МГУ имени М.В. Ломоносова

Доклад посвящен изложению результатов группы исследователей по транзитив-
ным алгеброидам Ли. Эта программа была инициирована безвременно ушедшим
профессором политехнического университета в Лодзи (Польша) Яном Кубарски, ко-
торый совместно с автором начал изучение сигнатур транзитивных алгеброидов Ли
в 2003 году.

В целом программа исследований может быть описана как гомотопическая клас-
сификация транзитивных алгеброидом Ли при фиксированном многообразии в ка-
честве базы и фиксированной конечно мерной алгебре Ли, присоединенной к тран-
зитивному алгеброиду Ли. Еще в книге Маккензи ([1]) было установлено, что если
расслоение L со слоем конечномерная алгебра Ли gи структурной группой автомор-
физмов этого слоя допускает каплинг ] с касательным расслоением T M многообра-
зия M , то тогда такое расслоение L расширяется до транзитивного алгеброида Ли,
у которого данное расслоение L присоединено к полученному алгеброиду Ли, при
условии тривиальности препятствия Маккензи в виде трехмерного класса когомо-
логий obs(]) ∈ H3(M ; Z L) с коэффициентами в плоском расслоении Z L.

Для завершения гомотопической классификации транзитивных алгеброидов Ли
надо решить две задачи: 1) Найти необходимые и достаточные условия существо-
вания каплинга для заданного расслоения L и 2) описать условия тривиальности
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препятствия Маккензи. Обе эти задачи в книге Маккензи ([1]) не ставились и не
обсуждались. Доклад посвящен решению сформулированных задач. Первая зада-
ча решена полностью ([5], [3]). В рамках второй задачи о вычислении препятствия
Маккензи показана его функториальнось ([5])и показана его тривальность в неко-
торых частных случаях ([4],[6]).
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CОВМЕСТНЫЙ СПЕКТРАЛЬНЫЙ РАДИУС:
КАК НАЙТИ И КАК ПРИМЕНИТЬ?

В. Ю. Протасов1

1МГУ имени М.В. Ломоносова

Совместный спектральный радиус нескольких матриц – это максимальный пока-
затель роста норм их всевозможных произведений. Для одной матрицы он совпада-
ет с обычным спектральным радиусом. Совместный спектральный радиус появился
в 1960 г. в работе Ж.К. Рота и Г. Стрэнга, с тех пор он нашел множество применений
в теории функций, теории всплесков (вейвлетов), данамических системах, теории
кодирования, теории вероятностей, комбинаторике, а также во множестве инже-
нерных задач.
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Изучением его свойств и методов вычисления занимались И. Добеши, Дж. Лага-
риас, В. Блондель, Ю. Нестеров, Дж. Цициклис, П. Паррило, и многие другие. В отли-
чие от обычного спектрального радиуса, для совместного спектрального радиуса не
существует замкнутой формулы. Задача о его вычислении чрезвычайно сложна (для
0-1 матриц она N P-сложна, а для общих матриц – алгоритмически неразрешима).
Тем не менее, в последние годы появилось несколько эффективных геометрических
методов вычисления и даже точного нахождения этой величины, что привело к зна-
чительному прогрессу во многих задачах.

КВАНТОВЫЙ АНАЛИЗ И КВАЗИКОНФОРМНЫЕ ГОМЕОМОРФИЗМЫ

А. Г. Сергеев1

1Математический институт им. В.А.Стеклова РАН, Москва

Одной из главных задач некоммутативной геометрии является перевод основ-
ных понятий анализа, геометрии и топологии на язык банаховых алгебр ограничен-
ных операторов в гильбертовом пространстве. В докладе будет приведен ряд при-
меров такого перевода для классических пространств теории функций, таких как
соболевское пространство полудифференцируемых функций, пространство BMO,
пространство квазисимметричных гомеоморфизмов. Возникающее при этом опе-
раторное исчисление принято называть, следуя Конну, квантовым анализом.

ПРИБЛИЖЕНИЕ АЛГЕБРАИЧЕСКИХ ФУНКЦИЙ РАЦИОНАЛЬНЫМИ,
ФУНКЦИОНАЛЬНЫЕ АНАЛОГИ ДИОФАНТОВЫХ ПРИБЛИЖЕНИЙ

А. Т. Фоменко1

1МГУ имени М.В. Ломоносова

За последние годы были открыты новые физические системы, обладающие бога-
тыми скрытыми симметриями, что позволяет их «интегрировать», то есть эффек-
тивно описывать траектории движения. Оказывается, такие интегрируемые систе-
мы с двумя степенями свободы допускают топологическую классификацию. Одна-
ко во многих конкретных случаях эволюция системы весьма причудлива. Таковы,
например, некоторые случаи динамики тяжелого твердого тела в пространстве. С
другой стороны, недавно был открыт класс «обобщенных биллиардов», описывае-
мых скольжением материальной точки по двумерным локально плоским поверх-
ностям с «хорошей границей». Неожиданным и нетривиальным фактом оказалось,
что такие кусочно-гладкие биллиарды “наглядно” моделируют важные (и достаточ-
но сложные) случаи интегрируемости, например, в динамике твердого тела. То есть,
некоторые запутанные и даже неустойчивые эволюции таких систем теперь можно
наглядно увидеть как движение шара по двумерной биллиардной области с неслож-
ной топологией.
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О СТРУКТУРЕ ОБЩЕЙ АЛГЕБРАИЧЕСКОЙ ФУНКЦИИ

А. К. Цих1

1Сибирский федеральный университет

КАТЕГОРИФИКАЦИЯ ИНВАРИАНТОВ КОНЕЧНОГО ТИПА

Н. А. Широкова1

1Santa Clara University, USA

We categorify invariants of finite type and construct a classification theory for Floer-
type homologies. In particular we construct a local system of Khovanov complexes on the
space of knots and a wall-crossing morphism for this local system. We extend it to the
singular locus (discriminant) by the cone of this morphism and introduce the definition
of the local system of finite type.

We prove the following properties of the Khovanov’s complex:
Theorem 1. Let k denote the kth crossing point of the knot projectionD, then for any k the

Khovanov’s complex C decomposes into a sum of two subcomplexes A = Ak
0 ⊕ Ak

1 with matrix
differential of the form

dA =
(

d0 d0,1
0 d1

)
Consider two complexes A• and B• adjacent to the generic wall of the discriminant.

When we change kth overcrossing to an undercrossing, 0 and 1-resolutions are exchanged
, so A• = A•

0 ⊕ A•
1, B•[1] = B•

0[1]⊕B•
1[1], thus for every k we can define the wall-crossing

morphism ω as follows:
Theorem 2. The map defined as the identity on A•

0 and as a trivial map on A•
1:

ω : A•
0

I d // B•
0[1]

ω : A•
1

; // B•
1[1]

is the morphism of complexes.
Definition. The local system is of finite type n if for any self intersection of the discrim-

inant of codimension n, the result of the extension of the local system to the discriminant is
quasi isomorphic to C•(n)(U ), whereU is the complex corresponding to the disjoint union of
unknots.
Theorem 3. Restricted to the subcategory of knots with at most n crossings, n Ê 3, Kho-

vanov local system is of finite type É n.

References

[1] Khovanov M., A Categorification of the Jones Polynomial, Duke Math. J. 101 (2000),
no. 3, 359–426.



СЕКЦИОННЫЕ ДОКЛАДЫ

AN INEQUALITY FOR PROJECTIONS AND A CONVEX FUNCTION

S.A. Abed1

1samialbarkish@gmail.com, University of Diyala

Let H be a Hilbert space, B(H) be an algebra of all bounded linear operator in H ,
B(H)pr be the set of all projections in H . For a set A in B(H) by A′ we denote the com-
mutant of A.
Lemma 1. For each pair of projections p, q ∈ B(H)pr such that pq = qp and for continu-

ous function f ∈C [0,1], such that f (x) É f (1)x+ f (0)(1−x), the inequality f (λp+(1−λ)q) É
λ f (p)+ (1−λ) f (q) holds for every λ ∈ [0,1].
Proof: For p, q consider the von Neumann algebra {p, q}′′. It is Abelian, therefore,

{p, q}′′ ∼= L∞(Ω,Σ,µ) and there exist A, B ⊂Ω such that p ∼ I A, q ∼ IB . Evidently, f (λI A+
(1−λ)IB ) = f (1)I A∩B + f (0)I(A∪B)c + f (λ)I A\B + f (1−λ)IB\A, alsoλ f (I A)+(1−λ) f (IB ) =
f (1)I A∩B + f (0)I(A∪B)c + (λ f (1)+ (1−λ) f (0))I A\B + ((1−λ) f (1)+λ f (0))IB\A. To finish
the proof, we note, that f (x) É f (1)x + f (0)(1−x).
Lemma 2. For λ ∈ [0,1], for each pair of projections p, q ∈M2(C (Ω))pr and for a continu-

ous function f ∈C [0,1] such that f (x) É f (1)x+ f (0)(1−x) the inequality f (λp+(1−λ)q) É
λ f (p)+ (1−λ) f (q) holds for every λ ∈ [0,1].
Proof: It is sufficient to consider p = diag(1,0) and

q =
(

t δ
p

t (1− t )
δ
p

t (1− t ) 1− t

)
,

with t ∈ [0,1] (see [1]).
Note, that for any ω there exists r ∈M2(C)pr such that λp + (1−λ)q = µ1r +µ2r⊥,

r⊥+ r = 1, µ1, µ2 ∈ [0,1], µ1 +µ2 = 1. Therefore, f (λp + (1−λ)q) = f (µ1)r + f (µ2)r⊥.
On the other hand, λ f (p)+ (1−λ) f (q) = λ f (1)p +λ f (0)(1− p)+ (1−λ) f (1)q + (1−

λ) f (0)(1−q) = f (0)1+ ( f (1)− f (0))(λp + (1−λ)q) = ( f (1)µ1 + f (0)(1−µ1))r + ( f (1)µ2 +
f (0)(1−µ2))r⊥.

To finish the proof we note that f (µ1) É f (1)µ1 + f (0)(1−µ1) and f (µ2) É f (1)µ2 +
f (0)(1−µ2).
Theorem. For each pair of projections p, q ∈ B(H)pr and for continuous function f ∈

C [0,1], such that f (x) É f (1)x + f (0)(1− x), the inequality f (λp + (1−λ)q) Éλ f (p)+ (1−
λ) f (q) holds for every λ ∈ [0,1].
Proof: Consider the von Neumann algebra {p, q}′′ = N . By Lemma 3 [1], there exists

a central element z ∈ N ∩N ′ such that N = Nz ⊕Nz⊥. An algebra Nz⊥ is Abelian,
therefore, by Lemma 1, f (λpz⊥+(1−λ)qz⊥) Éλ f (pz⊥)+(1−λ) f (qz⊥). The algebra Nz
is equivalent to M2(C (Ω)) and, therefore, f (λpz + (1−λ)qz) Éλ f (pz)+ (1−λ) f (qz).
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To finish the proof it is sufficient to note, that f (p) = f (pz ⊕pz⊥) = f (pz)⊕ f (pz⊥).
Corollary. For each pair of projections p, q ∈ B(H)pr and for continuous convex function

f ∈C [0,1] the inequality f (λp + (1−λ)q) Éλ f (p)+ (1−λ) f (q) holds for every λ ∈ [0,1].
Example. For f (x) = x3 the inequality f (1

2 p + 1
2 q) É 1

2 f (p)+ 1
2 f (q) holds. Note, that

f (1
2 p+ 1

2 q) = 1
8(p+q)+ 1

4(pq +qp)+ 1
8(pqp+qpq). Since p−pq −qp+q = (p−q)2 Ê 0,

it folows that pq +qp É p +q. Also, pqp É p and qpq É q, since q, p É 1. Therefore,

1

8
(p +q)+ 1

4
(pq +qp)+ 1

8
(pqp +qpq) É 1

2
p + 1

2
q = 1

2
f (p)+ 1

2
f (q),

so f (1
2 p + 1

2 q) É 1
2 f (p)+ 1

2 f (q).

This work was supported by the Ministry of Higher Education and Scientific Research
of Republic of Iraq.
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AN ENSEMBLE TRAFFIC TABLE BASED INTRUSION DETECTION SYSTEM
FOR MOBILE ADHOC NETWORKS

M. K. Al-Anni1

1maadk-anni@live.com, N.I. Lobachevsky Institute of Computer Mathematics and Infor-
mational Technologies, Kazan (Volga Region) Federal University

We study an algorithmic dependence of Artificial Neural Network on Multilayer Per-
ceptron (MLP) relative to the classification and Clustering presentations.We give com-
plete description of standard back propagation(BP) normally utilizes computationally
training algorithms in which there is a computable machine learning. Work has been per-
formed to classify patterns using multilayer perceptron learning by artificial back prop-
agation algorithm, a proposed system are used a distributed mobile agent incorporated
with Intrusion Detection Mechanism that expected to detect the deviating behaviours of
some nodes in Mobile Adhoc Networks, as such this work led us to comparison studies
made in NN learning based on Data Set(Traffic Table) which divide into training set and
testing set, consequently have to specify any experimental results is better in solving the
case study(IDS for MANETs) in terms of less Mean Square Error and high Accuracy Level,
in this article we are going to show the effectiveness of BP used as a machine learning
to classify the malicious behaviour in simulated Networks, as we are going to prove it in
Problem Identification and Proposed Solution, Despite BP having been used for decades,
Feed-Forward Back-Propagation (FF-BP) systems are still the most commonly used ANN
topology. FF-BP ANNs are applied in an extensive range of areas including computer
network security, handwriting analysis, medicine, intrusion detection, computer vision,
physics, retail, battlefield management, and finance. Their performance depends on sev-
eral factors, including: the number of neuronal layers, the number of neurons at each
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layer, the activation functions used by the neurons, and the choice of initial connection
weights. There are many algorithm for ANN learning algorithm such as Adaline, Hebbian,
Perceptron Learning rule, Back propagation, Artificial Bee Colony.
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THE EINSTEIN-MAXWELL-AETHER-AXION THEORY: DYNAMO-OPTICAL
ANOMALY IN THE ELECTROMAGNETIC RESPONSE

T. Yu. Alpin1

1Timur.Alpin@kpfu.ru, Kazan Federal University

We consider a pp-wave symmetric model in the framework of the Einstein-Maxwell-
aether-axion theory. Exact solutions to the equations of axion electrodynamics are ob-
tained for the model, in which pseudoscalar, electric and magnetic fields were constant
before the arrival of a gravitational pp-wave. We show that dynamo-optical interactions,
i. e. couplings of electromagnetic field to a dynamic unit vector field, attributed to the
velocity of a cosmic substratum (aether, vacuum, dark fluid etc.), provide the response of
axionically active electrodynamic system to display anomalous behavior.
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ON CURVATURE STRUCTURE OF PSEUDO-RIEMANNIAN MANIFOLDS
ADMITTING INFINITESIMAL PROJECTIVE TRANSFORMATIONS

A. V. Aminova1, M. N. Sabitova2

1asya.aminova@kpfu.ru, Kazan Federal University
2maria.sabitova@qc.cuny.edu, CUNY, New York

A vector field X on a manifold Mn with affine connection ∇(Γi
j k ) is an infinitesimal

projective transformation (p.m.) if and only if ∇Y (LX −∇X ) = R(X ,Y )−φ(Y ) · i d −Y φ
for a 1–form φ and all vector fields Y on Mn , where R is the curvature tensor. In local
coordinates we have LXΓ

i
j k = δi

jφk +δi
kφ j . For a pseudo-Riemannian manifold (Mn , g ),

this is equivalent to the equations LX g = h, ∇h(Y , Z ,W ) = 2g (Y , Z )Wϕ+ g (Y ,W )Zϕ+
g (Z ,W )Y ϕ, where Y , Z ,W ∈ T M and (n + 1)ϕ = divX . The first of these equations is
the generalized Killing equation, and the second one is the Eisenhart equation. The met-
rics g admitting non-trivial solutions h 6= cg of the last equation are called h-metrics. If
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divX = const , then X is an infinitesimal affine transformation, or affine motion (a.m.),
in particular, homothety (h.m.), when h = cg , and isometry (i.m.), when h = 0. The set
P (Mn) of all projective motions in Mn forms a projective Lie algebra in Mn . The set of
all complete projective vector fields X in Mn forms a Lie algebra of the group P (M) of
projective transformations in Mn . The following inclusions for the isometric, homoth-
etic, affine and projective Lie algebras in (Mn , g ) are valid: I (Mn) ⊆H (Mn) ⊆A (Mn) ⊆
P (Mn).

The structure of curvature 2-form Ωi j of the so called rigid h-spaces (Mn , g ) of arbi-
trary dimension and signature is described, and it is proved that an affine group acting in
the rigid h-space consists of homotheties at most, and a proper k-dimensional projective
group of such space has a (k −1)-dimensional homothetic subgroup.

GROUP GRADED SEMIGROUPS

V. A. Arzumanian1, S. A. Grigoryan2

1vicar@instmath.sci.am, Institute of Mathematics, National Academy of Science of RA
2gsuren@inbox.ru, Kazan State Power Engineering university

Last years the attention of many experts is focused on the constructions of algebras
associated with irreversible dynamical systems. Since the concept of the group crossed
product can not be directly transferred on the case of semigroups, new methods are being
developed to avoid the difficulties.
The involvement in considerations the concept of graded algebra seems to be most
promising in this regard. In the first step the concept of group-graded system arises
which can be interpreted in different ways.
We proposed in [1] a modified version of the so called Fell bundle (C*-algebraic bundle)
considered by Ruy Exel in [2].
In our new interpretation, it is an involutive semigroup structured in a special way with
the help of a group.
In the case when initial group is Abelian we consider main properties of such systems,
based on the C*-module structure of a graded system and an action of the dual group,
their modular representations and the associated operator algebra in a suitable Hilbert
module.
In addition, the realization of the associated C∗-algebra as a subalgebra of the algebra
of continuous C∗-valued mappings on the dual group is given.
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POLYNOMIALLY COMPLETE FINITE QUASIGROUPS

V.A. Artamonov1

1artamon@mech.math.msu.su, Department of Algebra, Faculty of Mechanics and Mathe-
matics, Moscow State University

A general finite algebra Q is polynomially complete if any the clone of its operations
is generated by all basic operations and by all constants.

A finite quasigroup Q is affine if Q admits a structure of an Abelian group (Q,+) such
that the basic operation of multiplication x ·y has the form x ·y =α(x)+β(y)+c, whereα,β
are automorphisms of (Q,+) and c ∈Q. It is known that a finite quasigroup is polynomially
complete if and only if Q is congruence-simple and non-affine.

For a quasigroup Q denote by MultQ the permutation group on the set Q generated by
the permutations Lx ,Rx of left and right multplication by x in Q.

A finite quasigroup is usually given by lis Latin square (= Cayley table). We consider
the problem of recognition of polynomially complete qusaigroups given by their Latin
squares. The case of a quasigroup of order 4 was considere in [?].
Theorem 1. LetQ be a finite quasigroup such thatMult(Q) contains a subgroup isomor-

phic the alternative subgroup Am , where

m = 1+max
([n

2

]
,4

)
. (1)

ThenQ is polynomially complete.
Denote by G(Q) the subgroup in Mult(Q) generated by all elements LxL−1

y , RxR−1y ,
where x, y ∈Q. In contrust with MultQ we have
Theorem 2. Under an isotopy (π,π1,π2) the groupG(Q) is mapping to πG(Q)π−1.
Research is partially supported by grant RFBI-DST 15-51-45031
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ABOUT INTERSECTION OF A SET WITH A HYPERPLANE

M.V. Balashov1

1balashov73@mail.ru, Department of Higher Mathematics, Moscow Institute of Physics
and Technology (state university)

We consider the set-valued mapping whose images are intersections of a fixed closed
convex bounded set A with nonempty interior from a real Hilbert space with shifts of a
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closed linear subspace L:
A 3 x → F (x) = A

⋂
(L+x) .

We characterize such strictly convex sets in the Hilbert space that the considered set-
valued mapping F is Hölder continuous with the power 1

2 in the Hausdorff metric. We
also consider the question about intersections of a fixed uniformly convex set [1] with
shifts of a closed linear subspace. We prove that the modulus of continuity of the set-
valued mapping in this case is the inverse function to the modulus of uniform convexity
[2, Theorem 3.1] and vice versa: the modulus of uniform convexity of the set is the inverse
function to the modulus of continuity of the set-values mapping. The report is based on
the paper [3].

The research was supported by RFBR (grant № 16-01-00259.)
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THE CRITERION OF THE EXISTANCE OF NONLINEAR MAPPING WITH THE
JACOBI MATRIX COMMUTING WITH MATRIXES OF THE RING

Yu. A. Chirkunov1

1chr101@mail.ru, Novosibirsk State Technical University

We obtained a criterion for the existence of a nonlinear mapping u : C m →C m (m Ê 2),
whose Jacobi matrix commutes with each constant complex matrix of a given ring Q. We
showed that such mapping exists if and only if the ring Q has at least one (r, l)–pair [1–
4]. Such problem arises, for example, in the group analysis of differential equations in
the study of the dependence of the main Lie group of transformations with respect to the
dependent variables [1–4].

The proof consists of the series of lemmas, with the help of which we obtained the
result for all possible cases. A characteristic feature of the proofs of these lemmas is the
induction in two directions (sorting of rows and columns of the block matrix). Proof of
the induction step is most often carried out on an example of the second step. Important
meaning has the following

Lemma. Let Mα and Mβ be constant matrixes, and max{rank(Mα), rank(Mβ)} > 1. If
for all i ∈ Jα and all j ∈ Jβ we have: ∂i Kσ

β
= hβi (x)Mβ and ∂ j Kσ

α = hα j (x)Mα, where

hβi (x), hα j (x) are scalar functions of the variable x = (
x1, x2, ..., xm)T , then ∂i Kσ

β
= 0 and

∂ j Kσ
α = 0 for all i ∈ Jα and for all j ∈ Jβ. In particular, if K = h(x)M or ∂i K = hi (x)M
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(i = 1,2, ...,m), where M is a constant matrix, whose rank is greater than 1, and h(x), hi (x)
are scalar functions, then ∂K = 0.

The lemma shows the result of the interaction of Schur’s lemma, and compatibility
conditions, since the matrices of the ring commute with the Jacobi matrix. This lemma
plays the same role in the “Multi-dimensional factors” as the condition concerning the
existence of an (r, l)–pair in the “One-dimensional factors”.
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ON HOLOMORPHICALLY PROJECTIVE MAPPINGS
OF PARABOLIC KÄHLER MANIFOLDS

H. Chudá1, J. Mikeš2, P. Peška3, M. Shiha4
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We study the fundamental equations of holomorphically projective mappings of para-
bolic Kähler spaces (which are generalized classical, pseudo- and hyperbolic Kähler
spaces) with respect to the smoothness class of metrics. We show that holomorphically
projective mappings preserve the smoothness class of metrics.

We remind that Kähler spaces characterized by conditions F 2=− I d , g (X ,F X )=0,
∇F =0, were first considered by P.A. Shirokov, see [1]. The monography by V.V. Vish-
nevskii, A.P. Shirokov and V.V. Shurygin [2] inspired us to introduce the following no-
tion: a n-dimensional (pseudo-) Riemannian manifold (M , g ) is called an m-parabolic
Kähler manifold K o(m)

n , if additionally to the metric tensor g , a tensor field F of a rank
m Ê 2 of type (1,1) is given on the manifold Mn , such that the following conditions hold:
F 2=0, g (X ,F X )=0, ∇F =0, where X is an arbitrary tangent vector, ∇ denotes the covari-
ant derivative.
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We study the fundamental equations of holomorphically projective mappings of para-
bolic Kähler manifolds in dependence on the smoothness class of the metric. I. Hinter-
leitner solved similar problems for classical, pseudo- and hyperbolic Kähler manifolds,
[3, p. 427].

M. Shiha [4] (see [3, p. 427]) proved the following theorem:

Theorem 1. A diffeomorphism f : K o(m)
n → K̄ o(m̄)

n is a holomorphically-projective map-
ping if and only if the linear Cauchy-like system of differential equations

ai j ,k =λ(i g j )k +θ(i F j )k ;θi , j = τFi j +aαβT
αβ
1|i j ;τ,i = θαTα

2|i +aαβT
αβ
3|i

has a solution ai j , λi and τ satisfying the conditions
ai j = a j i , aα j Fαi +aαi Fαj = 0, det ai j 6= 0.

The tensors T
αβ
1|i j , Tα

2|i , T
αβ
3|i are determined from the metric and structure tensors gi j and

F h
i of the space K o(m)

n .

This theorem was proved assuming that K o(m)
n and K̄ o(m)

n belong to the class C 3 [4].
We proved Theorem 1 if K o(m)

n ∈C 3 and K̄ o(m̄)
n ∈C 2. Further

Theorem 2. Let K o(m)
n ∈ C r (r Ê 3) and K̄ o(m̄)

n ∈ C 2. If K o(m)
n admits holomorphically-

projective mapping onto K̄ o(m̄)
n then K̄ o(m̄)

n ∈C r .
The system of equations in Theorem 1 has at most one solution for the initial values

at the point x0: ai j (x0), λi (x0) and τ(x0). Hence, the general solution of this system
depends on no more than (n +2)(n +1)/2−m(n −m +1) real parameters.
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2- AND 3-TENSOR-STABLE POSITIVE QUBIT MAPS

S. N. Filippov1, K. Yu. Magadov2

1sergey.filippov@phystech.edu, Moscow Institute of Physics and Technology
2—, Moscow Institute of Physics and Technology

Tensor product structures play a vital role in quantum information theory. Positivity
of linear maps under tensor powers was analyzed in the recent seminal paper [1] where
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the notions of n-tensor-stable positive maps were introduced. Such maps were found to
provide new bounds on quantum channel capacities.

Definition. A linear map Φ : B(Hd ) 7→ B(Hd ) is called n-tensor-stable positive if the
map Φ⊗n is positive.

We give a full characterization of 2- and 3-tensor-stable positive qubit maps (d = 2) [2].
We start by analysis of unital qubit maps Φ satisfying Φ[I ] = I . Such maps can be ex-
pressed in the form Φ[X ] = W (Υ[V X V †])W † where V and W are appropriate unitary
operators, Υ[X ] = 1

2
∑3

j=0λ j tr[σ j X ]σ j =
∑3

j=0 q jσ j Xσ j , with σ0 = I and {σi }3
i=1 being

a conventional set of Pauli operators [3]. Thus, an n-qubit unital map Φ⊗n is positive if
and only if Υ⊗n is positive.

Theorem 1. Υ is 2-tensor-stable positive if and only if Υ2 is completely positive, i.e. λ2
0±

λ2
3 Ê |λ2

1 ±λ2
2|.

Theorem 2. Υ is 3-tensor-stable positive if and only if the following 12 inequalities are
satisfied:

λ3
0 −λ3

i −3λiλ
2
j +3λ0λ

2
k Ê 0,

λ3
0 +λ3

i +3λiλ
2
j +3λ0λ

2
k Ê 0,

where (i , j ,k) is a permutation of indices (1,2,3), i.e. i , j ,k = 1,2,3 and i 6= j 6= k 6= i .

An interior map of the cone of positive non-unital qubit maps Φ : (B(H2))+ 7→
(B(H2))+ can be represented in the form of concatenation Φ[X ] = B(Υ[AX A†])B†

where A,B ∈ B(H2) are positive-definite operators [4,5]. As A and B are non-
degenerate, the condition 〈ϕ|Φ⊗n[|ψ〉〈ψ|]|ϕ〉 Ê 0 holds for all |ψ〉, |ϕ〉 ∈ H2n if and only
if 〈ϕ̃|Υ⊗n[|ψ̃〉〈ψ̃|]|ϕ̃〉 Ê 0 holds for all |ψ̃〉, |ϕ̃〉 ∈ H2n , since |ψ̃〉 = A⊗n |ψ〉 and |ϕ̃〉 =
(B†)⊗n |ϕ〉. Thus, the positivity of a tensor product of non-unital maps Φ⊗n is equiva-
lent to the positivity of the tensor product of corresponding unital maps Υ⊗n . In other
words, the above theorems can be applied for characterization of 2- and 3-tensor-stable
positive non-unital qubit maps too.

The study is supported by Russian Science Foundation under project No. 16-11-00084
and performed in Moscow Institute of Physics and Technology.
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NEW SIMPLE LIE P-ALGEBRA OF DIMENSION 248
OVER A FIELD OF CHARACTERISTIC 2

A.N. Grishkov1

1shuragri@gmail.com, University of Sao Paulo, Brazil

The classification of simple finite dimensional Lie algebras over fields of characteristic
p = 2 and p = 3 is open and difficult problem. In the case of p-algebras this problem is
more easy but still open too. In the case of characteristic p = 2 the last new simple finite
dimensional Lie p-algebra (of dimension 34) was constructed by V. Kac and B. Weisfeiler
in 1969 (see [1]).

We constructed (in collaboration with V.Kac) new simple finite dimensional Lie p-
algebra E248 which is the direct product of Cartan special Lie p-algebra S(5) of dimension
124 and dual S(5)-module S(5)∗. It is clear that di mE248 = 248.
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WEIERSTRASS CONTINUOUS VARIETIES ARISING FROM COVERINGS OF
COMPACT GROUPS AND TENSOR APPROXIMATION PROBLEMS

R. N. Gumerov1

1renat.gumerov@kpfu.ru, Kazan (Volga region) Federal University

Motivated by problems in topological groups theory and tensor analysis [1,2], we con-
sider polynomials in one variable over Banach algebras of continuous functions.

As is well known, parameterized families of polynomials arise in different branches
of Mathematics. For instance, in connection with the Weierstrass preparation theorem
there naturally appear the covering mappings associated with the polynomials whose co-
efficients are holomorphic functions.

Let X be a topological space. A Weierstrass polynomial of degree n ∈ N over X is a
mapping R : X ×C→C of the form

R(x, z) = zn +
n∑

j=1
f j (x)zn− j ,

where x ∈ X , z ∈ C, and the coefficients f1, . . . , fn are continuous functions from X into
C. A Weierstrass polynomial R is said to be separable if, for every x ∈ X , the polynomial
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R(x, z) in the variable z with complex coefficients has no multiple root in C. For a sepa-
rable polynomial R, consider the subspace W in X ×C defined as follows:

W = {(x, z) ∈ X ×C | R(x, z) = 0}.

The space W and the projection onto the first coordinate pr : W → X : (x, z) 7→ x are
called a Weierstrass continuous variety and a polynomial covering mapping associated with
the Weierstrass polynomial R, respectively.

The properties of Weierstrass polynomials over algebras of continuous functions and
polynomial coverings were studied by various authors (see, for instance, [3] and references
therein).

One of the main tools in our study of Weierstrass continuous varieties associated with
polynomials over compact groups is the covering group theorem [4, Theorem 1]. This
theorem is a generalization of Pontryagin’s theorem about lifting a group structure [5,
Theorem 79] for not necessary locally connected compact groups. As an example, we
consider the coverings of the P-adic solenoids studied in [6].
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In 2012, Alahmadi, Jain and Leroy considered the concept of ADS modules. A right
module M over a ring R is said to be ADS if for every decomposition M = S ⊕T and every
complement T ′ of S, we have M = S ⊕T ′. The authors Quynh and Kosan continued their
work and obtained nice results of ADS modules (see [2]). In Proposition 2.2 of [1], the
authors showed that if M and N are modules and X = N⊕M , then N is essentially pseudo
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M-injective if and only if for any complement K of N in X with K ∩M = 0, X = N ⊕K .
Combination of the above problems, we consider generalizations of ADS modules, named
generalized ADS modules.
Definition. A module M is called generalized ADS if, for every decomposition M = S ⊕T

of M and every complement T ′ of S with T ′∩T = 0, M = S ⊕T ′.
We have the implication ADS =⇒ g ener al i zed ADS. However, the converse is not

true in general. The following example show that a generalized ADS module is not an
ADS module:

Example. Let R =
F F F

0 F 0
0 0 F

 where F is a field which has 2 elements. Call N = e11R.

We have N be an automorphism-invariant module, indecomposable, not quasi-injective
with End(N ) local. Consider M = N ⊕N . Then, M is a generalized ADS module but M is
not an ADS module.

It is well-known that M is ADS if, for any decomposition M = A⊕B , then A and B are
relatively injective. For generalized ADS modules, we obtained the following results:
Theorem. M is generalized ADS if, for any decomposition M = A ⊕B , then A and B are

relatively essentially pseudo-injective.
We know that every direct summand of an ADS module is an ADS module. However,

direct summand of generalized ADS modules under weak conditions.
Proposition. Let M be a generalized ADS module. Then:
(1). Every CS direct summand of M is generalized ADS.
(2). If M is a distributive module then every direct summand of M is generalized ADS.
In the following theorem, we study the properties related to a generalized ADS module

M when it is semisimple in the category σ[M ].
Theorem. The following conditions are equivalent for a module M :
(1). M is semisimple.
(2). Every module in σ[M ] is generalized ADS.
(3). Every finitely generated module in σ[M ] is generalized ADS.
(4). Every 3-generated module in σ[M ] is generalized ADS.
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CHOQUET ORDER OF ORTHOGONAL MEASURES
AND ABELIAN SUBALGEBRAS
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The aim of the paper is to show equivalence between two seemingly different ordered
structures resulting in functional analysis. On one side, it is the structure of abelian sub-
algebras of an operator algebra ordered by the set theoretic inclusion. This structure cov-
ers the normal part of the whole algebra and it is an important operator theoretic invari-
ant. It has received a great deal of attention recently in connection with topos approach
to foundations of quantum theory and plays a central role in “bohrification program”
for quantum structures. The other structure has geometric content. It is the the set of
orthogonal representing measures on a compact convex set endowed with the Choquet
order. This order plays a decisive role in Choquet theory and has important applications
to decompositions of states in quantum mechanics and elsewhere.

Let us state a few definitions. Given a von Neumann algebra M , we shall denote by
V (M ) the poset of all abelian von Neumann subalgebras containing the unit of M . The
order is given by the set theoretic inclusion.

Let K be a compact convex set in a locally convex topological space X . The symbol
C (K ) will stand for the C∗-algebra of all continuous complex functions on K . Let A(K )
and P (K ) represent the set of all continuous affine functions on K and all continuous
convex functions on K , respectively. By a Radon measure µ on K we mean an element in
the dual space C (K )∗, canonically identified with a regular Borel measure dµ on K . The
set of all probability Radon measures on K will be denoted by M+

1 (K ). Letµ ∈ M+
1 (K ). The

point b(µ) ∈ K is called the barycenter of µ if, for each a ∈ A(K ), a(b(µ)) = ∫
K a(ω)dµ(ω) .

Measure µ is called representing for a given point x ∈ K if x is the barycenter of µ. The
set of all representing measures of x will be denoted by M+

x (K ). Let µ and ν be positive
Radon measures. The Choquet order relation is defined in the following way [1]:

µ≺ ν if µ( f ) É ν( f ) for all f ∈ P (K ) .

Let us now specify the convex theory to the state spaces of C∗-algebras. Let S(A ) be
the set of all states (norm one positive functionals) on C∗-algebra A endowed with the
weak∗-topology. It is a compact convex set. Let us fix a state ϕ on A . The measure µ ∈
M+
ϕ (S(A )) is called orthogonal if, for each Borel set E ⊂ S(A ), the positive functionalsϕE

and ϕS(A )\E on A given by ϕE (a) = ∫
E a(ω)dµ(ω) and ϕS(A )\E (a) = ∫

S(A )\E a(ω)dµ(ω)
are orthogonal. (Recall that the positive functionals are called orthogonal if there is no
nonzero positive functional dominated by both of them.)

Let us denote by Oϕ(A ) the set of all orthogonal measures in M+
ϕ (S(A )).

We have proved the following main result linking Choquet order with the set theoretic
order on abelian subalgebras.

Theorem. Let ϕ be a faithful normal state on a von Neumann algebraM . Then Oϕ(M )
is order isomorphic to V (M ).

An important role in the poset V (M ) is played by finite dimensional subalgebras that
are unions of finitely many atoms. Given a von Neumann algebra M , let V f i n(M ) denote
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the set of all finite dimensional unital abelian subalgebras of M ordered by the set theo-
retic inclusion. For a state ϕ on a C∗-algebra A let O

f i n
ϕ (A ) stand for the the set of all

measures in Oϕ(A ) that have finite support ordered by Choquet order. We have identified

these two structures by showing that O
f i n
ϕ (M ) is order isomorphic to V f i n(M ).
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ON CONTROL OF N-LEVEL QUANTUM SYSTEMS
BY NON-SELECTIVE MEASUREMENTS
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Manipulation by quantum systems using back-action of non-selective quantum mea-
surements is considered as a useful resource for various problems [1,2,3]. We consider the
problem of maximizing the probability of transition from a given initial state to a given
final state of an n–level quantum system using non–selective quantum measurements
as control action [4]. We estimate from below the maximum transition probability at-
tained by a fixed number of measurements and find optimal observables which achieve
this estimate.

The evolution of the density matrix ρ of a quantum system between measurements is
described by Schrödinger equation

i
dρ

d t
= [H ,ρ].

Hence density matrix between measurements is transformed by unitary evolution op-
erator Ut = e−i H t : ρ → Ut (ρ) := e−i H tρei H t . Under the influence of non–selective
measurement of an observable Q, density matrix of the system is transformed ac-
cording to the following rule: ρ → MQ (ρ) := ∑

i PiρPi . Here Pi are spectral pro-
jectors of Q. Non–selective measurements of Qk at time instants tk and uni-
tary evolution during time intervals [tk , tk+1] together define the following trans-
formation of the density matrix: ρN = U(T−tN−1) ◦ MQN ◦ U(tN−1−tN−2) . . .MQ1 ◦
Ut1(ρ0). The problem of maximizing the transition probability from an initial state
|ψi 〉 to a final state |ψi 〉 at time T on the set consisting of sequences of observ-
ables Q1, . . . ,QN can be formulated as maximization of the transition probability
PN [Q1, . . . QN ] = 〈ψ f |U(T−tN−1) ◦ MQN ◦ . . . ◦ MQ1 ◦ Ut1(|ψi 〉〈ψi |)|ψ f 〉. Opti-

mal observables Q
opt
1 , . . . ,Q

opt
N are those which satisfy P max

N := max
Q1,...QN

PN [Q1, . . .QN ] =
PN [Q

opt
1 , . . . ,Q

opt
N ].

We consider the non-trivial case |ψ f 〉 6= |ψi 〉. For this case, we can define the matrices
σx = |ψi 〉〈ψ⊥

i | + |ψ⊥
i 〉〈ψi |, σy = i (|ψi 〉〈ψ⊥

i | − |ψ⊥
i 〉〈ψi |), and σz = I− 2|ψi 〉〈ψi |. Here

|ψ⊥
i 〉 =ψ/||ψ||, where ψ= |ψ f 〉−〈ψi |ψ f 〉|ψi 〉.
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Theorem. Let |ψi 〉 and |ψ f 〉 be initial and final states of the system, |ψ f 〉 6= |ψi 〉, 𝜆 :=
〈ψ f |𝜎|ψ f 〉 and a := 〈ψi |𝜎|ψi 〉. Then maximum P max

N [ψi ,ψ f ] of the transition probability
satisfies the estimate

P max
N [ψi ,ψ f ] Ê 1

2

(
1+

[
cos

∆ϕ

N +1

]N+1)
.

Here ∆ϕ=∠(a,𝜆) = arccos
[
2|〈ψ f |e−i T H |ψi 〉|2 −1

]
.
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A FAST ALGORITHM FOR COUNTING GCD OF NATURAL NUMBERS
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In our report we develop a new algorithm for counting the greatest common divisor
GCD of natural numbers. Our algorithm is based on the k-ary GCD algorithm and uses
the Farey Series to approximate the relation A/B of given naturals.

We remind that k-ary algorithm is a generalization of the binary GCD algorithm and
was invented in 1990 by J. Sorenson [1]. Let k = 2s be chosen, and A > B > 0 be naturals
that have no common divisors with k (i.e. A, B are odd). The k-ary algorithm consists of
iterations. At each iteration the algorithm searches for small integers x and y such that

Ax +B y ≡ 0 mod k. (1)

Then set C = (Ax +B y)/k is defined and the original pair (A;B) is replaced by a new pair
(B ;C ) or (C ;B) depending on whether C < B holds or not. The procedure stops when
second argument B becomes equal to 0. Then the first argument A is the GCD that we
need or its multiple. To remove extra factors from GCD g that we found we need to apply
the standard Euclid algorithm g = Eucl i d_GC D(A;Eucl i d_GC D(B ; g )), where A, B are
original integers.

Our Algorithm
Let q be equal to A/B mod k, 0 É q < k. From (1) we have

y ≡−Ax/B( mod k) =−qx( mod k) → y =−qx +ks for some s ∈ Z.
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So we have a possibility to diminish C by changing parameters x and s. Let us define a
rational r = A/B , r > 1. Then

|Ax +B y | = B |r x + y | = B |r x −qx +ks| = Bk|((r −q)x)/k + s|,
Let r0 = (r −q)/k mod 1, 0 É r0 < 1. We search for an integer x < k such that function

d(x) = r0x takes a minimal value.

Theorem 1. For any α ∈ (0;1), there exists a fraction m/n with 0 < m,n < k such that
ρ(α,m/n) = |α−m/n| É 1/(k −1).

Now we can give a sketch of instructions for the Algorithm:
1. Let k = 2s and odd integers A > B > 0 be given. Calculate r = A/B and q = A/B ( mod

k) and define r0 = (r −q)/k mod 1, 0 É r0 < 1, s = (r −q)/k − r0.
2. Find a fraction m/n close to α= r0 as in Theorem 1.
3. Define x = n and y =−((q+sk)x+mk). Set C equal to (Ax+B y)/k. While C is even,

divide C by 2.
4. Define a new pair (B ;C ) and go to the next step.
Example. A = 30825, B = 583, k = 16.

1. r = A/B = 52,87, q = A
B mod k = 9

7 mod 16 = 15, r0 = (r − q)/k mod k = 0,37, s =
(52,87−15)/16−0,37 = 2.
2. Find m/n = 4/11.Define x = 11, y = −(15+ 2 · 16) · 11− 4 · 16 = −581. Calculate C =
(Ax +B y)/k = (30825 ·11−583 ·581)/16 = 22. After reduction by 2, we obtain C = 11.

Conclusion
Our Algorithm has the same complexity estimate as the standard k-ary method,

namely O(n2/lnk), when k does not exceed a processor’s word. But at each iteration
its coefficient of reduction A/C exceeds k −1 and significantly overcomes the analogous
coefficient of the standard k-ary equal to

p
k/2.
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SOME PROBLEMS FOR LINEAR MEASURE ON 3X3 MATRICES

M. Matvejchuk1
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Kazan, Russia

In the book [1] problems were formulated about description of the measure on quan-
tum logics (see Problem 110, page 371, and the Problem 88, page 547). In present paper
we formulate problems whose solution can solve Birkhoff’s problems in quantum logics
(of projections in Hilbert space with conjugation operator).

Let R3 be the unitary (=Hermitian) real space with usual scalar product (·, ·) and let
S2 = {x ∈ R3 : ‖x‖ = 1} be the unit sphere in R3. Denote by B the set of all self-adjoint
operators of the form c[(·,e)e⊥+ (·,e⊥)e]. Here c ∈R, e, e⊥ ∈ S2, (e,e⊥) = 0.
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For any operator (·,e)e⊥+(·,e⊥)e there exist vectors ψ, ψ⊥ ∈ S2, (ψ,ψ⊥) = 0 such that
(·,e)e⊥+(·,e⊥)e = (·,ψ)ψ−(·,ψ⊥)ψ⊥. Let us represent a number c Ê 0 in the form c = ab,
a Ê 0, a2 −b2 = 1.
Definition. Two operators a1b1[(·,e1)e⊥1 + (·,e⊥1 )e1], a2b2[(·,e2)e⊥2 + (·,e⊥2 )e2] are said

to be orthogonal

if a1a2(e1,e2) = b1b2(e⊥1 ,e⊥2 ) and a1b2(e1,e⊥2 ) =−b1a2(e⊥1 ,e2).

Note that: 1) Any maximal set of mutually orthogonal operators includes three elements.
2) Let a1b1[(·,e1)e⊥1 +(·,e⊥1 )e1], a2b2[(·,e2)e⊥2 +(·,e⊥2 )e2], a3b3[(·,e3)e⊥3 +(·,e⊥3 )e3] be mu-
tually orthogonal. Then

a1b1[(·,e1)e⊥1 + (·,e⊥1 )e1]+a2b2[(·,e2)e⊥2 + (·,e⊥2 )e2]+a3b3[(·,e3)e⊥3 + (·,e⊥3 )e3] = 0.

Define a function F : B →R with the properties:
(1) F (ab[(·,e))e⊥ + (·,e⊥)e]) = abF ((·,e)e⊥ + (·,e⊥)e) (then F ((·,ψ)ψ− (·,ψ⊥)ψ⊥) =

−F ((·,ψ⊥)ψ⊥− (·,ψ)ψ) were ab[(·,ψ)ψ− (·,ψ⊥)ψ⊥] ∈ B);
(2) a1b1F (·,ψ1)ψ1 − (·,ψ⊥

1 )ψ⊥
1 )+a2b2F (·,ψ2)ψ2 − (·,ψ⊥

2 )ψ⊥
2 ) =

= F (a1b1[(·,e1)e⊥1 + (·,e⊥1 )e1])+a2b2[(·,e2)e⊥2 + (·,e⊥2 )e2]

for any mutually orthogonal operators a1b1[(·,e1)e⊥1 +(·,e⊥1 )e1], a2b2[(·,e2)e⊥2 +(·,e⊥2 )e2].

Problem 1. Can we extend the function F (·) to the linear functional on the set of all self-
adjoint operators in R3?

It is interesting to prove the weak variant of Problem 1.

Problem 2. Does the equality

F ((·,e1)e1 − (·,e2)e2)+F ((·,e2)e2 − (·,e3)e3) = F ((·,e1)e1 − (·,e3)e3)

hold for all mutually orthogonal vectors e1, e2, e3 ∈ S2?
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Let (M , g ) be an n-dimensional (n Ê 2) complete Riemannian manifold. Recall here
that f ∈C 2M is subharmonic (resp. superharmonic or harmonic) if

∆ f Ê 0 (resp. ∆ f É 0 or ∆ f = 0)
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for the Laplace-Beltrami operator ∆ f = div (grad f ).
The following lemma is true.

Lemma. If (M , g ) is a simply connected complete Riemannian manifold, then any super-
harmonic (or subharmonic) function f ∈C 2M with ‖grad f ‖ ∈ L1(M , g ) is harmonic.

A diffeomorphism f : (M , g ) → (M̄ , ḡ ) onto another Riemannian manifold (M̄ , ḡ ) is
called conformal if it preserves angles between any pair of curves. From the Lemma above
we conclude that the following theorem holds.

Theorem 1. Let (M , g ) be an n-dimensional (n Ê 3) simply connected complete Rieman-
nianmanifold, and f : (M , g ) → (M̄ , ḡ ) be a conformal diffeomorphism onto another Rieman-
nian manifold (M̄ , ḡ ) such that

ḡ = e2σg and s É e2σ s̄

for some function σ ∈ C 2M and the scalar curvatures s and s̄ of (M , g ) and (M̄ , ḡ ), respec-
tively. If ‖gradσ‖ ∈ L1(M , g ), then f is a homothetic map.

A diffeomorphism f : (M , g ) → (M̄ , ḡ ) is called projective or geodesicmapping if f maps
any geodesic curve in (M , g ) onto a geodesic curve in (M̄ , ḡ ). In this case from the Lemma
above we conclude that the following theorem is true.

Theorem 2. Let (M , g ) be a simply connected complete Riemannian manifold and f :
(M , g ) → (M̄ , ḡ ) be a projective diffeomorphism such that

traceg Ri c Ê s or traceg Ri c É s

for the scalar curvature s and the Ricci tensor Ri c of (M , g ) and (M̄ , ḡ ), respectively. If the
gradient of the function log

(
det ḡ
det g

)
has integrable norm on (M , g ) then f is an affine map.

The work of the second author was supported by RBRF, grant 16-01-00053 (Russia).
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COMPUTABLE NUMBERINGS AND REDUCIBILITY
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Uniform computations of families of computably enumerable sets, also called com-
putable numberings, are a classical object of research in the theory of algorithms. The
theory of numberings is one of the fundamental topics in computability theory and math-
ematical logic. It is basically due to Gödel’s idea to code countable families of objects by
numbers, so that objects of the family cann be effectively identified with numbers, or in-
dices, and studied from their indices. Given its relevance, the theory of numberings has
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seen the contributions of many distinguished scholars. While numberings are a power-
ful tool to use the set of natural numbers in order to study families of constructive ob-
jects (in recursive algebra, recursive model theory, etc.), they are an interesting object of
study in themselves: Here, an important device is that of reducibility between number-
ings, where a numbering is reducible to another numbering, if there is an effective way
to go from indices of an object in the first numbering to indices of the same object in the
second numbering. Thus the relative complexity of numberings of objects of a same fam-
ily can be measured by this notion of reducibility, and gives rise to the so called Rogers
upper semilattice of the family, whose elements are the degrees of numberings, where
two numberings have the same degree if they are reducible to each other.

Aim of this talk considers reductions between types of numberings; these reductions
preserve the algebraic properties of Roger’s Semilattices. It is shown how these reductions
can be used to answer some open problems. Furthermore, it is shown that for the basic
types of numberings, one can reduce the left-r.e. numberings to the r.e. numberings and
the k-r.e. numberings to the (k +1)-r.e. numberings; all further reductions are obtained
by concatenating these reductions.

The part of the work is supported by Social Policy grant from Nazarbayev University.
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Let R be an associative ring. For an R-module M we denote by σ[M ] the category of
those R-modules which are submodules of M-generated modules or the Wisbauer cate-
gory.
σ[M ] is the full subcategory of the category of right R-modules consisting of all sub-

modules and homomorphic images direct sums of copies of the module M . Note thatσ[R]
coincides with the category of all modules.

It is well known [4] that the properties of module categories of ring allow to character-
ize the properties of the ring.
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A classic result of this kind is that every R-module is projective if and only if the ring
R is a direct sum of matrix rings over division ring.

In the book [2] Wisbauer has been shown that many of the homologous classifications
can be transferred to the category of σ[M ].

The report examines the properties of the module M , under which category of σ[M ] is
projective every finitely generated flat module.

Note that the ring in which any finitely generated flat module is projective first consid-
ered prof. Sakhaev (see. [3]) and have been studied by many authors (see [4]). In particu-
lar, it remains an open question as to whether the condition is done all right projectivity
of finitely generated flat modules if all left projective finitely generated flat modules.
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ON AUTOMORPHISM-INVARIANT RINGS AND MODULES
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In this talk, we study rings having the property that every right ideal is automorphism-
invariant. Such rings are called right a-rings. It is shown that (1) a right a-ring is a direct
sum of a square-full semisimple artinian ring and a right square-free ring, (2) a ring R is
semisimple artinian if and only if the matrix ring Mn(R) is a right a-ring for some n > 1,
(3) every right a-ring is stably-finite, (4) a right a-ring is von Neumann regular if and
only if it is semiprime, and (5) a prime right a-ring is simple artinian. We also describe
the structure of an indecomposable right artinian right non-singular right a-ring as a
triangular matrix ring of certain block matrices.
Definition. A module M is called automorphism-invariant if M is invariant under any

automorphism of its injective envelope.
Rings all of whose right ideals are automorphism-invariant are called right a-rings
Example. Consider the ring R consisting of all eventually constant sequences of el-

ements from F2. Clearly, R is a commutative automorphism-invariant ring as the only
automorphism of its injective envelope is the identity automorphism. Hence R is an a-
ring by the above lemma. But R is not a q-ring because R is not self-injective.
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Theorem. A right a-ring is a direct sum of a square-full semisimple artinian ring and a
right square-free ring.
Theorem. A ring R is semisimple artinian if and only if the matrix ringMn(R) for some

n > 1 is an a-ring.
Theorem. If R is a right a-ring, then R is stably-finite, that is, every matrix ring over R

is directly-finite.
Theorem. A right a-ring is vonNeumann regular if and only if it is semiprime, and a prime

right a-ring is simple artinian.
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MODULES WHICH ARE COINVARIANT
UNDER IDEMPOTENTS OF THEIR COVERS
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In this paper we introduce and study the dual notion of X -idempotent-invariant mod-
ules. Namely, a right R-module M is called X -idempotent-coinvariant if there exists an
X -cover p : X → M satisfying that for any idempotent g ∈ End(X ) there exists an endo-
morphism f : M → M such that f ◦p = p◦g . Several characterizations of X -idempotent-
coinvariant modules are provided and used to describe some well-known classes of rings.
Definition. Let M be a R-module. We will say that M is X -idempotent-coinvariant if

there exists an X -cover p : X → M satisfying that for any idempotent g ∈ End(X ) there
exists an endomorphism f : M → M such that f ◦p = p ◦ g .
Example. (i) If X = Mod−R, then each right R-module is trivially X -idempotent-

coinvariant.
(ii) Let R be a right perfect ring. If X is the class of all projective modules, then X -

idempotent-coinvariant modules are precisely the quasi-discrete modules.
Theorem. Let p : X → M be an epimorphic X -cover. Then M is X -idempotent-

coinvariant if and only if Ker (p) is invariant under every idempotent endomorphism of X .
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Theorem. Let f ∈ Z[x] - decomposable monic polynomial of degree n > 1. Assume
p : X → M is anX - cover whereX is closed under isomorphisms and finite direct sums. The
following conditions are equivalent:

(i) M isX -endomorphism-coinvariant.

(ii) If for eachφ ∈ End(X n) for which equality f (φ) = 0 is executed, there is aψ ∈ End(Mn)
such that ψ◦pn = pn ◦φ.

Definition. We call a module M X -discrete if,

(i) M isX -idempotent-coinvariant.

(ii) If f ∈ End(M) with f ◦p = p ◦g for some automorphism g of X , then f is an automor-
phism of M .

Theorem. Assume that M is anX -discrete module. Then End(M) is a semiregular ring.
Moreover, J (End(M)) =∇(M).
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ON CONTROL LANDSCAPES FOR QUANTUM SYSTEMS

A. Pechen1

1pechen@mi.ras.ru, The National University of Science and Technology MISiS, Steklov
Mathematical Institute of Russian Academy of Sciences

The analysis of objective functionals which describe various quantum control problems
attracts high attention of researchers [1, 2, 3]. If a quantum system is isolated from the
environment, its evolution under the action of coherent control can be described by the
Schrödinger equation for an unitary evolution operator Ut :

i
dUt

d t
= (H0 + f (t )V )Ut , Ut=0 = I.
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Here f (t ) ∈ L1([0,T ];R) is the control, e.g., a shaped laser pulse, H0 and V are free and in-
teraction Hamiltonians. For an n–level quantum system, H0 and V are (n×n)-Hermitian
matrices.

First important for applications class of objective functionals describes quantum aver-
age of an observable A (a Hermitian operator) of the system at some final time T > 0:

JA[ f ] = Tr(UTρ0U †
T A).

Here ρ0 is the initial density matrix of the system.
Another class of objective functionals describes the problem of gate or process gener-

ation for an n–level quantum system. Let W ∈ SU (n) be a special unitary matrix. The
goal of control is to find such f that UT is as close as possible (up to unphysical phase) to
the target unitary matrix W . This goal can be described as maximization of the objective
functional

JW [ f ] = 1

n2
|Tr(W †UT )|2.

Much interest is directed towards analysis of traps, that is, local but not global extrema
of the objective functionals [1]. We will discuss the following two results on this topic.

First result is the existence of second-order traps for some systems with n Ê 3 described
by the following
Theorem 1 ([2]). Let [H0,V ] 6= 0 and Vi j = 0 for some i 6= j in the eigenbasis |i 〉 of H0.

Then there exist ρ0 and A such that the control f (t ) ≡ 0 is a second-order trap ofJA.
Second result is the absence of traps for n = 2. Define

T0 := π

|H0 − (1/2)TrH0 + f0V ‖ , f0 :=−Tr(H0V )

Tr(V 2)
.

Theorem 2 ([4]). Let n = 2 and [H0,V ] 6= 0. If T Ê T0, then all maxima and minima of
the objective functionalsJA andJW are global. If f 6= f0, then f is not a trap for any T > 0.
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A FEW STATEMENTS CONCERNING THE OPERATION
OF A CARTESIAN-QUOTIENT EXTENSION OF A THEORY

M. G. Peretyatkin1

1mperetyatkin@gmail.com, Institute of Mathematics and Mathematical Modeling, Al-
maty, Kazakhstan

We consider theories in first-order predicate logic with equality and use general con-
cepts of model theory and algorithm theory. Special concepts used in this paper are de-
fined in [1]. Generally, incomplete theories of either enumerable of finite signatures are
considered.

Given a signature σ and a finite sequence of formulas of this signature:

Å= 〈ϕm1
1 /ε1,ϕm2

2 /ε2, . . . ,ϕms
s /εs〉, (1)

where ϕk is a formula with mk free variables, εk (ȳk , z̄k ) is a formula with 2mk free vari-
ables such that lenȳk = lenz̄k = mk . In the case when εk (ȳk , z̄k ) coincides with ȳk = z̄k
for all k É s, we use the following simpler notation

Å= 〈ϕm1
1 ,ϕm2

2 , . . . ,ϕms
s 〉, (2)

instead of the common entry (1). We consider the most interesting case when the se-
quence (1) satisfies the following technical condition:

(∀k É s)
[
ϕk (x̄k ) and εk (ȳk , z̄k ) are ∃∩∀-presentable in T

]
. (3)

In the work [1], there is a definition to the concept of aCartesian-quotient extensionT 〈Å〉
of a theory T with the sequence Å of the form (1); moreover, there is an interpretation
IT,Å : T → T 〈Å〉 which is said to be a special Cartesian-quotient interpretation of T in T 〈Å〉.
In the case when Å has the form (2), T 〈Å〉 is said to be a Cartesian extension of T .

We formulate the main statement of the paper.

Theorem 1. Given a theory T of signatureσ and a finite tuple of formulas Å of the form (1)
satisfying (3). Interpretation IT,Å : T → T 〈Å〉 preserves locally the model-theoretic property
of ∀∃-axiomatizability.

Statement of Theorem 1 strengthens a result of [1], cf. property p16 in the list (2.3) in
[1], establishing a similar estimate with a longer prefix Σ3; i.e., with the quantifier prefix
of the form ∃∀∃.

One more statement concerning ∀∃-axiomatizability.

Theorem 2. There are decidable theories T and S of pure predicate signatures without
finite models such that T and S are mutually ∃∩∀-definable interpretable in each other;
moreover, T is ∀∃-axiomatizable, while S is not.

A couple of examples of theories having interesting properties:

Theorem 3. There are two theories T and S together with a tuple Å of the form (2) satis-
fying (3) such that both T and S are applicable to Å; moreover, T ≈a S but T 〈Å〉 6≈a S〈Å〉.
Theorem 4. There are two theories T and S together with a tuple Å of the form (2) sat-

isfying (3) such that both T and S are applicable to Å, and we have T 〈Å〉 ≈a S〈Å〉; however,
T 6≈a S.
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The two latter results show that the operation of a Cartesian extension of a theory
as well as that of a Cartesian-quotient extension of a theory is defined in a non-regular
manner relative to the classes of theories modulo algebraic isomorphisms ≈a .
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ON KOSTANT’S THEOREM FOR THE LIE SUPERALGEBRA Q(N )

E. Poletaeva1

1elena.poletaeva@utrgv.edu, School of Mathematical and Statistical Sciences, University
of Texas Rio Grande Valley, Edinburg, TX, USA

A finite W -algebra is a certain associative algebra attached to a pair (g,e), where g is a
complex semisimple Lie algebra and e ∈ g is a nilpotent element. It is a generalization of
the universal enveloping algebra U (g). It is a result of B. Kostant that for a regular nilpo-
tent element e, the finite W -algebra coincides with the center of the universal enveloping
algebra U (g) [4].

In the full generality, the finite W -algebras were introduced by A. Premet [6]. His def-
inition makes sense for classical Lie superalgebras classified by V. G. Kac in [3]. However,
Kostant’s theorem does not hold for Lie superalgebras.

Finite W -algebras for the general linear Lie algebras gl(n) were described in terms of
Yangians (a class of Hopf algebras) by J. Brundan and A. Kleshchev [1]. Then J. Brown,
J. Brundan and S. Goodwin generalized this approach to the general linear Lie superal-
gebras gl(m|n) in the case of a regular nilpotent element [2]. The super-Yangian of the
queer Lie superalgebra Q(n) was defined by M. Nazarov [5].

We study finite W -algebras for basic Lie superalgebras and Q(n) associated to regular
even nilpotent elements. In the case of Q(n) we give an explicit description of the finite
W -algebra in terms of generators and relations and realize it as a quotient of the super-
Yangian of Q(1). Our main result is the following
Theorem ([7]). There exists a surjective homomorphism of the super-Yangian ofQ(1) onto

the finiteW -algebra forQ(n).

This is a joint work with V. Serganova.
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REPRESENTATION OF AN AFFINE CONNECTION
BY THE 2ND ORDER VECTOR-VALUED FORMS

K. V. Polyakova1

1KaPolyakova@kantiana.ru, Immanuel Kant Baltic Federal University, Kaliningrad

We continue the study of frame bundles and tangent bundles of the 1st and 2nd orders
over linear frame bundle on a manifold Xm by means of covariant method [1] and based
on structure equations and derivation formulae. Exterior differential and ’ordinary’ dif-
ferential of forms are considered.

An affine connection is given by 2nd order vectors called horizontal. It is shown that
if we proceed from the 1st and 2nd orders tangent vectors to a manifold Xm , then condi-
tion of invariancy of horizontal subspaces for the 1st order affine connection concerning
action of group is unnecessary. Vertical vertical-valued and horizontal horizontal-valued
forms of the 2nd order are constructed for the 1st order affine connection.

It is proved that a symmetric affine connection in the bundle of tangent linear frames
LXm defines a vertical linear operator (a vertical vertical-valued form of the 2nd order
for the 1st order affine connection) from the 2nd order tangent space into the 1st order
tangent space to a manifold Xm . This operator: 1) takes the 2nd order vector (osculat-
ing vector or diffusors) to its vertical component [2]; 2) is a projector; 3) annihilates all
the 2nd order horizontal vectors; 4) is the identity when restricted to a vertical subspace
V T 2Xm = T Xm of the 2nd order tangent space.

It is shown that an affine connection in tangent linear frame bundle defines a linear
operator (the 2nd order vertical vertical-valued form for the 1st order affine connection)
from the 1st order cotangent space (space of forms of degree 1) into cotangent space of
the 2nd order (space of the 2nd order forms or codiffusors) [2].

It is proved that affine connection in tangent linear frame bundle defines a horizontal
linear operator (the 2nd order horizontal horizontal-valued form for the 1st order affine
connection) in the 2nd order tangent bundle. This operator: 1) takes the 2nd order vector
(osculating) to its horizontal component; 2) is a projector; 3) annihilates all vertical vec-
tors; 4) is the identity when restricted to a horizontal subspace of the 2nd order tangent
space.
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It is shown that the second ordinary differential of a point of a manifold with the 1st
order affine connection can be presented as the sum of the vertical and horizontal pro-
jectors.
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SECTIONS OF HARMONIC MAPPINGS

S. Ponnusamy1

1samy@iitm.ac.in, Indian Statistical Institute

The lecture is based on the class H0 of sense-preserving harmonic functions f = h+g
defined in the unit disk |z| < 1 and normalized so that h(0) = 0 = h′(0)−1 and g (0) = 0 =
g ′(0), where h and g are analytic in the unit disk. In the first part of the lecture, we review
a number of known results concerning convolution of harmonic mappings and recent
advances in discussing harmonic analog on Polya–Schoenberg conjecture on convolution.
As application, we study the harmonic sections (partial sums)

sn,n( f )(z) = sn(h)(z)+ sn(g )(z),

where f = h + g ∈ H0, sn(h) and sn(g ) denote the n-th partial sums of h and g ,
respectively. We prove, among others, that if f = h + g ∈ H0 is a univalent harmonic
convex mapping, then sn,n( f ) is univalent and close-to-convex in the disk |z| < 1/4 for
n Ê 2, and sn,n( f ) is also convex in the disk |z| < 1/4 for n Ê 2 and n 6= 3. Moreover, we
show that the section s3,3( f ) of f ∈C 0

H is not convex in the disk |z| < 1/4 but is shown to
be convex in a smaller disk. Some open problems will be discussed.

ASYMPTOTIC CONFORMAL WELDING
VIA LOEWNER-KUFAREV EVOLUTION

D. Prokhorov1

1prokhorovdv@info.sgu.ru, Saratov State University

For the unit disk D = {z : |z| < 1} and the complement D∗ = {z : |z| > 1} to the closure
of D, let f :D→Ω and F :D∗ →Ω∗ be conformal maps where a domain Ω is bounded by
a closed Jordan curve Γ, and Ω∗ is the unbounded complementary component of Γ. The
composition F−1◦ f determines a homeomorphism of the unit circleT= ∂D= ∂D∗ which
is called a conformal welding. Suppose that 0 ∈ Ω, f (0) = 0, f ′(0) > 0, and F (∞) = ∞,
F ′(∞) > 0.



D. Prokhorov 65

An asymptotic conformal welding for domains close to D was proposed by the author
[1]. It is based on asymptotic formulas for conformal mappings due to Siryk [3] and those
in [1].

Theorem A. For the polar coordinates (r,ψ), let Γ = ∂Ω = ∂Ω∗ have the polar equation
r = r (ψ) = 1−δ(ψ), 0 ÉψÉ 2π, where δ(ψ) is twice differentiable and

|δ(ψ)| < ε, |δ′(ψ)| < ε, |δ′′(ψ)| < ε.

Set

h(x) = 1

2π

∫ 2π

0
(δ(ψ)−δ(x))cot

ψ−x

2
dψ, x ∈ [0,2π].

Then, for f : D→ Ω, f (0) = 0, f ′(0) > 0, and F : D∗ → Ω∗, F (∞) = ∞, F ′(∞) > 0, the
conformal welding σ=σ(s) for the domainΩ bounded by Γ= { f (ei s) : 0 É s É 2π} = {F (eiσ) :
0 ÉσÉ 2π} satisfies the asymptotic relation

s +h(s) =σ−h(σ)+O(ε2), s ∈ [0,2π], ε→+0.

From the other side, the Löwner-Kufarev evolution with smooth boundary conditions
also can produce asymptotics for mappings onto domains close to Ω and Ω∗, e.g., for
Ω=D, see [2] for comparison.

Theorem 1. Let the driving function p(z, t ) holomorphic in z ∈ D, Re p(z, t ) > 0, be C 2

in D for 0 É t < T , p(z, ·) be continuous in [0,T ) for z ∈ D, p(z, t ), p ′(z, t ) and p ′′(z, t ) be
bounded in D× [0,T ). Then solutions f (z, t ) to the Loewner-Kufarev differential equation

∂ f (z, t )

∂t
=−z

∂ f (z, t )

∂z
p(z, t )

for z ∈ D and for almost all t ∈ [0,T ), where Ω(0) = D, Ω(t ) = f (D, t ), generate the curves
∂Ω(t ) = Γ(t ) which determine the conformal welding ϕ : T→ T, ϕ = ϕ(ϕ̃), satisfying the
following relation

ϕ= ϕ̃+2 Im p(ei ϕ̃,0)t +o(t ), t →+0.

Research has been supported by the RF Ministry of Education and Science (project
1.1520.2014k).
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NILPOTENT STEINER LOOPS OF CLASS TWO

M.N. Rasskazova1

1maromsk@yandex.ru, Omsk Polytechnik University

By definition a Steiner loop P is a loop such that every two different elements of P∗ =
P \ {1} generate the group C2 ×C2, where C2 is the group of order two. If P is a Steiner
loop then the set P∗ is a 3−geometry (Steiner system of the type S(2,3,n), n = |P∗|) such
that a line lx,y that contains two different elements x, y ∈ P∗ is {x, y, x y}. If (x, y, z) =
(x y.z)(x.y z) then a Steiner loop is nilpotent of class two if it satisfies the identity
((x, y, z), a,b) = 1.

We (in collaboration with A.Grishkov, D.Rasskazova and I.Stulh) described the struc-
ture of nilpotent of class two Steiner loop and calculate the order of free nilpotent of class
two Steiner loop Fn with n generators: Fn = 2m , where m = 1

3(22n−1+1)−3 ·2n−1+n+1.

BIANCHI IDENTITIES IN PRINCIPAL BUNDLE

N. A. Ryazanov1

1ryazanov-92@mail.ru, Immanuel Kant Baltic Federal University, Kaliningrad

Structure equations of the bundle Gr (Mn), whose base is an n-dimensional smooth
manifold Mnand typical fiber is a Lie group Gr , have the form: dωi = ω j ∧ωi

j , dωα =
Cα
βγ
ωβ∧ωγ+ωi ∧ωαi ; i , j , ... = 1,n; α,β, ... = n +1,n + r . The derivation formula can be

written as [1]: d A = ωi ei +ωαeα, where A ∈ Gr (Mn). The set of the first order vectors
e = {ei ,eα} forms a frame for the tangent space Tn+r = span(ei ,eα) at A to the bundle
Gr (Mn). The vectors eα are tangent to the fiber, they are called vertical, vectors ei are
called non-vertical. The coframe ω= {ωi ,ωα} is dual to the frame e.

We define the horizontal vectors ẽi = ei−Γαi eα and vertical connection form ω̃α =ωα+
Γαi ω

i (sf. [1]), and ∆Γαi −ωαi = Γαi jω
j . It is shown that the vertical connection form ω̃α

are annulled by the horizontal vectors ẽi , and acting on the non-vertical vectors ei , they
give the components of the connection object Γαi . Exterior differential of the connection
forms is

dω̃α =Cα
βγω̃

β∧ ω̃γ− 1

2
Rαi jω

i ∧ω j . (1)

The structure equation (1) for the forms of the fundamental-group connection can be
written as follow dω̃α = Cα

βγ
ω̃β∧ ω̃γ−Ωα, where Ωα = 1

2Rαi jω
i ∧ω j are the curvature

forms, Rαi j = 2Γα[i j ] −2Cα
βγ
Γ
β
i Γ

γ
j are the components of the curvature tensor R = {Rαi j }.

It is shown that the horizontal curvature forms Ωα acting on a pair of horizon-
tal or non-vertical vectors provide the curvature tensor R = {Rαi j }, i.e. Ωα(ẽi , ẽ j ) =
Rαi j , Ωα(ei ,e j ) = Rαi j , and Ωα vanish if at least one vector is vertical, i.e. Ωα(eβ,eγ) = 0,
Ωα(eβ,ei ) = 0, Ωα(eβ, ẽi ) = 0.

Prolonging the structure equations (1) and taking into account the tensor charac-
ter of R, we obtain (Rαi j k + 2Cα

βγ
R
β
i jΓ

γ

k )ωi ∧ω j ∧ωk = 0, where Rαi j k are Pfaffian (non-
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holonomic) derivatives of the curvature tensor Rαi j . Using the linear independence of the
basis forms we have

Rα[i j k] +2Cα
βγR

β
[i jΓ

γ

k] = 0.

Lemma. Alternation in three indices of an object, which is skew-symmetric in two of them,
coincides with the cycling in these three indices.

Theorem. In an arbitrary principal bundle the Pfaffian analog for the Bianchi second
identities for the components of the curvature tensor isRα{i j k}+2Cα

βγ
R
β
{i jΓ

γ

k} = 0; the covariant

analog of the Bianchi second identities is∇{k Rαi j }+Rαl { j T l
ki } = 0, where T l

ki is torsion of affine
connection additionally set on manifold Mn .
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ABOUT NON-HOLONOMICITY OF QUOTIENT MANIFOLD OF HOLONOMIC
DISTRIBUTION ON SEMI-HOLONOMIC SMOOTH MANIFOLD

Ju. I. Shevchenko, E. V. Skrydlova1

1eskrydlova@kantiana.ru, Immanuel Kant Baltic Federal University, Kaliningrad

Akivis derivation formulas [1] for an n-dimensional smooth manifold Mn can be writ-
ten in the form d x =ωI eI , de I =ωJ

I e J +ωJ e I J , ... (I , ... = 1,n), where d x is vector char-
acterizing the displacement of the point x ∈ Mn up to the 1st order; ωI , ωI

J , ... are linear
differential forms that satisfy the Laptev structure equations [2]:

dωI =ωJ ∧ωI
J , dωI

J =ωK
J ∧ωI

K +ωK ∧ωI
JK , ...; (1)

ωI
[JK ] =λI

JK Lω
L , λI

(JK )L = 0,λI
{JK L} = 0, (2)

where the square brackets denote alternation, round brackets denote symmetry, and
braces denote cycling. The manifold Mn with the structure equations (1), in which the
three-index forms ωI

JK satisfy the conditions (2) is called smooth semi-holonomic man-

ifold MS
n . If the condition of the local symmetry (21) degenerates into a condition of

symmetry ωI
[JK ] = 0, then Mn is called [3] holonomic smooth manifold M H

n . On the
other hand, if the condition (21) does not hold, then we will say about internally non-
holonomic smooth manifolds M N

n . Finally, if instead of the equations (12) we have more
general structure equations, then we say about externally non-holonomic smooth mani-
fold N Mn .

Equations for distribution Tm(Mn) of m-dimensional tangent subspaces Tm on semi-
holonomic manifold Mn areωαi =Λαi Jω

J (i , ... = 1,m,α, ... = m +1,n). Denote Nα
i j =Λα[i j ]
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is tensor of non-holonomicity of the distribution. Consider a holonomic distribution
Tm,n , when Nα

i j = 0 and Mn = Mm(Fn−m), where Fn−m is quotient manifold of m-
dimensional submanifolds Mm ⊂ Mn enveloping subspaces Tm . For the smooth manifold
Fn−m we have

dωα =ωβ∧Ωαβ, Ωαβ =ωαβ−Λαiβωi ;

dΩαβ =Ωγ
β
∧Ωαγ +ωγ∧Ωαβγ+Nα

i jβω
i ∧ω j ,

where Nα
i jβ = λαi jβ + 2λα

β[i j ] is the external non-holonomicity object for the manifold
Fn−m , as well as

Ωα[βγ] =λαβγδωδ+Nα
βγiω

i , Nα
βγi =λαβγi +2λαi [βγ]

is the internal non-holonomicity object for the manifold Fn−m . These objects satisfy the
following differential comparisons:

∆Nα
i jβ+ωα[i j ]β

∼= 0, ∆Nα
βγi +ωα[βγ]i

∼= 0 (mod ωI ).

Theorem. The quotient manifold of holonomic distribution T S
m,n on semi-holonomic

smooth manifold MS
n is externally and internally non-holonomic smooth manifold

N F N
n−m .

The quotient manifold holonomic distribution T H
m,n on holonomic manifold M H

n is holonomic
smooth manifold F H

n−m .
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METHODS OF DEMOLITION OF THE BOUNDARY CONDITIONS
BY MEANS OF PERTURBATION

О. А. Shirokova1

1oshirokova@mail.ru, Казанский (Приволжский) федеральный университет

This paper is devoted to an application of methods of the perturbation theory [1].
The flat filtration flow of fluid through the weakly inhomogeneous flow domain Ω

which has an arbitrary shape and a free boundary, when there is the stationary mode,
is investigated. The boundary value problem for the function of head h(x, y) in Ω flow
with a free surface has the form [2]:

~U =−K (x, y) ·∇h, divU = 0, (x, y) ∈Ω,
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∂h/∂n = 0, (x, y) ∈ Γv ;

h = hi , (x, y) ∈ Γi , i = 1,2;

p = ρg (h(x, y)− y) = 0, (x, y) ∈ Γp ;

p = 0, ∂h/∂n = 0, (x, y) ∈ Γ′y ,

where p — pressure, K (x, y) — filtration coefficient, Γ′y — depression curve, Γv — imper-
meable base, Γp — seepage area, Γi , (i = 1,2) — input and output boundary of the flow
Ω with heads hi .

Since the ground is weakly inhomogeneous, we assume that the filtration flow in Ω is
the result of a perturbation of “reference” flow in the homogeneous ground in the initial
filtration areaΩ0. Thus, we have K (x, y) = K0+εχ(x, y), ε¿ 1, where εχ(x, y) — a small
perturbation of the filtration coefficient, K0 = const.

The variation of the filtration coefficient εχ(x, y) leads to a shift, by δy of the curve
of depression Γy of the reference flow and to perturbations εφ(x, y), εv̄(x, y) , δQ of the
head h0, the speed Ū , and the expense Q in the initial area of filtration Ω0.

The relationship between the function of pressure variations ϕ(x, y) and the displace-
ment of N (x) of Γy is reached through the condition of impermeability on Γy which has
the form:

(∇h · n̄) = (∇h0 +ε∇ϕ) · (n̄ ·δn̄) = 0.

Then we will find an expression for the δn̄. For this we consider in detail the deforma-
tion of the line Γy which is shifted by the vector δ ȳ = εN (x) j̄ .

As the result, we have: δn =−ε ·N ′
x cos 2α · τ̄.

Thus, for the steady flow we get the boundary value problem for the function ϕ(x, y)
in the “reference” field Ω0:

∆ϕ=−K−1
0 (∇h0 ·∇χ), (x, y) ∈Ω0,

∂ϕ /∂n = 0, (x, y) ∈ Γv ,

ϕ = 0, (x, y) ∈ Γ1,Γ2,Γp ,

∂ϕ

∂n
=−sinα ·cosα · ∂

∂S

[ ϕ

1−∂h0/∂y

]
+

+ ϕ

1−∂h0/∂y
·
[ ∂2h0

∂x∂y
· sinα− ∂2h0

∂y2
·cosα

]
, (x, y) ∈ Γy . (1)

Moreover, for the connection between ϕ(x, y) and N (x), the ratio is obtained:

N (x) =ϕ(x, y)/(1−∂h0/∂y).
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ON K T -FIELDS AND SHARPLY 3-TRANSITIVE GROUPS

A. I. Sozutov1, O. V. Kravtsova2

1sozutov_ai@mail.ru, Siberian Federal University
2ol71@bk.ru, School of Mathematics and Computer Science

Sharply 2- and 3-transitive groups are closely related with nearfields, neardomains and
K T -fields [1,2].H. Zassenhaus gave the complete classification of finite 2- and 3-transitive
groups and nearfields [1, p. 419–421], [2, p. 215]. Locally finite sharply 3-transitive groups
were classified by O. Kegel. The locally finiteness of binary finite sharply 2-transitive
groups and nearfields with binary finite multiplicative group was stated in [3]. Locally
finiteness of sharply 3-transitive permutation groups with periodic two points stabilizator
was proved in [4]. The articles [5,6] demonstrate the examples of sharply 2-transitive
groups without regular Abelian normal subgroups, an article [7], using the groups from
[5,6], presents the examples of sharply 3-transitive groups. In particular, there exist K T -
fields (F,σ), where the neardomains (F,+, ·) are not the nearfields. These results gives
another reason to study the K T -fields and the groups T3(F,ε) with additional restrictions
(see necessary definitions in [2, ch. V]).

We study infinite K T -fields (F,ε) and groups T3(F,ε) with some additional conditions
for involution ε and for the group N = F∗h 〈ε〉. An involution x from infinite group K is
said to be finite in K , if any commutator [x, g ] (g ∈ K ) has an finite order. An involution x
from a group K is said to be perfect in K , if any two non-commuting involutions from xK

are conjugated by the involution from xK [1]. The next results were obtained.
Theorem 1. If an involution ε is finite in N = F∗h 〈ε〉, then (F,+, ·) is locally finite field.
Theorem 1 implies

Corollary. Sharply 3-transitive permutation group with finite involution, that stabilizes at
least one point, is locally finite.
Theorem 2. If an involution ε is perfect in N = F∗h 〈ε〉, then (F,+, ·) is (commutative)

field.
Theorem 2 implies the corresponding corollary on the structure of a group T3(F,ε) with

perfect involution.
Supported by RFBR, project No. 15-01-04897a.

References

[1] Hall M. The Theory of Groups. – New York, 1959.

[2] Wähling H. Theorie der Fastkörper. – Essen: Thalen Ferlag. – 1987.

[3] Grundhöfer T. Jabara E. Fixed-point-free 2-finite automorphism groups. – Arch. Math.,
–97 (2011), –July 7. –P. 219–223.



S. E. Stepanov, J. Mikeš 71

[4] Sozutov A. I. Durakov E. B. Local Finiteness of Periodic Sharply Triply Transitive Groups
// Algebra and Logic January-February – 2015. – Volume 54, – Issue 1. – P. 70–84.

[5] Rips E. Segev Y. Tent K. A sharply 2-transitive group without a non-trivial Abelian nor-
mal subgroup // arXiv:1406.0382v4 [math.GR], –22 Oct. – 2014. – P. 1–17.

[6] Tent K Ziegler M. Sharply 2-transitive groups // arXiv:1408.5612v1 [math.GR], – 24
Aug – 2014. – P. 1–5.

[7] Tent K. Sharply 3-transitive groups // Advances in Mathematics, – January, – 2016, –
Volume 286, – Issue 2. – P. 722–728.

NEW APPLICATIONS OF THE GLOBAL DIVERGENCE THEOREMS

S. E. Stepanov1, J. Mikeš2
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S. Bochner devised an analytic technique to obtain vanishing theorems for some geo-
metric objects on a closed (i.e. compact without boundary) Riemannian manifold, under
some curvature assumption (see [1]). Currently, there are two different points of view
about classical Bochner technique; the first one uses the divergence theorem, and the sec-
ond uses the classical maximum principle. In our paper [2] we presented applications of
the classical Bochner technique and, in particular, the divergence theorem to cosmolog-
ical models.

In our report we will use the generalized Bochner technique which used for the case
of noncompact Riemannian manifolds (see [3]). Our proofs will be based on general-
ized divergence theorems and a generalized maximal principle for complete, noncompact
Riemannian manifolds. In particular, in our report will be prove Liouville-type theorems
for some types of complete, noncompact Riemannian almost product manifolds, projec-
tive and Riemannian submersions of complete, noncompact Riemannian manifolds which
generalize similar well known results for closed manifolds.

In particular we will prove a proposition which generalizes the theorem on two orthog-
onal complete totally umbilical distributions on compact Riemannian manifold with non
positive mixed scalar curvature, and its a corollary.

Theorem. Let (M , g ) be a complete, noncompact and simply connected Riemannian man-
ifold with two orthogonal complementary totally umbilical distributions V and H such that
their mean curvature vectors ξV and ξH satisfy the condition ‖ξV +ξH‖ in L1(M , g ). If the
mixed scalar curvature smin of (M , g ) is nonpositive then V and H are integrable and (M , g )
is isometric to a direct product (M1 × M2, g1 ⊕ g2) of Riemannian manifolds (M1, g1) and
(M2, g2) such that integral manifolds ofV and H correspond to the canonical foliations of the
product M1 ×M2.

Corollary. Let (M , g ) be an n-dimensional complete, noncompact and simply connected
Riemannian manifold and f : (M , g ) → (M̄ , ḡ ) be a projective submersion onto another m-
dimensional (m<n) Riemannian manifold (M̄ , ḡ ). If the mixed scalar curvature smin is non-
positive and the mean curvature vector ξH of the horizontal distribution (Ker f∗)⊥ satisfies
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the condition ‖ξH‖ ∈ L1(M , g ), then (Ker f∗)⊥ is integrable and (M , g ) is isometric to a direct
product (M1×M2, g1⊕g2) of some Riemannian manifolds (M1, g1) and (M2, g2) such that
the integral manifolds of Ker f∗ and (Ker f∗)⊥ correspond to the canonical foliations of the
product M1 ×M2.
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THE KILLING TENSORS ON A MANIFOLD
WITH AN EQUIAFFINE STRUCTURE

I. I. Tsyganok1, T. V. Dmitrieva2
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The “structural point of view” of affine differential geometry was introduced by K. No-
mizu in 1982 in the lecture at Münster University with the title “What is Affine Differential
Geometry?” (see [1]). K. Nomizu suggested the term affine differential geometry for ge-
ometry of a manifold M endowed with an equiaffine structure is called affine differential
geometry.

In recent years, there has been a new wave of papers devoted to affine differential ge-
ometry. Today the number of publications (including monographs) on affine differential
geometry reached a considerable level. The main part of these publications is devoted to
geometry of hypersurfaces (see [2] and [3] for the history and references).

In our report, we solve the problem of finding integrals of equations determining
the Killing tensors (see [4] for the definitions, properties and applications) on an n-
dimensional differentiable manifold M endowed with an equiaffine structure.

The first of two present theorems proved in our report is an affine analogue of the
statement published in the paper [6], which appeared in the process of solving problems
in General relativity.
Remark The work of the first author was supported by RBRF grant 16-01-00053 (Russia).
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NONDENSITY OF BUBBLE PAIRS

M. M. Yamaleev1
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Given a 2-computably enumerable (2-c.e.) set D with an effective approximation
{Ds}s∈ω such that |Ds − Ds−1| É 1, we say that L(D) = {s : ∃ x ∈ Ds − D} is the Lach-
lan set of D. It is easy to show that the Turing degree of L(D) doesn’t depend on the
approximation (e.g., by Ishmukhametov [1]), hence we say that deg(L(D)) is the Lach-
lan degree of D. In [1] Ishmukhametov proved that there exists a 2-c.e. set D such that
deg(L(D)) ≡T deg(L(B)) for all 2-c.e. sets B ≡T D, hence the degree of D has a unique
Lachlan’s degree. He called such degrees deg(D) as exact 2-c.e. degrees.

Exact 2-c.e. degrees are superset of the tops of bubble pairs. We say that noncom-
putable 2-c.e. degrees e < d form a bubble pair if all 2-c.e. degree below d is comparable
with e. Bubble pairs was introduced by Arslanov, Kalimullin and Lempp [2], in the same
work they used a generalization of bubble pairs to disprove Downey’s conjecture showing
that partial orders of 2-c.e. and 3-c.e. Turing degrees are not elementarily equivalent.
Moreover, they investigated an important property of bubble pairs, namely, they showed
that the degree e must be c.e., and even more, L(D) ∈ e for all 2-c.e. sets D ∈ d (hence,
the tops of bubble pairs are exact 2-c.e. degrees). So, the distribution of bubble pairs
(and exact degrees as well) in 2-c.e. degrees presents a great interest from a point of view
of distribution of definable singletons in 2-c.e. degrees. In a joint work with Andrews,
Kuyper, Lempp and Soskova we obtained the following result.

Theorem. There exists a noncomputable c.e. degree a such that there is no a pair of
noncomputable 2-c.e. degrees e < d < a which form a bubble pair.

This result contrast with the resent result of Liu, Wu and Yamaleev [3] where they
showed that exact 2-c.e. degrees are downwards dense. As a corollary, we conclude that
in 2-c.e. degrees the class of tops of bubble pairs is a proper subset of the class of exact
degrees.

The work is supported by Russian Foundation for Basic Research (projects 15-41-02507,
15-01-08252), by Russian Government Program of Competitive Growth of Kazan Federal
University, and by the subsidy allocated to Kazan Federal University for the project part
of the state assignment in the sphere of scientific activities (project 1.2045.2014).
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WEIL FOLIATIONS OF ANY SIGNATURE

N. I. Zhukova1
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LetΩm(N ) be the space of external forms of degree m Ê 0, whereΩ0(N ) is the algebra
of smooth functions on a manifold N .

By a Weil geometry of the signature (ν, q−ν) on a q-dimensional manifold N we call the
pair ([g ],∇), where [g ] is the class of conformally equivalent pseudo-Riemannian metrics
of the signature (ν, q−ν) and ∇ is a torsion free linear connection on the manifold N such
that:

(i) there is a map f : [g ] → Ω1(N ) satisfying the equality f (eλg ) = f (g )−dλ for all
λ ∈Ω0(N );

(ii) ∇h + f (h)⊗h = 0 for every h ∈ [g ].
Foliations of a codimension q admitting a Weil geometry of the signature (ν, q −ν) as

the transverse structure are called Weil foliations of the transverse signature (ν, q −ν).
We investigate the influence of the transverse Weil geometry of a foliation (M ,F ) on

topology and geometry of this foliation. We consider Weil foliations on n-dimensional
manifolds.

At first we give the following characterization of Weil foliations.

Theorem 1. A smooth foliation (M ,F ) of the codimension q is aWeil one of the transverse
signature (ν, q −ν)modelled on the Weil geometry (N , [g ],∇) if and only if (M ,F ) is a Cartan
foliation of the type (G ,CO(ν, q −ν)), whereG =CO(ν, q −ν)nRq is the semidirect product
of the conformal group R+ ·O(ν, q −ν) and the Abelian normal subgroup Rq .

Using Theorem 1 we get a criterion for a Weil foliation (M ,F ) to be a pseudo-
Riemannian one.

Consideration of Weil foliations as Cartan foliations allowed us to apply in our investi-
gation the results from [1]. In particular, the holonomy group Γ(L, x) of a leaf L = L(x) of
a foliation (M ,F ) defines the class of conjugated subgroups of the group H =CO(ν, q−ν)
which is denoted by H(L).
Definition. We say that the holonomy group Γ(L, x) of a leaf L of a Weil foliation (M ,F )

isα-essential, if the set H(L) contains an element of the form λ·A ∈CO(ν, q−ν) where λ is a
real number, λ 6= 1, and thematrix A belongs to a compact subgroup of the pseudo-orthogonal
groupO(ν, q −ν).
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Theorem 2. If Weil foliation (M ,F ) of a signature (ν, q −ν) has a leaf L with α-essential
holonomy group, then the closure M := L̄ of the leaf L is an attractor, and M is a minimal
set. The restriction of this foliation on the attraction basinA t tr (M ) is a transversely similar
pseudo-Euclidean foliation of the same transverse signature.
If, moreover, the Weil foliation (M ,F ) is complete, thenM is both a global attractor and a

minimal set, with (M ,F ) is covered by a locally trivial bundle over the pseudo-Euclidean space
of the signature (ν, q −ν).

Several examples are constructed.

The work was funded by RFBR (the project № 16-01-00132) and the Basic Research
Program at the National Research University Higher School of Economics (the project №
98).
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ОПИСАНИЕ СОПРЯЖЕННЫХ ДЛЯ ПРОСТРАНСТВ ГОЛОМОРФНЫХ
ФУНКЦИЙ ЗАДАННОГО РОСТА В ОБЛАСТЯХ КАРАТЕОДОРИ

А. В. Абанин1, Т. М. Андреева2
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Пусть G — область в C, H(G) — пространство всех функций, голоморфных в G.
С каждой непрерывной функцией v : G →R (весом) свяжем банахово пространство

Hv (G) :=
{

f ∈ H(G) : || f ||v := sup
z∈G

| f (z)|
ev(z)

<∞
}

.

По убывающей (возрастающей) последовательности весов V = (vn) образуем проек-
тивный (индуктивный) предел HV (G) := proj Hvn (G)

(
соотв., V H(G) := ind Hvn (G)

)
.

В связи с рядом задач представляет интерес исследование вопроса об описании со-
пряженных с HV (G) и V H(G), удобном для использования в приложениях. В докла-
де будут представлены новые, более общие по сравнению с предыдущими, резуль-
таты в указанном направлении для случая, когда не требуется выпуклость G и ис-
пользуется преобразование Коши функционалов. Ранее сформулированная задача
изучалась для конкретных весовых последовательностей проективного [1] и индук-
тивного [2,3] типов пространств.

Основное ограничение на проективную весовую последовательность, используе-
мое в работе, состоит в предположении, что имеется такая положительная функция
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ρ(z) < dist (z,∂G), что для любого n ∈N существует Cn > 0, при котором

sup
|ζ−z|Éd(z)

vn+1(ζ)+ ln
1

ρ(z)
ÉCn + inf

|ζ−z|Éd(z)
vn(ζ), ∀z ∈G .

Для индуктивной последовательности нужно лишь поменять vn+1 и vn местами. От
G требуется, чтобы она была областью Каратеодори.

При этих ограничениях доказано, что преобразование Коши устанавливает изо-
морфизм между HV (G)

(
или V H(G)

)
и некоторым пространством голоморфных вне

G функций, исчезающих в бесконечности и продолжимых в G как бесконечно диф-
ференцируемые в вещественном смысле функции g с определенной оценкой ∂g /∂z̄.
С помощью известных результатов Е.М. Дынькина о квазианалитическом продол-
жении это пространство может быть реализовано как пространство голоморфных
вне G функций с заданной граничной гладкостью.

Работа выполнена при финансовой поддержке РФФИ (проект № 15-01-01404).
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ПРЕДСТАВЛЕНИЕ АНАЛИТИЧЕСКИХ ФУНКЦИЙ

А. И. Абдулнагимов1
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верситет

Пусть ΛZ = {λk }∞k=1 — перенумерованная (каким-либо образом) в порядке не
убывания модулей последовательность всех комплексных чисел с целочисленны-
ми координатами: λk = m + i l , m, l ∈ Z . Обозначим через D — ограниченную вы-
пуклую область в C и H(D) — пространство функций, аналитических в окрестности
ее замыкания D. Пусть {Kp }∞p=1 — последовательность выпуклых компактов в обла-
сти D, которая строго исчерпывает ее, т.е. Kp ⊂ intKp+1, p Ê 1, (символ int означает
внутренность множества) и D = ∪∞

p=1Kp . Для каждого p Ê 1 введем банахово про-
странство последовательностей комплексных чисел

Qp =
{

d = {dk } : ‖d‖p = sup
kÊ1

|dk |exp HKp (λk ) <∞
}

.
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Пусть Q(D,ΛZ ) =∩pÊ1Qp наделено топологией проективного предела.

Теорема. Пусть D – ограниченная выпуклая область в C . Тогда каждая функция
g ∈ H(D) представляется рядом

g (z) = ∑
m,l∈Z

dm,l e(m+i l )z , z ∈ D. (1)

При этом {dm,l } ∈ Q(D,ΛZ ) и ряд (1) сходится абсолютно и равномерно на ком-
пактных подмножествах области D.

Замечание 1. Согласно теореме Абеля для рядов экспонент из работы [1] (теоре-
ма 3.1) ряд (1) сходится в выпуклой области (возможно неограниченной) абсолютно и
равномерно на ее компактных подмножествах. Эта область определяется при помо-
щи формулы Коши-Адамара для рядов экспонент ([1], теорема 4.1).

Замечание 2. Из леммы 2.5 работы [1] следует, что для каждого набора коэффи-
циентов {dm,l } ∈ Q(D,ΛZ ) сумма g (z) ряда (1) является функцией, аналитической в
области D (но не обязательно в окрестности D).

Литература

[1] Кривошеева О. А. Область сходимости рядов экспоненциальных мономов
// Уфимский матем. журн. – 2011. – Т. 3. – № 2. – C. 43–56.

МЕТОД ПРИБЛИЖЕННОГО КОНФОРМНОГО ОТОБРАЖЕНИЯ
КАНОНИЧЕСКИХ ОБЛАСТЕЙ НА ОДНОСВЯЗНЫЕ И ДВУСВЯЗНЫЕ

ОБЛАСТИ

Д. Ф. Абзалилов, Е. А. Широкова1

1Elena.Shirokova@kpfu.ru, Казанский (Приволжский) федеральный университет

В работе построено отображение единичного круга |ζ| < 1 на произвольную од-
носвязную область D с гладкой границей L, заданной в комплексной плоскости па-

раметрически: z(t ) = x(t )+ i y(t ) =
m∑

k=−m
ck ei kt , t ∈ [0,2π]. Получена такая перепа-

раметризация t = t (θ), θ ∈ [0,2π], кривой L, при которой её представление z(t (θ)) в

виде ряда Фурье не будет содержать отрицательных степеней: z(t (θ)) =
n∑

k=0
Ck ei kθ.

В этом случае отображающая функция имеет вид z(ζ) =
n∑

k=0
Ckζ

k .

Для построения функции t (θ) сначала строится обратная функция θ(t ) = arg z(t )+
q(t ), где

q(t ) =
∞∑

k=1
αk coskt +βk sinkt , t ∈ [0,2π] (1)
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– решение интегрального уравнения Фредгольма 2-го рода

q(t ) = 1

2π

2π∫
0

q(τ)dτ+ 1

π

2π∫
0

q(τ)K (τ, t )dτ+

+ 1

2π

2π∫
0

ln |z(τ)|ctg
τ− t

2
dτ+ 1

π

2π∫
0

ln |z(τ)|L(τ, t )dτ, (2)

где непрерывные ядра K (τ, t ) и L(τ, t ) строятся с использованием исходной парамет-
ризации границы. Уравнение (2) сводится к решению конечной линейной системы
относительно первых коэффициентов разложения (1). Близость решения усечённой
системы к решению бесконечной системы регулируется совпадением коэффициен-
тов отображающей функции, найденных по двум разным формулам.

В случае двусвязной области D задаются две граничные кривые L j : {x = x j (t ), y =
y j (t ), t ∈ [0,2π]}, j = 0,1. Здесь для построения аналитической функции, конформно
отображающей круговое кольцо на D, мы также ищем перепараметризацию каждой
из граничных кривых, решая для производных вспомогательных функций q j (t ),
j = 1,2 интегральные уравнения. Эти уравнения легко приводятся к виду, подобно-
му (2), выделением сингулярных слагаемых с ядром ctg τ−t

2 для применения фор-
мулы Гильберта. Решение также сводится к решению усечённой системы линейных
уравнений. Метод достаточно просто программируется. На рис. 1 приведены при-
меры построения конформных отображений кольца на соответствующие области.

Рис. 1
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МНОГОМЕРНЫЕ ОБОБЩЕНИЯ ТЕОРЕМЫ КЕЗИ

Н. В. Абросимов1, В. В. Асеев2

1abrosimov@math.nsc.ru, Институт математики им. С. Л. Соболева СО РАН
2aseevvv@yandex.ru, Лаборатория Квантовой топологии ЧелГУ

Прямая и обратная теоремы Кези [1] являются обобщением теоремы Птолемея,
они дают, соответственно, необходимые и достаточные условия, когда к четырем
окружностям на плоскости можно провести общую касательную окружность.

Будем называть k-мерную обобщенную сферу S ⊂Rn =Rn ∪ {∞} (n Ê 2, 1 É k < n)
общей φ-касательной для некоторого набора помеченных n-мерных обобщенных
замкнутых шаров B j ⊂Rn с пометками φ j ∈ [0,π], если S касается каждого шара B j ,
причем угол между нормалями S и B j в точке касания p j = S∩B j равенφ j . Для пары
отмеченных n-мерных шаровφi Bi иφ j B j длиной `i j φ-касательного отрезка будем
называть расстояние между точками касания Bi и B j с их общейφ-касательной пря-
мой. Нами получены следующие n-мерные обобщения прямой и обратной теорем
Кези.

Теорема 1. Пусть k-мерная обобщенная сфера S является общей φ-касательной
для четверки помеченных n-мерных обобщенных шаров φ j B j , ( j = 1,2,3,4). Тогда при
любой перенумерации шаров для длин φ-касательных отрезков ко всем парам из ука-
занного набора шаров выполнено неравенство `12`34+`23`14 Ê `13`24, причем точки
касания p j = S∩B j располагаются на некоторой обобщенной окружностиC ⊂ S и ра-
венство достигается в том и только том случае, когда p j занумерованы в порядке
обхода C .
Теорема 2.Пусть даны четыре помеченных n-мерных обобщенных шара φ j B j , ( j =

1,2,3,4), φ j = {0,π}, причемшарнаименьшего радиуса не касается остальныхтрехша-
ров. Если для длинφ-касательных отрезков ко всем парам из указанного набора шаров
при любой их перенумерации выполнено неравенство `12`34 +`23`14 Ê `13`24, то су-
ществует (n −1)-мерная обобщенная сфера, которая является общей φ-касательной
к четверке отмеченных шаров φ j B j .

В работах [2] и [3] установлена теорема Птолемея на плоскости Лобачевского. Тео-
рема Кези на плоскости Лобачевского и на двумерной сфере получена в [4]. В [5]
предложены новые интерпретации евклидовой и гиперболической теорем Кези.

Работа выполнена при поддержке гранта Президента (проект МК-9572.2016.1) и
РФФИ (проект 16-31-00138).
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ГЛАВНЫЕ ПОДМОДУЛИ В МОДУЛЕ ЦЕЛЫХ ФУНКЦИЙ
ЭКСПОНЕНЦИАЛЬНОГО ТИПА И ПОЛИНОМИАЛЬНОГО РОСТА НА

ВЕЩЕСТВЕННОЙ ОСИ

Н. Ф. Абузярова1

1abnatf@gmail.com, Башкирский государственный университет

Пусть [a1;b1]b [a2;b2]b . . . – последовательность отрезков, исчерпывающая ко-
нечный или бесконечный интервал (a;b) вещественной прямой, P (a;b) – индук-
тивный предел последовательности банаховых пространств {Pk }, где

Pk =
{
ϕ ∈ H(C) : ‖ϕ‖k = sup

z∈C
|ϕ(z)|

(1+|z|)k exp(bk y+−ak y−)
<∞

}
,

y± = max{0,±y}, z = x+iy. Всякий элементϕ пространства P (a;b) является функци-
ей вполне регулярного роста при порядке 1, индикаторная диаграмма которой есть
отрезок мнимой оси [icϕ; idϕ] ⊂ (ia; ib). В пространстве P (a;b) операция умножения
на независимую переменную z непрерывна, поэтому P (a;b) – топологический мо-
дуль над кольцом многочленов C[z]. Замкнутые подмодули модуля P (a;b) состоят
в двойственности с замкнутыми подпространствами пространства C∞(a;b), инва-
риантными относительно оператора дифференцирования (см. [1], [2]).

Обозначим Jϕ главный подмодуль, порожденный функцией ϕ ∈ P (a;b) : Jϕ =
{pϕ : p ∈C[z]}. Главный подмодуль Jϕ называется слабо локализуемым, если он со-
держит все функции ψ ∈P (a;b) со свойствами: функция ψ имеет ту же индикатор-
ную диаграмму, что и ϕ, и обращается в нуль на множестве нулей функции ϕ.

В силу результатов работы [3] наибольший интерес представляют условия сла-
бой локализуемости главного с подмодуля с образующей ϕ ∈ P0(a;b), где множе-
ство P0(a;b) ⊂ P (a;b) состоит из всех функций ϕ, для которых lim|x|→∞ |ϕ(x)xn | = 0,

∀n ∈N, x ∈R. Положим

U∗(x) = sup
n∈N⋃

{0}

|x|n
Mn

,

где Mn = max
x∈R |xnϕ(x)|, n = 0,1, . . . , и пусть u∗(x) = lnU∗(x).

Теорема.Предположим, что существует постоянная L0 > 0такая, что для любого
x ∈R найдется x′ ∈R со свойствами |x −x′| É L0u∗(x) и ln |ϕ(x′)| Ê −L0u∗(x′).
Тогда подмодульJϕ слабо локализуем.

Работа выполнена при финансовой поддержке Минобрнауки РФ, грант №
01201456408.
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КОЛЬЦА, НАД КОТОРЫМИ КАЖДЫЙ МОДУЛЬ ЯВЛЯЕТСЯ I∗0 -МОДУЛЕМ
А. Н. Абызов1

1aabyzov@kpfu.ru, Казанский (Приволжский) федеральный университет

Модуль M называется I0-модулем, если каждый его немалый подмодуль содер-
жит ненулевое прямое слагаемое модуля M . Кольцо, над которым каждый правый
модуль является I0-модулем, называется правым обобщенным SV -кольцом. Описа-
ние правых обобщенных SV -колец предствлено в монографии [1]. Двойственно
определяется понятие I∗0 -модуля. Модуль M называется I∗0 -модулем, если каждый
его несущественный подмодуль содержится в собственном прямом слагаемом мо-
дуля M .
Теорема 1. Для полуартинового справа (слева) кольца R следующие условия равно-

сильны:

1) каждый правый модуль над кольцом R является I∗0 -модулем;

2) каждый правый R-модуль является либо V -модулем, либо содержит ненулевое
проективное прямое слагаемое;

3) каждый правый R-модуль N , у которого J (N ) 6= 0, содержит ненулевое проектив-
ное прямое слагаемое;

4) в кольце R существует семейство правых идеалов (Ai )i∈I , для которого выполне-
ны следующие условия:

a) Ai – локальный инъективный модуль длины два для каждого i ∈ I ;

b) J (R) =⊕i∈I J (Ai )

с) R/J (R) – правое SV -кольцо.

Теорема 2. Для кольца R следующие условия равносильны:

1) над кольцом R каждый модуль одновременно является I0-модулем и I∗0 -модулем;

2) R – полуартиново справа (слева) кольцо, над которым каждый модуль является
прямой суммой проективного модуля и V -модуля;
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3) R – полуартиново справа (слева) кольцо, над которым каждый модуль является
прямой суммой инъективного модуля и V -модуля;

4) R – прямое произведение SV -кольца и артинового полуцепного кольца, у которого
квадрат радикала Джекобсона равен нулю.
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КОРРЕКТНАЯ ПОСТАНОВКА И РЕШЕНИЕ КРАЕВЫХ ЗАДАЧ ДЛЯ ОДНОГО
КЛАССА ИНТЕГРО–ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Ю. Р. Агачев1, М. Ю. Першагин2
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2mpershagin@mail.ru, Казанский (Приволжский) федеральный университет

Рассматривается общая краевая задача

Ri (x) = 0, i = 1,m, (1)

для интегро-дифференциального уравнения

K x ≡ Γx +Gx +H x ≡ x(m)(t )+
m∑

k=1
gk (t )x(m−k)(t )+

+
r∑

j=0

+1∫
−1

h j (t , s)x( j )(s)d s = y(t ), −1 É t É 1, r > m, (2)

где {Ri } — линейно-независимые функционалы на пространстве (m−1)-раз непре-
рывно-дифференцируемых на [−1,1] функций, y(t ), gk (t ),k = 1,m, и h j (t , s), j = 0,r ,
– известные функции в своих областях определения.

Известно, что задача (1), (2) является, вообще говоря, некорректно поставленной
по Адамару. Поэтому в общем случае для нахождения решения необходимо при-
менять известные методы регуляризации. В некоторых случаях при определенных
гладкостных свойствах коэффициентов уравнения (2) удается задачу (1), (2) ставить
корректно за счет выбора пространств искомых элементов и правых частей. Здесь
предлагается новая пара таких пространств.

Задачу (1), (2) будем рассматривать в паре пространств (X ,Y ), где Y =
W r−mLp (−1,+1) – пространство функций y(t ), имеющих абсолютно-непрерывную
производную порядка r −m−1 и производную порядка r −m в промежутке (−1,+1),
принадлежащую пространству Лебега Lp (−1,1),1 É p É∞, а X ⊂W r Lp (−1,+1) – со-
ответствующее пространство функций, удовлетворяющих краевым условиям (1). В
указанных пространствах нормы зададим следующим образом:

‖y‖Y = ‖y‖Lp +‖y (r−m)‖Lp , y ∈ Y , ‖x‖X = ‖x(m)‖Y , x ∈ X .
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Теорема 1. Пусть 1 É p, q É∞,1/p +1/q = 1 и выполнены предположения:
1) gk ,k = 1,m, y ∈ Y ;
2) h j ∈ Y ×L1, j = 0,r −1;
3) hr ∈ Y ×Lq ;
4) уравнение Γx = 0 при краевых условиях (1) имеет лишь нулевое решение.
Тогда задача решения (1), (2) в паре пространств (X ,Y ) поставлена корректно по

Адамару.

Будем решать задачу (1), (2) полиномиальным проекционным методом

Kn xn ≡ Γxn +PnGxn +Pn H xn = Pn y (xn ∈ Xn), (3)

где Xn — подпространство алгебраических полиномов степени n > r из X , Yn — под-
пространство алгебраических полиномов степени n −m, а Pn : Y → Yn — оператор
проектирования.

Теорема 2. Если, в условиях теоремы 1, последовательность проекционных опера-
торов Pn сходится к единичному оператору в пространстве Y , то уравнение (3) име-
ет единственное решение (хотя бы при n Ê n0 ∈ N ). При этом приближенные решения
сходятся к точному решению задачи (1), (2) со скоростью

‖x −xn‖X =O{En−m(x(m))p },

где En−m(z)p —наилучшее приближение функции z ∈ Lp алгебраическими полиномами
степени не выше n −m.

Исследуется также случай разностных ядер в интегральных операторах уравне-
ния (2).

К РЕШЕНИЮ ДРОБНО–ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ

Ю. Р. Агачев1, А. Ф. Галимянов2

1jagachev@gmail.com, Казанский (Приволжский) федеральный университет
2anis_59@mail.ru, Казанский (Приволжский) федеральный университет

Рассматривается дробно–интегральное уравнение вида

1

Γ(α)

x∫
−1

ϕ(t )d t

(x − t )1−α + (Tϕ)(x) = f (x), −1 É x É 1, (1)

гдеΓ(·) — гамма-функция,α (0 <α< 1) — заданный числовой параметр, T — данный
линейный оператор, f и ϕ — известная и искомая функции. Предполагается, что в
уравнении (1) главным является дробно–интегральный оператор Jα−1, задаваемый
первым слагаемым в левой части.

Уравнение (1) будем рассматривать в паре (Φ,F ), где Φ= L2 = L2(−1,1) есть про-
странство Лебега квадратично–суммируемых на [−1,1] функций с обычной нор-
мой, а F = Hλ

2,ρ = Hλ
2,ρ(−1,1) — пространство квадратично–суммируемых на [−1,1]

функций с весом ρ(x) = (x + 1)−2α,0 < α < 1/2, для которых интегральный модуль
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непрерывности1 в L2 удовлетворяет неравенству ω( f ;δ)2 É c f δ
λ,α < λ É 1. Нор-

му в пространстве F введем следующим образом (см. также [1], с. 200): ‖ f ‖F =
‖ f ‖2,ρ +H( f ;λ), f ∈ F , где ‖ f ‖2

2,ρ = ∫ 1
−1ρ(x)| f (x)|2d x, H( f ;λ) = sup

0<δÉ2
δ−λ

{∫ 1−δ
−1 | f (x +

δ)− f (x)|2d x
}1/2

— наименьшая постоянная Гельдера функции f (x) в L2.

Как известно, для функций ϕ ∈ L2 дробно–интегральный оператор Jα−1 имеет ле-
вый обратный (Jα−1)l ≡ Dα

−1, являющийся дробно–дифференциальным оператором
порядка α:

Dα
−1 f ≡ 1

Γ(1−α)

d

d x

x∫
−1

f (t )d t

(x − t )α
= 1

Γ(1−α)

 f (x)

(x +1)α
+α

x∫
−1

f (x)− f (t )

(x − t )α+1
d t

 .

Теорема. Пусть числовые параметры α и λ удовлетворяют условиям: 0 <α< 1/2
и существует ε> 0, такое что α< 1/2−ε<λÉ 1.
Тогда оператор Dα

−1 : F →Φ является непрерывным.

С помощью этого результата уравнение (1) может быть сведено к уравнению
второго рода в пространстве L2, причем в случае вполне непрерывного оператора
T : Φ→ F оно относится к уравнениям второго рода с вполне непрерывным опе-
ратором. Следовательно, к последнему уравнению применима теория Фредгольма.
Такая методика сведения уравнения (1) к уравнению второго рода в ряде случаев
позволяет доказать применимость полиномиальных проекционных методов к ис-
ходному уравнению (1).
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К ПРИБЛИЖЕННОМУ РЕШЕНИЮ ОБЫКНОВЕННЫХ
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ДРОБНЫМИ ПРОИЗВОДНЫМИ
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Ряд прикладных задач (в частности, механики, физики, биологии) приводит (см.,
напр., [1, 2]) к необходимости решения дифференциальных уравнений, содержащих
производные дробного порядка, вида

x(m)(t )+ g (t )(Dα
−1x)(t ) = y(t ), −1 < t < 1, 0 <α< m, (1)

1Заметим, что функция f ∈ F принадлежит и пространству L2.
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где g , y – известные, x – искомая функции на [−1,+1]; здесь Dα
−1x есть производная

(левосторонняя) Римана-Лиувилля порядка α функции x(t ):

(Dα
−1x)(t ) ≡ 1

Γ(r −α)

dr

d t r

t∫
−1

x(τ)dτ

(t −τ)α−r+1
, r = [α]+1,

Γ(·) — гамма-функция.
Для определенности будем рассматривать для уравнения (1) задачу Коши

x(i )(−1) = 0, i = 0,m −1. (2)

Пусть Y = L2,ρ ≡ L2,ρ(−1,+1) есть пространство квадратично-суммируемых на
[−1,+1] функций с весом ρ(t ) = 1p

1−t 2
, X = W̊ mL2,ρ – пространство абсолютно-неп-

рерывных на [−1,+1] функций, удовлетворяющих условиям (2) и имеющих произ-
водную m-го порядка на L2,ρ. Нормы в этих пространствах возьмем согласованны-
ми: ‖y‖Y = ‖y‖2,ρ, y ∈ Y ; ‖x‖X = ‖x(m)‖Y , x ∈ X . Через Yn будем обозначать
подпространство Hn алгебраических полиномов степени не выше n, а через Xn –
подпространство Hm+n ⊂ X .

Отметим, что при 0 <α< m − 1
2 и g , y ∈ L2,ρ задача (1), (2) поставлена корректно

по Адамару в паре пространств (X ,Y ), а при g ∈ C [−1,+1] ≡ C корректность имеет
место и при m − 1

2 Éα< m.
Будем решать задачу (1), (2) общим полиномиальным проекционным методом:

Kn xn ≡V xn +PnGxn = Pn y (xn ∈ Xn) , (3)

где Pn : Y → Yn — произвольно фиксированный оператор проектирования, V — опе-
ратор m-кратного дифференцирования, а Gx ≡ g Dα

−1x.
Рассматриваются два класса методов (3); первый класс характеризуется проекци-

онностью оператора Pn
(
P 2

n = Pn
)
, для второго класса оператор Pn является лишь

линейным.

Теорема 1. Пусть Pn : Y → Y — ограниченный оператор, P 2
n = Pn , причем ‖Pn‖ =

O(1), n →∞. Тогда, если задача (1), (2) имеет единственное решение при любой пра-
вой части из L2,ρ, то уравнение (3) также имеет единственное решение (хотя бы при
всех n, начиная с некоторого n0 ∈ N ). При этом, xn → x (n →∞) по норме простран-
ства X со скоростью ‖x−xn‖X =O

{
En(V x)2,ρ

}
, где En(z)2,ρ —наилучшее среднеквад-

ратичное приближение функции z ∈ L2,ρ полиномами из Hn .

Как следствие, отсюда вытекает сходимость полиномиальных методов Галерки-
на, подобластей и наименьших квадратов.

Теорема 2.Пусть P 2
n = Pn , Pn : Y → Y —неограничены при каждомфиксированном

n, но Pn : C → Y ограничены по норме в совокупности. Тогда при g , y ∈C имеет место
сходимость проекционного метода (3) со скоростью ‖x−xn‖X =O { En(V x)}, где En(z)
— наилучшее равномерное приближение функции z ∈C полиномами Hn; в частности,
полиномиальный метод коллокации по узлам Чебышева первого рода (или экстремаль-
ным точкам полинома Чебышева первого рода) сходится.
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Теорема 3. Пусть P 2
n 6= Pn , но ‖z −Pn z‖2,ρ = O{En(z)2,ρ}, ∀z ∈ L2,ρ. Тогда спра-

ведливы утверждения из теоремы 1. В частности, имеет место сходимость метода
(3) с оператором Pn , полученным на основе конкретного λ-метода суммирования ря-
дов по системе полиномов Чебышева первого рода.

Заметим, что указанные результаты сохраняют силу, если в уравнении (1) до-
бавлены слагаемые с младшими производными целого порядка и правосторонняя
дробная производная порядка α, при этом коэффициенты при указанных произ-
водных принадлежат L2,ρ.
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Для всюду сходящихся рядов Дирихле

F (s) =
∞∑

n=1
aneλn s (s =σ+ i t ), 0 <λn ↑∞, (1)

обычно вводится понятие R–порядка — аналог обычного порядка для степенных
рядов.

Пусть Π0 = {s = σ+ i t : σ< 0} — полуплоскость сходимости ряда (1), S(a, t0) = {s =
σ+ i t : |t − t0| É a, σ< 0}. Величина

ρs = lim
σ→0−

ln+ ln Ms(σ)

|σ|−1
, Ms(σ) = max|t−t0|Éa

|F (σ+ i t )| (σ< 0),

называется порядком функции F в полуполосе S(a, t0). Пусть Λ(t ) = ∑
λnÉt

1, ψ : R+→
[0,1], 0 < ψ(r ) ↑ 1, [1−ψ(r )] lnlnr → 0 при r → ∞. Положим D(t ) = Λ(t )t−1, ψ1(r ) =

min
λ1ÉtÉr

D(t ), ψ2(r ) = max
rÉt

D(t ).

Пишем Λ ∈Λ[ψ], если [1]:
1) существует конечный предел ∆= lim

r→∞Λ(r )r−1 lnr ;

2)ψ2(r )−ψ1(r ) =O[(1−ψ(r )) ln−1 r ] при r →∞.
Например, Λ ∈ Λ[ψ], если выполняется условие 1), и nλ−1

n ↓ при n → ∞. В [1]
доказано, что если Λ ∈ Λ[ψ], то порядки ρ1 и ρ2 в любых полуполосах S(ai , ti )
(ai > 0, i = 1,2) равны.
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Пусть K — класс функций h :R+→R+, h(0) = 0, h(t ) ↑∞, h(t )t−1 ↓ 0 при t →∞,

R =
{

h ∈ K : h(x) ln
x

h(x)
= o

( x

ln x

)
, x →∞

}
.

R–плотностью последовательности Λ называется

G(R) = inf
h∈R

lim
t→∞

µΛ(ω(t ))

h(t )
, ω(t ) = [t , t +h(t )),

где µΛ(ω(t )) — число точек λ ∈ (Λ∩ω(t )). Через D(R) обозначим точную нижнюю
грань тех чисел b (0 < b < ∞), таких, что: существует Γ = {µn} (0 < µn ↑ ∞, Λ ⊂ Γ,
причем |M(t )− bt | É h(t ) (t > 0) для некоторой функции h ∈ R, M(t ) = ∑

µnÉt
1. Как

известно, D(R) =G(R) [2].

Теорема. Если G(R) = 0, то порядки функции F в любых полуполосах S(a, t0 (a > 0)
равны (они, вообще говоря, отличны от порядка F в Π0).

В условиях теоремы аналог этого утверждения для горизонтальных лучей не ве-
рен. Теорема усиливает результат из [1]: еслиΛ ∈Λ[ψ], то G(R) = 0, однако, обратное
не имеет места.

Работа выполнена при финансовой поддержке РФФИ (гранты 14-01-00720, 15-01-
01661).
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ПРОСТРАНСТВАМИ ФРЕШЕ

З. Д. Аль Нафие1

1zahirmath20_ru @yahoo.com, Казанский (Приволжский) федеральный университет,
Институт математики и механики им.Н.И.Лобачевского

Пусть X – топологическое пространство. Его покрытие называется локально ко-
нечным, если любая точка x имеет окрестность, пересекающуюся лишь с конечным
числом покрывающих множеств. Пространство X называется паракомпактным, ес-
ли оно хаусдорфово и каждое его открытое покрытие допускает локально конечное
измельчение.

Пусть F – векторное пространство. Хаусдорфово топологическое пространство M
со счетной базой называется многообразием над F (или многообразием с простан-
ством моделей F ), если каждая точка x ∈ M обладает окрестностью, гомеоморфной
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открытому множеству в F . На пересечениях этих открытых множеств естественным
образом возникают отображения согласования. Если пространство F метрическое и
эти отображения удовлетворяют условию Липшица с показателем k, то M называют
Li pk− многообразием. Подробное описание этих понятий можно найти в работах
[1-4]. В работе [5] получен критерий паракомпактности многообразия над банахо-
вым пространством. В данной работе этот вопрос изучается для случая, когда F –
пространство Фреше. Введем следующие понятия:

Определение. Назовем метрическое пространство F Li pk-нормальным, если для
любой пары его замкнутых подмножеств A0;1 можно указать функцию f : F →R, удо-
влетворяющую условию Липшица с показателем k и такую, что f |A0 ≡ 0, f |A1 ≡ 1.

Определение. Li pk-разбиение единицы на метризуемом пространстве X – это
разбиение единицы, состоящее из функций, удовлетворяющих условию Липшица с по-
казателем k.

Определение.Метризуемое пространство X назовем Li pk-паракомпактным, ес-
ли всякое его открытое покрытие имеет локально конечное измельчение, допускающее
подчиненное ему Li pk-разбиение единицы.

Основной результат работы таков:

Теорема. Метризуемое многообразие M над пространством Фреше F является
Li pk-паракомпактным тогда и только тогда, когда F паракомпактно и Li pk-нор-
мально.
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ОБ ОДНОМ ОБОБЩЕНИИ K -АРНОГО АЛГОРИТМА ЕВКЛИДА
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В нашем докладе мы рассмотрим одну модификацию k-арного алгоритма для
вычисления наибольшего общего делителя Н.О.Д. трех или более натуральных чи-
сел. Такая задача возникает, например, при вычислении строго псевдопростых чи-
сел (см. [1]).

Напомним, что k-арный алгоритм является обобщением бинарного алгоритма
вычисления Н.О.Д. и был разработан в 1990 году Д. Соренсоном ([2],[3]).

Выберем натуральное число k = 2s , имеющее меньший размер по сравнению с
числами A и B , A > B > 1, для которых ищется Н.О.Д. Предположим, что эти чис-
ла являются нечетными. Основная идея k-арного алгоритма состоит в вычислении
на произвольной итерации небольших множителей x и y таких , что выполняется
тождество

Ax +B y ≡ 0 mod k. (1)

Тогда полагая C = (Ax +B y)/k, мы сможем перейти к меньшей паре (B ;C ), Н.О.Д
которой либо равен Н.О.Д. исходной пары, либо является его кратным. Процедура
повторяется до тех пор, пока второй аргумент пары не станет равным нулю, тогда
первый аргумент A′ будет равен кратному искомого Н.О.Д. Чтобы отсечь посторон-
ние атрибуты, в конце алгоритма происходит вычисление Н.О.Д. A′ с исходными A
и B по стандартному алгоритму Евклида.

По теореме Соренсона коэффициенты x и y можно выбрать из интервала
[−pk;

p
k], поэтому величина C не превысит 2A/

p
k.

В целом, сложность вычисления k-арного алгоритма оценивается величиной
O(n2/lnk), где n-длина большего из чисел (A,B).

В нашей докладе мы покажем, что для случая трех и более чисел эта оценка может
быть улучшена.

Теорема. Пусть заданы три натуральных числа A, B , C , взаимно простых с нату-
ральным числом k. Найдутся числа x,y и z, удовлетворяющие условию |x|, |y |, |z| É k1/3

такие, что выполняется условие

Ax +B y +C z ≡ 0 mod k. (2)

Определяя D = (Ax+B y+C z)/k, получим существенный выигрыш по отношению
к стандартному k-арному алгоритму.
Следствие. Отношение A/C на каждой итерации k-арного алгоритма для трех

аргументов не меньше величины k2/3/3. При этом число операций на одной итерации
увеличивается в два раза. Общая производительность нашего алгоритма оценивается
той же величиной, что и сложность исходного алгоритма, но количество итераций
существенно меньше.
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О ПОСТРОЕНИИ 4-МЕРНЫХ НЕЛОРЕНЦЕВЫХ H-ПРОСТРАНСТВ

А. В. Аминова1, Г. А. Серякин2
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Работа посвящена исследованию 4-мерных нелоренцевых многообразий нуле-
вой сигнатуры, обладающеих симметриями в форме проективных движений. С
каждым проективным движением связана сохраняющаяся величина, которая оста-
ется постоянной вдоль каждой 4-геодезической и определяет закон сохранения.

Для того, чтобы векторное поле X было проективным движением, необходимо и
достаточно выполнение следующих условий:

(LX G AB );C = 2G ABϕ;C +G ACϕ;B +GBCϕ;A, (1)

здесь A,B = [1, ...,4], LX G AB – производная Ли метрики G AB в направлении про-
ективного движения X , ϕ есть 1-форма, и точка с запятой означает ковариантное
дифференцирование относительно метрики G AB . Уравнения (1) разбиваются на две
группы: уравнения Эйзенхарта

hAB ;C = 2G ABϕ;C +G ACϕ;B +GBCϕ;A (2)

и обобщенные уравнения Киллинга

(LX G AB );C = hAB . (3)

Метрики, допускающие нетривиальные решения hAB 6= cG AB уравнений Эй-
зенхарта, называются h-метриками, а соответствующие пространства — h-
пространствами.

В работе рассматриваются 4-мерные h-пространства с характеристикой Сегре
[2,2] и [4]. При помощи метода косонормального репера А. В. Аминовой [1] были
получены h-метрики указанного типа и исследована их структура.
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О ПРОЕКТИВНЫХ ДВИЖЕНИЯХ ПЯТИМЕРНЫХ ПРОСТРАНСТВ
СПЕЦИАЛЬНОГО ТИПА
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С помощью метода косонормального репера [1] определяются пятимерные псев-
доримановы многообразия (M5, g ), допукающие негомотетические проективные
движения X типа {221} (“h-пространства типа {221}”). Тип проективного движения
X и тип метрики g в области V ⊆ M5 определяются алгебраической структурой про-
изводной Ли LX g метрики g в направлении проективного движения X , задаваемой
в каждой точке p ∈V характеристикой Сегре χ= {221} тензора h = LX g .

В адаптированном неголономном косонормальном репере вычислены фор-
мы связности и кривизны h-пространства типа {221}. Определены метрика h-
пространства и производная Ли проективного движения типа {221} в подходящей
голономной системе координат.
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О ГЕОМЕТРИИ СУБМЕРСИЙ НАД ОРБИТАМИ ВЕКТОРНЫХ ПОЛЕЙ

Н. Аннаев1
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Рассмотрим некоторе множество D ⊂ V (M), и для точки x ∈ M через L(x) обо-
значим орбиту семейства D, проходящую через точку x. В работе [2] доказано, что
каждая орбита является гладким подмногообразием M .

Множество всех векторных полей Киллинга K (M) на многообразии M образует
конечномерную алгебру Ли [1]. Обозначим через A(D) наименьшую подалгебру Ли
алгебры K (M), содержащую множество D. Так как алгебра K (M) конечномерна, то
существуют конечное число векторных полей X1, X2, ..., Xm из A(D), таких, что век-
торы X1(x), X2(x), ..., Xm(x) образуют базис для подпространства Ax(D) для каждого
x ∈ M .

В [1] доказана следующая теорема, которая показывает, что каждая точка из ор-
биты L(x0) достижима из x0 с помощью конечного числа ”переключений” с исполь-
зованием векторных полей X1, X2, ..., Xm в определенном порядке.

Теорема 1.Множество точек вида

y = X tm
m (X tm−1

m−1 ...(X t1
1 (x0)...)),

где (t1, t2, ..., tm) ∈ Rm , совпадает с орбитой L(x0).
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Рассмотрим семейство D векторных полей Киллинга на двумерной сфере, состо-
ящее из следующих двух векторных полей:

X1 =−y
∂

∂x
+x

∂

∂y
, X2 =−z

∂

∂x
+x

∂

∂z
.

Нетрудно проверить, что базисом минимальной алгебры A(D) являются векторные
поля

X1, X2, X3 = [X2, X1],

и поэтому орбита семейства для каждой точки сферы по теореме 1 совпадает со всей
сферой.

Определим отображение π : R3 → S2 следующим образом

π(t1, t2, t3) = X t3
3 (X t2

2 (X t1
1 (p))),

где p− точка с координатами (1,0,0) сферы S2.
Теорема 2.
1) Отображение π является субмерсией.
2) Субмерсия π : R3 → S2 порождает на R3 одномерное слоение, слои которого име-

ют положительные кривизны и кручения.

Работа выполнена при финансовой поддержке Министерства высшего и среднего
специального образования республики Узбекистан (проект Ф4-04).
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О ДИФФЕРЕНЦИРОВАНИЯХ В ГРУППОВЫХ АЛГЕБРАХ
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Результаты получены совместно с профессором А. С. Мищенко и доцентом
А. И. Штерном.

Пусь G — некоторая дискретная группа и C [G] соответствующая ей групповая ал-
гебра. Назовем линейный оператор d : C [G] →C [G] — оператором дифференциро-
вания (или деривацией) если для него выполнено тождество Лейбница

d(uv) = d(u)v +ud(v),∀u, v ∈C [G].

По группе G может быть построен группоид Γ следующим образом. В качестве
объектов Ob j (Γ) возьмем множество элементов группы G, а в качестве морфизмов
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Mor (Γ) множество всевозможных пар элементов группы. Морфизм (u, v) опреде-
лим как стрелку из объекта v−1u в объект uv−1. На множестве морфизмов опреде-
лим частичную операцию ◦. Если конец морфизмаφ1 = (u1, v1) совпадает с началом
морфизма φ2 = (u2, v2) то

φ1 ◦φ2 = (u2v1, v2v1).

Теорема 1. Определенная таким образом струкура Γ является группоидом.
В терминах построенного таким образом группоида удобно изучать дифферен-

цирования на групповой алгебре. Отображение χ : Mor (Γ) →C мы будем называть
характером на группоиде Γ если для любой пары морфизмов φ1,φ2 между которы-
ми определена операция ◦ выполняеся χ(φ1 ◦φ2) =χ(φ1)+χ(φ2).

Действие Деривации d на элемент групповой алгебры u = ∑
g∈G

λg g , может быть

записано в виде

d(u) = ∑
g∈G

( ∑
h∈G

d
g
hλ

h

)
g .

Теорема 2. Для любой деривации d существует такой характер χ, что d
g
h =

χ(g ,h).
Оказывается, что характеры могут быть изучены в групповых терминах, а имен-

но при помощи централизаторов элементов группы G.
В частности имеет место
Теорема 3. Если d — оператор внутреннего дифференцирования (коммутатор с

элементом группы) то χ(φ) = 0 для всех морфизмов φ у которых начало и конец совпа-
дают.

ЛОГАРИФМЫ ФОРМАЛЬНЫХ A-МОДУЛЕЙ
В СЛУЧАЕ МАЛОГО ВЕТВЛЕНИЯ

С. С. Афанасьева1

1cheery_sonya@mail.ru, Санкт-Петербургский государственный университет

В настоящей работе описаны формальные группы над O с кольцом эндоморфиз-
мов, включающим фиксированное кольцо O0.

Пусть K0 — локальное поле (конечное расширениеQp ) с кольцом целых O0 и про-
стым элементом π0; q — порядок поля вычетов поля K0; K — конечное расширение
поля K0, с кольцом целых O и простым элементом π; N — подполе инерции в K /K0,
ON — его кольцо целых; e0 — индекс ветвления K /K0; X = (X1, . . . , Xm). Как и в [2],
Mm(A) обозначает кольцо матриц размера m ×m над кольцом A, Im - единичная
матрица размера m ×m, vK — нормирование в поле K .

Будем предполагать, что
vK (π0) < q.

Хорошо известно, что m-мерные формальные O0-модули над O с точностью до
изоморфизма классифицируются парами рядов (u, v), где u ∈ Mm(ON [[∆]]),
v ∈ Mm(O [[∆]]) и u ≡ π0Im mod∆, v = π0Im − πr1 − . . . − πe0−1re0−1, ri ∈
Mm(ON [[∆]]∆),
1 É i É e0 −1.
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Cледующая теорема позволяет определить тип O0-модуля по виду логарифма, а
также дает способ построения формальных O0-модулей.

Теорема. Пусть λ(X ) ∈ K [[X ]]m , λ(X ) ≡ X mod deg2 и λ(X ) = ∑e0−1
k=0 πkλk (X ),

где λk (X ) ∈ N [[X ]]m . Тогда λ(X ) является логарифмом m-мерного формально-
го O0-модуля над O тогда и только тогда, когда для некоторых элементов u ∈
Mm(ON [[∆]]′), v ∈ Mm(O [[∆]]), где u ≡π0Im mod∆, v =π0Im −πr1 − . . .−πe0−1re0−1,
ri ∈ Mm(ON [[∆]]′∆), 1 É i É e0 −1 выполнены сравнения{

uλ0(X ) ≡ 0 mod π0

riλ0(X )+π0λi (X ) ≡ 0 mod π0, 1 É i É e0 −1.

Работа выполнена при поддержке гранта РФФИ № 14-01-00393.
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К ЗАКОНУ ПОВТОРНОГО ЛОГАРИФМА В ЛИНЕЙНО-ИНВАРИАНТНЫХ
СЕМЕЙСТВАХ АНАЛИТИЧЕСКИХ ФУНКЦИЙ

А. И. Афонина1, И. Р. Каюмов2

1sanyagirl89@mail.ru, Казанский (Приволжский) федеральный университет
2ikayumov@kpfu.ru, Казанский (Приволжский) федеральный университет

Предположим, что функция f аналитична и однолистна в круге D = {z : |z| < 1}.
Макаров [1] доказал, что существует такая абсолютная положительная постоянная
C , что

limsup
r→1−

| log f ′(rζ)|√| log(1− r )| loglog | log(1− r )| ÉC

для почти всех ζ на окружности |ζ| = 1. Поммеренке [2, c.188] показал, что это нера-
венство верно при C = 6, но существует аналитическая и однолистная в круге D
функция, для которой это неравенство перестает быть верным при C É 0,685.
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В статье [3] показано, что закон повторного логарифма справедлив при C = 2
p

3.

В работе [5] установлено, что 0.91 <C É 2
√p

24−3
5 = 1.2326.....

Поммеренке ввел и исследовал понятие линейно-инвариантного семейства M
функций как класса аналитических в круге D= {z ∈C : |z| < 1} функций таких, что

1) f (0) = 0, f ′(0) = 1, f ′(z) 6= 0 в D,
2) для каждой f ∈M и θ ∈R f (zeiθ)e−iθ ∈M,
3) для каждой f ∈M и a ∈D

fa(z) =
f ( z+a

1+az )− f (a)

f ′(a)(1−|a|2)
= z +·· · ∈M.

При этом, порядком функции f , удовлетворяющей условию 1), называется число

ord f = sup
a∈D

| f ′′a (0)|
2

,

а порядком семейства M – число

ordM= sup
f ∈M

ord f .

Универсальным линейно-инвариантным семейством Uα называется объединение
всех линейно-инвариантных семейств M таких, что ordMÉα:

Uα =⋃
{M : ordMÉα}.

Пусть теперь f ∈Uα, 1 ÉαÉ 2. Результатом данной работы является

Теорема. Закон повторного логарифма в линейно-инвариантных семействах ана-
литических функций справедлив при C = 2

√
α2 −1.

Доказательство данной теоремы основывается на результатах работы Н.Г. Мака-
рова [1] и И.Р. Каюмова [3].
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ОБ ЭФФЕКТИВНОЙ КАТЕГОРИЧНОСТИ ДЛЯ ДИСТРИБУТИВНЫХ
РЕШЕТОК И ГЕЙТИНГОВЫХ АЛГЕБР

Н. А. Баженов1

1bazhenov@math.nsc.ru, Институт математики им. С. Л. Соболева СО РАН, Новоси-
бирский государственный университет

В работе исследуются алгоритмические свойства изоморфизмов между вычисли-
мыми копиями для дистрибутивных решёток и гейтинговых алгебр.

Пусть α — вычислимый ординал. ∆0
α-размерностью вычислимой структуры S

называется число вычислимых копий структуры S с точностью до∆0
α-вычислимого

изоморфизма.
Предположим, что n — натуральное число, такое что n Ê 2. В работе [1] постро-

ен вычислимый жёсткий граф, имеющий вычислимую размерность n. В работе [2]
доказано, что для любого вычислимого ординала-последователя α существует вы-
числимая жёсткая структура, имеющая ∆0

α-размерность n.
Из результатов [2,3] следует, что для любого вычислимого ординала-

последователя α и любого ненулевого натурального числа n существует вычисли-
мая недистрибутивная решётка, имеющая ∆0

α-размерность n. В работе получен
следующий результат.

Теорема. Пусть n — это ненулевое натуральное число, α— вычислимый ординал-
последователь, такой что α Ê 4. Тогда существует вычислимая дистрибутивная ре-
шётка (вычислимая гейтингова алгебра), имеющая ∆0

α-размерность n.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного
проекта № 16-31-60058 мол_а_дк.
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НЕЛИНЕЙНЫЕ ПРИБЛИЖЕНИЯ НЕКОТОРЫХ КЛАССОВ ФУНКЦИЙ
МНОГИХ ПЕРЕМЕННЫХ

Д. Б. Базарханов1
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ния

Пусть k ∈N, zk = {1, . . . ,k}, N0 =N∪ {0}, R+ = (0,+∞). Как обычно, Lr = Lr ([0,1]k ) —
пространство функций f : [0,1]k → C, суммируемых в степени r (при r =∞ суще-
ственно ограниченных) на [0,1]k , с нормой ‖ f | Lr ‖.

Для x = (x1, . . . , xk ), y = (y1, . . . , yk ) ∈ Rk положим x y = x1y1 + ...+ xk yk , |x| = |x1| +
· · ·+|xk | . Пусть n ∈N : n É k. Фиксируем мультииндекс m = (m1, ...,mn) ∈Nn с |m| = k
и представление x = (x1, . . . , xk ) ∈Rk в виде x = (x1, . . . , xn), где xν ∈Rmν.

Положим ek = ek (0) = {0,1}k , ek (1) = ek \{(0, . . . ,0)};Λ(k, j ) =Zk ∩[0,2 j −1]k , j ∈N0.
Пусть

χ(0)(t ) =
{

1, t ∈ [0,1);
0, t ∈R\ [0,1),

χ(1)(t ) =


1
2 , t ∈ [0, 1

2);
−1

2 , t ∈ [1
2 ,1);

0, t ∈R\ [0,1);

далее, m–кратную систему Хаара χ(m) определим следующим образом: χ(m) =
{χι
αλ

(x) | ι ∈ em(α), λ ∈ Λ(m,α), α ∈ Nn
0 }, где χι

αλ
(x) = ∏n

ν=1χ
ιν

ανλν
(xν), χι

ν

jλν(xν) =
2

j mν
2 χι

ν
(2 j xν−λν); χι

ν
(xν) =∏

κ∈kν χ
(ικ)(xκ); здесь em(α) = em1(sign(α1))⊗·· ·

⊗emn (sign(αn)), Λ(m,α) =Λ(m1,α1)× . . .×Λ(mn ,αn).
Пусть 1 É p, q É∞; `q ≡ `q (Nn

0 ) — пространство числовых последовательностей
(cα) = (cα |α ∈Nn

0 ) с конечной нормой

‖(cα) |`q ‖ =
( ∑
α∈Nn

0

|cα |q
)1/q

(1 É q <∞), ‖(cα) |`∞‖ = sup
α∈Nn

0

|cα |;

`q (Lp ) ≡ `q (Lp ([0,1]k )) (соотв., Lp (`q ) ≡ Lp ([0,1]k ;`q )) — пространство функцио-
нальных последовательностей (gα(x)) = (gα(x) |α ∈ Nn

0 ) (x ∈ [0,1]k ) с конечной нор-
мой

‖ (gα(x)) |`q (Lp )‖ = ‖ (‖gα |Lp ‖) |`q ‖
(соотв., ‖ (gα(x)) |Lp (`q )‖ = ‖‖ (gα(·)) |`q ‖|Lp ‖ ).

Для f ∈ L̃1 определим “двоичную пачку”

∆
χ
α( f , x) = ∑

ι∈em(α)

∑
λ∈Λ(m,α)

f ιαλχ
ι
αλ(x), f ιαλ =

∫
[0,1]k

f (x)χιαλ(x)d x.

Пусть s = (s1, . . . , sn) ∈ Rn+, 1 É p, q É ∞. Тогда пространство типа Никольского–
Бесова χB s m

p q ≡ χB s m
p q ([0,1]k ) (соотв., Лизоркина–Трибеля χLs m

p q ≡ χLs m
p q ([0,1]k )), ас-
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социированное с системой χ(m), состоит из всех функций f ∈ Lp , для которых ко-
нечна норма

‖ f |χB s m
p q ‖ = ‖(2αs∆

χ
α( f , x)) |`q (Lp )‖;

(соотв., ‖ f |χLs m
p q ‖ = ‖(2αs∆

χ
α( f , x)) |Lp (`q )‖).

Получены точные по порядку оценки наилучших N-членных приближений по
системе χ(m) единичных шаров пространств χB s m

p q и χLs m
p q в пространстве Lr ([0,1]k )

для ряда соотношений между p, q, r .

Работа выполнена при финансовой поддержке целевой программы 0085/PTSF-14
МОиН Республики Казахстан.

О ГОМОЛОГИЧЕСКОЙ КЛАССИФИКАЦИИ ГРАДУИРОВАННЫХ КОЛЕЦ

И. Н. Балаба1

1ibalaba@mail.ru, Тульский государственный педагогический университет
им. Л. Н. Толстого

Свойства модулей над каким-либо кольцом отражаются на свойствах самого
кольца, а в ряде случаях характеризуют это кольцо [1]. Для стуктурной теории гра-
дуированных колец, активно развивающейся в последние годы, важна характери-
зация градуированных колец при помощи гомологических свойств категории гра-
дуированных модулей над ними.

К настоящему времени известен ряд результатов, устанавливающих связь между
свойствами ассоциативного кольца с единицей, градуированного группой, и свой-
ствами градуированных модулей над ним.

Отметим, что кольцо A является градуированным телом в том и только том слу-
чае, если все правые (левые) градуированные A-модули являются gr-свободными
[2].

Известна гомологическая классификация классически полупростых градуиро-
ванных колец [3], градуированных квазифробениусовых [4], регулярных [5] и полу-
совершенных колец [6].

В докладе будет представлен обзор известных результатов, их систематизация и
некоторые обобщения; дана характеристика градуированных артиновых и нётеро-
вых колец.

Работа выполнена при финансовой поддержке РФФИ (проекты 5-01-01540 а, 16-
41-710194 р−а).

Литература

[1] Скорняков Л. А. Гомологическая классификация колец // Математ. вестник. –
1967. – Т. 19. – № 4. – С. 415–434.

[2] Балаба И. Н. Изоморфизмы градуированных колец линейных преобразований гра-
дуированных векторных пространств // Чебышевский сб. – 2005. – Т. 6. – № 4. –
С. 6–23.



В. В. Балащенко 99

[3] Балаба И. Н., Краснова Е. Н. Полупростые градуированные кольца // Изв. Сарат.
ун-та. Нов. сер. Сер. Математика. Механика. Информатика. – 2013. – Т. 13. –
№ 4(2). – С. 23–28.

[4] Краснова Е. Н. Градуированные квазифробениусовы кольца // Алгебра и теория
чисел: современные проблемы и приложения: Материалы XII Междунар. конф.,
посвященной 80-летию В. Н. Латышева - Тула: Изд-во Тул. гос. пед. ун-та им.
Л. Н. Толстого. – 2014. – С. 168–171.
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КАНОНИЧЕСКИЕ СТРУКТУРЫ НА ОБОБЩЕННЫХ СИММЕТРИЧЕСКИХ
ПРОСТРАНСТВАХ И ИХ ПРИЛОЖЕНИЯ

В. В. Балащенко1

1balashchenko@bsu.by, Белорусский государственный университет

Обобщенные симметрические пространства (G/H ,Φ) изучались с середины
1960-х годов многими авторами (В.И.Ведерников, Н.А.Степанов, A.Ledger, A.Gray,
J.A.Wolf, А.С.Феденко, O.Kowalski и др.). Такие пространства обладают коммутатив-
ной алгеброй канонических аффинорных структур, содержащей структуры почти
произведения P , почти комплексные J , обобщающие их f -структуры К.Яно и ряд
других [1]. Отметим основные приложения канонических структур на однородных
k-симметрических пространствах (Φk = i d):
Обобщенная эрмитова геометрия (В.Ф.Кириченко, с 1980-х). Предъявлен об-

ширный ресурс приближенно келеровых NKf, эрмитовых Hf и f -структур класса
G1f, которые содержат и обобщают соответствующие классы NK, H и G1 в классифи-
кации Грея-Хервеллы почти эрмитовых структур [2]. Например, приближенно келе-
ровыми яляются все базовые f -структуры на k-симметрических пространствах [3],
что широко обобщает классический результат А.Грея для k = 3.
Группы Ли. Построены левоинвариантные канонические структуры на нильпо-

тентных группах Ли индекса 2, в частности, на некоторых обобщенных группах Гей-
зенберга [4].
Однородная риманова геометрия. Получены критерии принадлежности ка-

нонических распределений на G/H классам AF (анти-слоение), F (слоение), TGF
(вполне геодезическое слоение) [5]. Предъявлен широкий спектр инвариантных
примеров для классификации А.Навейры [6].
Эллиптические интегрируемые системы. Эффективное использование кано-

нических структур и распределений на однородных k-симметрических простран-
ствах см. в [7].

Работа выполнена при финансовой поддержке ГПНИ “Конвергенция” (2011–
2015) Республики Беларусь (№ госрегистрации проекта 20115455).
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ОЦЕНКИ ПОПЕРЕЧНИКОВ ФУРЬЕ КЛАССОВ ПЕРИОДИЧЕСКИХ ФУНКЦИЙ
С ЗАДАННОЙ МАЖОРАНТОЙ СМЕШАННОГО МОДУЛЯ ГЛАДКОСТИ

Ш. А. Балгимбаева1, Т. И. Смирнов2

1balsholpan@yandex.ru, Институт математики и математического моделирования
2sc_s@mail.ru, Институт математики и математического моделирования

Пусть d ∈ N, ed = {1, . . . ,d}, N0 = N ∪ {0}, R+ = (0,+∞); Td = (R/Z)d — d–
мерный тор; Lp (Td ) — пространство функций f : Td → C, суммируемых в сте-
пени p (при p = ∞ существенно ограниченных) на Td , с нормой ‖ f | Lp (Td )‖;
`θ — пространство (комплексных) числовых последовательностей (c j ) = (c j ) j∈Nd

0

с конечной нормой ‖(c j ) |`θ ‖; `θ(Lp (Td )) — пространство функциональных после-
довательностей (gν(x))

ν∈Nd
0

(x ∈ Td ) с конечной нормой ‖ (gν(x)) |`θ(Lp (Td ))‖ =
‖ (‖gν |Lp (Td )‖) |`θ ‖.

Поперечником Фурье порядка N множества F ⊂ Lq называется величина

ϕN (F,Lq ) = inf
{hı }N

ı=1

sup
f ∈F

‖ f −
N∑

ı=1
〈 f ,hı〉hı |Lq ‖,

где нижняя грань берется по всем ортонормированным системам {hı }N
ı=1 ⊂ L∞.



Г. А. Банару 101

ПустьΩ(t ) =Ω(t1, . . . , td ) — функция типа смешанного модуля непрерывности по-
рядка l , удовлетворяющая известным условиям Бари–Стечкина.

Обозначим через Vn(t ) ядро Валле–Пуссена порядка 2n −1. Положим

As(x) = ∏
j∈ed

(V2
s j (x j )−V

2
s j −1(x j )), s = (s1, . . . , sd ) ∈Nd

0 ;

для f ∈ Lp As( f , x) = f ∗ As(x).

Определение. Пусть 1 É θ É ∞. Тогда пространство Никольского–Бесова
SBΩ, l

p θ (Td ) состоит из всех функций f ∈ Lp , для которых конечна следующая норма

‖ f |SBΩ, l
p θ ‖ =

∥∥∥{
As( f , ·)/Ω(2−s)

}∣∣∣`θ(Lp )
∥∥∥, 1 É θ <∞;

‖ f |SBΩ, l
p ∞‖ = sup

s
‖As( f , ·) |Lp‖/Ω(2−s), θ =∞.

Рассматривается модуль гладкости вида

Ω(t ) =


∏

j∈ed

t r
j

(log1/t j )
b j
+

, если t j > 0, j ∈ ed ,

0, если
∏

j∈ed
t j = 0,

где b1 É ·· · É bd < r ; (log1/t j )+ = max{1, log1/t j } .
В докладе приводятся точные по порядку оценки поперечников Фурье единич-

ных шаров пространства Никольского–Бесова SBΩ, l
p ∞(Td ) периодических функций

с заданной мажорантой смешанного модуля гладкости в пространстве Lq (Td ) для
ряда соотношений между параметрами p, q,θ при некоторых условиях на Ω.

Оценки сверху следуют из точных по порядку оценок приближения классов
SBΩ, l

pθ (Td ) всплесками системы Ψd , спектр которых находится под поверхностью
уровня функции Ω. Доказательство оценок снизу следует классической схеме
В.Н. Темлякова и основано на построении так называемых “примеров” : для каждо-
го оператора приближения (из определения поперечника) строится тригонометри-
ческий полином специального вида, называемый примером, который плохо при-
ближается этим полиномом.

Работа выполнена при поддержке грантов 5130/ГФ4 и 5129/ГФ4 МОН РК.

О НИКОЛАЕ ВАСИЛЬЕВИЧЕ СТЕПАНОВЕ И ЕГО ГЕОМЕТРИЧЕСКОЙ
ТЕОРИИ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Г. А. Банару1

1mihail.banaru@yahoo.com, Смоленский государственный университет

В сентябре 2016 года исполнится 90 лет со дня рождения известного отечествен-
ного геометра Николая Васильевича Степанова (1926–1991), профессора, доктора
физико-математических наук. Последние 10 лет своей жизни Н.В. Степанов заведо-
вал кафедрой геометрии Смоленского государственного педагогического института
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им. К. Маркса (ныне этот вуз именуется Смоленским государственным университе-
том).

Практически вся научная деятельность Н.В. Степанова связана с одним направ-
лением — геометрической теорией обыкновенных дифференциальных уравнений.
Им опубликовано около 40 значительных работ по этой тематике. Наиболее полно
его результаты представлены в двух обзорах [1], [2], которые чаще всего цитируются
специалистами в данной области. Достижениям Н.В. Степанова в геометрической
теории обыкновенных дифференциальных уравнений уделено значительное место
в обзоре [3] выдающегося отечественного специалиста Л.Е. Евтушика.

Доклад будет посвящен основным результатам Н.В. Степанова и их связи с ре-
зультатами других известных отечественных геометров. Некоторые построения
Н.В. Степанова будут проиллюстрированы на примере обыкновенных дифферен-
циальных уравнений третьего и пятого порядков [4], [5], [6], [7].

Помимо этого, будет представлен ряд новых результатов автора, также относя-
щихся в основном к геометрии обыкновенных дифференциальных уравнений тре-
тьего и пятого порядков (группы преобразований, относительно которых уравне-
ния инвариантны; расслоенные пространства со связностью, присоединенные к
уравнениям и др.). Эти результаты, полученные как с использованием методов, раз-
работанных Н.В. Степановым, так и другими средствами, развивают и дополняют
дифференциально-геометрические построения этого замечательного отечествен-
ного геометра.
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О ГЕОМЕТРИИ СПЕЦИАЛЬНЫХ ЭРМИТОВЫХ МНОГООБРАЗИЙ

М. Б. Банару1

1mihail.banaru@yahoo.com, Смоленский государственный университет

1. Одной из самых цитируемых статей по геометрии почти эрмитовых многооб-
разий является знаменитая работа выдающегося американского геометра Альфре-
да Грея и его испанского коллеги Луиса Хервеллы [1], в которой они выделили 16
классов почти эрмитовых многообразий. Среди выделенных типов почти эрмито-
вых структур есть хорошо изученные (такие как, например, классы келеровых, при-
ближенно келеровых, почти келеровых и локально конформно келеровых многооб-
разий). Отметим, что класс специальных эрмитовых (special Hermitian, SH-) мно-
гообразий также относится к так называемым «малым» классам Грея-Хервеллы, как
и упомянутые выше другие классы. Однако изучен он гораздо меньше этих классов.
Главная причина этого, на наш взгляд, состоит в том, что класс SH-многообразий
является подклассом класса эрмитовых многообразий. При этом работ, учитываю-
щих особенности именно специальных эрмитовых многообразий совсем немного.

2. Напомним, что почти эрмитовым называют многообразие M2n , оснащенное
римановой метрикой g = 〈·, ·〉 и почти комплексной структурой J , которые согласо-
ваны условием

〈J X , JY 〉 = 〈X , Y 〉 , X ,Y ∈ ℵ(M2n),

где черезℵ(M2n) обозначен модуль гладких векторных полей на многообразии M2n

[1]. Также напомним, что фундаментальная (или келерова) форма почти эрмитова
многообразия определяется равенством

F (X , Y ) = 〈X , JY 〉 , X ,Y ∈ ℵ(M2n).

Почти эрмитово многообразие называется специальным эрмитовым (или W3-)
многообразием, если выполняются следующие условия:

δF = 0, ∇X (F )(Y , Z )−∇J X (F )(JY , Z ) = 0, X ,Y , Z ∈ ℵ(M2n),

где δ — оператор кодифференцирования [1].

3. В докладе предполагается провести краткий обзор основных результатов, по-
лученных в последние годы различными математиками в геометрии специальных
эрмитовых многообразий, а также представить несколько результатов автора (как
опубликованных [2], [3], так и неопубликованных). В основном эти результаты свя-
заны с почти контактными метрическими гиперповерхностями SH-многообразий,
в частности, с гиперповерхностями Сасаки и Кенмоцу специальных эрмитовых и
келеровых многообразий. В частности, автором получены простые критерии ми-
нимальности таких гиперповерхностей и их характеризация в терминах типового
числа.
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Отметим, что методы исследования SH-многообразий разработаны в ходе иссле-
дования 6-мерных эрмитовых подмногообразий алгебры Кэли [4], а большая часть
результатов, полученных автором в геометрии специальных эрмитовых многооб-
разий, является обобщением соответствующих результатов для 6-мерных подмно-
гообразий алгебры октав.
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ПОНИМАНИЕ ГЕОМЕТРИИ П.К. РАШЕВСКИМ

Н. Г. Баранец1

1ngbaranetz@gmail.com, Ульяновский государственный университет

Яркий советский геометр, профессор МГУ Пётр Константинович Рашевский
(1907–1983) неоднократно писал о предмете и методе своей науки [1]. Не касаясь
онтологии математики, он объяснял реалистическую в платоновском смысле по-
зицию в ней слишком ранним ознакомлением с предметом. Геометрия отражает
свойства и законы материального мира. Т.н. “идеальность” — есть абстрагирование
от несущественных аспектов вещей. “Законы геометрии обязательны для природы
потому и постольку, поскольку они из неё извлечены” [1, с. 2]. Важно, что истины гео-
метрии, отражая действительность, воспроизводят её приближённо, в упрощённом
виде. Отказ от многих запутанных факторов дарит теории стройность. Поэтому гео-
метрия Евклида лишь ограниченно приложима к материальному миру. Обнаруже-
ние новых фактов потребовало более гибких абстракций, точнее отражающих свой-
ства протяжённости, рассматривающих ранее исключённое.

Геометрия не есть набор отдельно значимых фактов. Все её положения логиче-
ски связаны. Возможность охватить всю систему связей геометрии даёт её аксиома-
тическое построение. Оно позволяет получить в теории всё логически возможное.
Часть положений берётся в качестве аксиом, а из них выводятся теоремы. Благодаря
аксиоматике содержание геометрии обретает ясный вид, появляется возможность
описать её немногими аксиомами. Здесь есть и оборотная сторона — аксиомати-
ка приводит к окостенению геометрии, фиксируя её содержание. Природа сложна и
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многообразна — не следует искать универсальную систему, отражающую геометри-
ческие свойства вещей идеально точно и однозначно. Идеализация протяжённости
в математике многовариантна — есть разные геометрические системы. Одни гео-
метрии получены обобщением экспериментов. Они особо значимы для физики —
евклидова геометрия, геометрия СТО и ОТО. Другие возникли путём сложных, мно-
гоступенчатых абстракций, являясь предметом математического изучения. В со-
временной науке наиболее важны геометрии, аксиоматика которых строится на
аналитической основе.

Рашевский писал, что до появления в конце 19 в. современной аксиоматики не
было критерия строгого геометрического доказательства. Допускалась наглядность
без понимания пределов её законности. Состоятельность доказательства угадыва-
лась “наиболее сильными умами”. После осознания ограниченности интуиции и
наглядности в различных геометриях перешли к аксиоматическому способу их по-
строения. Рашевский ценил аксиоматику Гильберта и строгость доказательств, ею
открываемую. Но казавшийся поначалу простым и гладким путь Гильберта, — отме-
тил Рашевский, — обнаружил немало трудностей, усложнивших поставленную им
задачу [2].
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ОБ ОРТОГОНАЛЬНОСТИ СИСТЕМЫ ФУНКЦИЙ ОДНОГО ВИДА

А. Н. Барменков1, Н. А. Барменков2

1anbarmenkov@mail.ru, Научно-Исследовательский Ядерный Университет «МИФИ»
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К. Шайдуков в 1953 г. в [3] доказал методом теории функций действительного
переменного полноту в L2[0,2π] последовательности

cos(nt +bt ); si n(nt +bt ),n = 0,1,2, ..., (1)

при bÉ2/3, положив начало целому направлению исследований таких систем. В [1],
[2] методами монографии [4] показано, что полнота, минимальность в Lp [0;2π], p >
1 более общей системы функций

{cos(nt +α(t ))); si n(nt +α(t )}∞n=0 (2)

зависит только от разности значений гельдеровской функции α(t ) на концах отрез-
ка [0;2π]. Так, что последовательность (2) полна в Lp [0;2π], p > 1 при α(2π)−α(0)

2π 5
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1
2 + 1

2p . То есть система К. Шайдукова (1) полна в L2[0;2π] для α(t ) = bt при b É 3
4 .

Доклад посвящен описанию полных и ортогональных последовательностей вида

{eβ(t ) cos(nt +α(t ));eβ(t ) sin(nt +α(t ))}∞n=0, (3)

где α(t ),β(t ) — действительные функции на [0;2π].

Теорема.Пустьα(t ),β(t )—действительные гельдеровские функции, ограниченной
вариации на отрезке [0;2π], причем α(t ) отлична от константы.
Для того, чтобы система функций (3) была полна и ортогональна в L2[0;2π], необ-

ходимо и достаточно выполнение условий

− 1

2π

∫ 2π

0
2β(s)ct g

s − t

2
d s = 2α(t )−argBa(ei t )+ lnΨ(ei t ), (4)

где Ba(z) = |a|
a

a−z
1−āz , при a ∈C , |a| < 1, a 6= 0 и

Ba(z) = z, при a = 0, причем 1
4 < α(2π)−α(0)

2π É 3
4 ,Ψ(z) — функция, аналитическая в

(|z| < 1) и непрерывная в (|z| É 1),Ψ(z) 6= 0 (|z| < 1).
Замечание.Соотношение (4) позволяет выбирать полные ортогональные последо-

вательности вида (3), наиболее удобные для конкретных прикладных задач. Например,
взяв 2β(t ) = 2cos(t ),Ψ(ei t ) ≡ 1, a = 0, то{

ecos(t ) cos(nt + sin(t )+ t

2
); ecos(t ) sin(nt + sin(t )+ t

2
)

}∞
0

является довольно простым примером полной и ортогональной последовательности
вида (3).

Литература

[1] Барменков А. Н. Казьмин Ю. А. О полноте двух систем функций // Теория отоб-
ражений, ее отображения и приложения. Сборник научных трудов. — Киев :
Наукова думка, 1982. – C. 29–43.

[2] Барменков А. Н. Об аппроксимативных свойствах некоторых систем функций
// Дисс. . . . канд. физ.-мат. наук. – Mосква, 1983. – 154 c.

[3] Шайдуков К. О полноте одной тригонометрической системы // Успехи. матем.
наук, 1953. — №6. — С. 143–153.

[4] Данилюк И. И.Нерегулярные граничные задачи на плоскости. — М : «Наука», 1975.
— С. 296.



А. А. Барышев, Ю. С. Крусс 107

РЕАЛИЗАЦИЯ АЛГОРИТМА ПОСТРОЕНИЯ МАСШТАБИРУЮЩЕЙ
ФУНКЦИИ НА ЛОКАЛЬНЫХ ПОЛЯХ ПОЛОЖИТЕЛЬНОЙ

ХАРАКТЕРИСТИКИ

А. А. Барышев1, Ю. С. Крусс2

1BaryshevAA@gmail.com, Саратовский национальный исследовательский государ-
ственный университет им. Н.Г. Чернышевского
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В последние годы вырос интерес к построению кратномасштабного анализа
(КМА) и всплесковых базисов на локально-компактных абелевых группах и на ло-
кальных полях. Данный интерес обусловлен возможностью применения получен-
ных всплесков в цифровой обработке дискретной информации.

Для групп Виленкина G алгоритмы построения масштабирующей функцииϕ, по-
рождающей КМА на L2(G), а также методы построения ортогональных всплесков
{ψl }

p
l=1 изложены в работах [1], [2]. Для локальных полей F (s) положительной харак-

теристики p известна схема построения всплесков {ψl }
ps

l=1 [3], при условии, что мас-
штарибующая функция ϕ известна. Способ построения масштабирующей функции
ϕ появился в работе [4].

Если функция ϕ ∈DM (F (s)
−N ) порождает ортогональный КМА, то она является ре-

шением масштабирующего уравнения

ϕ̂(χ) = m0(χ)ϕ̂(χA−1), (1)

где функция m0(χ) – маска данного уравнения, χ ∈ X , X – группа характеров адди-
тивной группы F (s)+ локального поля F (s), A – оператор растяжения.

Уравнение (1) можно переписать в виде

ϕ̂(χ) =
∞∏

k=0
m0(χA−k ). (2)

Основные этапы построения ϕ [4]:
1. Выбираем простое число p. Строим N-валидное дерево T .
2. По дереву T строим граф Γ.
3. По графу Γ определяем значения маски m0(χ).
4. Строим ϕ̂(χ), используя равенство (2).
5. Вычисляем функцию ϕ по ϕ̂, используя обратное преобразование Фурье ϕ(x) =∫
X
ϕ̂(χ)(χ, x)dµ(χ).

На основе данного алгоритма написана программа, позволяющая пользователю
выбрать простое число p и создать граф Γ. По графу Γ рассчитываются значения
функций m0(χ), ϕ̂(χ), ϕ(x). При этом графики функций выводятся на экран.

Работа подготовлена в рамках государственного задания Минобрнауки России
(проект № 1.1520.2014/К).
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О ПОСТРОЕНИИ ИЗОЛЯТОРА ПОДГРУППЫ
В НЕКОТОРОМ КЛАССЕ ГРУПП КОКСТЕРА
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Пусть G – конечно порожденная группа Кокстера с копредставлением G =
〈a1, . . . , an ; (ai a j )mi j = 1, i , j = 1,n〉, где mi j – элементы симметрической матрицы
Кокстера: ∀i , j ∈ 1,n, mi i = 1, mi j Ê 2, i 6= j .

Если группе G соответствует конечный дерево-графΓ такой, что вершинам графа
Γ соответствуют образующие ai , i = 1,n, а всякому ребру e, соединяющему верши-
ны с образующими ai и a j , соответствует соотношение (ai a j )mi j = 1, то мы имеем
группу Кокстера с древесной структурой [1].

Определение 1 [2]. Подгруппа A группыG называется изолированной вG, если для
любого элемента g из G из того, что g k принадлежит A, g k 6= 1, следует, что g при-
надлежит A.

Определение 2 [2]. Подгруппа, равная пересечению всех изолированных в G под-
групп, содержащих подгруппу A, называется изолятором или корневым замыканием A
вG .

Теорема 1 [3]. В группах Кокстера с древесной структурой разрешима проблема
вхождения.

Теорема 2 [1]. Пересечение двух конечно порожденных подгрупп группы Кокстера
с древесной структурой конечно порождено и существует алгоритм, выписывающий
образующие данного пересечения.

Теорема 3 [5]. В группах Кокстера с древесной структурой разрешима проблема
пересечения конечного числа классов смежности конечно порожденных подгрупп.

Используя изложенное выше и результат [5], доказывается
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Теорема 4. В группах Кокстера с древесной структурой изолятор всякой конеч-
но порожденной подгруппы конечно порожден. Существует алгоритм, выписывающий
образующие данного изолятора.

Работа выполнена при финансовой поддержке РФФИ (проект 15-41-03222
р_центр_а).
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АНАЛОГ СВЯЗНОСТИ НЕЙФЕЛЬДА
ПРОСТРАНСТВА ЦЕНТРИРОВАННЫХ ПЛОСКОСТЕЙ

О. О. Белова1

1olgaobelova@mail.ru, Балтийский федеральный университет имени И. Канта, Ин-
ститут прикладной математики и информационных технологий

В n-мерном проективном пространстве Pn рассмотрим пространствоΠ всех цен-
трированных m-плоскостей.

Произведем специализацию подвижного репера {A, Aa , Aα}: вершину A поме-
стим в центр m-мерной плоскости Lm , а вершины Aa — на плоскость Lm . Базис-
ные формы пространстваΠ удовлетворяют вытекающим из структурных уравнений
Картана [1] уравнениям

Dωα =ωa ∧ωαa +ωβ∧Ωαβ, Dωa =ωb ∧Ωa
b +ωα∧Ωa

α,

Dωαa =ωβb ∧Ωαb
βa +ωα∧Ωa ;

где Ωα
β
=ωα

β
,Ωa

b =ωa
b ,Ωa

α =ωa
α,Ωa =−ωa ,Ωαb

βa = δb
aω

α
β
−δα

β
ωb

a .
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Над пространством центрированных плоскостей Π возникает главное расслое-
ние L(Π), типовым слоем которого является группа Ли L, действующая в касатель-
ном пространстве к Π. В расслоении L(Π) зададим аналог связности Нейфельда [2]
способом Лаптева–Лумисте. Вводя новые формы

Ω̃αβ =Ωαβ−Γαβγωγ−Γαβaω
a −Lαa

βγω
γ
a ,

Ω̃a
b =Ωa

b −Γa
bαω

α−Γa
bcω

c −Lac
bαω

α
c ,

Ω̃a
α =Ωa

α−Γa
αβω

β−Γa
αbω

b −Lab
αβω

β

b ,

Ω̃a =Ωa −Laαω
α−Labω

b −Πb
aαω

α
b ,

Ω̃αb
βa =Ωαb

βa −Lαb
βaγω

γ−Lαb
βacω

c −Παbc
βaγω

γ
c

и находя их дифференциалы, получаем, что связность в главном расслоении L(Π)
задается с помощью поля объекта связности Γ на базе Π.

Аналог сильной нормализации Нордена [3] данного многообразия позволяет
охватить компоненты объекта связности Γ

Lαa
βγ =−δαγλa

β, Γαβa =−δαβλa , Γαβγ =−δαγλβ−δαβµγ,

Lac
bα = δc

bλ
a
α, Γa

bc =−δa
bλc −δa

c λb , Γa
bα =−δa

bµα+λa
αλb ,

Lab
αβ =−λb

αλ
a
β, Γa

αb =−δa
bµα, Γa

αβ =−λbλ
b
αλ

a
β,

Πb
aα =−δb

aλα, Lab =λaλb , Laα =−λaλbλ
b
α,

Παbc
βaγ =−δb

aδ
α
γλ

c
β−δαβδc

aλ
b
γ, Lαb

βac = δαβδb
cλa ,

Lαb
βaγ =−δb

aδ
α
γλβ−δαβλaλ

b
γ (µα =λα−λa

αλa).

Теорема. Аналог сильной нормализации пространства центрированных плоско-
стей индуцирует аналог связности Нейфельда в ассоциированном расслоении L(Π).

Литература

[1] Belova О. Connections in fiberings associated with the Grassmanmanifold and the space
of centered planes // Journal of Mathematical Sciences. – New York: Springer, 2009. –
Vol. 162. – № 5. – Pp. 605–632.

[2] Нейфельд Э. Г. Аффинные связности на нормализованном многообразии плоско-
стей проективного пространства // Изв. вузов. Матем. – 1976. – № 11. – C. 48–
55.

[3] Норден А. П. Пространства аффинной связности. – М.: Наука, 1976. – 464 с.



С. С. Бельмесова, Л. С. Ефремова 111

ОБ ОБОБЩЕНИИ ПОНЯТИЯ ИНТЕГРИРУЕМОСТИ И ЕГО ПРИМЕНЕНИИ В
ИЗУЧЕНИИ ОДНОГО ОТОБРАЖЕНИЙ СЛЕДА

С. С. Бельмесова, Л. С. Ефремова1

1lefunn@gmail.com, Национальный исследовательский Нижегородский государ-
ственный университет им. Н.И. Лобачевского

Понятие интегрируемости непрерывного отображения в плоскости, введенное
авторами в [1], обобщено на случай полунепрерывного сверху двузначного отобра-
жения, заданного в некотором выпуклом неограниченном подмножестве плоско-
сти.

Доказан критерий интегрируемости такого рода многозначного отображения,
основанный на сведении этого отображения к полунепрерывному сверху двузнач-
ному косому произведению отображений интервала, заданному в неограниченном
(по второй переменной) прямоугольнике плоскости.

Полученные результаты применены к изучению некоторого двузначного полу-
непрерывного сверху, отображения, связанного с отображением следа

F (x, y) = (x y, (x −2)2),

возникающим в физике квазикристаллов.
Рассмотрения данной работы основаны на использовании локальной ламина-

ции, построенной для указанного выше отображения следа в статье [1].

Исследования второго автора по обобщению понятия интегрируемости на слу-
чай двузначных полунепрерывных сверху отображений в плоскости выполнены за
счет гранта № 16-11-10036 РНФ в МГУ им. М.В.Ломоносова.
Исследования первого автора по применению вопросов интегрируемости к иссле-
дованию динамики отображения следа выполнены за счет гранта № 14-10 Минобр-
науки РФ.
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СВЯЗЬ МЕЖДУ НЕОБХОДИМЫМ И ДОСТАТОЧНЫМ УСЛОВИЯМИ
МАСШТАБИРУЮЩЕЙ ФУНКЦИИ НА ГРУППАХ ВИЛЕНКИНА

Г. С. Бердников1
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Пусть (Gn ,+̇) – локально компактная группа Виленкина, элементами которой яв-
ляются бесконечные в обе стороны последовательности x = (. . . ,0n−1, xn , xn+1, . . . ),
x j = 0, p −1, где p – любое простое число. Операция сложения +̇ определяется как
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покоординатное сложение по модулю p, т. е. x+̇y = (x j +̇y j )(x j + y j mod p). Пусть

Gn = {x ∈G : x = (. . . ,0n−1, xn , Xn+1, . . . )},n ∈Z,

основная цепочка подгрупп, G⊥
n – совокупность аннуляторов.

На группах Виленкина возможно построить ортогональный кратномасштаб-
ный анализ. Задача построения кратномасштабного анализа сводится к нахож-
дению масштабирующей функции ϕ, которая удовлетворяет равенству ϕ̂(χ) =
m0(χ)ϕ̂(χA−1), где A – оператор растяжения, а функция m0(χ) называется маской.
Мы будем рассматривать ступенчатые финитные функции. В работе [1] найден ал-
горитм, позволяющий строить такие масштабирующие функции на локальных по-
лях положительной характеристики по особым образом построенному графу. Адди-
тивная группа таких полей при s = 1 является группой Виленкина. Таким образом
найдено достаточное условие масштабирующей функции на группах Виленкина.

Далее представлен результат, показывающий, что вышеупомянутый алгоритм
является не только достаточным, но и необходимым условием.

Теорема 1. Пусть ϕ(x) – масштабирующая функция, причем ϕ̂(χ) имеет носитель
вG⊥

M и постоянна на смежных классах поG⊥
−N . Тогда орграф Γ с вершинами вида α=

(αi )N
i=1, построенный по функции ϕ̂(χ), обладает следующими свойствами:

1) Если имеется дуга α j →αk , то ∀i = 1, N −1, α
j
i+1 =αk

i .
2) Из любой вершины орграфа, отличной от 0 = (0,0, . . . ,0), есть путь в вершину 0.
3) Граф не содержит контуров, то есть замкнутых путей.
4) Из вершины 0 не исходит дуг.

Теорема 2.Классы графов, описанных в работе [1], и графов, обладающих свойства-
ми из теоремы 1, совпадают.

Таким образом, алгоритм из работы [1] описывает все возможные масштабиру-
ющие функции с компактным носителем, а не некий узкий их класс. Благодаря тео-
ремам 1 и 2 появляется два эквивалентных описания таких функций, каждое из ко-
торых можно рассматривать как необходимое и достаточное условие.

Работа подготовлена в рамках выполнения государственного задания Минобр-
науки РФ (проект № 1.1520.2014/К).
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О ЧАСТНОМ СЛУЧАЕ ПОЧТИ ГЕОДЕЗИЧЕСКИХ ОТОБРАЖЕНИЙ
ПЕРВОГО ТИПА

В. Е. Березовский1, Й. Микеш2

1berez.volod@rambler.ru, Уманский национальный университет садоводства, Умань,
Украина
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Рассмотрим частный случай канонических почти геодезических отображений
пространств аффинной связности f : An → Ān , который характеризуется условия-
ми на тензор деформациии связностей

P h
i ( j ,k) +Pαi ( j P h

k)α = δh
( j ak)i , (1)

где P h
i j – тензор деформации связностей, ai j – некоторый симметрический тензор,

δh
i – символы Кронекера, “ , ” – ковариантная производная по связности в простран-

стве An и круглыми скобками обозначаем симметрирование индексов без деления.
Из уравнений (1) получены уравнения

P h
i j ,k =−Pαi j P h

αk +δh
k ai j , (2)

(n −1) ai j ,k = Pαi j Rαk −P
β
α(i Rαj )βk − (n −1) Pαi j aαk , (3)

где Ri j и Rh
i j k – тензоры Риччи и Римана пространства An .

Очевидно, уравнения (2) и (3) в данном пространстве An представляют собой за-
мкнутую систему типа Коши относительно неизвестных функций P h

i j (x) и ai j (x),
которые, естественно, должны удовлетворять еще конечным условиям алгебраиче-
ского характера

P h
i j (x) = P h

j i (x) и ai j (x) = a j i (x). (4)

Тем самым доказана

Теорема 1. Для того чтобы пространство аффинной связности An допускало по-
чти геодезическое отображение, определяемое уравнениями (1), на пространство аф-
финной связности Ān , необходимо и достаточно, чтобы в нем существовало решение
смешанной системытипа Коши (2), (3), (4) относительно неизвестныхфункцийP h

i j (x)

и ai j (x).

Введем в рассмотрение тензоры

W̃ h
i j k = Rh

i j k − 1

n −1
(Ri jδ

h
k −Ri kδ

h
j ),

Wi j = Ri j −R j i .

Нами доказана

Теорема 2. Тензоры W̃ h
i j k иWi j , а также тензор проективной кривизны Вейля, яв-

ляются инвариантными геометрическими объектами пространств аффинной связ-
ности относительно почти геодезических отображений первого типа, определяемых
уравнениями (1).
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ПРОБЛЕМА ЛИ И ДИФФЕРЕНЦИАЛЬНЫЕ ИНВАРИАНТЫ ПОДГРУПП
В ГРУППАХ КРЕМОНЫ

П. В. Бибиков1, А. И. Малахов2

1tsdtp4u@proc.ru, Институт проблем управления РАН
2amalakhov2011@gmail.com, Институт проблем управления РАН

В работе решается проблема Софуса Ли о вычислении алгебры дифференциаль-
ных инвариантов действия псевдогруппы точечных симметрий на классе обыкно-
венных дифференциальных уравнений второго порядка y ′′ = F (x, y), а также пред-
лагается новый подход к изучению дифференциальных уравнений и бесконечно-
мерных подгрупп в группе Кремоны.

Рассмотрим дифференциальные уравнения вида y ′′ = F (x, y). Эти уравнения яв-
ляются особыми с точки зрения классификации Трессе–Кругликова [3], поэтому они
требуют отдельного изучения. С. Ли предпринял попытку вычислить алгебру диф-
ференциальных инвариантов действия псевдогруппы точечных симметрий таких
уравнений, однако не сумел найти ни одного дифференциального инварианта, до-
казав лишь, что инвариантов порядка É 3 не существует.

В первой части работы мы полностью решаем эту проблему Ли, вычислив ко-
личество независимых дифференциальных инвариантов во всех порядках, указав
базисные дифференциальные инварианты, инвариантные дифференцирования и
сизигии этой алгебры.

Тем не менее, даже знания всей алгебры дифференциальных инвариантов недо-
статочно для того, чтобы решить проблему эквивалентности двух дифференциаль-
ных уравнений вида y ′′ = F (x, y) относительно действия псевдогруппы симметрий.
Это связано с тем, что группа симметрий бесконечномерна, поэтому стандартные
рассуждения, применимые в конечномерном случае [1] здесь не работают.

Для преодоления этой проблемы предложен новый подход к изучению диффе-
ренциальных уравнений, основанный на неожиданной связи между дифференци-
альными уравнениями и алгебраической геометрией. А именно, рассмотрим лишь
те дифференциальные уравнения вида y ′′ = F (x, y), у которых правая часть является
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рациональной функцией. Тогда группа точечных симметрий такого класса диффе-
ренциальных уравнений является подгруппой в группе Кремоны [2].

Во второй части работы вычислена алгебра дифференциальных инвариантов
действия этой подгруппы, а также с помощью базисов Гребнера будут подсчитаны
соотношения между инвариантами для различных дифференциальных уравнений,
являющиеся полиномами и задающие в пространстве инвариантов алгебраические
многообразия.

Работа первого автора выполнена при финансовой поддержке РФФИ (проект
мол_а_дк 16-31-60018).

Литература

[1] Bibikov P., Lychagin V. GL2(C)-orbits of binary rational forms. – Lobachevskii Journal
of Mathematics. – 2011. – Vol. 32. – № 1. – P. 95–102.

[2] Dolgachev I., Iskovskikh V. Finite subgroups of the plane Cremona group. – Algebra,
arithmetic, and geometry: in honor of Yu. I. Manin, Progr. Math. – Birkhauser Boston,
Inc., Boston, MA. – 2009. – Vol. 269. – P. 443–558.

[3] Kruglikov B. Point Classification of Second Order ODEs: Tresse Classification Revisited
and Beyond. – Springer, Proceedings of the Fifth Abel Symposium, Tromso, Norway,
June 17–22, 2008.

ОБ ИНТЕГРАЛЬНЫХ ПРОЕКТИВНЫХ ИНВАРИАНТАХ
ГРУПП ДИФФЕОМОРФИЗМОВ
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Пусть RP 1 — проективная прямая и PGL(2) — группа проективных автоморфиз-
мов этой прямой. Рассмотрим группу Diff(RP 1) всевозможных гладких диффеомор-
физмов проективной прямой. Проективная группа PGL(2) действует на ней сопря-
жениями: ϕ 7→ g ◦ϕ◦ g−1.

Представляет интерес задача нахождения (глобальных) инвариантов подобного
действия (в идеале — вычисление всей алгебры таких инвариантов). Эта задача тес-
но связана с такими классическими понятиями, как производная Шварца, когомо-
логии группы Diff(RP 1), алгебра Вирасоро и др. (подробнее об этих вопросах можно
узнать из [1]).

Целью данной работы является построение двух интегральных проективных
инвариантов группы Diff(RP 1). Для этого мы применим конструкцию, аналогич-
ную определению инварианта Калаби для симплектической группы автоморфиз-
мов двумерного диска (см. [2]). А именно, мы вычислим две дифференциальные
1-формы, зависящие от 1- и 2-джетов данного диффеоморфизма ϕ : x 7→ y и инва-
риантные относительно проективной группы, а затем проинтегрируем их по RP 1.
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Таким образом, возникает задача нахождения дифференциальных инвариантов и
инвариантных дифференциальных 1-форм действия проективной группы PGL(2)
на группе Diff(RP 1) сопряжениями.

Теорема 1. Функция J := y2(x−y)+2y1(y1+1)
|y1|3/2 и 1-форма ω :=

p|y1|
x−y d x являются

PGL(2)-инвариантными (здесь через y1, y2 обозначеныкоординаты1- и 2-джетов диф-
феоморфизма ϕ).

С помощью найденных инвариантов построим глобальные интегральные инва-
рианты проективной группы PGL(2).

Теорема 2.Пусть диффеоморфизмϕ ∈ Diff(RP 1) не имеет неподвижных точек. То-
гда функции

I1 :=
∫
RP 1

ω и I2 :=
∫
RP 1

Jω

являются вещественнозначными проективными инвариантами.

Отметим, что знание инварианта J и формы ω позволяет описать всю алгебру
дифференциальных инвариантов действия проективной группы на Diff(RP 1). Од-
нако с помощью этой алгебры невозможно построить новые интегральные инвари-
анты, т.к. любая инвариантная 1-форма, зависящая от 3-джетов диффеоморфизма
ϕ, выражается черезω, Jω и полный дифференциал d̂ J , интеграл от которого равен
0.

Работа выполнена при финансовой поддержке РФФИ (проект мол_а 16-31-00044).
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О ПРОЕКТИВНЫХ ДИФФЕРЕНЦИАЛЬНЫХ ИНВАРИАНТАХ
ПРЯМОЛИНЕЙНЫХ 2-ТКАНЕЙ НА ПЛОСКОСТИ

П. В. Бибиков1, И. С. Стрельцова2

1tsdtp4u@proc.ru, Институт проблем управления РАН
2strelzova_i@mail.ru, Астраханский государственный университет

Рассмотрим упорядоченную 2-ткань на плоскости M = R2(x, y), состоящую из
двух прямолинейных слоений. Каждое такое слоение можно задать линиями уров-
ня функции u(x, y), которая удовлетворяет уравнению флекса

u2
y uxx −2uy uxux y +uy y u2

x = 0.
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Это уравнение имеет группу симметрий SL3(R) × Di f f eo(R), где SL3(R) – груп-
па проективных преобразований плоскости, а Di f f eo(R) – группа калибровочных
преобразований вида u → f (u) [1],[3]. После факторизации уравнения флекса по
группе калибровочных преобразований мы получаем уравнение Эйлера. Это позво-
ляет находить проективные дифференциальные инварианты прямолинейных тка-
ней на плоскости [2].

Пусть u1(x, y), u2(x, y) – гладкие функции общего положения на плоскости, за-
дающие 2-ткань. Каждая из этих функций является решением уравнения Эйлера.
Проективное действие группы SL3(R) индуцирует действие на решениях уравнения
Эйлера, а его инварианты дают проективные инварианты прямолинейных слоений.

Теорема. Функция

J2 =
(v vy y −2v2

y )w3

(w wy y −2w2
y )v3

,

где

w = u1
x

u1
y

, v = u2
x

u2
y

,

и дифференцирования

δ1 = 1

∇1(J2)
∇1, δ2 = 1

∇2(J2)
∇2,

где

∇1 = w
d

d x
− d

d y
, ∇2 = v

d

d x
− d

d y
,

инвариантны относительно действия проективной группы SL3(R).

Работа выполнена при финансовой поддержке РФФИ (проект мол_а 16-31-00044).
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О СХОДИМОСТИ ИНТЕГРИРУЕМЫХ ОПЕРАТОРОВ,
ПРИСОЕДИНЕННЫХ К КОНЕЧНОЙ АЛГЕБРЕ ФОН НЕЙМАНА

А.М. Бикчентаев1

1Airat.Bikchentaev@kpfu.ru, Казанский (Приволжский) федеральный университет

Пусть τ — точное нормальное следовое состояние на алгебре фон Неймана M ,
Mpr — решетка проекторов в M , I — единица M . Нами исследована сходимость
в банаховом пространстве L1(M ,τ) интегрируемых относительно τ операторов [1],
[2]. Введена дисперсияD(X ) = ‖X −τ(X )I‖2

2 оператора X ∈ L2(M ,τ) и установлены ее
основные свойства. Показано, что inf

a∈C‖X −aI‖2
2 =D(X ) для всех X ∈ L2(M ,τ). Пред-

ложен критерий сходимости последовательностей операторов из L2(M ,τ) в терми-
нах дисперсии. Пусть K0 = {X ∈ L2(M ,τ) : τ(X ) = 0}. Для Xn , X ∈ K0 (n ∈N) доказа-

на эквивалентность условий: (i) Xn
‖·‖2−→ X при n →∞; (ii) Xn

τ−→ X и D(Xn) → D(X )
при n → ∞. Показано, что для X ∈ L1(M ,τ) следующие условия эквивалентны:
(i) τ(X ) = 0; (ii) ‖I + z X ‖1 Ê 1 для всех z ∈C.

Дополнен результат А.Р. Падманабхана [3] об одном свойстве нормы простран-
ства L1(M ,τ): если оператор A ∈ L1(M ,τ)+ несингулярен, то

∀ε> 0 ∃δ> 0 ∀P ∈Mpr (τ(P ) Ê ε⇒‖PAP‖1 Ê δ).

Установлена сходимость в L2(M ,τ) мнимых компонент некоторых ограниченных
последовательностей операторов из M . Получены приложения к сходимости дис-
персий. Доказательства приведенных фактов см. в [4].

Работа выполнена при поддержке Российского фонда фундаментальных иссле-
дований и правительства Республики Татарстан (грант 15-41-02433).
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РОЛЬ ПОЧТИ ВПОЛНЕ РАЗЛОЖИМЫХ ГРУПП В ТЕОРИИ АБЕЛЕВЫХ
ГРУПП БЕЗ КРУЧЕНИЯ

Е. А. Благовещенская1

1kblag2002@yahoo.com, (Петербургский Государственный универcитет путей сооб-
щения императора Александра I)

Более полувека назад теория почти вполне разложимых групп выделилась в са-
мостоятельную ветвь общей теории абелевых групп без кручения, см. [1]. Её истоки
следует искать в давних результатах, в которых было открыто существование абе-
левых групп без кручения, не являющихся прямыми суммами групп ранга 1. Алек-
сандр Геннадьевич Курош в своей знаменитой книге «Теория групп» писал: «Мы
увидим позже, что вполне разложимыми группами далеко не исчерпываются все
абелевы группы без кручения».

Традиционным инструментом алгебраических исследований является разложе-
ние аддитивных структур в прямую сумму неразложимых объектов. Для абелевых
групп без кручения, естественно определяемых как аддитивные подгруппы эле-
ментов линейного пространства над полем рациональных чисел Q, такие разложе-
ния определяются неоднозначно. Простота определения этих групп обеспечивает
их присутствие во многих прикладных исследованиях, а сложность строения созда-
ёт препятствия в связанных с ними вычислениях.

Класс «почти вполне разложимых групп», безусловно, по строению является наи-
более близким к классу вполне разложимых групп конечного ранга, так как состо-
ит из групп X , содержащих единственным образом определенную вполне характе-
ристическую подгруппу A конечного индекса, называемую «регулятором», которая
является вполне разложимой.

В отличие от вполне разложимых групп, однозначно с точностью до изоморфиз-
ма представимых в виде прямых сумм неразложимых слагаемых ранга 1, в клас-
се почти вполне разложимых групп реализуется все многообразие неизоморфных
прямых разложений, выраженное в терминах рангов слагаемых, которое существу-
ет в абелевых группах без кручения конечного ранга.

Многие свойства абелевых групп, в том числе, их прямых разложений, опреде-
ляются строением их колец эндоморфизмов. Для почти вполне разложимых групп
X с «циклическим регуляторным фактором» X /A и некоторыми ограничениями
на типы прямых слагаемых ранга 1 регулятора A доказана теорема в форме Бэра-
Капланского, свидетельствующая о максимально допустимой взаимосвязи групп
из этого класса и их колец эндоморфизмов («почти изоморфизм», используемый в
формулировке теоремы, представляет собой некоторое уже ставшее традиционным
в теории абелевых групп без кручения ослабление понятия изоморфизма, необхо-
димое для получения классификационных результатов в теории абелевых групп без
кручения ввиду их сложной структуры):

Теорема (Е. Благовещенская, Г. Иванов, Ф. Шультц) Пусть X , Y — почти
вполне разложимые группы с циклическим регуляторным фактором. Тогда X и Y по-
чти изоморфны, если итолько если их кольца эндоморфизмов End X и EndY изоморф-
ны.
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О НЕРЕАЛИЗУЕМОСТИ НЕКОТОРЫХ РАСПОЛОЖЕНИЙ
РАСПАДАЮЩИМИСЯ ПЛОСКИМИ ВЕЩЕСТВЕННЫМИ КРИВЫМИ

СТЕПЕНЕЙ 7 И 8

И. М. Борисов1, Г. М. Полотовский2
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Мы продолжаем топологическую классификацию проективных плоских распа-
дающихся вещественных алгебраических кривых данной степени n при опреде-
лённых условиях максимальности и обшего положения кривых-сомножителей. Для
n = 6 такая классификация была получена в [1], для n = 7 в случае двух сомножите-
лей этой задаче посвящена серия работ С.Ю. Оревкова, Е.И. Шустина, А.Б. Корчаги-
на, Г.М. Полотовского и др. (см. [2]–[6] и библиографию в [5].)

В данной работе рассматриваются кривые степени 7, распадающиеся в произве-
дение двух коник и M-кубики при условиях, что коники пересекаются друг с дру-
гом в четырёх точках, а нечётная ветвь кубики пересекает каждую из коник в шести
точках, причём все эти 16 точек вещественны и попарно различны. Доказана нереа-
лизуемость такими кривыми ряда расположений (см. пример на рис.1, где внешняя
окружность – граница модели Пуанкаре проективной плоскости). В настоящий мо-
мент остаётся открытым вопрос о реализуемости 23 подобных расположений.

Рассмотрена также серия кривых степени 8, распадающихся в произведение ко-
ники и M-секстики, пересекающихся в 12 попарно различных точках, лежащих на
одном из овалов секстики. Доказана нереализуемость такими кривыми семи не за-
прещённых ранее расположений, одно из которых приведено для примера на рис.2.

Доказательства состоят в использовании топологических следствий теоремы Бе-
зу и в применении метода Оревкова (см. [2]), основанного на теории кос и зацепле-
ний.

Рис.1 Рис.2

Работа выполнена при частичной финансовой поддержке Минобрнауки РФ (про-
ект 1.1410.2014/K).
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РОСТ ЦЕЛЫХ ФУНКЦИЙ С НУЛЯМИ НА ЗАДАННЫХ МНОЖЕСТВАХ,
ИМЕЮЩИМИ ФИКСИРОВАННЫЕ ПЛОТНОСТИ

Г. Г. Брайчев1

1braichev@mail.ru, Московский педагогический государственный университет

Пусть f (z) – целая функция с нулямиΛ f =Λ= (λn)∞n=1, nΛ(r ) – считающая функ-
ция этой последовательности.

Зададим ρ > 0. Верхняя и нижняя ρ-плотности последовательности Λ определя-
ются равенствами

∆ρ(Λ) := lim
r→+∞

nΛ(r )

rρ
, ∆ρ(Λ) := lim

r→+∞
nΛ(r )

rρ
.

Замена здесь nΛ(r ) на NΛ(r ) :=
r∫
0

nΛ(t )

t
d t определяет усредненные верхнюю и ниж-

нюю ρ-плотности ∆∗
ρ (Λ), ∆∗

ρ(Λ).
Типом и нижним ρ-типом целой функции f (z) называют величины

σρ( f ) = lim
r→+∞r−ρ ln max|z|=r

∣∣ f (z)
∣∣ , σρ( f ) = lim

r→+∞
r−ρ ln max|z|=r

∣∣ f (z)
∣∣ .

В докладе даются точные оценки типа и нижнего ρ-типа целой функции через
ρ-плотности или усредненные ρ-плотности ее нулей в следующих случаях: все ну-
ли лежат в угле; между двумя параллельными или пересекающимися прямыми; на
лучах, разделяющих комплексную плоскость на равные углы, а также в областях,
асимптотически близких к указанным.

В качестве примера приведем такие результаты
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Теорема 1. Тип целой функции f (z) порядка ρ ∈ (0,1) с нулями, расположенны-
ми в угле раствора 2θ ∈ [0,π] и имеющими усредненные ρ-плотности ∆

∗
ρ(Λ f ) =

β∗, ∆∗
ρ(Λ f ) Êα∗, удовлетворяет точным, достижимым оценкам

σρ( f ) Ê β∗eρ

2
max
a>0

ln(a2 +2a cosθ+1)

aρ
, σρ( f ) Ê

Ê ρ

πα∗cosρθ

sinπρ
+max

a>0

aa
1/ρ
2∫

aa
1/ρ
1

(
β∗a−ρ−α∗τ−ρ

)
(τ+cosθ)

τ2 +2τcosθ+1
dτ

 ,

где a1, a2 (0 É a1 É 1 É a2 É e) –корни уравнения a ln
e

a
= α∗
β∗ .

Теорема 2. Нижний ρ-тип целой функции f (z) порядка ρ ∈ (0,1) с нулями, имею-
щими усредненные ρ-плотности ∆

∗
ρ(Λ f ) = β∗ и ∆∗

ρ(Λ f ) = α∗, расположенными про-
извольно в комплексной плоскости, удовлетворяет точным, достижимым оценкам

α∗ Éσρ( f ) É ρβ∗


π

sinπρ
− sup

b>0
ρ

ba
− 1
ρ

1∫
ba

− 1
ρ

2

τ−ρ−1 ln
τ+1

b +1
dτ

 ,

где a1, a2 — корни уравнения a ln
e

a
= α∗
β∗ .

Если же нули функции f (z) лежат на одном луче, то выполняется точная оценка

σρ( f ) Ê πρ

sinπρ
α∗,

причем равенство здесь может достигаться при любом значении верхней усредненной
ρ-плотности ∆

∗
ρ(Λ f ) = β∗ Êα∗.

О СПЕКТРЕ ОПЕРАТОРОВ, ПОРОЖДЕННЫХ ИНТЕГРАЛЬНЫМ
УРАВНЕНИЕМ

В. М. Брук1

1vladislavbruk@mail.ru , Саратовский государственный технический университет

На отрезке [a,b] рассматривается уравнение

y(t ) = x +
∫ t

s
(dp)y(ξ)+λ

∫ t

s
y(ξ)dξ+

∫ t

s
f (ξ)dξ, (1)

где y – неизвестная функция,λ∈C, x∈H , f ∈L1(H ; a,b), H – конечномерное гильбер-
тово пространство, p – мера, определенная на борелевских множествах∆⊂ [a,b]⊂R
и принимающая значения в множестве линейных операторов, действующих в H .
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Меру p продолжаем на некоторый отрезок [a,b0] (b0 > b), полагая p(∆)=0 для всех
борелевских множеств∆⊂(b,b0]. Функцию f продолжаем нулем на (b,b0]. В (1) счи-

таем t , s ∈ [a,b0]. Символ
t∫

s
обозначает

∫
[s,t )

, если s<t ; − ∫
[t ,s)

, если s>t ; 0, если s=t .

Теорема 1.Для любойфункции f ∈L1(H ; a,b)и любого x∈H существуетединствен-
ное решение уравнения (1) на отрезке [s−δ,b0], где δ=δ(s)>0 достаточно мало и δ= 0
при s=a.
Следствие 1. Если s = a, то существует единственное решение уравнения (1) на

[a,b0].

Отметим, что решение уравнения (1) непрерывно слева. Обозначим через
U (t , s,λ) оператор, ставящий в соответствие каждому элементу x∈H значение y(t )
решения y уравнения (1).

Теорема 2. Пусть в (1) s = a. Тогда решение уравнения (1) имеет вид y(t ) =
U (t , a,λ)x +

∫
[a,t )

U (t , s,λ) f (s)d s.

В пространстве L1(H ; a,b) определим максимальный L и минимальный L0 опе-
раторы, порожденные уравнением (1) при s = a, λ = 0. Функцию y ∈ L1(H ; a,b) от-
несем к области определения оператора L, если найдутся элемент x ∈ H и функ-
ция f ∈ L1(H ; a,b) такие, что выполняется (1) при s = a, λ = 0. Полагаем Ly = f .
Оператор L0 – это сужение L на множество функций y , удовлетворяющих условию
y(a) = y(b0) = 0.

Поставим в соответствие каждой функции y ∈ D(L) пару граничных значений
γ1y , γ2y по формулам: γ1y = y(a), γ2y = y(b0) −U (b0, a,0)y(a). Тогда четверка
(H , H ,γ1,γ2) является пространством граничных значений в смысле работы [1].
Между сужениями L̃ оператора L такими, что L0 ⊂ L̃ ⊂ L, и линейными отношени-
ями θ ⊂ H ×H существует взаимно однозначное соответствие, определяемое соот-
ношением: y ∈ D(L̃) тогда и только тогда, когда пара (γ1y,γ2y) ∈ θ. В этом случае
обозначаем L̃ = Lθ. Положим Φλ =U (b0, a,λ)−U (b0, a,0). Из [1] следует

Теорема 3. Точка λ ∈C тогда и только тогда является собственным значением
оператора Lθ, когда ker(θ−Φλ) 6= {0}. Точка λ принадлежит резольвентному множе-
ству оператора Lθ в том и только том случае, когда отношение (θ−Φλ)−1 является
всюду определенным оператором.
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ДИСКРЕТНЫЕ ОПЕРАТОРЫ В КАНОНИЧЕСКИХ ОБЛАСТЯХ

В. Б. Васильев1

1vbv57@inbox.ru, Липецкий государственный технический университет

Пусть D ⊂ Rm – острый выпуклый конус в многомерном пространстве. Обозна-
чим: Dd ≡ D ∩Zm ,L2(Dd ) – пространство функций дискретного аргумента на Dd ,
A(x̃) – заданная функция дискретного аргумента x̃ ∈Zm , и рассмотрим следующие
типы операторов

(Aud )(x̃) =
∫
Tm

∑
ỹ∈Dd

ei (ỹ−x̃)·ξ Ã(ξ)ũd (ξ)dξ, x̃ ∈ Dd ,

где знак ∼ над функцией обозначает дискретное преобразование Фурье

Ã(ξ) = ∑
x̃∈Zm

ei x̃·ξA(x̃), ξ ∈Tm .

Функцию Ã(ξ) назовем символом оператора A и эллиптическим символом, если
Ã(ξ) 6= 0 ∀ξ ∈Tm .

Описывается периодический вариант волновой факторизации эллиптического
символа [1] и демонстрируется его работа при исследовании обратимости операто-

ра A. Обозначим через
∗
D сопряженный конус к D, т. е.

∗
D= {x ∈ Rm : x · y > 0, y ∈ D},

и определим T (D) ⊂ Cm как множество вида Tm + i D. В случае Tm ≡ Rm такая об-
ласть многомерного комплексного пространства называется радиальной трубчатой
областью над конусом D.

Определение. Периодической волновой факторизацией эллиптического символа
Ã(ξ) называется его представление в виде Ã(ξ) = Ã 6=(ξ)Ã=(ξ), где сомножители допус-

кают ограниченное аналитическое продолжение в области T (± ∗
D).

Нетрудно построить примеры эллиптических символов, допускающих периоди-
ческую волновую факторизацию.

Теорема. Если эллиптический символ Ã(ξ) ∈ C (Tm) допускает периодическую вол-
новую факторизацию, то оператор A обратим в пространстве L2(Dd ).

Предполагается в дальнейшем измельчение решеткиZm и обоснование предель-
ного перехода от дискретных уравнений к континуальным. Первые результаты для
относительно простых конусов были получены в работах [2–4].

Работа выполнена при финансовой поддержке РФФИ и администрации Липец-
кой области (проект 14-41-03595-р-центр-а).
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Fω-НОРМАЛИЗАТОРЫ И Fω-ПОКРЫВАЮЩИЕ
ПОДГРУППЫ КОНЕЧНЫХ ГРУПП

В. А. Ведерников1, М. М. Сорокина2

1vavedernikov@mail.ru, Московский городской педагогический университет
2mmsorokina@yandex.ru, Брянский государственный университет имени

И. Г. Петровского

Многие исследования в теории групп показали, что между множеством всех
F-нормализаторов конечной группы G и множеством всех ее F-покрывающих
подгрупп, где F — локальная формация, существует тесная связь (см., напри-
мер, [1, глава V]). Следуя соответственно [1] и [2], авторы ввели определения Fω-
нормализатора и Fω-покрывающей подгруппы конечной группы G. В теоремах 1 и
2 получены результаты в отмеченном направлении в случае, когда F —ω-локальная
формация.

Рассматриваются только конечные группы. Пусть ω — непустое множество про-
стых чисел, f : ω∪ {ω′} → {формации групп} — ωF -функция. Формация F=
(G : G/Oω(G) ∈ f (ω′) и G/Fp (G) ∈ f (p) для всех p ∈ω∩π(G)) называется ω-локальной
формацией с ω-спутником f .

Определение 1. Пусть F – непустая формация.
(1) Нормальная подгруппа R группы G называется Fω-предельной нормальной под-

группой вG, если R ÉGF и R/R ∩Φ(G)∩Oω(G) является главным фактором группыG .
Максимальная подгруппа M группы G называется Fω-критической в G, если G = MR
для некоторой Fω-предельной нормальной подгруппы R изG .
(2) F-подгруппа H группыG называется Fω-нормализатором вG, если существует

цепь подгрупп группы G вида H = Ht ⊂ Ht−1 ⊂ . . . ⊂ H1 ⊂ H0 =G, где t Ê 0, такая, что
Hi – Fω-критическая подгруппа в группе Hi−1 для любого i ∈ {1,2, . . . , t }.

Определение 2. Пусть F — непустой класс групп. Подгруппа H группы G называ-
ется Fω-покрывающей подгруппой в G, если H ∈ F и из того, что H É U É G, V —
нормальная ω-подгруппа вU иU /V ∈F, следует, чтоU = HV .

Теорема 1.Пусть F1 и F2 —непустыеω-локальные формации,G — группа, у кото-
рой множество всех Fω1 -покрывающих подгрупп совпадает с множеством всех ее Fω2 -
покрывающих подгрупп, GF1∩F2 — нильпотентная ω-группа. Тогда множество всех
Fω1 -нормализаторов группыG совпадает с множеством всех ее Fω2 -нормализаторов.
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Теорема 2. Пусть F— непустая ω-локальная формация, GF — нильпотентная ω-
подгруппа группыG . Тогда множество всех Fω-нормализаторов группыG совпадает с
множеством всех ее Fω-покрывающих подгрупп.

Теорема 3. Пусть F — непустая ω-локальная формация и GF — π(F)-разрешимая
ω-подгруппа группыG . Тогда справедливы следующие утверждения:
(1) всякая Fω-покрывающая подгруппа из G содержит, по крайней мере, один Fω-

нормализатор группыG;
(2) каждый Fω-нормализатор группы G содержится, по крайней мере, в одной Fω-

покрывающей подгруппе группыG .

При ω = π(G) из теорем 2 и 3 непосредственно следуют известные результаты
Картера, Хоукса, Л. А. Шеметкова о F-нормализаторах и F-покрывающих подгруп-
пах (см., например, [1, 3]).
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О ПОЧТИ ТОЖДЕСТВЕННЫХ ФУНКЦИЯХ

А. Б. Верёвкин1

1abverevkin@gmail.com, Ульяновский государственный университет

Функции вида f (x) = x + o(x), регулярные в окрестности нуля, назовём “по-
чти тождественными”. Относительно композиции они образуют неабелеву группу.
Группа степенных рядов вида s(x) = x +o(x) относительно подстановок является её
расширением. Их общий нейтральный элемент – тождественная функция e(x) = x.
Рассматриваемые функции и ряды представимы произведениями:

Ea(x) = x
/∏

nÊ1(1−xn)an

с вычисляемыми показателями (an). Регулярность Ea(x) в окрестности нуля равно-
сильна регулярности в окрестности нуля ряда

∑
nÊ1 an xn . Композиция почти тожде-

ственных функций и рядов задаёт нетривиальную групповую операцию на показа-
телях произведений: Ea(Eb(x)) = Ea∗b(x).

Примеры.

• (1,0,0,0, . . . )−1 = (−1,1,0,0, . . . );

• (1,0,0, . . . )∗(1,0,0, . . . ) = (2,1,2, . . . ) = (un), где un – количество унитальных непри-
водимых над F2 полиномов степени n;
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• (0,1,0,0, . . . )∗ (1,0,0,0, . . . ) = (u1 −1,u2,u3, . . . );

• (1,0,0,0, . . . )∗ (0,1,0,0, . . . ) = (cn), где

cn = 1

n

∑
m\n µ (

n

m
) · (Fm +Fm−2),

а Fn – числа Фибоначчи: F−1 = 0, F0 = 1, F1 = 1, . . .

Лемма. Для k Ê 1 и любых α, β выполняется:

k∑
m=0

(−1)m ·
(
α ·m +β

k −1

)
·
(

k

m

)
= 0.

Следствие. Для любого a выполняется:

k∑
m=1

(
am

m

)
·
(
−am

k −m

)
= a · (a −1)k−1 , при k Ê 1;

k∑
m=1

(
am

m

)
·
(
−am

k −m

)
· 1

m
= (−1)k−1 · a

k
, при k Ê 1;

a · ln (1−x) =∑
mÊ1

(−1)m

m
·
(

am

m

)
· xm

(1−x)am ;

−ax

1+ (a −1)x
=∑

mÊ1(−1)m ·
(

am

m

)
· xm

(1−x)am .

Эти формулы также следуют из теоремы обращения Лагранжа ([1, с. 568]). Они
позволяют композиционно обращать рассматриваемые произведения простого ви-
да:

y = x
/

(1−x)a ⇔ x = y
/∏

nÊ1(1− yn)bn . (1)

Теорема. Для любого a имеем (a,0,0, . . . )−1 = (bn), где

bn = 1

n

∑
m\n

µ (
n

m
) · (−1)m ·

(
am

m

)
.

Обращение произведения y = x
/

(1−xd )a получается из этой теоремы подста-

новкой в (1) : x = xd , y = yd и a = ad .
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ЛОКАЛЬНЫЕ ГРУППЫ БЕЗ КРУЧЕНИЯ
С АЛГЕБРАИЧЕСКИМИ ПОЛЯМИ РАСЩЕПЛЕНИЯ

С. В. Вершина1
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верситет

Пусть Ẑp , Q̂p — кольцо целых p-адических чисел и его поле частных, K ⊂ Q̂p — ко-
нечное алгебраическое расширение поля рациональных чиселQ. Кольцо R = K ∩Ẑp
называется кольцом расщепления для группы A, если A ⊗R ∼= F ⊕D, где F — сво-
бодный R-модуль, D — делимый R-модуль. В этом случае поле K называется полем
расщепления.

Заметим, что аддитивная группа R+ кольца R является сильно неразложимой
группой, имеет p-ранг 1, является E-модулем над кольцом дискретного нормирова-
ния Zp — локализации кольца целых чисел Z относительно простого p. Локальные
абелевы группы являются модулями над Zp для некоторого p. Локальная группа
называется вполне редуцированной, если она редуцирована и не имеет свободных
Zp-модулей в качестве прямых слагаемых.

Теорема 1. Всякая вполне редуцированная неразложимая p-локальная группа без
кручения с квадратичным полем расщепления K изоморфна группе R+.

Теорема 2. Всякая вполне редуцированная неразложимая p-локальная группа без
кручения с кубическим полем расщепления K изоморфна группе из следующих классов:
1) R+;
2) R+

u = {(a,b) | a = ub,K =Q(u)}∗ ⊂ Ẑp u;

3) Pk = {(a,b1,b2) | a = ub1 +pk u2b2} ⊂ Ẑp b1 ⊕ Ẑp b2,

Ps = {(a,b1,b2) | a = psub1 +u2b2} ⊂ Ẑp b1 ⊕ Ẑp b2.

Заметим, что A(Pk ) = A(Ps) = R+, где A — функтор двойственности Арнольда в
категории локальных групп.

О КАТЕГОРИИ ПОЛУКОЛЕЦ НЕПРЕРЫВНЫХ
ЧАСТИЧНЫХ ЧИСЛОВЫХ ФУНКЦИЙ

Е. М. Вечтомов1, Е. Н. Лубягина2

1vecht@mail.ru, Вятский государственный университет (г. Киров)
2shishkina.en@mail.ru, Вятский государственный университет (г. Киров)

Рассмотривается одна двойственность для категории полуколец C P (X ) на T1-
пространствах X . Пусть X — топологическое пространство и C P (X ) = ⋃

{C (Y ) : Y ⊆
X } — полукольцо всех непрерывных частичныхR-значных функций на X с поточеч-
ными операциями сложения и умножения частичных функций f и g на их общей
области определения D( f )∩D(g ).

Важную роль в полукольцах C P (X ) играют унитарные идемпотенты e A, A ⊆ X :

D(e A) = A и e A(x) = 1 для всех x ∈ A.
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На C P (X ) существует естественный порядок É:

f É g означает, что D( f ) ⊆ D(g ) и ∀x ∈ D( f ) f (x) É g (x).

Любое непрерывное отображение ϕ : Y → X топологических пространств инду-
цирует полукольцевой гомоморфизм ϕ : C P (X ) →C P (Y ) по формуле

ϕ( f ) = f ◦ϕ для всех f ∈C P (X ).

Ясно, что индуцированные гомоморфизмы унитарные идемпотенты e A, A ⊆ X , пе-
реводят в унитарные идемпотенты eB , где B =ϕ−1(A) ⊆ Y .

Полукольцевой гомоморфизм α : C P (X ) → C P (Y ), сохраняющий 1, назовем ∨-
полным, если α сохраняет точную верхнюю грань любого множества {e A : A ∈ F },F ⊆
B(X ), унитарных идемпотентов:

α(∨e A) =∨α(e A) по всем A ∈ F.

Предложение. Полукольцевой гомоморфизм C P (X ) → C P (Y ) будет индуцирован-
ным тогда и только тогда, когда он является ∨-полным.
Следствие. Для любых T1-пространств X и Y каждый полукольцевой ∨-полный

изоморфизм C P (X ) → C P (Y ) индуцирован некоторым однозначно определенным го-
меоморфизмом Y → X .

Обозначим через K категорию всех T1-пространств X и их непрерывных отоб-
ражений ϕ, а через C - категорию всех полуколец C P (X ) и их ∨-полных гомомор-
физмов α. Для любых непрерывных отображений ψ : Z → Y и ϕ : Y → X имеем
ϕ◦ψ =ψ◦ϕ. Поэтому соответствие F, F(X ) = C и F(ϕ) = ϕ, является контрвариант-
ным функтором из категории K в категорию C.

Теорема. Категория K антиэквивалентна (двойственна) категории C.

Работа выполнена при финансовой поддержке Минобрнауки РФ (проектная
часть госзадания Минобрнауки РФ «Функциональная алгебра и полукольца», про-
ект
№ 1.1375.2014/К).
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О ДВОЙСТВЕННОСТИ ДЛЯ ПОЛУКОЛЕЦ
НЕПРЕРЫВНЫХ (0,∞]-ЗНАЧНЫХ ФУНКЦИЙ

Е. М. Вечтомов1, Н. В. Шалагинова2

1vecht@mail.ru, Вятский государственный университет (г. Киров)
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В 1948 г. было введено понятие R-компактного (хьюиттовского) пространства и
доказана двойственность между категориями хьюиттовских пространств X и колец
C (X ) непрерывных R-значных функций на X [1]. Была установлена двойственность
категории хьюиттовских пространств X и категории полуколец C+(X ) непрерыв-
ных неотрицательных функций на X [2]. При изучении полуколец C (X ,S) непре-
рывных функций со значениями в топологических полукольцах S встает вопрос о
двойственности категории таких полуколец и категории соответствующих тополо-
гических пространств X .

В качестве полукольца S возьмем топологическое полукольцо (0,∞], в котором
элемент ∞ является поглощающим. Полукольца C∞(X ) =C (X , (0,∞]) непрерывных
функций со значениями в топологическом полукольце (0,∞] начали изучаться в [3].
В терминах полуколец функций C∞(X ) установим двойственность для категории
всевозможных хьюиттовских пространств X и их непрерывных отображений ϕ.

Каждое непрерывное отображение ϕ : Y → X индуцирует гомоморфизм ϕ̄ :
C∞(X ) →C∞(Y ), где ϕ̄( f ) = f ◦ϕ для всех f ∈C∞(X ). Гомоморфизм ϕ̄ сохраняет кон-
станты, в частности ϕ̄(1) = 1, и сохраняет точные верхние грани и точные нижние
грани непустых подмножеств функций в случае их существования.

Назовем гомоморфизм α : C∞(X ) →C∞(Y ) supc-гомоморфизмом, если он сохра-
няет константы и существующие точные верхние грани любых счетных семейств
( fn)n∈N функций fn ∈C∞(X ) : α(supn∈N fn) = supn∈Nα( fn).
Предложение.Для любых хьюиттовского пространства X итопологического про-

странства Y всякий supc-гомоморфизмα : C∞(X ) →C∞(Y ) индуцируется однозначно
определенным непрерывным отображением ϕ : Y → X , то есть α= ϕ̄.

В качестве морфизмов категории полуколец C∞(X ) возьмем supc-
гомоморфизмы.
Теорема. Категория всех полуколец C∞(X ) с supc-гомоморфизмами в качестве

морфизмов антиэквивалентна (двойственна) категории всех хьюиттовских про-
странств и их непрерывных отображений.

В частности, любое хьюиттовское пространство X однозначно определяется сво-
им полукольцом C∞(X ).

Работа выполнена при финансовой поддержке Минобрнауки РФ (проектная
часть госзадания Минобрнауки РФ «Функциональная алгебра и полукольца», про-
ект
1.1375.2014/К).
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К ЗАДАЧЕ ОБ ЭКСТРЕМАЛЬНОЙ МАТРИЦЕ ИЗ АСИМПТОТИЧЕСКОЙ
ТЕОРИИ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Ф. Х. Вильданова1
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Линейные дифференциальные системы

d x

d t
= P (t )x, x ∈ Rn , t Ê t0

d y

d t
=Q(t )y, y ∈ Rn , t Ê t0

с кусочно-непрерывными и ограниченными (n×n)-матрицами коэффициентов на-
зываются асимптотически эквивалентными [1], если существует преобразование
Ляпунова x = L(t )y , где

sup
tÊt0

(||L(t )||+ ||L−1(t )||+ ||L̇(t )||) <+∞,

переводящее первую из этих систем в другую.
При решении вопроса об асимптотической эквивалентности двух данных линей-

ных дифференциальных систем особую роль играет матрица С, связывающая на-
чальные значения базисного решения одной системы с начальными значениями
соответствующего базисного решения другой. Конструктивных методов построе-
ния требуемой матрицы не существует, поэтому представляет интерес исследова-
ния частных приемов поиска матрицы С. Иногда значение С можно получить как
предельное (в том или ином смысле) значение некоторой многозначной матрич-
ной функции C (t ), определяемой из минимаксного соотношения на конечном про-
межутке изменения аргумента t.

В сообщении приводятся результаты исследования поведения множества {C (t )} и
связанного с ним вопроса асимптотической эквивалентности двух данных линей-
ных дифференциальных систем.
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СТОХАСТИЧЕСКИЕ ДИФФЕРЕНЦИАЛЬНЫЕ ОПЕРАТОРЫ ЛЕВИ И
КАЛИБРОВОЧНЫЕ ПОЛЯ
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В 20-е годы прошлого века Поль Леви предложил несколько определений лапла-
сиана, действующего на пространстве функций на L2(0,1). Значение лапласиана
Леви можно определить как среднее Чезаро вторых производных вдоль векторов
из ортонормированного базиса. По-другому лапласиан Леви можно задать как ин-
тегральный функционал, порожденный специальным видом второй производной.
Аналогичные конструкции используются для определения лапласианов на различ-
ных функциональных пространствах. Такие операторы также называют лапласиа-
нами Леви. Показано, что в важном случае два разных подхода приводят к опреде-
лению не совпадающих операторов.

Одна из основных причин интереса к лапласианам Леви — это их связь с калиб-
ровочными полями. В [3] был определен лапласиан Леви как интегральный функци-
онал, порожденный более сложным видом второй производной, чем оригинальный
лапласиан Леви. При этом в [3] было доказано, что связность в тривиальном вектор-
ном расслоении над Rd является решением уравнений Янга-Миллса тогда и только
тогда, когда соответствующий связности параллельный перенос является решени-
ем уравнения Лапласа для такого лапласиана Леви. В [4] была доказана аналогичная
теорема для стохастического параллельного переноса и стохастического лапласиа-
на Леви, определенного как интегральный функционал. В детерминистском случае
лапласиан Леви, введенный в [3], совпадает с лапласианом Леви, определенным с
помощью чезаровского усреднения (см. [2]). Определение второго оператора есте-
ственным образом переносится на стохастический случай. Найдено значение сто-
хастического лапласиана Леви, определенного с помощью чезаровского усредне-
ния, на стохастическом параллельном переносе и показано, что оно не равно нулю,
если соответствующая связность — решение уравнений Янга-Миллса. Следователь-
но, в стохастическом случае лапласиан Леви, определенный с помощью чезаровско-
го усреднения, не совпадает с лапласианом, введенным в [4].

Введена стохастическая дивергенция Леви. Показано, что стохастический пере-
нос является решением уравнения, содержащего такую дивергенцию, тогда и толь-
ко тогда, когда соответствующая связность — решение уравнений Янга-Миллса. По-
лученное уравнение является бесконечномерным аналогом уравнения движения
кирального поля (ср. [1]).
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АЛГОРИТМ ОПРЕДЕЛЕНИЯ ЗАТЕНЕННЫХ УЧАСТКОВ МОРСКОГО ДНА

П. А. Ворновских1, А. А. Сущенко2
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прикладной математики ДВО РАН

Изучению вопросов картографирования морского дна посвящен целый ряд работ
[1-2], основной целью которых является определение отклонения высоты донной
поверхности от некоторого заданного уровня. Стоит отметить, задача рассматри-
валась только при условии видимости каждой точки морского дна с носителя ан-
тенны. Однако при моделировании процесса акустического зондирования морско-
го дна гидролокатором бокового обзора возникают зоны невидимых участков дон-
ной поверхности. В данной работе авторы описывают алгоритм определения неви-
димых участков морского дна в случае нестационарного источника и приемника и
узкой диаграммы направленности приемной антенны.

Функция u ∈C 1(−∞,+∞) описывает некоторые отклонения донной поверхности
от среднего уровня l . Пусть n = (u′(yi , v t j ),0,−1) определяет вектор нормали к по-
верхности γ′ в точке yi . Тогда скалярное произведение (n ·k) = −yi u′(yi , v t j )− l +
u(yi , v t j ). Геометрия задачи представлена на рисунке 1. Таким образом, необходи-
мо найти функцию

û(yi , v t j ) =
{

u(yi , v t j ), если yi видна с аппарата,

0, иначе.

Рис. 1: Геометрия задачи

Для проведения вычислительного эксперимента аппарат помещаем на высоту
l = 10 м над поверхностью дна. В качестве функции, описывающей морское дно,
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авторы используют

u(y) = e
−(y−100)2+(v t−20)2

102 −e
−(y−200)2+(v t−20)2

102 .

Рис. 2: û(yi , v t j ).

Таким образом, разработан эффективный алгоритм для определения затенен-
ных участков морского дна в случае нестационарного источника и приемника.
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О СВОБОДНЫХ КОММУТАТИВНЫХ ОПЕРАДАХ

А. Р. Гайнуллина1
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Изучается один естественно определяемый класс операд (см. [1]) — коммутатив-
ные операды, введенные в [2]. Коммутативные операды образуют подмногообразие
в многообразии всех операд, рассматриваемых как многосортные универсальные
алгебры.

Свободная Σ-операда с базисом Ω = {Ω(n) | n Ê 0} — это Σ-операда FOΩ =
{FOΩ(n) | n Ê 0} вместе с семейством отображений ηΩ,n : Ω(n) → FOΩ(n), при-
чем выполнено универсальное свойство: для любой операды R и любого семейства
отображений ξ = {ξn | ξn : Ω(n) → R(n),n Ê 0} существует единственный гомомор-
физм операд h : FOΩ → R такой, что hηΩ = ξ. Аналогично можно определить сво-
бодную коммутативную операду FCOΩ. Свободные коммутативные операды явля-
ются свободными алгебрами многообразия коммутативных операд.

Пусть G — свободная полугруппа, порожденная множеством Y = ⋃
nÊ0

Ω(n). Зада-

дим операду GÏ с компонентами GÏ(n) =Gn . Операдные композиции определяют-
ся как совокупность отображений вида:

GÏ(m)×GÏ(n1)×·· ·×GÏ(nm) −→GÏ(n1 +·· ·+nm),

(a,b1, . . . ,bm) 7→ (a1b1, . . . , ambm),

где a = (a1, . . . , am), bi = (bi ,1, . . . ,bi ,ni
) и ai bi = (ai bi ,1, . . . , ai bi ,ni

).
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Операда префиксных кодов PCS в линейно упорядоченном алфавите S задается
следующим образом. Элементы PCS(n) — это упорядоченные последовательности
(w1, . . . , wn) слов в алфавите S такие, что совокупность {w1, . . . , wn} является пре-
фиксным кодом, то есть ни одно слово wi не является левым начальным отрез-
ком другого слова w j . Если положить Ω(n) = XS,n , где XS,n состоит из элементов
(s1, . . . , sn) таких, что s1, . . . , sn ∈ S и s1 < ·· · < sn , то PCS — подоперада операды GÏ.
Можно показать, что она является свободной Σ-операдой с базисом XS = ⋃

n
XS,n , и

что все свободные операды можно считать подоперадами операд вида PCS .

Лемма.Пусть Z — свободная коммутативная полугруппа с базисом Y . Тогда есте-
ственная проекция π : G → Z продолжается до гомоморфизма операдGÏ→ ZÏ.

Теорема. Образ операды FOΩ ⊂ GÏ в ZÏ — свободная коммутативная операда
FCOΩ.
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КРИТЕРИИ КВАЗИАНАЛИТИЧНОСТИ КЛАССОВ КАРЛЕМАНА ДЛЯ СЛАБО
РАВНОМЕРНЫХ ОБЛАСТЕЙ
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Пусть D — жорданова область в C, Mn > 0 (n Ê 0),

H(D, Mn) = { f ∈ H(D) : sup
z∈D

| f (n)(z)| É c f An Mn (n Ê 0)}.

Понятие равномерной области использовалось в ряде работ Лехто (Lehto O.). Од-
носвязную ограниченную область D будем называть слабо равномерной, если суще-
ствует постоянная b такая, что любую пару точек z1, z2 ∈ D можно соединить дугой
α ⊂ D со свойством |α| É b |z1 − z2| (|α| — длина α). В этом случае все производные
функции f ∈ H(D, Mn) продолжаются до непрерывных в D функций.

Класс Карлемана H(D, Mn) называется квазианалитическим в точке z0 ∈ ∂D, если
в данном классе нет функции f , такой, что f (n)(z0) = 0 (n Ê 0), но f (z) 6≡ 0.

Задача о квазианалитичности класса H(D, Mn) для угла решена Р. Салинасом
(1955), а для круга — Б. И. Коренблюмом (1965). Критерий квазианалитич-
ности класса H(D, Mn) для произвольной выпуклой области D установлен
Р. С. Юлмухаметовым (1986). Для областей общего вида (не обязательно выпуклых
и даже односвязных), каждая из которых вблизи граничной точки z0 в некотором
смысле близка к углу или сравнима с «двуугольниками», критерий типа Данжуа-
Карлемана доказан в [1]. Для областей D со спрямляемой жордановой границей
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критерии неквазианалитичности регулярного класса H(D, Mn) (определение см. в
[1], [2]) получены и в [2], но они сформулированы в других терминах.

Здесь установлен в некотором смысле универсальный для всех слабо равномер-
ных областей критерий квазианалитичности регулярных классов H(D, Mn).

Теорема.Длятого чтобы для любой слабо равномерной областиD со спрямляемой
границей регулярный класс H(D, Mn) был квазианалитичен в каждой граничной точке,
необходимо и достаточно, чтобы выполнялось условие Банга

∞∑
n=1

Mn

Mn+1
=∞.

Достаточность теоремы опирается на теорему Банга. Доказательство необходи-
мой части теоремы основано на решении задачи Дирихле с неограниченной гра-
ничной функцией, где по существу использован один результат Берлинга об оценке
гармонической меры.

Работа выполнена при финансовой поддержке РФФИ (проект № 15-01-01661).
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ДОПУСТИМЫЕ ГИПЕРКОМПЛЕКСНЫЕ СТРУКТУРЫ

С. В. Галаев1
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университет имени Н.Г. Чернышевского

Пусть M - гладкое многообразие нечетной размерности n = 2m + 1, m Ê 1 с за-
данной на нем почти контактной структурой (M ,~ξ,η,ϕ,D). Если почти контактная
структура согласована с псевдо-римановой метрикой g таким образом, что
g (ϕ~x,ϕ~y) = −g (~x,~y) + η(~x)η(~y), где ~x,~y ∈ Γ(T M), Γ(T M) - модуль векторных по-
лей на многообразии M , то структура (M ,~ξ,η,ϕ, g ,D) называется почти контакт-
ной структурой с метрикой Нордена, а многообразие M – почти контактным мно-
гообразием с метрикой Нордена [1]. Тензор Схоутена R(~x,~y)~z = ∇~x∇~y~z −∇~y∇~x~z −
∇P [~x,~y]~z −P [Q[~x,~y],~z] [2] будем называть тензором кривизны распределения D, а
распределение D, в случае обращения в нуль тензора Схоутена, - распределени-
ем нулевой кривизны. Допустимая почти комплексная структура ϕ в случае вы-
полнения условия Nϕ+2(dη◦ϕ)⊗~ξ= 0 называется интегрируемой или почти нор-
мальной структурой. Почти контактная структура (M ,~ξ,η,ϕ,D) будет называться
интегрируемой, если интегрируема структура ϕ. Рассмотрим на гладком много-
образии M размерности n = 4m + 1 почти контактную структуру (M ,~ξ,η,ϕ1,D),
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где ϕ1 - допустимая почти комплексная структура. Предположим, что на много-
образии M заданы еще две такие допустимые почти комплексные структуры ϕ2 и
ϕ3, что ϕ1 ◦ϕ2 = −ϕ2 ◦ϕ1 = ϕ3. Назовем многообразие M , наделенное структурой
(M ,~ξ,η,ϕi ,D), i = 1,2,3, почти контактным почти гиперкомплексным многообрази-
ем. Если каждая из почти комплексных структур ϕi интегрируема (почти нормаль-
на), т.е., если Nϕi +2(dη◦ϕi )⊗~ξ= 0, то допустимую почти гиперкомплексную струк-
туру (M ,~ξ,η,ϕi ,D) будем называть интегрируемой или допустимой гиперкомплекс-
ной структурой, а многообразие M - почти контактным гиперкомплексным много-
образием. Пусть на многообразии M с почти контактной структурой (M ,~ξ,η,ϕ1,D)
задан метрический тензор g сигнатуры (2m +1,2m) такой, что имеет место равен-
ство: g (~x,~y) = g (ϕ1~x,ϕ1~y) = −g (ϕ2~x,ϕ2~y) = −g (ϕ3~x,ϕ3~y), где ~x,~y ∈ Γ(D). Структуру
(M ,~ξ,η,ϕi , g ,D) назовем допустимой почти гиперкомплексной псевдо-эрмитовой
структурой. Если структуры ϕi интегрируемы, то структура (M ,~ξ,η,ϕi , g ,D) будет
называться интегрируемой или допустимой гиперкомплексной псевдо - эрмитовой
структурой. Пусть D - распределение почти контактной структуры [2] (M ,~ξ,η,ϕ,D)
с метрикой Нордена. Определим на распределении D допустимую почти гипер-
комплексную псевдо-эрмитову структуру (D̃ , J1, J2, J3,~u,λ = η ◦ π∗, g̃ ,D), полагая,
что ~u = ∂n , J1(~εa) = ∂n+a , J1(∂n+a) = −~εa , J1(~u) =~0, J2~x

h = −(ϕ~x)h , J2~x
v = (ϕ~x)v ,

J2(~u) =~0, J3 = J2 ◦ J1, g̃ (~xh ,~yh) = g̃ (~xv ,~y v ) = g (~x,~y), g̃ (~xh ,~y v ) = g̃ (~xh ,~u) = g̃ (~xv ,~u) = 0,
~x,~y ∈ Γ(D).

Теорема.Пусть (M ,~ξ,η,ϕ, g ,D)– контактная структура с метрикойНордена, за-
данная на многообразии M размерности n Ê 5. Допустимая почти гиперкомплексная
псевдо-эрмитова структура (D̃ , J1, J2, J3,~u,λ= η◦π∗, g̃ ,D) интегрируема, если струк-
тура (M ,~ξ,η,ϕ, g ,D) является контактной кэлеровой структурой Нордена с распре-
делением нулевой кривизны.
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СЕТОЧНЫЙ МЕТОД РЕШЕНИЯ ЗАДАЧ УПАКОВОК И ПОКРЫТИЙ

Ш. И. Галиев1, М. С. Лисафина, А. В. Хорьков
1sh.galiev@mail.ru, КНИТУ им. А.Н. Туполева — КАИ

Пусть G — ограниченное выпуклое множество на плоскости P и имеются фигуры,
являющиеся равными или неравными кругами, эллипсами с взаимно параллель-
ными или ортогональными большими осями, или выпуклыми многоугольниками.
Предлагается метод приближенного решения задач упаковок указанных фигур в G и
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покрытий G фигурами заданных видов. На множестве G строится сетка и на ее осно-
ве предложены целочисленные линейные модели задач упаковок и покрытий. Раз-
работаны алгоритмы решения полученных задач целочисленного линейного про-
граммирования больших размерностей и проведены расчеты.

Семейство открытых фигур образует упаковку в G если каждая точка из G при-
надлежит не более одной из фигур. Семейство замкнутых фигур образует k-покры-
тие (k Ê 1) множества G если каждая точка из G принадлежит не менее чем k фигу-
рам.

Построим математическую модель для упаковок в G равных выпуклых правиль-
ных многоугольников P . Пусть на G построена прямоугольная сетка с шагом ∆ по
осям Ox и O y . Узлы сетки порождают конечное множество T = {t1, . . . , tm}, ti ∈ G,
1 É i É m. Пусть c — центр многоугольника P , тогда P запишем как P (c). Полага-
ем переменные zi равными 1, если c совпадает с точкой ti , а иначе они равны 0.
Пусть i nt X — внутренность множества X . Положим, что для точки ti имеется mi
точек t j , i 6= j , для которых выполняется условие: P (ti )∩P (t j ) 6= ; и P (ti ) ∈ i nt G и
P (t j ) ∈ i nt G. Введем коэффициенты:

ai j =
{

1,если P (ti )∩P (t j ) 6= ; и P (ti ) ∈ i ntG и P (t j ) ∈ i ntG
0,если P (ti )∩P (t j ) =; и P (ti ) ∈ i ntG и P (t j ) ∈ i ntG

i 6= j , ai i = mi ,1 É i , j É m.

Пусть Z и M — m-мерные векторы с координатами zi и mi соответственно, A явля-
ется (m×m)-матрицей с элементами ai j . Поставим задачу о нахождении величины

max

{
m∑

i=1
zi : AZ É M , zi ∈ {0,1},1 É i É m

}
. (1)

Она является задачей упаковки в G наибольшего возможного числа равных выпук-
лых правильных многоугольников заданного размера.

При решении задачи возникают проблемы: а) как сосчитать коэффициенты мат-
рицы A, б) как решать задачу (1) при больших размерностях. В работе преодолены
указанные проблемы. Для расчета коэффициентов матрицы A использовались раз-
ные приемы для разных фигур. Так, например, для упаковки эллипсов использова-
лась lp-метрика с подбираемым параметром p, а для упаковки многоугольников –
блок нормы или специальный алгоритм. Для решений задачи (1) введены уровни
возможных положений решений, веса уровней и разбивка G на части.

Во многом аналогичный подход реализован для задач k-покрытия. Здесь тоже
возникают проблемы как для расчета коэффициентов матриц ограничений, так и
для решения задач больших размерностей. Эти проблемы преодолены, в частности,
для решения задач больших размерностей эффективной оказалась модификация
релаксации целочисленной задачи линейного программирования, аналогичной за-
даче (1).
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ТОЖДЕСТВА КРИВИЗНЫ AC-МНОГООБРАЗИЙ КЛАССА NC11

С. А. Герасименко1, А. Р. Рустанов2

1gsa_57@mail.ru, Оренбургский государственный университет
2aligadzhi@yandex.ru, Московский педагогический государственный университет

Определение 1 [1]. Почти контактная метрическая структура называется
структурой класса NC11, если выполнено тождество

∇X (Φ)Y +∇Y (Φ)X = η(X )Φ◦∇ξ(Φ)ΦY +η(Y )Φ◦∇ξ(Φ)ΦX ;∀X ,Y ∈X(M).

Почти контактное метрическое многообразие, снабженное структурой класса
NC11, называется многообразием класса NC11, коротко NC11-многообразием.

Определение 2. AC-многообразие класса NC11 назовем NC11-многообразием
класса R1, если его тензор римановой кривизны удовлетворяет тождеству

R(Φ2X ,Φ2Y )Φ2Z +R(Φ2X ,ΦY )ΦZ+
+R(ΦX ,Φ2Y )ΦZ −R(ΦX ,ΦY )Φ2Z = 0;∀X ,Y , Z ∈X(M).

Теорема 1. AC-многообразие класса NC11 является NC11-многообразием класса
R1 тогда и только тогда, когда

∇Φ2Z (B)(Φ2X ,Φ2Y )+∇ΦZ (B)(Φ2X ,ΦY )+
+∇ΦZ (B)(ΦX ,Φ2Y )−∇Φ2Z (B)(ΦX ,ΦY ) = 0;

∀X ,Y , Z ∈X(M).

Теорема 2. AC-многообразие класса NC11 является NC11-многообразием класса
R1 тогда и только тогда, когда является многообразием класса C11.

Определение 3. AC-многообразие класса NC11 назовем NC11-многообразием
класса R2, если его тензор римановой кривизны удовлетворяет тождеству

R(Φ2X ,Φ2Y )Φ2Z +R(Φ2X ,ΦY )ΦZ −R(ΦX ,Φ2Y )ΦZ+
+R(ΦX ,ΦY )Φ2Z = 0;∀X ,Y , Z ∈X(M).

Теорема 3. AC-многообразие класса NC11 является NC11-многообразием класса
R2 тогда и только тогда, когда

A(Z , X ,Y ) = 1

4
{∇ΦY (B)(Φ2Z ,ΦX )+∇ΦY (B)(ΦZ ,Φ2X )+

+∇Φ2Y (B)(ΦZ ,ΦX )−∇Φ2Y (B)(Φ2Z ,Φ2X )};∀X ,Y , Z ∈X(M).
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О НЕКОТОРЫХ ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЯХ, СОДЕРЖАЩИХ
ТРИГОНОМЕТРИЧЕСКИЕ И ГИПЕРБОЛИЧЕСКИЕ ФУНКЦИИ

А. А. Гималтдинова1

1alfiragimaltdinova@mail.ru, Башкирский государственный университет, Стерлита-
макский филиал

При нахождении собственных значений спектральных задач для дифференци-
альных уравнений приходится решать достаточно сложные трансцендентные урав-
нения.

Например, при изучении задачи о поперечных колебаниях тонкого упругого
стержня [1, c. 298] возникает трансцендентное уравнение cosm · chm = 1 относи-
тельно собственных значений m. Отмечено, что в силу физических свойств постав-
ленной задачи собственными значениями будут только действительные и чисто
мнимые числа. Однако с математической точки зрения также интересен вопрос о
наличии других комплексных корней уравнения (или доказательство отсутствия та-
ких корней).

В монографии [2] рассмотрены задачи на собственные значения, приводящие к
уравнениям cthm−ctgm =C1/m3, tgm− thm =C2/m, sinm = m. Графическим спо-
собом доказано существование счетного множества действительных корней, для
некоторых уравнений показано существование комплексных корней. В [3] решены
некоторые трансцендентные уравнения, например, sin z = (ln z)−1, ez = az, a 6= 0.

В настоящей работе изучаются уравнения

cosµchµ− sinµshµ= 0,

cosµchµ+ sinµshµ= 0,

cosµshµ− sinµchµ= 0,

cosµchµ+ sinµshµ= 1,

cosµchµ− sinµshµ= 1,

cosµchµ= 1.

Найдены счетные множества их действительных и чисто мнимых корней, показано,
что других корней нет. Получено асимптотическое представление для корней этих
уравнений.
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КОНФОРМНЫЕ ОТОБРАЖЕНИЯ НА ПРОСТРАНСТВА ЭЙНШТЕЙНА

И. Гинтерлейтнер1, Н. И. Гусева2, Й. Микеш3
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В работе [1] доказано, что (псевдо-) риманово пространство Vn допускает кон-
формное отображение на пространство Эйнштейна V̄n тогда и только тогда, когда в
Vn существует решение системы линейных однородных дифференциальных урав-
нений в ковариантных производных типа Коши относительно инвариантов u(x) и
s(x) (> 0):

s,i j = u gi j − s Li j , (1)

где Li j = 1
n−2 (Ri j − R

2(n−1) gi j ), Ri j — тензор Риччи, R — скалярная кривизна, запя-
той обозначена ковариантная производная.
При этом метрики пространств Vn и V̄n связаны условиями:

ḡi j (x) = s−2gi j (x)

в общей по конформному отображению системе координат x.
Условия (1) выполняются при минимальных требованиях на класс гладкости рас-

сматриваемых функций, то есть когда при этом функция s(x) ∈ C 2 и u(x) является
непрерывной функцией. Очевидно, что тогда Vn и V̄n ∈C 2, т.е. gi j (x) и ḡi j (x) ∈C 2.

В работе [1], при условии Vn и V̄n ∈ C 3, доказано, что риманово пространство
Vn допускает конформное отображение на пространство Эйнштейна V̄n ∈C 3 тогда
и только тогда, когда в Vn существует решение замкнутой системы линейных од-
нородных дифференциальных уравнений в ковариантных производных типа Коши
относительно инвариантов u(x), s(x) (> 0) и вектора si (x):

s,i = si ; si , j = u gi j − s Li j ; u,i =−sαLαi . (2)

Мы доказали (совместно с Л.Е. Евтушиком), что подобные уравнения имеют ме-
сто при более слабых условиях на дифференцируемость метрик изучаемых про-
странств. Имеют место

Теорема 1 (Псевдо-) риманово пространство Vn ∈C 2, в котором тензор Li j ∈C 1,
допускает конформное отображение на пространство Эйнштейна V̄n ∈ C 2 тогда и
только тогда, когда в Vn существует решение замкнутой системы линейных одно-
родных дифференциальных уравнений в ковариантных производных типа Коши отно-
сительно инвариантов u(x), s(x) (> 0) и вектора si (x), при этом s ∈C 3.

s,i = si ; si , j = u gi j − s Li j ; u,i =−sαLαi − s ·Pi ,

где Pi j k = Li j ,k −Li k, j , Pk = 1
n−1 Pi j k g i j .

Теорема 2 (Псевдо-) риманово пространствоVn ∈C r , r >2, допускает конформное
отображение на пространство Эйнштейна V̄n ∈ C 2 тогда и только тогда, когда в
Vn существуетрешение замкнутой системылинейных однородных дифференциальных
уравнений в ковариантных производных типа Коши (2) относительно инвариантов
u(x), s(x) (>0) и вектора si (x). В этом случае V̄n ∈C r .
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ГЕОДЕЗИЧЕСКИЕ ОТОБРАЖЕНИЯ ПРОСТРАНСТВ ЭЙНШТЕЙНА
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П. А. Широков изучал геодезические отображения (ГО). Его методы нашли раз-
витие в работах казанских ученых А. З. Петрова, А. П. Широкова, А. В. Аминовой и
др. В 1961г. А. З. Петров, а затем с И. В. Голиковым, начал изучать ГО 4-мерных про-
странств Эйнштейна (ПЭ), см. [1], а также [2].

Й. Микеш [3] установил, что ПЭ допускает нетривиальное ГО только на ПЭ и при
этом доказано, что в ПЭ существует проективное преобразование, найдены основ-
ные уравнения.

Используя [3], в [4] доказано, что четырехмерные ПЭ (непостоянной кривизны)
не допускают нетривиальные ГО и С. Формелла и Й. Микеш [9] нашли все метрики
ПЭ, допускающие ГО. См. также, например, [1–12].

Эти результаты были получены в предположении, что метрики пространств име-
ют класс дифференцируемости C 3. Глобальность этих и многих других результатов
тривиально вытекает из работы [13], см. [12], где установлено, что вПЭ всегда суще-
ствует координатная система, в которой компоненты метрического тензора реаль-
ные аналитические функции.

Нами доказано, что выше приведенные результаты справедливы, когда при ГО
метрика ПЭ имеет класс C 3 и ему соответствующее пространство – класс C 1. Тогда
существует общая по ГО отображению система координат, в которой соответствую-
щие Эйнштейновы метрики аналитичны.
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[9] Formella S., Mikeš J. Geodesic mappings of Einstein spaces // Ann. Sci. Stetinenses. –
1994. – № 9. – P. 31–40.
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ОБ ОДНОМ МЕТОДЕ РЕШЕНИЯ КРАЕВЫХ ЗАДАЧ ТЕОРИИ ПЕРЕНОСА В
АНИЗОТРОПНОЙ МНОГОСЛОЙНОЙ СРЕДЕ

Ю. А. Гладышев1, В. В. Калманович
1v572264@yandex.ru, Калужский государственный университет им. К. Э. Циолков-

ского

Пусть многослойная пластина имеет прямоугольную форму. Слои ограничены
параллельными плоскостями и имеют различные свойства. Направим ось x нор-
мально к плоскости слоев, а оси y, z вдоль плоскости слоев. Точки xi , i = 1,n +1,
определяют границы между слоями, x1 и xn+1 – внешние границы системы. Слои
нумеруем по меньшей координате. Размеры пластины по осям x, y, z соответственно
a, b, c.

Потенциал стационарного процесса переноса Φ(i )(x) в i-м слое определен урав-
нением

∂

∂x

(
λ(i )

1
∂Φ(i )

∂x

)
+ ∂

∂y

(
λ(i )

2
∂Φ(i )

∂y

)
+ ∂

∂z

(
λ(i )

3
∂Φ(i )

∂z

)
= 0. (1)

На границах между слоями предполагаем условия идеального контакта, т.е.
непрерывность потенциала и потока

Φ(i )|xi =Φ(i+1)|xi+1 , J (i )|xi = J (i+1)|xi+1 ,



144 СЕКЦИОННЫЕ ДОКЛАДЫ

где J (i ) =−λ(i )
1

∂Φ(i )

∂x .
Поставим краевую задачу, когда задано распределение потенциала на гранях

Φ(i )|x1 = f1(y, z), Φ(n)|xn+1 = f2(y, z).

Пусть система по боковым граням полностью изолирована, т.е. Jy = Jz = 0. Постав-
ленная граничная задача имеет единственное решение в избранном классе функ-
ций.

Решим задачу традиционным методом Фурье, применяя аппарат К-матрицы [1,
2]. Будем искать частные решения в виде:

Φ(i )(x, y, z) = g (i )(x)h(y, z) = g (i ) cos
πk y

b
cos

πl z

c
, k, l = 0,1,2, . . .

Функция g (i )(x), согласно (1), определяется уравнением вида

λ(i )
1

d2g (i )

d x2
−π2

k2λ(i )
2

b2
+

l 2λ(i )
3

c2

g (i ) = 0. (2)

Решение (2) удовлетворяет условию адиабатической изоляции на боковых гранях.
В силу независимости h(y, z) от слоя, условия согласования примут вид

λ(i ) d g (i )

d x
=λ(i+1) d g (i+1)

d x
, i = 1,n −1.

Разложим функции f1(y, z), f2(y, z) в ряд

fs(y, z) =
∞∑

k=0

∞∑
l=0

askl cos
πk y

b
cos

πl z

c
, s = 1,2.

Далее методом K-матрицы ищем решение (2), удовлетворяющее условиям
g (1)(x,k, l )|x1 = a1kl , g (n)(x,k, l )|xn+1 = a2kl .
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ГЕОМЕТРИЯ И ТОПОЛОГИЯ НЕКОТОРЫХ РАССЛОЕННЫХ
РИМАНОВЫХ МНОГООБРАЗИЙ

Т. А. Гончар1, Е. И. Яковлев2
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Пусть ξ= (E , p,B ,G) – гладкое главное расслоение с проекцией p : E → B и струк-
турной группой G, на тотальном пространстве E задана риманова метрика g , инва-
риантная относительно правого действия группы G. Векторы, ортогональные слоям
расслоения, образуют G-связность H на E с формой связности ω и формой кривиз-
ны Ω.

Рассмотрим алгебру Ли Al g (G) группы G и пространство E симметричных били-
нейных форм на Al g (G). Заданные конструкции порождают риманову метрику h на
базе B и отображение γ : E → E такие, что g (X ,Y ) = γv (ω(X ),ω(X ))+h(d p(X ),d p(Y ))
для всех v ∈ E и X ,Y ∈ Tv E . При этом γv ·a(P,Q) = γv (ad(a)P, ad(a)Q) для любых a ∈G
и P,Q ∈ Al g (G). Формаγv определяет левоинвариантную риманову метрику γ̂v на G.

В терминах описанных объектов для риманова многообразия (E , g ) вычислены
связность Леви-Чивита, операторы О’Нейла, а также секционные кривизны в неко-
торых направлениях. Установлены связи между геометрическими и топологиче-
скими свойствами расслоения.

В случае, когда группа G абелева, аналогичные задачи решались в [1] и [2].
Теорема 1. Пусть g – полная риманова метрика, все секционные кривизны мно-

гообразия (E , g ) неотрицательны и найдется точка, в которой они положительны.
Тогда

• если группа G некомпактна, то многообразия B и G стягиваемы, а расслоение ξ
тривиально;

• если группаG компактна, то многообразия E и B компактны, их фундаменталь-
ные группы π1(E) и π1(B) конечны и, если π1(G) – бесконечная группа, то рассло-
ение ξ нетривиально.

Пусть Λ – ядро гомоморфизма ı∗ : π1(G) → π1(E) из гомотопической последова-
тельности расслоения ξ и λ : Ĝ →G – регулярное накрытие с инвариантом Λ. Тогда
имеется главное расслоение ξ̂= (Ê , p̂, B̂ ,Ĝ), для которого коммутативна диаграмма

Ê
p̂−−−−→ B̂yε yβ

E
p−−−−→ B ,

где ε и β – универсальные накрытия.
Теорема 2. Если (E , g ) – полное риманово многообразие неположительной кривиз-

ны, то многообразия B̂ , Ĝ и Ê гомеоморфны арифметическим пространствам, Λ= 0
и расслоение ξ̂ тривиально.

Работа выполнена при финансовой поддержке РФФИ (грант 16-01-00312а).
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ГЕОМЕТРИЧЕСКИЕ МЕТОДЫ В ЗАДАЧАХ
ФИЛЬТРАЦИИ ДВУХФАЗНЫХ ЖИДКОСТЕЙ
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При моделировании процесса добычи нефти путем вытеснения ее водой возни-
кает проблема управления границей раздела двух сред. Это связано с тем, что ре-
шения дифференциальных уравнений, описывающих задачу, имеют разрывы.

В докладе предлагается метод построения разрывных решений системы нели-
нейных дифференциальных уравнений вида{

st + A(s)B(s)qsx = 0,
Bs(s)qsx +B(s)qx = 0,

описывающей процесс фильтрации двух несжимаемых несмешивающихся жидко-
стей [1,5].

Здесь t — время, x — пространственная координата, s — водонасыщенность, q —
градиент давления. Начальные и граничные условия имеют вид:

s(0, x) = s0(x), q(0, x) = q0(x),
s(t ,0) = s0(t ), q(t ,0) = q0(t ).

Метод основан на геометрическом представлении системы в терминах диффе-
ренциальных 2-форм {

ω1 = A(s)B(s)qd t ∧d s +d x ∧d s,
ω2 = Bs(s)qd t ∧d s +B(s)d t ∧d q

в пространстве R4 с координатами t , x, s, q (см. [4]).
Аналогичная задача при предположении о постоянном градиенте давления рас-

сматривалась в работе [3].

Работа выполнена при частичной финансовой поддержке Российского научного
фонда (проект № 15-19-00275).
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О РЕШЕНИИ ЗАДАЧИ ТРИКОМИ ДЛЯ УРАВНЕНИЯ
ЛАВРЕНТЬЕВА-БИЦАДЗЕ
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Пусть u(x, y) – функция, удовлетворяющая уравнению смешанного типа
Бицадзе-Лаврентьева

∂2u

∂x2
+ sign y

∂2u

∂y2
= 0 (1)

в области D = D1 ∪ D2 плоскости комплексного переменного z = x + i y , состоя-
щей из полукруга D1: |z − 1

2 | É 1
2 , y > 0, с диаметром, соединяющим точки A(0,0),

B(1,0), и треугольника D2, стороны которого AC и BC являются отрезками характе-
ристик уравнения (1), определяемых уравнениями соответственно x + y = 0 (y É 0)
и x − y = 1 (y É 0). Так как u(x, y) является гармонической в области D1 функцией,
для неё существует гармонически сопряженная функция v(x, y) в указанной обла-
сти. Для этих функций будем использовать также обозначения соответственно u(z),
v(z). Обозначим через τ произвольную точку полуокружности l : |z− 1

2 | = 1
2 , y > 0 ча-

сти границы области D1. Введем в рассмотрение функцию w(z) = u(x, y)+ i v(x, y)
аналитическую в области D1.
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Рассмотрим решение следующей краевой задачи для уравнения (1). Требуется
найти функцию u(x, y), удовлетворяющую уравнению (1) всюду в области D, исклю-
чая точки отрезка AB , непрерывную в области D и непрерывно продолжимую на
границу области D, частные производные которой ∂u

∂x , ∂u
∂y непрерывны в области D,

если для граничных значений этой функции выполняются условия

a(τ)u(τ)−b(τ)v(τ) = c(τ), u|AC =ψ(x), (2)

где a(τ), b(τ), c(τ) – заданные на l действительные функции, удовлетворяющие
условию Гёльдера всюду на l , включая концы, a2(τ)+ b2(τ) 6= 0 всюду на l , ψ(x) –
заданная функция, обладающая непрерывной в интервале [0, 1

2 ] производной.
Начало изучению решений уравнений смешанного типа, аналогичных (1), было

положено появившимися на свет в 20-е годы 20 века работами Ф. Трикоми, кото-
рые впоследствии стали частью его монографии [1] (с. 372-415). Изучению решения
уравнения (1) посвящены статьи [2], [3], в которых постановка задачи отличается от
используемой в настоящей работе. Обзор работ по решению уравнений смешанно-
го типа дан в [4].

Поступая так же как в статьях [2], [3], для точек τ= x ∈ AB получаем условие вида
(2), в котором a(τ) = 1, b(τ) =−1, c(τ) = 2ψ(τ2 ), 0 É τÉ 1.

Итак, для нахождения аналитической в области D1 функции w(z) = u(z)+ i v(z)
мы пришли к краевой задаче Гильберта с условием (2), заданным на всей грани-
це этой области [5]. Из решения последней задачи находим искомую в области D1
функцию u(x, y). Далее, как и в [2], [3] определяется искомая в области D2 функция
u(x, y). Рассмотрен также случай, когда индекс задачи Гильберта бесконечен.
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ГРАДИЕНТНЫЙ ВЗРЫВ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ НЕЛИНЕЙНОГО
УРАВНЕНИЯ ШРЕДИНГЕРА С ОТКЛОНЯЮЩИМСЯ АРГУМЕНТОМ

А. Д. Грехнева1

1alice-prohorses@yandex.ru, Российский Университет Дружбы Народов

Изучается эффект конечности времени существования решения задачи Коши для
нелинейного уравнения Шредингера, гамильтониан которого содержит особенно-
сти типа сдвига пространственного аргумента. Рассмотрим задачу Коши

i
du

d t
= Lu(t ), t > 0; (1); u(+0) = u0; u0 ∈ H ≡ L2(Rd ). (2)

в которой u0 – заданная функция из гильбертова пространстваH = L2(Rd ) (либо
H = L2(Ω), где Ω – область или гладкое многообразие в пространствеRd ),u – ис-
комое отображение промежутка [0,T) при некотором T ∈ (0,+∞] в пространство H,
удовлетворяющее уравнению (1) и условию (2). Оператор L является нелинейным
дифференциально-разностным оператором второго порядка эллиптического ти-
па вида (1), заданным на подпространстве X = W 1

2 (Rd )
⋂

Lp+2(Rd ) при некотором
p ∈ (0,+∞).

Нелинейный оператор уравнения (1) определим равенством

Lu ≡∆u +Gu, (3)

где при некотором h ∈ Rd оператор G задан равенством

Gu =V (|u|2)u + [ f (|Shu|2 +|u|2)+ f (|u|2 +|S−hu|2)]u.

Зададим V (s) = s
p
2 , s Ê 0, | f (s)| É c|s|

p
2 , s ∈ R.

Определение. Функцию u будем называть H l -решением задачи (1), (2), (3) (l ∈
{0}

⋃
N), если u ∈C ([0,T ), H l ⋂

Lp+2(Ω)) и выполнено равенство

u(t ) = e−i t∆u0 − i

t∫
0

e−i (t−s)∆Gu(s)d s, t ∈ [0,T ).

Теорема локального существования решения доказывается, как и в работе [1], ме-
тодом сжимающих оторбажений.

Зададим функционалы в банаховом пространстве X l = H l ⋂
Lp+2:

E(u) =
∫
Ω

[
1

2
|∇u|2 − 1

p +2
W (|u|2)−F (|u h

2
|2 +|u−h

2
|2)

]
d x;

J (u) = Im
∫
Ω

(∇u, x)ūd x.

Здесь W (y) =
y∫

0
V (s)d s и F (y) =

y∫
0

f (s)d s.
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Теорема. Пусть p > 4 и начальная функция u0 ∈ H3(−l ,l ) удовлетворяет усло-
виям E(u0) < 0, J (u0) < 0. Тогда длина интервала существования H3-решения за-
дачи Коши (1) − (2) ограничена сверху величиной T∗(u0). Причем если T∗ – точная
верхняя грань существования H3-решения, то выполняются равенства для пределов

lim
t→T∗−0

‖u(t , ·)‖H 1 =+∞, lim
t→T∗−0

‖u(t , ·)‖Lp+2 =+∞ и lim
t→T∗−0

‖u(t , ·)‖L∞ =+∞.
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УНИВЕРСАЛЬНЫЕ ОБЕРТЫВАЮЩИЕ АЛГЕБРЫ РОТА—БАКСТЕРА
ПРЕКОММУТАТИВНЫХ, ПРЕАССОЦИАТИВНЫХ И ПРЕЛИЕВЫХ АЛГЕБР

В. Ю. Губарев1

1vsevolodgu@math.nsc.ru, Институт математики им. С.Л. Соболева СО РАН, Новоси-
бирский государственный университет

Пусть A — алгебра многообразия Var. Линейный оператор R на A называется опе-
ратором Рота—Бакстера, если для любых x, y ∈ A выполнено

R(x)R(y) = R(R(x)y +xR(y)+x y).

Алгебра A называется Var-алгеброй Рота—Бакстера.
Прелиевы алгебры были независимо введены Кожулем, Винбергом и Герштенха-

бером в 1960-х годах, такие алгебры задаются тождеством (x y)z − x(y z) = (y x)z −
y(xz). В 1990 и 2000-х годах Лодей определил прекоммутативные [1] и преассоци-
ативные [2] алгебры. В [3] и [4] было дано эквивалентное друг другу определение
пре-Var-алгебры для многообразия Var.

Агуиар в 2000 г. заметил [5], что ассоциативная алгебра Рота—Бакстера относи-
тельно новых операций x Â y = R(x)y , x ≺ y = xR(y) будет преассоциативной алгеб-
рой. В [3] это было распространено на произвольное многоообразие Var.

Теорема [6]. Любая пре-Var-алгебра инъективно вкладывается в Var-алгебру
Рота—Бакстера.

В работе найден базис универсальной обёртывающей алгебры Рота—Бакстера
коммутативных, ассоциативных и лиевых преалгебр. Для описания базиса в лиевом
случае используется конструкция свободной лиевой алгебры Рота—Бакстера [7, 8].

Доказано, что пара многообразий (RBLie,preLie) является PBW-парой [9]. Доказа-
на нешрайеровость многообразий коммутативных, ассоциативных и лиевых алгебр
Рота—Бакстера.

Работа выполнена при финансовой поддержке РНФ (проект 14-21-00065).
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ДИНАМИКА СИСТЕМЫ ДВУХ НЕЛИНЕЙНО СВЯЗАННЫХ МАЯТНИКОВ

Е. В. Губина1, С. О. Хрисанфова2

1gubinael@mail.ru, Национальный исследовательский Нижегородский государ-
ственный университет им. Н.И. Лобачевского

2sveta.hri@mail.ru, Национальный исследовательский Нижегородский государ-
ственный университет им. Н.И. Лобачевского

В работе рассматривается система уравнений{
φ̈1 +λφ̇1 +βsinφ1 = γ1 +d sin(φ2 −φ1),

φ̈2 +λφ̇2 +βsinφ2 = γ2 +d sin(φ1 −φ2),

описывающая динамику двух упруго связанных между собой математических
маятников, находящихся под действием внешнего вращательного момента. Кро-
ме стандартного приложения маятниковых систем в механике, системы связанных
осциллирующих элементов позволяют описывать процессы в электрических цепях,
в полупроводниковых структурах, в молекулярной биологии и др.

Предполагается, что колебания маятников происходят в сильно вязкой среде (ко-
эффициент затухания λ>> 1), параметр d показывает величину связи между маят-
никами, параметры γ1,γ2 отражают действие вращательного момента на каждый
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из маятников, а коэффициент β является показателем асинхронности во вращении
маятников.

В работе изучены периодический и квазипериодический режимы колебаний. По-
лучена аналитическая оценка границы области синхронизации в плоскости (d ,α),
гдеα – параметр синхронизации. Эта оценка подтверждена путем прямого числен-
ного интегрирования системы. Построены бифуркационные диаграммы в плоско-
сти (γ1,γ2), отвечающие различным режимам синхронизации. Показано влияние
всех параметров на изменение площади области синхронизации.
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ГИПОТЕЗА СТОКЕРА ВЕРНА ДЛЯ ШЕСТИВЕРШИННИКОВ

А. М. Гурин1

1alexgu@yandex.ru, Белгородский государственный университет

Гипотеза Стокера состоит в утверждении двойственном к лемме Коши для вы-
пуклых многогранников, а именно: Пусть в трехмерном евклидовом пространстве
даны два выпуклых изоморфных друг другу многогранника и двугранные углы при
соответствующих по изометрии парах ребер многогранников равны между собой.
Тогда и соответствующие по изометрии пары плоских углов многогранников равны
друг другу.

Гипотеза Стокера была опубликована в 1968 году и до настоящего времени не
имеет полного решения. Имеются частные решения [Каршер (1968), Милка (1971),
Гурин (1981, 2012), Погорелов (2002)], которые получены при тех или иных допол-
нительных условиях. Автором данного сообщения предпринята попытка продол-
жить план Каршера доказательства гипотезы Стокера следуя алгоритму перечисле-
ния многогранников с данным числом граней. Реализуя этот путь доказательства,
автор обнаружил, что возможно некоторое обобщение понятие ”комбинаторный
тип многогранника” в виде создания множества графов-прообразов комбинатор-
ных типов многогранников с заданным числом вершин, которые названы геомет-
рологическим множеством.

Теорема. Если представитель геометрологического множества имеет меньше се-
ми вершин, то найдется его реализация в виде выпуклого многогранника, для которого
гипотеза Стокера верна.
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МНОГОМЕРНОСТЬ ПРОСТРАНСТВА-ВРЕМЕНИ
И ИНТУИЦИОНИСТСКАЯ ЛОГИКА

А. К. Гуц1

1aguts@mail.ru, Омский государственный университет имени Ф.М. Достоевского

Памяти А.П. Широкова, подтвердившего
умение автора преподавать геометрию.

В современной теории пространства-времени и космологии широко используют-
ся многомерные (псевдо)римановы многообразия. При этом многомерие, т.е. раз-
мерность пространства-времени большая 4, как правило, постулируется, вводит-
ся априори и ее выбор определяется намерением получить желанные физические
следствия. Например, 5-мерная теория Калуцы-Клейна обеспечивала одновремен-
ное описание гравитации и электромагнетизма.

Человеческая практика, физический опыт, однако, упорно указывают на 4 - мер-
ность пространства-времени. Можно ли построить теорию, базирующуюся на по-
стулате 4-мерности пространства-времени, и в рамках такой теории иметь возмож-
ность воспринимать при необходимости иcходное 4-мерное пространство-время
как (4+k)-мерное (псевдо)риманово многообразие, в котором разворачивается же-
ланная физическая картина Реальности?

Ответ утвердительный, если базовую 4-мерную теорию пространства-времени
излагать как теорию, основанную на интуиционистской логике [1]. Такой ответ
неудивителен для тех, кто живет в Казани. Именно в Казани появилась воображае-
мая неевклидова геометрия Лобачевского, предваряющая теорию римановых мно-
гообразий, и воображаемая неаристотелева логика Васильева [2]. Н.А. Васильев от-
казался в свой логике и от закона исключенного третьего, что ведет к интуицио-
нистской логике, и от закона (не)противоречия.

Переформулировка [1] общей теории относительности Эйнштейна (ОТО) в рам-
ках синтетической геометрии Кока-Ловера [3] дает 4-мерное базовое пространство-
время. Если при этом принять, что скорость света c = c0+d и гравитационная посто-
янная Ньютона G =G0+δ, где c0,G0 – классические их значения, а d ,δ – так называ-
емые инфинитозималы (d2 = 0,δ2 = 0), то метрика gi k (i ,k = 0,1,2,3) пространства-
времени, являющаяся решением уравнений Эйнштейна, будет зависить от этих ин-
финитозималов. При интерпретации такой «воображаемой» ОТО в топосе SetsLop

[1,4] метрика будет зависить от многомерного параметра a A (A = 1, ...,k). Другими
словами, появляется (4+k)-мерное пространство-время с метрикой

dS2 = hAd a A2 +2hi Ad xi d a A + gi k (x, a)d xi d xk ,

в которое вложено классическое 4-мерное пространство-время.
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О СУЩЕСТВОВАНИИ СИМПЛЕКТИЧЕСКОЙ СТРУКТУРЫ
НА ШЕСТИМЕРНОМ G1-МНОГООБРАЗИИ

Н. А. Даурцева1

1natali0112@ngs.ru, Кемеровский государственный университет

Пусть (M , g , J ,ω) – 6-мерное почти эрмитово многообразие. Напомним, что в
этом случае риманова метрика g инвариантна относительно почти комплексной
структуры J :

g (J ·, J ·) = g (·, ·),

а 2-форма ω однозначно определяется парой (g , J ) по формуле

g (·, ·) =ω(·, J ·) (1)

Очевидно, что J положительно асcоциирована с 2-формой ω, т.е.

ω(J ·, J ·) =ω(·, ·), ω(X , J X ) > 0, для всех X 6= 0 (2)

Для почти комплексной структуры существуют и другие инвариантные относи-
тельно нее метрики g J , каждая из которых, в паре с почти комплексной структурой
J по формуле (1) определяет 2-форму ωJ , удовлетворяющую условиям (2).

В работе [2] было доказано, что на строго приближенно келеровом 6-
многообразии (M , g , J ) почти комплексная структура J не может быть согласована с
симплектической формой, даже локально. Далее мы будем использовать обозначе-
ния принятые в [1] для классификации почти эрмитовых многообразий. А именно,
K обозначает класс келеровых многообразий, W1 – класс приближенно келеровых
многообразий, W2 – класс почти келеровых, W3 – класс эрмитовых полу-келеровых
многообразий и W4 – класс, содержащий локально конформно келеровы много-
образия. В этих обозначениях результат [2] говорит о том, что если (M , g , J ) ∈ W1
и (M , g , J ) ∉ K , то (M , g J , J ) ∉ W2 для любой римановой метрики g J , инвариантной
относительно J .

В докладе представлен более сильный результат.

Теорема. Если (M , g , J ) ∈W1 ⊕W3 ⊕W4, и почти комплексная структура J не инте-
грируема,то для любой римановойметрики g J , инвариантной относительно J , почти
эрмитово многообразие (M , g J , J ) ∉W2.

Работа поддержана грантом Президента РФ по поддержке научных школ, проект
НШ-4382.2014.1
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ВЫЧИСЛЕНИЕ НОД В ЗАДАЧЕ ПОИСКА ПСЕВДОПРОСТЫХ
И СИЛЬНО ПСЕВДОПРОСТЫХ ЧИСЕЛ

Д. А. Долгов1

1Dolgov.kfu@gmail.com, Казанский (Приволжский) федеральный университет

В данной статье рассказывается об использовании рекурентных последователь-
ностей при вычислении НОД. Это можно применить для вычисления псевдопро-
стых и сильно псевдопростых чисел (см. [1]).

Возьмём k последних бит в каждом из чисел. Построим линейную аппроксима-
цию между полученными k-битными числами uk , vk : (αk∗uk+βk∗vk )/2s , для этого
необходимо найти соответствующие коэффициенты α, β. Коэффициенты α, β вы-
числяются заранее в ходе фазы предвычисления. Эта фаза начинается с построения
последовательности Ci :

Ci = (Ai −Bi )/2si , Ai = Bi−1,Bi =Ci−1, (1)

где A1 = max(uk , vk ),B1 = mi n(uk , vk ), uk и vk - k наименее значащих бит чисел u,v.
На каждом шаге мы находим si , которое является максимальной степенью двойки,
так что Ci > 0. Условие выхода: Ci = 0 или Ci < 0.
После этого находим α, β, находим линейную аппроксимацию, но уже над исход-
ными числами. Данное преобразование сохраняет НОД, уменьшая порядок числа.

Ci =
1∏i

k=1 2sk
((−1)i ∗βi ∗B1 + (−1)i+1 ∗αi ∗ A1) (2)

Формулы для вычисления α, β имеют рекурсивный вид:

αi =αi−2 ∗2si−1 +αi−1, i > 3, (3)

βi =βi−2 ∗2si−1 +βi−1, i > 2. (4)

По умолчанию α1 = 1, α2 = 1, α3 = 2s2 +1, β1 = 1, β2 = 2s1 +1.
В ходе линейной аппроксимации уменьшается длина числа, при этом на-

капливаются дополнительные небольшие простые множители. Поэтому по-
сле получения конечного результата необходимо ещё раз выполнить НОД:
d=GC D(GC D(An ,Bn),Bn).

При использовании данного преобразования модифицированный алгоритм Ев-
клида работает быстрее оригинального на числах длины больше 600 бит, имеет
меньшее число операций.
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Название/Размер числа 600 bit 800 bit 1000 bit 10000 bit
Euclid 57 92 153 3618
New GCD 61 87 135 3408

Таблица 1: Время выполнения

[2] Sorenson J. The k-ary GCD Algorithm // University of Wisconsin-Madison. Techn.
Report. — 1990. — P. 1–20.

[3] Sorenson J.Two fast GCD Algorithms // J. Alg., 1994. — 16. — N1. — P. 110–144.

О ГЕОМЕТРИИ СЛОЕНИЙ
С ТРАНСВЕРСАЛЬНОЙ ЛИНЕЙНОЙ СВЯЗНОСТЬЮ

А. Ю. Долгоносова1

1annadolgonosova@gmail.com, Национальный исследовательский университет,
“Высшая школа экономики”

Объектом исследования являются слоения произвольной коразмерности q на n-
мерных многообразиях, допускающие в качестве трансверсальной структуры ли-
нейную связность, называемые слоениями с трансверсальной линейной связно-
стью. Изучению топологии и геометрии данного класса слоений посвящены работы
П. Молино, Ф. Камбера и Ф. Тондеура, И.В. Белько и других авторов. Слоения с транс-
версальной линейной связностью включают в себя псевдоримановы, лоренцевы и
римановы слоения.

Напомним, что LF -пространством называется индуктивный предел пространств
Фреше. Доказано, что в категории слоений группа автоморфизмов произвольно-
го слоения с трансверсальной линейной связностью является бесконечно мерной
группой Ли, моделируемой на LF -пространствах [1]. Этот результат обобщаяет со-
ответствующую теорему Масиас-Виргоса и Санмартина Карбона для римановых
слоений.

Для q-мернго распределения M, трансверсального к слоению (M ,F ), на много-
образии M построена специальная, трансверсально проектируемая линейная связ-
ность ∇M, относительно которой оба распределения M и T F являются вполне гео-
дезическими.

Доказана эквивалентность различных подходов к понятию полноты слоений с
трансверсальной линейной связностью [2].

Для слоения (M ,F ) на псевдоримановом многообразии (M , g ), метрика на слоях
которого не вырождается, доказано, что (M ,F ) псевдориманово тогда и только то-
гда, когда геодезическая, ортогональная слою в одной точке, остается ортогональ-
ной слоению в любой своей точке. Отсюда вытекает известное утверждение Б. Рейн-
харта для слоений на собственно римановых многообразиях, доказанное им другим
способом, не применимым для псевдоримановых многообразий.

Исследуется структура графиков G(F ) слоений (M ,F ) с трансверсальной линей-
ной связностью и индуцированных на них слоений F := {Lα = p−1

1 (Lα) |Lα ∈ F }. По-
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казано, что график G(F ) является хаусдорфовым (2n−q)-мерным многообразием, а
специальная линейная связность ∇M индуцирует линейную связность ∇N на G(F ),
относительно которой (G(F ),F) является вполне геодезическим слоением с транс-
версальной линейной связностью, а его слои — приводимыми многообразиями аф-
финной связности. Дано описание структуры слоев этого слоения.

Построены примеры.

Работа выполнена в рамках Программы фундаментальных исследований НИУ
ВШЭ в 2016 году, проект № 98.

Выражаю благодарность Н.И. Жуковой за руководство данной работой.
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КОЛЧАНЫ С СООТНОШЕНИЯМИ КОНЕЧНОЙ
ГОМОЛОГИЧЕСКОЙ РАЗМЕРНОСТИ

Д. В. Дубнов1

1ddubnov@yandex.ru, Московский технический университет связи и информатики

Колчаны с cоотношениями конечной гомологической размерности играют важ-
ную роль в теории представлений конечномерных алгебр. Важным примером ал-
гебр колчанов с соотношениями конечной гомологической размерности являются
наследственные алгебры и их обобщение — квазинаследственные алгебры. Как вы-
яснили Длаб и Рингель [1], производная категория модулей над квазинаследствен-
ной алгеброй порождена исключительным набором, гомологическая размерность
квазинаследственной алгебры не превосходит 2n−2, где n — число вершин. Всякая
алгебра гомологической размерности 2 является квазинаследственной.

Принадлежащая автору конструкция композиции колчанов с соотношениями [2]
позволяет получать колчаны с соотношениями сколь угодно большой гомологиче-
ской размерности уже для 2-х вершин.

Пусть A, B — алгебры колчанов с соотношениеми над полем k с изоморфной по-
лупростой частью C , то есть A =C⊕J (A), B =C⊕J (B), C = kn = ke1⊕. . .⊕ken . Радикал
Джекобсона алгебры A (аналогично B) разлагается в сумму векторных пространств
J (A) =C ⊕Ai j , где Ai j = pi J (A)p j . Композицией A◦C B алгебр A и B называется век-
торное пространство A⊗C B =C ⊕ J (A)⊕ J (B)⊕⊕

i , j ,k=1,...n Ai , j ⊗B j ,k с полупростой
частью C и умножением в радикале

ai j bkl = δ j k ai j ⊗bkl , bkl ai j = 0, ai j ∈ A, bkl ∈ B.
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Гомологическая размерность алгебры A◦C B не превосходит суммы гомологических
размерностей алгебр A и B .

Ограничения на гомологическую размерность колчана с соотношениями возни-
кают в случае, если ограниченная производная категория его представлений по-
рождена исключительным набором — семейством объектов {Ei |i = 1, . . . ,n}, в кото-
ром End(Ei ) = k и E xt k (Ei ,E j ) = 0 при i Ê j (n — это число вершин колчана с соотно-
шениями; исключительный набор, порождающий производную категорию, назы-
вается полным). Автором было доказано, что при n = 2 алгебры колчанов с соотно-
шениями с полным исключительным набором (т.е. исключительной парой) имеют
гомологическую размерность не больше 3, и описаны все такие алгебры. При этом
алгебры гомологической размерности 3 производно эквивалентны алгебрам гомо-
логической размерности 2 [3].
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О ФИНИТНОЙ НЕАППРОКСИМИРУЕМОСТИ ДЛЯ УРАВНЕНИЙ В
СВОБОДНЫХ ГРУППАХ, РАЗРЕШЕННЫХ ОТНОСИТЕЛЬНО НЕИЗВЕСТНЫХ

В. Г. Дурнев1, О. В. Зеткина2, А. И. Зеткина
1durnev@uniyar.ac.ru, Ярославский государственный университет
2oks_68@mail.ru, Ярославский государственный университет

Обозначим через Fn свободную группу ранга n со свободными образующими a1,
..., an . Хорошо известно, что свободная группа Fn является финитно аппроксимиру-
емой [1]. А. И. Мальцев [2] указал на важность изучения свойств финитной аппрок-
симируемости групп относительно различных предикатов. Г. Баумслаг [3] установил
финитную аппроксимируемость свободных групп относительно сопряженности и
возможности извлечения корня простой степени, т.е. относительно разрешимости
уравнений вида x−1hx = g и xp = g , где h и g — элементы свободной группы. В ра-
боте [4] отмечается финитная аппроксимируемость свободных групп относитель-
но разрешимости уравнений вида [x, y] = g и xn = g . В этой же работе построено
уравнение вида w(x1, . . . , x4, a1, a2) = 1 такое, что оно не имеет решения в свободной
группе F2 со свободными образующими a1 и a2, но уравнение w(x1, . . . , x4, a1, a2) = 1
имеет решение в любой конечной факторгруппе F2/N , где a1 и a2 — образы в фак-
торгруппе F2/N при естественном гомоморфизме свободных образующих a1 и a2
группы F2.
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В настоящей заметке усиливается этот результат, что составляет содержание сле-
дующей теоремы.

Теорема. При любом n Ê 2 и любых неотрицательных m, p и q уравнение

((x2u)2+p (z−1y2v z)2+q t 2m+3)4[u, v] = [a1, a2]

не имеет решения в свободной группе Fn , однако уравнение

((x2u)2+p (z−1y2v z)2+q t 2m+3)4[u, v] = [a1, a2]

имеет решение в любой конечнойфакторгруппе Fn/N , где через a1 и a2 обозначены об-
разы свободных образующих a1 и a2 свободной группы Fn относительно ее естествен-
ного гомоморфизма на факторгруппу Fn/N .

Построенное в теореме уравнение имеет вид w(x1, . . . , x6) = g , где g — элемент g
длины 4. Можно показать, что дальнейшее уменьшение длины элемента g невоз-
можно: для уравнений с любым числом неизвестных вида w(x1, . . . , xm) = g , в про-
извольной свободной группе Fn , где элемент g свободной группы Fn имеет длину
меньше 4, имеет место финитная аппроксимируемость. Открытым остается вопрос
для уравнений, разрешенных относительно неизвестных, с числом неизвестных 2,
3, 4 и 5.
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ОБ УРАВНЕНИЯХ И НЕРАВЕНСТВАХ В СЛОВАХ И ДЛИНАХ

В. Г. Дурнев1, О. В. Зеткина, А. И. Зеткина
1durnev@uniyar.ac.ru, Ярославский государственный университет

Обозначим через Πm свободную полугруппу с пустым словом в качестве ней-
трального элемента ранга m со свободными образующими a1, ..., am (вместо a1 и
a2 будем, как обычно, писать a и b соответственно), а через X = {x1, . . . , xn , . . .} –
алфавит неизвестных.

Г. С. Маканин [1] построил алгоритм, позволяющий для произвольной системы
уравнений в словах

k
&

i=1
wi = ui , (1)
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где wi и ui (i = 1, . . . ,k) – слова в алфавите {a1, . . . , am}∪ X , определить, имеет ли она
решение в полугруппе Πm .

В настоящее время остается открытым известный уже почти полвека вопрос об
алгоритмической разрешимости проблемы совместности для систем уравнений в
словах и длинах, т.е. систем вида

k
&

i=1
wi = ui & &

{i , j }∈ A
|xi | = |x j |. (2)

Системы вида (2) с дополнительными условиями рассматривались, например, в ра-
ботах [2]–[4].

V. Diekert предложил изучать в свободных полугруппах системы неравенств вида

k
&

i=1
wi (x1, . . . , xn , a1, . . . , am) É ui (x1, . . . , xn , a1, . . . , am), (3)

где для слов w и u в алфавите образующих свободной полугруппы запись w É u
означает, что последовательность букв w является подпоследовательностью букв u,
т. е. существуют такие число n É |w | и слова w1, ..., wn , u1, ..., un , un+1, что

w = w1 . . . wn , u = u1w1u2 . . .un wnun+1,

рассматривая их как обобщение систем уравнений (1), так как w = u тогда и только
тогда, когда w É u &u É w .

Отношение w É u является отношением частичного порядка на полугруппеΠm ,
т.е. оно транзитивно и антисимметрично. Это еще один довод для обоснования
естественности рассмотрения систем неравенств вида (3).

Вопрос об алгоритмической разрешимости проблемы совместности для систем
неравенств (3) в настоящее время открыт. Но если к отношению w É u добавить
предикат равенства длин, то получим алгоритмически неразрешимую задачу.
Теорема Невозможен алгоритм, позволяющий для произвольной системы нера-

венств вида
k
&

i=1
wi É ui & &

{i , j }∈ A
|xi | = |x j |

определить, имеет ли она решение.
Заметим, что ∃-теория отношения равенства = на полугруппе Πm алгоритмиче-

ски разрешима. Это следует из фундаментальной теоремы Г. С. Маканина [1], так как
отрицание равенства из формул можно удалить с помощью позитивной∃-формулы.

В то же время ∃-теория отношения частичного порядка É на полугруппе Π2 ал-
горитмически неразрешима. Это доказывается по той же схеме, что и приведенная
выше теорема.
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ДИФФЕРЕНЦИАЛЬНЫЕ ИНВАРИАНТЫ
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Рассмотрим уравнения движения идеальной жидкости [1] на плоскости

ut +uux + vuy + px

ρ
= 0,

vt +uvx + v vy +
py

ρ
= 0,

ρt +uρx + vρy +ρ
(
ux + vy

)= 0,

T
(
st +usx + v sy

)− k

ρ

(
Txx +Ty y

)= 0,

(1)

где (u(t , x, y), v(t , x, y)) — поле скоростей жидкости, ρ(t , x, y) — плотность жидкости,
s(t , x, y) — энтропия на единицу массы, p(t , x, y) — давление, T (t , x, y) — температу-
ра и k — коэффициент теплопроводности, который считается постоянным.

Система (1) недоопределена, поэтому необходимы дополнительные два уравне-
ния, например, уравнения термодинамического состояния{

F (p,ρ, s,T ) = 0,

G(p,ρ, s,T ) = 0,

Теорема 1. Алгебра симметрий системы уравнений состоит из векторных полей

X1 = ∂x , X2 = ∂y , X3 = y ∂x −x ∂y + v ∂u −u∂v ,

X4 = t ∂x +∂u , X5 = t ∂y +∂v , X6 = ∂t
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и линейных комбинаций векторных полей

X7 = ∂s , X8 = ∂p , X9 = T ∂T ,

X10 = t ∂t +x ∂x + y ∂y − s ∂s ,

X11 = t ∂t −u∂u − v ∂v −2p ∂p + s ∂s ,

X12 = p ∂p +ρ∂ρ− s ∂s

при условии, что эти линейные комбинации сохраняют термодинамические состоя-
ния.

Теорема 2.Поле дифференциальных инвариантов решений системы относительно
алгебры Ли, заданной векторными полями X1, . . . , X6, порождается инвариантами

J 0
1 = ρ, J 1

1 = ux + vy , J 1
5 = ρx sy −ρy sx ,

J 0
1 = s, J 1

2 = uy − vx , J 1
6 = st + sxu + sy v,

J 1
3 = ρ2

x +ρ2
y , J 1

7 = ρx(ρxux +ρy uy )+ρy (ρx vx +ρy vy ),

J 1
4 = s2

x + s2
y , J 1

8 = sx(ρxux +ρy uy )+ sy (ρx vx +ρy vy )

и тремя независимыми инвариантными дифференцированиями

∇1 = d

dt
+u

d

dx
+ v

d

dy
, ∇2 = ρx

d

dx
+ρy

d

dy
, ∇3 = sx

d

dx
+ sy

d

dy
,

если ρx sy −ρy sx 6= 0.
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ДИФФЕРЕНЦИАЛЬНЫЕ ИНВАРИАНТЫ
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Рассматривается задача классификации слоений из окружностей относитель-
но действия конформной группы на плоскости. Такие слоения задаются линиями
уровня функции z = v(x, y).

Теорема 1. Функция, задающая слоения из окружностей на плоскости, удовлетво-
ряет дифференциальному уравнению

ϕxx −2ϕx y tanϕ+ϕy y tan2ϕ− (
ϕx tanϕ+ϕy

)(
ϕx −ϕy tanϕ

)= 0, (1)
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где функция
ϕ= arctan

vx

vy

— это угол между осью абцисс и касательными к линиям уровня.

Теорема 2. 1. Алгебра Ли преобразований плоскости, сохраняющих слоения из
окружностей, совпадает с алгеброй Ли sl2(C), рассмотренной как вещественная ал-
гебра Ли группы преобразований Мёбиуса SL2(C).
2. Уравнение (1) имеет четыре дополнительные симметрии:

X1 = sinϕ∂x +cosϕ∂y ,

X2 = y sinϕ∂x + y cosϕ∂y + sinϕ∂ϕ,

X3 = x sinϕ∂x +x cosϕ∂y −cosϕ∂ϕ,

X4 = 1

2

(
x2 + y2

)(
sinϕ∂x +cosϕ∂y

)− (x cosϕ− y sinϕ)∂ϕ.

Теорема 3. Поле рациональных инвариантов Мёбиуса порождается инвариантом
второго порядка

J = ϕxx +ϕy y

2tanϕ
(
ϕy y +ϕxϕy

)−ϕ2
x −2ϕx y +ϕ2

y

и инвариантными дифференцированиями

∇1 = k
d

d x
−k tanϕ

d

d y
, ∇2 = k tanϕ

d

d x
+k

d

d y
,

где k — рациональная функция на пространистве джетов 3 порядка. Это поле разде-
ляет регулярные орбиты.
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РАВЕНСТВО ЕМКОСТИ И МОДУЛЯ КОНДЕНСАТОРА В
СУБФИНСЛЕРОВЛОМ ПРОСТРАНСТВЕ

Ю. В. Дымченко1

1dymch@mail.ru, Дальневосточный федеральный университет

Равенство емкости и модуля конденсатора имеет важное значение в геометри-
ческой теории функций. Оно позволяет связать теоретико-функциональные и гео-
метрические свойства множеств. Для конформных емкостей и модулей на плоско-
сти равенство было доказано Л. Альфорсом и А. Бёрлингом в работе [1]. В случае
евклидовой метрики равенство емкости и модуля в самых общих предположениях
было доказано В. А. Шлыком [2], затем это доказательство было немного упрощено
в [3].

Субфинслеровы пространства определяются как обобщение римановых про-
странств, с одной стороны, и пространств Карно-Каратеодори — с другой. Подроб-
нее см. [4]. Там же приведены основные обозначения.

Пусть G — открытое множество в субфинслеровом пространстве, F0, F1 — замкну-
тые непересекающиеся множества из Ḡ, p > 1. Определим p-емкость конденсатора
(E0,E1,G):

Cp,F (E0,E1,G) = inf
∫
G

H(x, X u)p dσ,

где инфимум берется по всем функциям из L1
p,F (G)∩C (G), равным нулю (единице)

в некоторой окрестности E0 (E1). Здесь dσ — элемент объема в G.
Определим p-модуль конденсатора (E0,E1,G) следующим образом:

Mp,F (E0,E1,G) = inf
∫
G

ρp dσ,

где инфимум берется по всем борелевским функциям ρ таким, что
∫
γ
ρF (x,d x) Ê 1

для любой кривой γ, соединяющей F0 и F1 в G.
Доказана следующая

Теорема. Mp,F (F0,F1,G) =Cp,F (F0,F1,G) для любого конденсатора (F0,F1,G).
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КОМБИНАТОРНЫЕ СВОЙСТВА СИСТЕМ КОРНЕЙ И ИХ ПРИЛОЖЕНИЯ К
ВЫЧИСЛЕНИЮ КОММУТАТОРОВ В ГРУППАХ ШЕВАЛЛЕ

Г. П. Егорычев1, С. Г. Колесников2
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В работе исследуются комбинаторные задачи, возникающие при перенесении
результатов о регулярности силовской p-подгруппы группы GLn(Zpm ) (Коуровская
тетрадь, вопрос Верфрица 8.3) на группы Шевалле.

ПустьΦ— приведенная неразложимая система корней,Π— подсистема простых
корней,Φ(R) — группа Шевалле типаΦ над ассоциативно-коммутативным кольцом
R с единицей. Если r, s ∈ Φ и существуют q1, . . . , qt ∈ Π такие, что r = s + q1 + . . .+
qt , причем s + q1 + . . .+ qi ∈ Φ для любого i , 1 É i É t − 1, то разложение r назовем
s-разложением. Два s-разложения r = s + r1 + . . .+ rt и r = s + q1 + . . .+ qt считаем
равными, если ri = qi для всех i . Положим

Kr,s =
∑

Ns,q1 Ns+q1,q2 . . . Ns+q1+...+qt−1,qt ,

где сумма берется по всем различным s-разложениям корня r, Kr,s = 0, если s-ра-
зложениям r не существует; здесь Nab — структурная константа алгебры Ли типа
Φ.
Теорема 1.Пусть s1, . . . , sl ∈Φ+—корни одной высоты, r1, . . . ,rk ∈Π и A = xs1(a1) . . .

xsl (al ), B = xr1(1) . . . xrk (1) ∈Φ(R). Положим [B , 1 A] = [B , A], [B , i A] = [[B , i−1 A], A], i =
2,3. . . . Тогда

[B , t A] =∏m
i=1 xr ′i

(∑l
j=1 a j Ks j ,r ′i

)
...,

где r ′1, . . . ,r ′m все корни высоты ht(s1) + t , допускающие хотя бы одно si -разложение
хотя бы для одного i ∈ {1, . . . , l }.
Теорема 2. Пусть r, s ∈Φ и r = s+r1+ . . .+rt , r = s+q1+ . . .+qt — два s-разложения

корня r. Тогда произведения Ns,r1 Ns+r1,r2 . . . Ns+r1+r2+...+rt−1,rt и Ns,q1 Ns+q1,q2 . . .
Ns+q1+q2+...+qt−1,qt имеют один и тот же знак.

Если все корни Φ имеют одинаковую длину, то из теоремы 2 следует, что |Kr,s |
совпадает с числом всех s-разложений корня r. Теоремы 1 и 2 редуцируют вопрос
о регулярности силовских p-подгрупп групп Φ(Zp ) и Φ(Zp2) к исследованию на де-
лимость определенных сумм от чисел Kr,s , при вычислении которых регулярно ис-
пользуется метод Г. П. Егорычева интегрального представления и вычисления ком-
бинаторных сумм.

Приведем примеры. В евклидовом пространстве Rn выберем ортонормирован-
ный базис ε1, . . . ,εn . Векторы ±εi ± ε j , 1 É i < j É n, образуют систему корней типа
Dn . При (i , j ) 6= (1,2) справедливы равенства: K−ε1−ε2,−εi−ε j =

=∑[( j−i−1)/2]
k=0

(−1)k

j −k −1
C k

j−i−k−1 C
j−k−2
2 j−2k−4 =C i−1

i+ j−3 −C i−2
i+ j−3.

Показано, что коммутатор из теоремы 1, при R = Zp2 , t = 2h − 2, l = 1, a1 = p,
s1 — корень минимальной высоты, {r1, . . . ,rn} = Π, равен x−s1(θ), где θ — значение
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формы Киллинга от векторов, координаты которых выражаются через константы
Kr,s . В частности, для Φ типа Bn

θ =−C2n−1 −3(Cn−1 −Cn−2)2 +3C 2
n−2 +2(2n −1)2C 2

n−1,

здесь Cm = 1
m+1C m

2m — m-е число Каталана. Если θ не делится на простое число p,
когда 4n = p +1, силовская p-подгруппа группы Bn(Zp2) не регулярна.

Работа выполнена при финансовой поддержке РФФИ (проект 16-01-00707).

ВЫЧИСЛЕНИЕ ИНДЕКСОВ ПЕРЕСЕЧЕНИЯ ЦИКЛОВ И БАЗИСОВ ГРУПП
КОГОМОЛОГИЙ ТРИАНГУЛИРОВАННЫХ ЗАМКНУТЫХ ТРЕХМЕРНЫХ

МНОГООБРАЗИЙ

В. Ю. Епифанов1, Е. И. Яковлев2

1vepifanov92@gmail.com, Нижегородский государственный университет
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Рассматриваются полиэдры P с заданной триангуляцией, представляющие собой
замкнутые трехмерные многообразия, их группы гомологий и когомологий с коэф-
фициентами изZ2. Основная цель работы – разработка алгоритмов для вычисления
индексов пересечения Ind : Hm(P )×Hl (P ) →Z2, m + l = 3.

Решением задачи являются два алгоритма, соответствующие случаям m = 1 и
m = 2. Входные данные состоят из симплициальной структуры полиэдра P и цикла
x ∈ Zm(P ). На выходе получается коцепь Jx : Cl (P ) →Z2, для которой справедлива
Теорема 1. Для каждого m = 1,2 коцепь Jx является коциклом. Гомологический

класс [x] ∈ Hm(P ) и когомологический класс [Jx ] ∈ H l (P ) связаны равенством F∗([Jx ]) =
[x], где F∗ : H l (P ) → Hm(P ) – изоморфизмПуанкаре. Для любого цикла y ∈ Zl (P ) имеет
место равенство Ind([x], [y]) = Jx(y).

Пусть N – количество трехмерных симплексов полиэдра P , а n = card x.
Теорема 2. В худшем случае алгоритм вычисления коцепи Jx имеет сложность

O(N +n) для m = 1 иO(N +n logn) для m = 2.
Аналогичные результаты для двумерных замкнутых многообразий и m = l = 1

получены в [1]. В [2] одномерная коцепь Jx строится для простого цикла x ∈ Zn−1(P )
на замкнутом многообразии P произвольной размерности n, в случае непростого x
он неприменим.

Разработанные алгоритмы позволяют вычислить базис [Jx1], . . . , [Jxr ] группы ко-
гомологий H l (P ) с коэффициентами из Z2 по заданному базису [x1], . . . , [xr ] соот-
ветствующей группы гомологий Hm(P ).

При m = 2 и l = 1 коциклы Jx1 , . . . , Jxr могут быть применены для построения ре-
гулярного симплициального накрытия p : P̂ → P с группой монодромии G ∼= H1(P ).
Накрытие p в свою очередь может быть использовано в задаче минимизации ре-
берных путей и одномерных циклов многообразия P в их классах гомологий. Этот
подход для n-мерных многообразий разработан в [2]. Для случая n = 2 он также рас-
смотрен в [1], [3] и [4].

Работа выполнена при финансовой поддержке Минобрнауки РФ (проект
1.1410.2014).
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ВЗАИМНО-НЕСМЕШАННЫЕ БАЗИСЫ В 6-МЕРНОМ ПРОСТРАНСТВЕ И
ОРТОГОНАЛЬНЫЕ ПАРЫ В SL(6)

И. Ю. Ждановский1

1ijdanov@mail.ru, Московский физико-технический институт

Мой доклад опирается на совместную работу с А. Бондалом [4].
В 60-х годах физиком Швингером было введено понятие взаимно-несмешанных

базисов в эрмитовом пространстве [1]. А именно, взаимно-несмешанными бази-
сами называются базисы {ei }n

i=1 и { f j }n
j=1 в эрмитовом комплексном пространстве

Cn , такие что |(ei , f j )|2 = 1
n для любых i , j . Эти базисы применяются в квантовой

механике, квантовой томографии, квантовой теории информации. Проблема на-
хождения максимального числа базисов, попарно взаимно-несмешанных является
проблемой 13 Квантовой теории информации [2].

Параллельно, в 70-х годах было введено понятие ортогональной пары в простой
алгебре Ли. Ортогональной парой в алгебре Ли L называется пара картановских по-
далгебр (H1,H2), ортогональных по отношению к форме Киллинга. Ортогональ-
ные пары в простой алгебре Ли L изучаются с точностью до действия Aut (L). Орто-
гональным разложением алгебры Ли L называется разложение L = ⊕n+1

i=1 Hi , здесь
Hi — картановские подалгебры, ортогональные друг другу в смысле формы Кил-
линга. Как ни странно, самым сложным случаем оказался случай алгебр sl (n). Ко-
стрикиным А. И. и соавторами в серии работ велось активное изучение ортогональ-
ных разложений простых алгебр Ли, в том числе и sl (n), и была сформулирована
гипотеза Винни-Пуха [3]:
Гипотеза Винни-Пуха:Алгебра Ли sl (n) имеет ортогональное разложение тогда

и только тогда, когда n = pm для некторого простого p.
Для случая n = pm примеры ортогональных разложений были построены Ко-

стрикиным А. И. и соавторами. В случае n = 6 — первом, когда n не является сте-
пенью простого, до сих пор неизвестно существует ли ортогональное разложение
sl (6) или нет.
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Классификация ортогональных пар — первый шаг к решению проблемы Винни-
Пуха.

Понятия взаимно-несмешанных базисов в n-мерном пространстве и ортого-
нальных пар в sl (n) оказываются тесно связанными, а именно ортогональные пары
в sl (n) — «комплексификация» взаимно-несмешанных базисов.

Полная классификация этих двух связанных объектов (ортогональных пар и вза-
имно-несмешанных базисов) известна только в случае n É 5. Я расскажу о случае
n = 6. А именно, я докажу, что существует 4-мерное семейство ортогональных пар
в sl (6). В качестве следствия, я покажу, что существует 4-хмерное семейство взаим-
но-несмешанных базисов в 6-мерном пространстве.
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ТОПОЛОГИЧЕСКИЕ ИНВАРИАНТЫ СИСТЕМЫ
ШАР ЧАПЛЫГИНА С РОТОРОМ

А. И. Жила1

1saffeya@yandex.ru, Казанский (Приволжский) федеральный университет, Москов-
ский Государственный Университет им. Ломоносова

В классической механике существует большое количество систем с неголоном-
ными связями. Изучение динамики неголономных систем было выделено в неза-
висимую область исследования теоретической механики, когда стало понятно, что
стандартный формализм Лагранжа не применим к системам с неголономными свя-
зями. Однако, некоторые неголономные системы, называемые конфомно — га-
мильтоновыми сохраняют интеграл энергии и другие тензорные инварианты. Та-
ким образом, для их анализа применимы методы обычной гамильтоновой механи-
ки, в том числе и новые топологические.

Мы рассматриваем задачу о качении сбалансированного динамически несим-
метричного шара с ротором по шероховатой горизонтальной плоскости. Данная
система является конформно — гамильтоновой. Ранее А. Ю. Москвиным [1] были
построены бифуркационные диаграммы отображения момента и бифуркационные
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комплексы для изучения динамики системы и нахождения особых решений. Инте-
рес представляет проведение тонкого лиувиллевого анализа данной системы. Сде-
лан один из шагов для этого, а именно найдены инварианты Фоменко и проведен
грубый топологический анализ системы.

Движение шара в проекциях на главные оси, связанные с шаром, описывается
уравнениями {

Ṁ = (M +K )×ω, M = Jω−d(γ,ω)γ, J = I +dE ,

γ̇= γ×ω, d = mr 2 Ê 0, E = ‖δi j ‖,

гдеω— вектор угловой скорости,γ— орт вертикали, I =diag(I1, I2, I3) — тензор инер-
ции шара относительно его центра, m — масса шара, r — его радиус. Вектор M имеет
смысл кинетического момента шара относительно точки контакта.

Изучается топология слоения Лиувилля, то есть пространство замыканий реше-
ний системы. С помощью топологических инвариантов можно выявлять эквива-
лентные и неэквивалентные интегрируемые системы. Все исследования проводят-
ся в рамках теории Фоменко классификации интегрируемых систем, основанной на
инвариантах Фоменко, использующих бифуркационные комплексы (подробнее см.
[2]).

Теорема. Система шар Чаплыгина с ротором без нулевых компонент грубо ли-
увиллево эквивалентна системе Жуковского при значениях параметра c, таких что

c2 Ê d2 ∑3
i=1

K 2
i

J 2
i

(т.е. обе эти системы имеют одинаковые замыкания решений). При

этом для малых уровнях энегрии (что соответствует c2 < d2 ∑3
i=1

K 2
i

J 2
i

) данные систе-

мы лиувиллево неэквивалентны.
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ПОЛНЫЕ КАРТАНОВЫ СЛОЕНИЯ
И ГРУППЫ ИХ БАЗОВЫХ АВТОМОРФИЗМОВ

Н. И. Жукова1, К. И. Шеина2
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Слоения, допускающие трансверсальную картанову геометрию, называются кар-
тановыми. Исследование картановых слоений мотивировано тем, что такие широ-
кие классы слоений как параболические, конформные, проективные, псевдорима-
новы, лоренцевы, римановы, трансверсально подобные, трансверсально однород-
ные и слоения с трансверсальной линейной связностью являются картановыми. По-
этому исследование картановых слоений позволяет с единой точки зрения изучать
общие свойства указанных слоений, в то время как многие авторы изучают их по
отдельности.

В категории картановых слоенийCFизоморфизмы сохраняют не только слоения,
но и их трансверсальную геометрию.

Пусть Aξ(M ,F ) — группа всех автоморфизмов картанова слоения (M ,F ) с транс-
версальной картановой геометрией ξ в категории CF, которая является некото-
рой группой автоморфизмов поднятого слоения (R,F ). Группой базовых автомор-
физмов картанова слоения (M ,F ) называется фактор-группа AξB (M ,F ) := Aξ(M ,F )/

AξL(M ,F ) группы Aξ(M ,F ) по нормальной подгруппе слоевых автоморфизмов

AξL(M ,F ) := { f ∈ Aξ(M ,F ) | f (L ) =L ∀L ∈F }.

Нами показано, что группа базовых автоморфизмов AξB (M ,F ) картанова слоения
(M ,F ) зависит от трансверсальной картановой геометрии ξ.

В данной работе мы находим достаточные условия для того, чтобы группа базо-
вых автоморфизмов полного картанова слоения (M ,F ) допускала структуру конеч-
номерной группы Ли.

Впервые подобная задача решалась Дж. Лесли (1972 г.). Эта задача поставлена
И. В. Белько и рассматривалась им в классе слоений с трансверсальной проектиру-
емой аффинной связностью (1983 г.). Для слоений с трансверсальной жесткой гео-
метрией она решалась первым автором (2009 г.).

В отличие от предыдущих работ мы не предполагаем эффективности транс-
версальной картановой геометрии. Для слоений с неэффективной трансверсаль-
ной картановой геометрией ξ мы строим две структурные алгебры Ли g0(M ,F ) и
g1(M ,F ), являющиеся алгебраическими инвариантами в категории CF. Алгебра Ли
g0(M ,F ) соответствует трансверсальной картановой геометрии ξ, а g1(M ,F ) — ассо-
циированной эффективной картановой геометрии ξ̂.

Мы доказали, что равенство нулю инварианта g0(M ,F ) является достаточным
условием для существования и единственности структуры группы Ли в группе ба-
зовых автоморфизмов AξB (M ,F ) и нашли точную оценку размерности этой группы.

Исследовано также влияние алгебры Ли g1(M ,F ) и некоторых топологических
свойств слоения (M ,F ) на группу AξB (M ,F ). В частности, получены достаточные
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условия для того, чтобы группа базовых автоморфизмов полного картанова слоения
являлась дискретной. Построены примеры вычисления групп базовых автоморфиз-
мов.

Работа выполнена при поддержке РФФИ, проект 16-01-00132, и Программы фун-
даментальных исследований НИУ ВШЭ 2016 году, проект № 98.

ОЦЕНКИ С АСИМПТОТИЧЕСКИ РАВНОМЕРНО МИНИМАЛЬНЫМ
D-РИСКОМ

А. А. Заикин1

1Kaskrin@gmail.com, Казанский (Приволжский) федеральный университет

Пусть наблюдается выборка X = (X1, ..., Xn)T с наблюдениями из X⊆ R. Пусть да-
лее распределение Pθ наблюдения происходит из класса распределений, индекси-
рованного одномерным параметром θ ∈Θ⊆R. Кроме того, у распределения с.в. X1
существует плотность p(x|θ) = dPθ/dν. Обозначим pn(X|θ) = ∏n

i=1 p(Xi |θ). Пусть θ
есть реализация случайной величины ϑ из распределения G с плотностью g (θ) по
лебеговской мере. Обозначим символом P совместное распределение ϑ и X. Тогда
Pθ будет условным распеделением X при значении ϑ= θ.

Пусть задана некоторая функция потерь на L : Θ×Θ 7→ R, такая, что L(θ,θ) = 0.
Для произвольной оценки Tn можно определить d-риск как величину R(Tn) =
E{L(Tn ,ϑ)|Tn} (в данной записи предполагается, что соответствующая регулярная
вероятность существует). Оценка θ∗n называется оценкой с равномерно минималь-
ным d-риском (ОРМdР), если P(R(θ∗n) É R(Tn)) = 1 для любой другой оценки Tn .
Общая теория и подход к построению подобных оценок указаны в [1].

К сожалению, работа с ОРМdР сопряжена со значительными трудностями. В част-
ности вопрос о широких условиях существования оценки остается открытым. По-
этому имеет смысл работать с оценками, которые близки к ОРМdР в плане значе-
ний d-риска. Пусть задана некоторая функцияφ : N→R, такая, чтоφ(n) → 0,n →∞.
Определим оценку с φ(n)-асимптотически равномерно минимальным d-риском в
классе оценок K как оценку θ∗n , которая удовлетворяет P(R(θ∗n) ÉR(Tn)+φ(n)) → 1
для любого Tn ∈ K . Функцию φ(n) можно понимать как уровень допустимого от-
клонения функции d-риска асимптотически оптимальной оценки от истинно оп-
тимального уровня.

В докладе рассматривается степенная функция потерь L(d ,θ) = |d −θ|k ,k > 1. Ос-
новным результатом является следующая
Теорема 1. При выполнении определенных условий регулярности оценка макси-

мального правдоподобия θ̂n является оценкой с n−k/2-асимптотически равномерно
минимальным d-риском среди всех оценок Tn , которые удовлетворяют

∀ε> 0 ∃b > 0 : sup
θ∈Θ

sup
n

Pθ
(p

n|Tn −θ| > b
)< ε.

Ограничение на класс
p

n-состоятельности оценок довольно естественно, одна-
ко не обязательно. Подобное утверждение справедливо и для класса всех оценок
параметра θ (в том числе и несостоятельных в привычном понимании этого слова),
однако утверждение слабее.
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Теорема 2. При выполнении определенных условий регулярности существует по-
следовательность εn → 0 такая, что оценка максимального правдоподобия θ̂n явля-
ется оценкой с εn-асимптотически равномерно минимальным d-риском среди всех
оценок Tn .
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Данная работа посвящена изучению основных свойств предельно монотонных
множеств и последовательностей, состоящих из бесконечных множеств, а также ис-
следованию предельно монотонной сводимости (будем обозначать через lm-сво-
димость) множеств и последовательностей множеств.

И. Ш. Калимуллин и В. Г. Пузаренко [1] ввели понятие Σ-сводимости на семей-
ствах подмножеств натуральных чисел, позволяющее рассматривать семейство са-
мо по себе, не фиксируя при этом его представление с помощью натуральных чи-
сел. В докладе будет представлено полное описание lm-сводимости в терминах Σ-
сводимости семейств специального вида. Кроме того, будет установлена связь меж-
ду предельно монотонной сводимостью множеств и Σ-определимостью абелевых
групп специального вида.

Предварительные сведения, касающиеся предельно монотонных функций и их
приложений, можно найти в обзорной работе [2].

В докладе планируется представить алгоритмические свойства предельно моно-
тонной сводимости множеств, принадлежащих классу Σ0

2 арифметической иерар-
хии. В данном направлении можно выделить следующие основные результаты:

1. Показано существование максимальной пары множеств относительно lm-сво-
димости; в то же время, несмотря на данное утверждение, установлено отсутствие
максимального множества относительно lm-сводимости. Доказано отсутствие наи-
большего Σ0

2-множества относительно lm-сводимости.
2. Построена пара несравнимых Σ0

2-множеств относительно lm-сводимости.
Кроме того, данный результат был обобщен на последовательность множеств, а
именно, построена бесконечная равномерная последовательность несравнимых
Σ0

2-множеств относительно lm-сводимости. Установлена вложимость каждого счёт-
ного частичного порядка в lm-степень.

3. Доказано, что не существует наименьшего не предельно монотонногоΣ0
2-мно-

жества относительно lm-сводимости.
Работа выполнена при частичной финансовой поддержке Российского фон-

да фундаментальных исследований, проекты №15-01-08252, №15-31-20607 и
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№15-41-02507-р_поволжье_а.

Литература

[1] Калимуллин И. Ш., Пузаренко В. Г. О сводимости на семействах // Алгебра и ло-
гика. – 2009. – Т. 48. – № 1. – C. 31–53.

[2] Downey R., Kach A., Turetsky D. Limitwise monotonic functions and their applications
// Proceedings of the 11th Asian Logic Conference. World Scientific. – 2011. – P. 59–
85.

[3] Faizrahmanov M., Kalimullin I., Zainetdinov D. Maximality and Minimality under
Limitwise Monotonic Reducibility // Lobachevskii Journal of Mathematics. – 2014. –
Vol. 35. – № 4. – P. 333–338.

[4] Зайнетдинов Д. Х.Σ-сводимость и lm-сводимостьмножеств и последовательно-
стей множеств // Учен. зап. Казан. гос. ун-та. Сер. Физ-матем. науки. – 2016. –
Т. 158. – кн. 1. – С. 51–65.

ЗАДАЧА ТИПА КЕЛДЫША ДЛЯ В-ГИПЕРБОЛИЧЕСКОГО УРАВНЕНИЯ С
ИНТЕГРАЛЬНЫМ УСЛОВИЕМ ПЕРВОГО РОДА

Н. В. Зайцева1

1n.v.zaiceva@yandex.ru, Казанский (Приволжский) федеральный университет, Ин-
ститут математики и механики им. Н.И. Лобачевского

Пусть D = {(x, t )|0 < x < l ,0 < t < T } – прямоугольная область координатной плос-
кости Oxt , где l ,T > 0 – заданные действительные числа. Обозначим части границы
области через Γ0 = {(x, t )|t = 0,0 É x É l }, Γl = {(x, t )|x = l ,0 É t É T }.

Рассмотрим в области D гиперболическое уравнение с оператором Бесселя

�B u(x, t ) ≡ ut t −x−k ∂

∂x

(
xk ux

)
= 0, (1)

где k Ê 1 – заданное действительное число.
Постановка задачи. Найти функцию u(x, t ), которая удовлетворяет следующим

условиям:
u(x, t ) ∈C (D)∩C 1(D ∪Γ0 ∪Γl )∩C 2(D), (2)

�B u(x, t ) ≡ 0, (x, t ) ∈ D, (3)

u(x,0) =ϕ(x), ut (x,0) =ψ(x), 0 É x É l , (4)

l∫
0

u(x, t ) xk d x = A = const, 0 É t É T, (5)
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где A – заданное число, ϕ(x), ψ(x) – заданные, достаточно гладкие функции, удо-
влетворяющие условиям согласования

l∫
0

ϕ(x) xk d x = A,

l∫
0

ψ(x) xk d x = 0. (6)

Из постановки задачи (2) – (6) видно, что граничное условие (5) является нело-
кальным. Такое интегральное условие ранее возникло в работах [1] – [3] для уравне-
ния теплопроводности, например, в [3] при изучении вопроса об устойчивости раз-
режения плазмы. Физически нелокальное условие (5) означает постоянство внут-
ренней энергии системы.

В данной работе изучается краевая задача (2) – (6) без локальных граничных
условий на боковых сторонах прямоугольной области D. Методом спектрального
анализа [4, 5] доказаны теоремы единственности и существования решения задачи
(2) – (6). При этом решение построено в виде суммы ряда Фурье-Бесселя и приведе-
но обоснование сходимости ряда в классе регулярных решений (2) и (3).
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ГЕОМЕТРИЯ ПСЕВДОРИМАНОВА ПРОСТРАНСТВА СПЕЦИАЛЬНОГО
ТИПА, ДОПУСКАЮЩЕГО ПРОЕКТИВНЫЕ ИНФИНИТЕЗИМАЛЬНЫЕ

ПРЕОБРАЗОВАНИЯ

З. Х. Закирова1

1zolya_zakirova@mail.ru, Казанский государственный энергетический университет

В настоящее время имеется устойчивый интерес к многомерным теориям про-
странства с нестандартными сигнатурами метрики. В основном он ассоциирован с
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теорией струн, где временное(ые) направление(ия) в пространстве-времени связа-
но(ы) с нестандартным знаком кинетического члена в действии лиувиллевского(их)
поля(ей). Поэтому изучение таких теорий привлекает много внимания.

В данной работе исследуются n-мерные псевдоримановы пространства V n(gi j )
с сигнатурой [++−−−....−−], которые допускают проективные инфинитезималь-
ные преобразования, то есть группы непрерывных преобразований, сохраняющих
геодезические. Общий метод определения псевдоримановых многообразий, кото-
рые допускают негомотетическую проективную группу Gr , был развит А. В. Ами-
новой. В работе [1] А. В. Аминова классифицировала все лоренцевы многообразия
размерности Ê 3, которые допускают негомотетические проективные или афинные
преобразования. Эта проблема не решена для псевдоримановых пространств с про-
извольной сигнатурой.

Для того, чтобы найти псевдориманово пространство, допускающее негомоте-
тическое инфинитезимальное проективное преобразование, нужно проинтегриро-
вать уравнение Эйзенхарта [2]

hi j ,k = 2gi jϕ,k + gi kϕ, j + g j kϕ,i .

Задача определения таких пространств зависит от типа h-пространств, т.е. от
типа билинейной формы LX g , определяемой характеристикой Сегре λ-матрицы
(h −λg ) [1]. Если характеристика тензора LX g есть [abc...], то будем называть соот-
ветствующее пространство h-пространством типа [abc...]. Эти идеи впервые были
высказаны П. А. Широковым [3]. Таким образом, псевдориманово пространство, для
которого существует нетривиальное решение h 6= cg уравнения Эйзенхарта, назы-
вается h-пространством. Псевдоримановы многообразия, для которых существу-
ют нетривиальные решения hi j 6= cgi j уравнений Эйзенхарта, называются h - про-
странствами.

Используя технику интегрирования в косонормальном репере [1], в работе бы-
ли найдены метрики h-пространств типов [22111...1], [32111...1], [33111...1], а также
доказаны следующие теоремы.

Теорема 1. Аффинная группа в h-пространствах типов [22111...1], [32111...1],
[33111...1] непостоянной кривизны состоит из гомотетий.

Теорема 2. Если h-пространства типов [22111...1], [32111...1], [33111...1] допуска-
ют негомотетическую проективную алгебру Ли Pr , то эта алгебра содержит подал-
гебру Hr−1 инфинитезимальных гомотетий размерности r −1.

Работа выполнена при финансовой поддержке РФФИ (проект № 16-01-00291-a).
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КОМПАКТИФИКАЦИЯ И КЛЕТОЧНАЯ СТРУКТУРА ПРОСТРАНСТВА
РАЦИОНАЛЬНЫХ ФУНКЦИЙ

В. И. Звонилов1, С. Ю. Оревков2

1zvonilov@gmail.com, Чукотский филиал Северо-восточного федерального универ-
ситета

2orevkov@mi.ras.ru, Математический институт Российской академии наук

Односвязное объединение конечного числа двумерных сфер, любая точка кото-
рого имеет окрестность, гомеоморфную открытому кругу или букету открытых кру-
гов, назовём поверхностью рода 0. Введение комплексной структуры на такой по-
верхности, даёт кривую рода 0.
Осоэдром называется сфера с двумя полюсами и несколькими меридианами,

причём, если меридианов больше одного, то на каждом из них отмечено несколько
точек. Если отмеченные точки и, возможно, полюсы образуют множество всех кри-
тических значений рациональной функции на кривой рода 0, то прообраз осоэдра,
рассматриваемого как граф на сфере, называется осографом на кривой рода 0.

Известны компактификации пространств рациональных функций, критические
значения которых невырождены либо все (см. [1], [2]), либо все, кроме одного (см.
[3]). Мы компактифицируем пространство Xn классов изоморфизма рациональных
функций степени n на сфере, у которых кратности критических значений не фик-
сированы. При этом к Xn добавляются рациональные функции не только на кри-
вых с простыми двойными точками, но и на кривых рода 0. Компактификация X̄n
пространства Xn описывается в терминах осографов и их возмущений. Она явля-
ется хаусдорфовым пространством со счётной базой, в котором Xn всюду плотно.
Эта компактификация является клеточным пространством, произвольной откры-
той клеткой которого является множество классов рациональных функций с фик-
сированным осографом.

Тригональная кривая на поверхности Хирцебруха Σe задаётся в некоторой аф-
финной карте уравнением y3 + b(x)y + w(x) = 0, где b и w - многочлены степе-
ней не выше 2e и 3e. Функция j = 4b3

d = 1− 27w2

d , где d = 4b3 + 27w2 – дискрими-
нант, называется j -инвариантом кривой. Мы доказываем, что компактификация
фактор-пространства пространства j -инвариантов тригональных кривых по дей-
ствию группы PGL(2,C) является клеточным подпространством пространства X̄n .
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СЛАБАЯ РАЗРЕШИМОСТЬ АЛЬФА–МОДЕЛИ ЛЕРЭ С ВЯЗКОСТЬЮ,
ЗАВИСЯЩЕЙ ОТ ТЕМПЕРАТУРЫ

А. В. Звягин1

1zvyagin.a@mail.ru, Воронежский государственный университет

Пусть Ω – ограниченная область в пространстве Rn , n = 2,3, с достаточно глад-
кой границей ∂Ω. Рассматривается следующая задача, описывающая альфа–модель
Лерэ, с вязкостью, зависящей от температуры:

∂v

∂t
−ν(θ)∆v + (u ·∇)v +∇p = f ; (1)

v = u −α2∆u; ∇· v = 0; (2)
∂θ

∂t
−χ∆θ+ (v ·∇)θ = 2ν(θ)E (v) : E (v)+ g ; (3)

v |t=0 = v0; v |∂Ω = 0; θ|t=0 = θ0; θ|∂Ω = 0. (4)

Здесь u(t , x) – вектор–функция скорости, p(t , x) – функция давления, f (t , x) – плот-
ность внешних сил, v(t , x) – отфильтрованная скорость. Через E = (Ei j (v)),Ei j (v) =
1
2

(∂vi
∂x j

+ ∂v j
∂xi

)
, обозначим тензор скоростей деформации, ν – вязкость среды, α> 0 –

длина подсеточного (фильтрующего) масштаба, v0 и θ0 – начальные значения. Вве-
дем пространства E1 = {v : v ∈ C ([0,T ],V 1), v ′ ∈ L2(0,T ;V −1)}, E2 = {v : v ∈ Lp (0,T ;
W 1

p (Ω)), v ′ ∈ L1(0,T ; W −1
p (Ω)), 1 < p <+∞}.

Определение 1. Слабым решением задачи (1)−(4) называется пара (v,θ) ∈ E1×E2,
удовлетворяющая начальным условиям и при всех ϕ ∈ V , φ ∈ C∞

0 (Ω) и п. в. t ∈ [0,T ]
соотношениям:

∫
Ω

∂v

∂t
ϕd x −∫

Ω

n∑
i , j=1

ui v j
∂ϕ j

∂xi
d x +2

∫
Ω
ν(θ)E (v) : E (ϕ)d x = 〈 f ,ϕ〉;

∫
Ω

∂θ

∂t
φd x −∫

Ω

n∑
i , j=1

uiθ j
∂φ j

∂xi
d x +χ∫

Ω
E (θ) : E (φ)d x =

= 2
∫
Ω

(
ν(θ)E (v) : E (v)

)
:φd x +〈g ,φ〉,

Теорема 1.Пусть функция ν(θ) ∈C 2(−∞,+∞) является монотонно возрастающей
и 0 É ν(θ) É M , f ∈ L2(0,T ;V −1), g ∈ L1(0,T ; H

−2(1−1/p)
p (Ω)), v0 ∈ V 0, θ0 ∈ W

1−2/p
p (Ω).

Тогда при 1 < p < 4/3 для n = 2 и для 1 < p < 5/4 при n = 3 существует слабое решение
задачи (1)− (4).

Данные исследования являются продолжением работ по существованию слабых
решений термовязкоупругих моделей неньютоновской гидродинамики [1]–[4].

Работа выполнена при финансовой поддержке Российского Фонда Фундамен-
тальных Исследований (проект № 16–31–60075 мол_а_дк).
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ИНТЕРПОЛЯЦИОННАЯ ЗАДАЧА ДЛЯ ОПЕРАТОРОВ СВЕРТКИ НА
ВЕРТИКАЛЬНОЙ ПОЛУПЛОСКОСТИ

К. Р. Зименс1

1karinazabirova@gmail.com, Уфимский государственный авиационный технический
университет

Пусть η > 0, D = {z : Rez < η}. Обозначим через H(D) пространство аналитиче-
ских функций в области D с топологией равномерной сходимости на компактах,
через H∗(D) – сопряженное к H(D) пространство с сильной топологией. Через PD
обозначим пространство, состоящее из функций, получающихся преобразованием
Лапласа всех функционалов из H∗(D).

Пусть F ∈ H∗(D),ϕ(z) = (F,ezt ) – преобразование Лапласа функционала F , через
D1 обозначим сопряженную диаграмму функции ϕ(z) [1]. Тогда для ∀ε > 0 выпол-
няется неравенство |ϕ(z)| ÉC (ε)e(hϕ(θ)+ε)|z| (см. [1]), где hϕ(θ) – индикатриса роста
функции ϕ.

Определим топологию в PD . Пусть Q j – последовательность выпуклых компак-
тов таких, что Q j ⊆ Q0

j+1, где Q0
j – внутренние точки Q j и ∪Q j = D. Для каждого

Q j опорную функцию обозначим hQ j (−θ). По теореме Полиа [1] hQ j (θ) = hQ j (−θ).
Введем нормированные пространства B j

B j = {β ∈ H(C) : ||β|| j = sup
z∈C

|β(z)|e−hQ j
(θ)|z| <∞}, j = 1,2, ...

Тогда топология в PD есть индуктивный предел нормированных пространств B j . По
известным свойствам этой топологии (см. [2]) последовательностьϕk ∈ PD сходится
к 0 при k →∞, если выполняются условия: существует компакт J и C > 0 такие, что
|ϕk (z)| ÉCehJ (θ)|z| и ϕk (z) → 0 равномерно на компактах плоскости C.

Введем оператор свертки. По определению, Mϕ[ f (z)] = (F, f (z + t )), где f (z + t )
– сдвиг функции. Пусть ϕ(z) – функция вполне регулярного роста [3]. Будем счи-
тать, что D2 такая вертикальная полуплоскость, которая удовлетворяет условию
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D1 +D2 = D. Оператор Mϕ[ f (z)] линейный, непрерывный, а так как ϕ(z) – вполне
регулярного роста, то и сюръективный, действующий из H(D) в H(D2).

Рассмотрим оператор свертки Mϕ[ψ · f (z)],ψ ∈ H(D). Он действует линейно и
непрерывно из H(D) в H(D2).

Для оператора Mϕ рассмотрим следующую интерполяционную задачу. Пусть в
каждой точке µk задан конечный набор комплексных чисел ak j , j = 0,1, ..., sk − 1.
Необходимо найти функцию u(z) ∈ K er Mϕ такую, что u( j )(µk ) = ak j .

Теорема 1. Интерполяционная задача в ядре оператора Mϕ разрешима тогда и
только тогда, когда cюръективен оператор Mϕ[ψ·] в H(D2).

Теорема 2. Пусть нули ψ ∈ H(D) µk кратности sk такие, что µk ∈ R+, lim
k→∞

µk =
η, k = 1,2, .Функция ϕ(z) вполне регулярного роста и имеет бесконечно много положи-
тельных нулей λk . Тогда оператор Mϕ[ψ·] будет сюръективен в H(D2).

Литература

[1] Леонтьев А. Ф. Целые функции. Ряды экспонент. М.: Наука. 1989. 176 с.

[2] Себастьян-и-Сильва Ж. О некоторых классах локально-выпуклых пространств,
важных в приложениях. // Cб. пер. Математика.– 1957. – Т. 1.– С. 60–77.

[3] Левин Б. Я. Распределение корней целых функций. М.: Государственное издатель-
ство технико-теоретической литературы. 1956. 632 с.

ДОСТАТОЧНЫЕ УСЛОВИЯ СУЩЕСТВОВАНИЯ 0′-ПРЕДЕЛЬНО
МОНОТОННЫХ ФУНКЦИЙ ДЛЯ ВЫЧИСЛИМЫХ η-СХОЖИХ ЛИНЕЙНЫХ

ПОРЯДКОВ

М. В. Зубков1

1maxim.zubkov@kpfu.ru, Казанский (Приволжский) федеральный университет, Ин-
ститут математики и механики им. Н. И. Лобачевского

Представимость порядкового типа в виде
∑

q∈Q
G(q), где Q множество рациональ-

ных чисел, а F некоторая функция, можно взять в качестве одного из возможных
эквивалентных определений η-схожих линейных порядков.

Фроловым А. Н. и Зубковым М. В. [1] было показано, что существование 0′-пре-
дельно монотонной функции G (т.е. имеющей 0′-вычислимую аппроксимацию
g (x, s) не убывающую по аргументу s) для η-схожего линейного порядка эквива-
лентно существованию вычислимой копии с Π0

1 отношением блока (два элемента
находятся в одном блоке если между ними конечное число элементов). С другой
стороны, Д. Турецким [2] был построен пример вычислимого η-схожего линейного
порядка L , который не представим в виде

∑
q∈Q

G(q) ни для какой 0′-предельно мо-

нотонной функции G. Таким образом, существование вычислимой копии порядка
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не достаточно для существования 0′-предельно монотонной функции. Естествен-
ным образом возникает вопрос, а для каких X -вычислимых η-схожих линейных по-
рядков существуют соответствующие X ′-предельно монотонные функции?

Ряд результатов в этом направлении ранее был получен Фроловым А. Н. [3], [4].
В данной работе найдены новые достаточные условия. Введем понятие левых и

правых максимальных блоков.
Определение. Блок [x]L будем называть левым (правым) локальныммаксимумом,

если существует [y]L <L [x]L ([y]L >L [x]L ) такой, что для любого [z]L если
[y]L <L [z]L <L [x]L ([y]L >L [z]L >L [x]L ), то выполняется |[z]L | < |[x]L |.

Основным результатом является следующая теорема.
Теорема.Пусть η-схожий линейный порядок в котором размеры левых и правых

локальных максимумов ограничены. Порядок L имеет низкую копию тогда и толь-
ко тогда, когда существует 0′-предельно монотонная функция G :Q→N такая, что
L ∼= ∑

q∈Q
G(q).

Класс порядков удовлетворяющих этому условию существенно шире, чем объ-
единение классов сильно η-схожих линейных порядков и η-схожих линейных по-
рядков не содержащих сильно η-схожих подинтервалов. В частности, содержит все
конечные суммы порядков из указанных классов.
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ЛИФТЫ ПРОЕКТИРУЕМЫХ ЛИНЕЙНЫХ СВЯЗНОСТЕЙ НА
ТРАНСВЕРСАЛЬНЫЕ РАССЛОЕНИЯ ВТОРОГО ПОРЯДКА

С. К. Зубкова1, В. В. Шурыгин2

1kuzmina_s@list.ru, Казанский (Приволжский) федеральный университет, Институт
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Пусть (M ,F ) — многообразие размерности n +m со слоением коразмерности n
[1]. Трансверсальное расслоение T 2

tr M многообразия (M ,F ) [1] принадлежит к клас-
су полукасательных расслоений [2] и несет на себе естественную структуру гладкого
многообразия над алгеброй D2 усеченных многочленов a +bε+ cε2 степени É 2 од-
ного переменного ε, моделируемого D2-модулем (D2)n ⊕Rm [2,3]. Локальная карта
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{xi , yα} из атласа слоения (xi , i = 1, . . . ,n, — базовые координаты, yα, α = 1, . . . ,m,
— слоевые) индуцирует локальную карту {X i = xi +εẋi +ε2ẍi , yα} на T 2

tr M . Рассло-
ение T 2

tr M несет на себе слоение Ftr с базовыми координатами X i , называемое
лифтом [1] слоения F . Проектируемая линейная связность ∇ на (M ,F ) в локальных
координатах в простой по отношению к слоению окрестности задается коэффици-
ентами Γi

j k (x`), Γα
βk (x`, yδ), Γαjγ(x`, yδ), Γα

βγ
(x`, yδ), Γαj k (x`, yδ), Γi

jγ = Γi
βk = Γi

βγ
= 0.

Применение функтора T 2
tr к связности ∇ приводит кD2-гладкойD2-линейной связ-

ности T 2
tr∇ на T 2

tr M , называемой лифтом [2] связности ∇. Коэффициенты связно-
сти T 2

tr∇ получаются из коэффициентов связности ∇ заменой Γi
j k (x`) на Γ̃i

j k (X `) =
Γi

j k (x`)+εẋ`∂`Γ
i
j k +ε2

(
ẍ j∂`Γ

i
j k + 1

2 ẋ`ẋp∂2
`pΓ

i
j k

)
.

Ставится вопрос о нахождении условий, при которых D2-диффеоморфизм
F : T 2

tr M → T 2
tr M ′ между двумя трансверсальными расслоениями, являющийся

морфизмом слоений, переводит лифт проектируемой связности T 2
tr∇ в лифт неко-

торой проектируемой связности. Этот вопрос сводится к случаю диффеоморфизма
F : T 2

tr M → T 2
tr M , проектирующегося в тождественный диффеоморфизм многооб-

разия M . Такой D2-диффеоморфизм в локальных координатах задается уравнени-
ями X ′i = F i (X k ) = xi +ε(ẋi +g i (xk ))+ε2(ẍi + ẋ j∂ j g i +hi (xk )), y ′α = yα. Кроме того,
с ним можно ассоциировать два проектируемых сечения g и w трансверсального
расслоения (первого порядка) Ttr M , определяемых в локальных координатах урав-
нениями ẋi = g i и ẋi = hi − 1

2 g k∂k g i .

Теорема. Лифт T 2
tr∇ проектируемой линейной связности ∇ инвариантен относи-

тельно D2-гладкого диффеоморфизма F : T 2
tr M → T 2

tr M , сохраняющего слоение Ftr и
проектирующегося втождественный диффеоморфизммногообразияM , тогда итоль-
ко тогда, когда обращаются в нуль производные ЛиLg∇ иLw∇ объекта связности ∇
по отношению к сечениям g и w , ассоциированным с диффеоморфизмом F .
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ФУНКЦИИ С ВАРИАЦИОННО-КООРДИНАТНОЙ ПОЛИНОМИАЛЬНОСТЬЮ
НАД ГРУППОЙ

А. И. Зуева1, А. В. Карпов2

1blackhawksif@gmail.com, Томский Государственный Университет
2karpov@isc.tsu.ru, Томский Государственный Университет

В работе [1] определен класс функций с вариационно-координатной полино-
миальностью (ВКП-функций) над примарным кольцом вычетов. Настоящая рабо-
та обобщает класс ВКП-функций на случай, когда полиномы рассматриваются над
группой с нормальным рядом. Пусть далее G — группа с нормальным рядом

G= H0DH1D . . .DHn = e. (1)

Определение 1. Функции γk : G→ Hk , для k ∈ {0, . . . ,n −1}, будем называть коор-
динатными функциями группы G относительно нормального ряда (1), если произволь-
ный элемент g ∈ G однозначно представляется в виде произведения своих координат
g = γ0(g )γ1(g ) · · ·γn−1(g ).

Координатные функции определяются способом выбора представителей в фак-
торах ряда (1).

Определение 2.Полиномом над группой G от переменной x будем называть выра-
жение вида p(x) = g1xε1 g2xε2 . . . gm xεm , где все «коэффициенты» gi — элементы груп-
пы G, а экспоненты εi принимают значения 1 либо -1.

Определение 3. Функцию f : G→ G будем называть функцией с вариационно-ко-
ординатной полиномиальностью или, коротко, ВКП-функцией, если существуют по-
линомы p0, . . . , pn−1, такие что для произвольных g ∈ G,k ∈ {0, . . . ,n −1} выполняется
γk ( f (g )) = γk (pk (g )).

Очевидно, что класс ВКП-функций включает в себя класс полиномиальных функ-
ций. Обратное включение не выполняется.

Теорема 1.Пусть G=U Tn(Zp ) ÊU T 2
n(Zp ) Ê ·· · ÊU T n

n (Zp ) = e, и n Ê 3. Тогда класс
ВКП-функций над G не совпадает с классом полиномиальных функций.

Таким образом, ВКП-функции над группой дают новый конструктивный пример
дифференцируемых функций, изучавшихся в [2]. В частности, критерий биектив-
ности для ВКП-функций над U Tn(Zp ) дает следующая теорема.

Теорема 2. Пусть G =U Tn(Zp ) ÊU T 2
n(Zp ) Ê ·· · ÊU T n

n (Zp ) = e, f : G→ G — ВКП-
функция, заданная полиномами p0, . . . , pn−2. Тогда f биективна на G, если и только
если выполняются следующие два условия:

1. p0 биективен по модулюU T 2
n(Zp ),

2. степени полиномов p0, . . . , pn−2 взаимно просты с p.
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К РЕШЕНИЮ НЕЛИНЕЙНОЙ СМЕШАННОЙ
КРАЕВОЙ ЗАДАЧИ Г.П.ЧЕРЕПАНОВА
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В работах [1], [2] рассматривалась задача о построении функции w(z), голоморф-
ной в верхней полуплоскости C+ = {z : Im z Ê 0} и непрерывной в ее замыкании C+,
по следующим краевым условиям:

Re
{

A(x)w(x)
}
= 0, x ∈ L, (1)

|w(x)| = a(x), x ∈ M , (2)

где L = ∪n
k=1lk , M = ∪n

k=1mk = R/L, lk = (x2k−1, x2k ), mk = (x2k , x2k+1), x1<x2< . . .<
x2n , x1=x2n+1, mn = (−∞, x1)∪ (x2n ,∞). Непрерывные по Гельдеру коэффициенты
A(x) и a(x) не обращаются в ноль на L и M соответственно. Г.П. Черепанов привел
общий вид решения задачи (1), (2) в классе функций с фиксированными внутрен-
ними и граничными нулями при условии выполнения n−1 условий разрешимости.

В частных случаях n = 1 и n = 2 полное решение задачи (1), (2) было дано в [3] и [4]
соответственно. В настоящей работе доказывается, что условия разрешимости, по-
лученные Черепановым, сводятся к вещественному аналогу проблемы обращения
Якоби на гиперэллиптической Римановой поверхностиR, определяемой уравнени-
ем

χ2(z) =
2n∏

k=1
(z −xk ).

Тем самым устанавливается факт безусловной разрешимости поставленной задачи
в классе мероморфных в верхней полуплоскости функций, суммарное число нулей и
полюсов которых не превышает n−1, а их местоположение определяется решением
проблемы обращения. С помощью построенного таким образом частного решения
находится общее мероморфное решение задачи (1), (2), которое затем сужается до
голоморфного.

Работа выполнена при финансовой поддержке Министерства образования и на-
уки Российской Федерации (тема 14-46).
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О СТРУКТУРНОЙ ХАРАКТЕРИЗАЦИИ РАВНОМЕРНО РЕКУРСИВНО
ОТДЕЛИМЫХ МОДУЛЯРНЫХ РЕШЕТОК
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стан

С неопределяемыми понятиями можно ознакомиться в [1,2].
Пусть (A,ν), (B,µ) — нумерованные алгебры и ϕ — гомоморфизм из A в B. Тогда

ϕ называется морфизмом (из A в B), если он эффективен на номерах, т.е. ϕν= µ f
для подходящей вычислимой функции f . Все рассматриваемые нами гомоморфиз-
мы, вполне естественно, являются морфизмами [1]. Если (A,ν) — нумерованная ал-
гебра и K — класс нумерованных алгебр, то говорят, что (A,ν) аппроксимируется
K-алгебрами, если для всякой пары различных элементов алгебры A найдется го-
моморфизм из A в некоторую K−алгебру, различающий эти элементы.

Нумерованная алгебра (A,ν) называется рекурсивно отделимой, если для всякой
пары различных элементов этой алгебры существует отделяющее их ν-вычислимое
подмножество. Если отделяющие подмножества не просто существуют, но и стро-
ятся равномерно эффективно (по заданной паре различных элементов), то нуме-
рованная алгебра называется равномерно рекурсивно отделимой.

Соответственно, нумерованная алгебра называется равномерно K -аппроксими-
руемой (в фиксированном классе K нумерованных алгебр некоторого типа), если
существует единообразная эффективная процедура поcтроения системы K -разде-
ляющих гомоморфизмов. Известна следующая характеризация равномерно рекур-
сивно отеделимых алгебр [2]:
Нумерованная алгебра равномерно рекурсивно отделима тогда и только тогда, ко-

гда она равномерно аппроксимируется негативными алгебрами.
Эта основная теорема структурной характеризации равномерно рекурсивно от-

делимых универальных алгебр, приложенная к классам конкретных алгебраиче-
ских систем, как оказалось, позволяет получать более тонкие свойства аппрокси-
мирующих алгебр как с алгебраической, так и с алгоритмической точек зрения.
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Теорема 1. Для произвольной не более чем счетной нумерованной модулярной ре-
шётки (L,ν) следующие условия равносильны:
(1) (L,ν) — равномерно рекурсивно отделима;
(2) (L,ν) равномерно аппроксимируется модулярными негативными решётками.
Заметим, что фактор-решетка модулярной решетки вообще говоря немодулярна.
В теории конечно-определенных алгебр важные приложения имеют финитно ап-

проксимируемые алгебры [2].
Следствие 1.ПустьL—модулярная решётка, обладающая равномерно рекурсивно

отделимой нумерацией ν с иммунной характеристической трансверсалью (т.е. им-
мунным множеством {m | νm = νn ⇒ m < n}). Тогда L финитно аппроксимируется
модулярными решётками.

Литература

[1] Ершов Ю. Л. Теория нумераций. – М.: Наука, 1977.

[2] Касымов Н. Х. Рекурсивно отделимые нумерованные алгебры. // УМН. – 1996. –
Т. 51. – № 3. – C. 145–176.

КАНОНИЧЕСКИЙ БАЗИС ГЕНЗЕЛЯ–ШАФАРЕВИЧА
ДЛЯ ФОРМАЛЬНЫХ МОДУЛЕЙ ХОНДЫ

Е. В. Иконникова1

1ikonnikovaev@gmail.com, Лаборатория им. П. Л. Чебышева, Санкт-Петербургский
государственный университет

Пусть K0 — полное дискретно нормированное поле, charK0 = 0, O0 — кольцо це-
лых K0, k0 — поле вычетов K0, chark0 = p 6= 2.

Предположим, что K — полное дискретно нормированное поле, содержащее K0,
с произвольным полем вычетов k характеристики p.

Пусть F (X ,Y ) — формальная группа Хонды над O0, F (M) — формальный O0-
модуль, натянутый на максимальный идеал M поля K .

В данной работе строится система образующих для F (M), являющаяся обобще-
нием широко известной конструкции базиса Гензеля–Шафаревича.

Работа выполнена при поддержке Российского научного фонда, грант №14-21-
00035.
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О ПОЛУКОЛЬЦАХ, НАД КОТОРЫМИ
ВСЕ ПРОСТЫЕ ПОЛУМОДУЛИ ПРОЕКТИВНЫ

С. Н. Ильин1

1Sergey.Ilyin@kpfu.ru, Казанский (Приволжский) федеральный университет

Сравнительно недавно в [1] и [2] был представлен ряд результатов о V -полуколь-
цах, то есть полукольцах, над которыми все простые полумодули инъективны. Рас-
смотрим полукольца, обладающие “двойственным” свойством, а именно, назовем
полукольцо S правым (левым) V ∗-полукольцом, если все простые правые (левые)
S-полумодули проективны. Известно (см., напр., [3, п. 7.6]), что в кольцевом случае
указанное свойство характеризует классически полупростые кольца, в связи с чем
естественный интерес представляют вопросы о возможности обобщения известных
фактов о полупростых кольцах на случай V ∗-полуколец. Ниже представлены неко-
торые результаты в данном направлении.

Напомним, что полукольцо S называется зероидным, если для любого a ∈ S
уравнение a + x = x разрешимо в S. Элемент z ∈ S называется бесконечным, если
a + z = z для всех a ∈ S. Положим I (S) = {e ∈ S : e + e = e, e2 = e}; V (S) есть идеал всех
аддитивно-обратимых элементов из S и ≡V (S) — конгруэнция Бёрна на S по V (S),
то есть x ≡V (S) y ⇔ x +u = y + v для некоторых u, v ∈V (S).

Предложение 1. Полукольцо S есть правое V ∗-полукольцо ровно тогда, когда S =
R ⊕T , где R — полупростое кольцо, а T — зероидное правое V ∗-полукольцо.

Теорема 2. Всякое правое V ∗-полукольцо является правым V -полукольцом.

Теорема 3. Зероидное полукольцо S является правым V ∗-полукольцом ровно то-
гда, когда существуют взаимно ортогональные идемпотенты z1, . . . , zk ∈ I (S), такие
что 1) z1 + . . .+ zk — бесконечный элемент для S и 2) все простые правые S-полумоду-
ли с точностью до изоморфизма исчерпываются попарно неизоморфными друг другу
простыми полумодулями z1S,. . . ,zk S.

Предложение 4.Пусть для фактор-полукольца S̄ = S/≡V (S) выполнено хотя бы од-
но из условий: 1) S̄ конечно и 2) S̄ содержит бесконечный элемент z̄, такой что z̄ s̄ = s̄ z̄
для всех s̄ ∈ S̄. Тогда для S условия “быть правым V ∗-полукольцом” и “быть левым V ∗-
полукольцом” равносильны.

В дополнение к предложению 4 установлено, что в отличие от кольцевого случая
классы правых и левых V ∗-полуколец различны, а именно, построен пример зеро-
идного правого V ∗-полукольца, не являющегося левым V ∗-полукольцом.

Работа выполнена за счет финансовых средств субсидии, выделенной Казанско-
му (Приволжскому) федеральному университету на выполнение гос. задания, про-
ект №1.2045.2014
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О БЕЗУСЛОВНЫХ БАЗИСАХ ИЗ ЭКСПОНЕНТ В ВЕСОВЫХ
ПРОСТРАНСТВАХ НА ИНТЕРВАЛЕ ВЕЩЕСТВЕННОЙ ОСИ

К. П. Исаев1, Р. С. Юлмухаметов2

1orbit81@list.ru, Институт математики с вычислительным центром Уфимского на-
учного центра Российской академии наук

2yulmukhametov@mail.ru, Башкирский государственный университет

Нами рассматривается задача о существовании безусловных базисов из экспо-
нент в гильбертовых пространствах

L2(h) = { f ∈ Lloc(−1,1) : || f ||2 =
∫ 1

−1
| f (t )|2e−2h(t )d t <∞},

где h — выпуклая функция на (−1,1).
В классическом случае, когда h(t ) ≡ 0, система Фурье {eπni }n∈Z образует ортонор-

мированный базис. Очевидно, что в других случаях ортонормированных базисов
из экспонент в пространствах L2(h) не существует. Понятие базиса Рисса введено в
[1] и обозначает образ ортонормированного базиса при ограниченном обратимом
операторе.

Базис {ek , k = 1,2, ...} в гильбертовом пространстве Í называется безусловным
базисом (см. [2]), если для некоторых постоянных c,C > 0 и для любого элемента
x =∑∞

k=1 xk ek , выполняется соотношение

c
∞∑

k=1
|xk |2||ek ||2 É ||x||2 ÉC

∞∑
k=1

|xk |2||ek ||2.

Безусловный базис {ek , k = 1,2, ...} становится базисом Рисса тогда и только тогда,
когда 0 < inf ||ek || É sup ||ek || <∞.

В работе [3] доказано, что при определенных условиях регулярности роста весо-
вой функции h(t ), если для любого k ∈N

eh(t )(1−|t |)k →∞, |t |→ 1,

то в пространстве L2(h) безусловных базисов из экспонент не существует.
Нами доказана следующая

Теорема. Если для некоторого α< 0

(1−|t |)α =O(eh(t )), t →±1,

то в пространстве L2(h) безусловных базисов из экспонент не существует.
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ЛОКАЛЬНАЯ СИСТЕМА КРИВОЛИНЕЙНЫХ КООРДИНАТ С МЕБИУСОВОЙ
КООРДИНАТНОЙ ПОВЕРХНОСТЬЮ

Г. Г. Исламов1

1ggislamov@gmail.com, Удмуртский государственный университет

Переменные изучаемой локальной системы координат образуют тройку (α,β,φ)
с конечными пределами изменения |α| É A, |β| É B ,φ ∈ (0,2π). Здесь A > B > 0. Пере-
ход к декартовой системе (x, y, z) задаётся системой зависимостей

x = (α+βcos(φ/2))cosφ, y = (α+βcos(φ/2))si nφ, z =βsin(φ/2).

Координатные поверхности вида α= const представляют собой листы Мёбиуса.
При x2 + y2 6= 0 радиус-вектор ~r = x~i + y~j + z~k, где (~i ,~j ,~k) — единичный ба-

зис декартовой системы, определяет подвижный локальный репер (~r1,~r2,~r3) =
( ∂~r
∂α

, ∂~r
∂β

, ∂~r
∂φ

). Это неортогональный репер с отличным от нуля ориентированным объ-
ёмом

V = [~r1,~r2,~r3] = −(α+βcos(φ/2))si n(φ/2).

Вектора биортогонального к (~r1,~r2,~r3) базиса

~e1 = (~r2 ×~r3)/V , ~e2 = (~r3 ×~r1)/V , ~e3 = (~r1 ×~r2)/V

нельзя рассматривать в качестве подвижного репера некоторой сопутствующей ло-
кальной системы координат ~R = X~i +Y ~j + Z~k, так как не выполнено необходимое
условие совместности системы дифференциальных уравнений(

∂~R

∂α
,
∂~R

∂β
,
∂~R

∂φ

)
= (~e1,~e2,~e3).

Матрица G(α,β,γ) перехода от биортогонального базиса (~e1,~e2,~e3) к подвижному
реперу (~r1,~r2,~r3) имеет вид 1 cos[

φ
2 ] −1

2βsin[
φ
2 ]

cos[
φ
2 ] 1 0

−1
2βsin[

φ
2 ] 0 α2 + 3

4β
2 +2αβcos[

φ
2 ]+ 1

2β
2cosφ)

 .
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Заметим, что обратная матрица M(α,β,γ) =G−1(α,β,γ) совпадает с матрицей Гра-
ма биортогонального базиса, которая равна обратной матрице Грамма подвижного
репера криволинейной системы координат.

В работе рассматриваются шесть типов решений спектральной задачи для ротора
λ~F = rot~F . Поля каждого типа оказываются ортогональными полями к соответству-
ющим векторам подвижного репера (~r1,~r2,~r3) исходной системы координат, или же
векторам биортогонального базиса (~e1,~e2,~e3).

В терминах координат F1,F2,F3 разложения вектора ~F по векторам биортого-
нального базиса

~F = F1(α,β,φ)~e1 +F2(α,β,φ)~e2 +F3(α,β,φ)~e3

получены координаты G1,G2,G3 разложения вектора~F по векторам подвижного ре-
пера (~r1,~r2,~r3) и векторно-матричная форма спектральной задачи для ротора

λF = A(ξ)∂ξF1 +B(ξ)∂ξF2 +C (ξ)∂ξF3.

Здесь F = colon(F1,F2,F3) – вектор-столбец, ξ = (α,β,φ) – набор локальных кри-
волинейных координат, A(ξ),B(ξ),C (ξ) – конкретные матрицы третьего порядка,
∂ξFk = colon(∂Fk /∂α,∂Fk /∂β,∂Fk /∂φ), k = 1,2,3 – вектор-столбцы, составленные из
частных производных по независимым переменным локальной системы криволи-
нейных координат.

О ТРЕХ ТИПАХ РЕШЕНИЙ СПЕКТРАЛЬНОЙ ЗАДАЧИ ДЛЯ РОТОРА В
КРИВОЛИНЕЙНОЙ СИСТЕМЕ КООРДИНАТ

Г. Г. Исламов1

1ggislamov@gmail.com, Удмуртский государственный университет

Решение ~F спектральной задачи для ротора λ~F = rot~F в общей криволинейной
системе координат (α,β,γ) с подвижным локальным репером (~r1,~r2,~r3) запишем
в виде разложения ~F = F1(α,β,γ)~e1 + F2(α,β,γ)~e2 + F3(α,β,γ)~e3 по векторам биор-
тогонального к (~r1,~r2,~r3) базиса ~e1 = (~r2 ×~r3)/[~r1,~r2,~r3],~e2 = (~r3 ×~r1)/[~r1,~r2,~r3],~e3 =
(~r1 ×~r2)/[~r1,~r2,~r3], где [~r1,~r2,~r3] — смешанное произведение векторов подвижного
репера.

Для ротора имеем разложение по векторам подвижного репера rot~F = {(∂F3/∂β−
∂F2/∂γ)~r1+ (∂F1/∂γ−∂F3/∂α)~r2+ (∂F2/∂α−∂F1/∂β)~r3}/[~r1,~r2,~r3]. Вычисляя матрицу
[~r1,~r2,~r3]M(α,β,γ), где M(α,β,γ) — матрица перехода от подвижного репера к биор-
тогональному базису, можем получить систему трёх дифференциальных уравнений
в частных производных для отыскания координат F1(α,β,γ), F2(α,β,γ), F3(α,β,γ).

Заметим, что M(α,β,γ) совпадает с матрицей Грамма биортогонального базиса,
которая равна обратной матрице Грамма подвижного репера криволинейной си-
стемы координат.

В случае ортогональной системы координат скалярная форма спектральной за-
дачи для ротора принимает следующий вид
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
λF1(α,β,γ)g1 = ∂F3/∂β−∂F2/∂γ,
λF2(α,β,γ)g2 = ∂F1/∂γ−∂F3/∂α,
λF3(α,β,γ)g3 = ∂F2/∂α−∂F1/∂β.

Здесь сопутствующие коэффициенты g1, g2, g3 определяются через коэффициен-
ты Ламэ h1 = |~r1|,h2 = |~r2|,h3 = |~r3| по формулам g1 = (h2 ∗ h3)/h1, g2 = (h1 ∗
h3)/h2, g3 = (h1 ∗h2)/h3. При этом решение спектральной задачи для ротора име-
ет следующее разложение по векторам подвижного репера ~F = (F1(α,β,γ)/h2

1)~r1 +
(F2(α,β,γ)/h2

2)~r2 + (F3(α,β,γ)/h2
3)~r3.

В локальной системе ортогональных криволинейных координат (α,β,γ), опре-
деляемом фиксированным тором с большой окружностью B и малой окружностью
A,B > A, формулы перехода от криволинейной системы координат к декартовой
выберем в виде x = (B +αcosβ)cosγ, y = (B +αcosβ)sinγ, z = αsinβ. Здесь пер-
вая координата α (малый радиус вращения) удовлетворяет ограничению 0 ÉαÉ A.
Вторая координата β (угол поворота в малой окружности) и третья координата γ
(угол поворота в большой окружности) меняются в интервале [0,2π). Простые вы-
числения показывают, что в этом случае g1 =α(B +αcosβ), g2 = (B +αcosβ)/α, g3 =
α/(B +αcosβ). В работе рассматриваются три класса решений спектральной зада-
чи для ротора, определяемых соответственно условиями F1 = 0,F2 = 0,F3 = 0. Поля
каждого типа оказываются касательными полями к координатным поверхностям
этой локальной системы координат.
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ВРАЩЕНИЕ ГАРМОНИЧЕСКИХ ОТОБРАЖЕНИЙ

А.А. Исмагилов, И. Р. Каюмов1, Н.З. Шакиров
1ikayumov@kpfu.ru, Казанский (Приволжский) федеральный университет

Пусть f = h+g – гармоническое отображение кругаD на однолистную область на
комплексной плоскости. Здесь g и h – аналитические компоненты этого отображе-
ния. С. Поннусами [1] была выдвинута гипотеза, которая состоит в том, что найдется
вещественное число α такое, что функция h+eiαg является однолистной в круге D.

Нами построены достаточно широкие классы гармонических отображений, в ко-
торых эта гипотеза справедлива.
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УСЛОВИЯ ЛОКАЛИЗАЦИИ СПЕКТРА КОМПЛЕКСНОГО
АНГАРМОНИЧЕСКОГО ОСЦИЛЛЯТОРА

Х. К. Ишкин1

1ishkin62@mail.ru, Башкирский государственный университет

Пусть Hθ – оператор, порожденный в L2(0,∞) дифференциальным выражением
−y ′′+ eiθxαy и краевым уловием y(0) = 0, где где θ ∈ (−π,π),α ∈ (0,+∞) – постоян-
ные.

Известно [1], что при каждом θ ∈ (−π,π) спектр Hθ состоит из простых (ал-
гебраической кратности 1) собственных чисел. Если {λk (θ)}∞1 – собственные чис-
ла Hθ, пронумерованные в порядке неубывания модулей, то (см. [2]) λk (θ) =
λk (0)e

2θi
2+α , λk (0) ∼ C (α) ·k

2α
2+α , k → ∞, где C (α) > 0 – явно вычисляемая констан-

та.
Пусть Lθ = Hθ+V , где V – оператор умножения на функцию V (·) ∈ L1

loc [0,∞), та-
кую, что спектр Lθ дискретен. Обозначим через {µk (θ)}∞1 – собственные числа Lθ,
пронумерованные в порядке неубывания модулей. В работе [3] показано, что если
функция V

А) локально суммируема на [0,+∞), допускает аналитическое продолжение в
угол Uθ = {−θ/(2+α) < arg z < 0}, непрерывно продолжается до любой конечной точ-
ки границы угла Uθ,

Б) удовлетворяет оценке V (z) = o(zα), z →∞, равномерно по−θ/(2+α) É arg z É 0,

то

µk (θ) ∼λk (θ), k →∞. (1)

Вместе с тем, при θ = 0 для выполнения (1) достаточно, чтобы V (x) = o(q(x)), x →
+∞. В связи с этим возникает вопрос о необходимости условий А) – Б).

Будем говорить, что спектр оператора T с компактной резольвентой локализо-
ван около луча argλ=ϕ0, если для любого ε> 0 N (T,ϕ0 −ε,ϕ0 +ε,r ) ∼ N (T,r ), r →
∞, где N (T,η,ζ,r ) и N (T,r ) — число собственных значений оператора T соответ-
ственно в секторе {η< argλ< ζ, |λ| < r } и круге {|λ| < r }.

Теорема. Существует мероморфная в угле {z : −θ/(2+α) < arg z < 0} функция V
такая, что

1) При некотором − θ
2+α < β < 0 точки zk = e−iβrk , 0 < rk → ∞, k ∈ N, являются

полюсами второго порядка функции V ;

2) Cобственные числа оператора Lθ локализованы около луча argλ= 2θ
2+α .

Работа поддержана грантами № 01201456408 Министерства образования и нау-
ки РФ и № 15-01-01095 Российского фонда фундаментальных исследований. Работа
выполнена при финансовой поддержке Минобрнауки РФ (проект № 01201456408),
РФФИ (проект № 15-01-01095).
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СПЕЦИАЛЬНЫЕ СЛУЧАИ СУЩЕСТВОВАНИЯ ИНВАРИАНТНЫХ
ПСЕВДОХАРАКТЕРОВ НА СВОБОДНЫХ ГРУППАХ

Д. З. Каган1

1dmikagan@gmail.com, Московский государственный университет путей сообщения
Императора Николая II

Псевдохарактером на произвольной группе G называется функция ϕ из группы
G в пространство действительных чисел R, для которой

1) выполняется неравенство ϕ(x y)−ϕ(x)−ϕ(y) É ε для любых элементов x, y ∈G
и некоторого положительного числа ε> 0;

2) ϕ(xn) = nϕ(x) для любых x ∈G ,n ∈ R.
Нетривиальным называется псевдохарактер, для которого существуют элементы
a,b ∈G, такие, что ϕ(ab) 6=ϕ(a)+ϕ(b).

Понятие псевдохарактеров было определено А. И. Штерном в 1983 году [1].
Псевдохарактеры связваны со многими важными характеристиками групп. Р. И.
Григорчук [2] показал зависимость размерности второй группы когомологий от су-
ществования на группе нетривиальных псевдохарактеров. Также из существования
нетривиальных псевдохарактеров следует бесконечность ширины вербальных под-
групп, определенных конечным собственном множеством слов из коммутанта [3].

В. А. Файзиев [4] доказал существование нетривиальных псевдохарактеров на
свободных произведениях неединичных групп, за исключением Z2 ∗ Z2. Р. И. Гри-
горчук [2] выявил условия существования нетривиальных псевдохарактеров для
свободных произведений с объединением и HNN-расширений. В работе [5] дока-
заны некоторые утверждения о нетривиальных псевдохарактерах на аномальных
произведений различных групп с бесконечной циклической группой.

Р. И. Григорчук [2] сформулировал вопрос о наличии нетривиальных псевдоха-
рактерах на свободных группах Fn ,n > 1, инвариантных относительно изоморфиз-
ма свободной группы α : F → F0 на свою подгруппу F0 ∈ F. Пусть
Fn =< a0, a1, . . . , an−1 >, n > 1 — свободная группа. Рассматриваются эн-
доморфизмы, определенные следующими отображениями порождающих a0 →
a1, . . . , an−2 → an−1, an−1 →U0(a0, a1, . . . , an−1), где U0 — некоторый элемент Fn =<
a0, a1, . . . , an−1 > .
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Рассмотрим группу Fn , как свободное произведение бесконечных циклических
групп Fn =< a0 > ∗ < a1 > ∗ . . .∗ < an−1 > . Зададим на каждой группе < ai >, i =
0,1, . . . ,n − 1 отображение s : s(a

p
i ) = {1, p > 0; −1, p < 0}. Функцию f определим,

как сумму значений отображения s на слогах каждого элемента f (ar1
i1

ar2
i2

. . . a
rp

ip
) =

s(ar1
i1

)+ s(ar2
i2

)+ . . .+ s(a
rp

ip
).

Теорема 1. [6] Пусть Fn =< a0, . . . , an−1 >— свободная группа ранга n > 1, и на ней
определен эндоморфизм, при котором a0 → a1, . . . , an−2 → an−1, an−1 →U0(a0, a1, . . . ,
an−1). Если несократимая запись U0 начинается и заканчивается положительными
степенями a0, и f (U0) = 1, то на свободной группе Fn существует нетривиальный
псевдохарактер, инвариантный относительно рассматриваемого эндоморфизма.

В качестве примера, подходящего под условия теоремы, можно рассмотреть эн-
доморфизм свободной группы F4 =< a0, a1, a2, a3 > определяемый следующими
преобразованиями порождающих
a0 → a1, a1 → a2, a2 → a3, a3 → a0a−1

1 a3
2a−3

3 a0.
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О ДИАЛГЕБРАХ КЭЛИ–ДИКСОНА

И. Б. Кайгородов1

1kib@math.nsc.ru, Институт матеамтики им. С.Л. Соболева

Понятие диалгебры как векторного пространства с двумя операциями умноже-
ния восходит к работам Куроша, но основной интерес к диалгебрам возник в резуль-
тате работ Лодея 90-х годов прошлого века. В работах Лодея ассоциативные диал-
гебры (или диассоциативные алгебры) появляются как универсальные обертываю-
щие для алгебр Лейбница, которые являются обобщением алгебр Ли. В дальнейшем,
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в работах Колесникова и Пожидаева были предложены методы определения диал-
гебр (в том числе и с n-арными умножениями) для произвольного полиномиально-
го семейстра тождеств. Так появились диалгебры Мальцева, структуризуемые ди-
алгебры, альтернативные диалгебры и другие. С тех пор широко изучаются различ-
ные свойсва ассоциативных и неассоциативных диалгебр. Так, в работе Рихсибое-
ва, Рахимова и Басри были описаны дифференцирования ассоциативных диалгебр
малых размерностей; в работе Бокутя, Чена и Лю были изучены базисы Гребнера-
Ширшова для ассоциативных диалгебр. В работах Пожидаева и Колесникова были
получены связи между диалгебрами и конформными алгебрами, n-арными алгеб-
рами и алгебрами Рота-Бакстера.

Процесс Кэли-Диксона (это процедура которая позволяет построить из действи-
тельных чисел комплексные числа, кватернионы, октонионы, седенионы и т.д.) до-
пускает естественный аналог в случае диалгебр. Данный процесс на случай диал-
гебр был обобщен в работе Фелипе-Соза, Фелипе, Санчес-Ортега, Бремнера и Ки-
ньона в 2014 году.

В настоящией работе изучается строение 2-, 4- и 8-мерных диалгебр, полученных
в результате применения процесса Кэли–Диксона. Дается описание алгебр диффе-
ренцирований, групп автоморфизмов, идеалов и основных поддиалгебр этих диал-
гебр.

Работа выполнена при финансовой поддержке РФФИ (проект 16-31-00096).

ОБ ОПЕРАТОРАХ С НЕСОБСТВЕННЫМИ ЧАСТНЫМИ ИНТЕГРАЛАМИ

А. С. Калитвин1, В. А. Калитвин2

1kalitvinas@mail.ru, Липецкий государственный педагогический университет
2kalitvin@mail.ru, Липецкий государственный педагогический университет

Основы теории линейных операторов с частными интегралами построены в слу-
чае частных интегралов в смысле Лебега. Это влечет суммируемоть функций по пе-
ременным интегрирования. Уравнения с частными интегралами Лебега могут не
иметь решений, хотя эти же уравнения с несобственными частными интегралами
имеют решения. Поэтому рассмотрим операторы с частными несобственными ин-
тегралами.

Пусть D = [0,∞)× [0,∞). Через X обозначим множество определенных на D из-
меримых функций x(t , s), суммируемых по каждой из переменных t и s на каждом
конечном отрезке [0, a], суммируемых по (t , s) на каждом квадрате [0, a] × [0, a] и
удовлетворяющих условиям: несобственные интегралы∫ ∞

0
x(τ, s)dτ= lim

a→∞

∫ a

0
x(τ, s)dτ,

∫ ∞
0

x(t ,σ)dσ= lim
a→∞

∫ a

0
x(t ,σ)dσ,

сходятся равномерно относительно s ∈ [0,∞); t ∈ [0,∞); на D ограничены функции

u(a, s) =
∫ a

0
x(τ, s)dτ, v(t , a) =

∫ a

0
x(t ,σ)dσ.

Отметим, что несобственные интегралы сходятся для любых s, t ∈ [0,∞), если
функция x(t , s) суммируема по t при любом s ∈ [0,∞), и суммируема по s при лю-
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бом t ∈ [0,∞) соответственно. Равномерная сходимость интегралов относительно
s ∈ [0,∞) и t ∈ [0,∞) имеет место, если существуют суммируемые на [0,∞) функции
ϕ(t ) и ψ(s), такие, что |x(t , s)| Éϕ(t ) и |x(t , s)| Éψ(s).

В множестве X можно ввести счетную систему полунорм ‖x‖n = ∫ n
0

∫ n
0 |x(τ,σ)|

dτdσ, n = 1, . . . , x ∈ X . В этом случае X является локально выпуклым пространством

Фреше относительно растояния ρ(x, y) =
∞∑

n=1

‖x−y‖n
2n(1+‖x−y‖n) , x, y ∈ X .

Через X0 обозначим множество определенных на D измеримых функций, сум-
мируемых по каждой из переменных t и s на каждом конечном отрезке [0, a0] и для
которых

∣∣∣∫ a
0 x(τ, s)dτ

∣∣∣É const,
∣∣∣∫ a

0 x(τ, s)dτ
∣∣∣É const, где a, t , s ∈ [0,∞).

Из приведенных определений видно, что X ⊂ X0.
Пусть K — линейный оператор с частными интегралами:

(K x)(t , s) =
∫ ∞

0
l (t , s,τ)x(τ, s)dτ+

∫ ∞
0

m(t , s,σ)x(t ,σ)dσ, (1)

где l (t , s,τ) и m(t , s,σ) — измеримые на D × [0,∞) функции.

Теорема 1.Пусть выполнены условия: функция l (t , s,τ)монотонна по τ и |l (t , s,τ)| É
L (L = const, t , s,τ ∈ [0,∞)); функция m(t , s,σ) монотонна по σ и |m(t , s,σ)| É M (M =
const, t , s,σ ∈ [0,∞)).
Тогда оператор K определен на пространстве X . При этом каждый из частных ин-

тегралов правой части равенства (1) сходится равномерно относительно (t , s) ∈ D.

Теорема 2. Пусть выполнены условия теоремы 1, функция l (t , s,τ) → 0 при τ→+∞
равномерно относительно t , s ∈ [0,∞), функцияm(t , s,τ) → 0 при σ→+∞ равномерно
относительно t , s ∈ [0,∞).
Тогда оператор K определен на пространстве X0. При этом каждый из частных

интегралов правой части равенства (1) сходится равномерно относительно (t , s) ∈ D.

Работа выполнена при финансовой поддержке Минобрнауки России (Госзадание,
проект № 2015/351, НИР № 1815).

ГЕОДЕЗИЧЕСКИЕ И ГОЛОМОРФНО-ГЕОДЕЗИЧЕСКИЕ КРИВЫЕ В
КАСАТЕЛЬНЫХ РАССЛОЕНИЯХ

Т. В. Капустина1

1tv_kapustina@mail.ru, Казанский (Приволжский) федеральный университет, Ела-
бужский институт

Пусть Tr (M) — касательное расслоение порядка r дифференцируемого многооб-
разия M размерности n, класса C∞, с аффинной связностью ∇. В [1] указаны свя-
зи геометрии касательного расслоения Tr (M) с алгеброй плюральных чисел R(εr )
(εr+1 = 0). В Tr (M) действует так называемая почти касательная структура поряд-
ка r с аффинором f , обладающим свойством f r+1 = 0, которая тесно связана с ал-
геброй плюральных чисел и которую можно использовать для построения лифтов
тензорных полей и связностей из M в Tr (M).
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Нами рассмотрены геодезические относительно синектической связности без
кручения

r
Γ в Tr (M). Получены дифференциальные уравнения этих геодезических

в инвариантной форме. Исследуются: естественная проекция πr геодезической из
Tr (M) на базу и ее промежуточные проекции πr k (k = 1,r −1) на касательные рас-
слоения меньших порядков. Доказаны две теоремы о том, что эти проекции пред-
ставляют собой геодезические (на M и на Tk (M) соответственно) и обратно, при
определенных условиях поднятие геодезической из M (из Tk (M) ) в Tr (M) представ-
ляет собой геодезическую в Tr (M).

Далее, в касательном расслоении Tr (M) с синектической связностью
r
Γ вводят-

ся голоморфно-геодезические кривые. Кривая xα = xα(t ) в
(
Tr (M),

r
Γ
)

называется
голоморфно-геодезической, если вдоль этой кривой абсолютная производная ка-
сательного вектора является вектором, принадлежащим в каждой точке распреде-

лению (r +1)-мерных площадок с базисными векторами ẋα, f ασ ẋσ,
2

f ασ ẋσ, . . .
r

f ασ ẋσ —
голоморфных площадок. Соответствие двух синектических связностей называет-
ся голоморфно-проективным, если голоморфно-проективные кривые относитель-
но первой связности переходят при этом соответствии в голоморфно-проективные
кривые относительно второй связности. Найдено необходимое и достаточное усло-
вие голоморфно-проективного соответстия синектических связностей в Tr (M).

Доказано, что проекции πr и πr k голоморфно-геодезической кривой представ-
ляют собой геодезические (на M и на Tk (M) соответственно) и обратно, при опре-
деленных условиях поднятие геодезической из M (из Tk (M) ) в Tr (M) представляет
собой голоморфно-геодезическую в

(
Tr (M),

r
Γ
)
.
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ИССЛЕДОВАНИЕ ОДНОЛИСТНОСТИ ОТОБРАЖЕНИЙ НА
ПОЛИГОНАЛЬНЫЕ ОБЛАСТИ

Э. Н. Карабашева1, П. Л. Шабалин2

1enkarabasheva@bk.ru, Казанский государственный архитектурно-строительный
университет

2pavel.shabalin@mail.ru, Казанский государственный архитектурно-строительный
университет

Авторами проведено исследование однолистности структурной формулы кон-
формного отображения верхней полуплоскости D на полигональную область Dz ,
ограниченную двумя ломанными линиями L1

z и L2
z с бесконечным числом прямо-

линейных звеньев и общей точкой A0(0,0). Начиная с A0 последовательно обозна-
чены остальные вершины полигональной области на ломанных L1

z и L2
z вершины

A1, A2, A3, · · · и A−1, A−2, A−3, · · · соответственно. При обходе границы области от
точки A0 вдоль L1

z , область Dz остается слева, а вдоль L2
z – справа. Углы, образо-

ванные действительной осью и звеньями A0, A1 и A0, A−1 обозначим η1
0π и η2

0π ,
считая их известными 0 É η1

0π< 2π и 0 < η2
0π−η1

0π<π/2. Также, известны значения
внутренних по отношению к области Dz углов при вершинах Ak и A−k , их значения
αkπ и α−kπ, где 0 <αk < 1, 1 <α−k < 2, k = 1,∞. Координаты Ak и A−k не известны.
Внутренний для полигональной области Dz угол A0 равен разности (η2

0 −η1
0)π.

Конформное отображение (1) области D на Dz построено так, чтобы положитель-
ной полуоси ξ > 0 соответствовала ломаная L1

z , а отрицательной полуоси ξ < 0 —
ломанная L2

z , а начало координат ξ= 0 переходило в начало координат A0

z(ζ) = a0

ζ∫
0

eiη1
0π

ζ1−(η2
0−η1

0)

∏∞
k=1

(
1− ζ

t−k

)κ−k

∏∞
k=1

(
1− ζ

tk

)κk
dζ. (1)

Построенное решение z(ζ) обобщает формулу Кристоффеля–Шварца на случай
бесконечного числа вершин. Функция z(ζ) получена с использованием решения од-
нородной задачи Гильберта с разрывными коэффициентами и двусторонним за-
вихрением на бесконечности вида O(lnα |x|). Идея построения конформного отоб-
ражения с использованием решения однородной задачи Гильберта была заимство-
вана из работ Р.Б. Салимова и П.Л. Шабалина [1], [2].

Доказано, что в случае α> 1 обобщенный интеграл Шварца-Кристоффеля обяза-
тельно будет неоднолистным. И получены ограничения при выполнении которых
для случая 0 <αÉ 1 конформное отображение z(ζ) верхней полуплоскости D на опи-
санную полигональную область Dz будет однолистным.
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НИЖНИЕ ГРАНИЦЫ ДЛЯ СРЕДНЕГО ОБЪЕМА ВЫБОРКИ В ПРОЦЕДУРАХ
ОТБОРА НАИБОЛЕЕ ВЕРОЯТНОГО МУЛЬТИНОМИАЛЬНОГО ИСХОДА

И. А. Кареев1

1kareevia@gmail.com, Казанский (Приволжский) федеральный университет, Инсти-
тут вычислительной математики и информационных технологий

Пусть ξ= (ξ1,ξ2, . . . ,ξk ) — k-мерный мультиномиальный вектор с вероятностями
успеха исходов θ = (θ1, . . . ,θk ) ∈ Θ. Исследуется задача отбора популяции ξi с наи-
большей вероятностью успеха θi по результатам наблюдений ξ. Рассматривается
постановка с зоной безразличия, когда от процедуры требуется гарантировать за-
данный уровень P∗ > 1/k вероятности корректного отбора лишь при θ ∈ Θ∆ = {ϑ ∈
Θ : ∆ϑ[k−1] <ϑ[k]}, где ∆> 1 — размер зоны безразличия.

В работе решается проблема построения нижней оценки для минимального
среднего объёма наблюдений, требуемого для гарантийного решения мультиноми-
альной задачи отбора. Ранее аналогичные задачи были рассмотрены для общих по-
становок задач отбора [1] и упорядочивания [2].

Пусть Sp(P∗,∆) — множество всех процедур отбора с заданными ограничениями
P∗ и ∆; νϕ — объём выборки, производимой процедурой ϕ.

Теорема.Средний объём выборки любой процедуры отбораϕ ∈ Sp(P∗,∆) при θ ∈Θ∆
ограничен снизу величиной:

Eθνϕ Êω(1−P∗,1−P∗)
(
θ[k] lnθ[k]+

+ (θ[k−1] +θ[k]) ln
1+∆

θ[k−1] +θ[k]
+θ[k−1] ln

θ[k−1]

∆

)−1
,

где ω(x, y) = x ln x
1−y − (1−x) ln 1−x

y .

Одно из естественных применений полученной нижней границы заключается в
проблеме оценивания эффективности конкретных процедур отбора ϕ, понимае-
мой как отношение infψ∈Sp(P∗,∆)Eθνψ/Eθνϕ при θ ∈Θ∆. Заменяя в формуле числи-
тель на значение нижней границы, получим оценку снизу для эффективности ϕ.
Эта методика была применена при исследовании эффективности некоторых клас-
сических процедур отбора, включая процедуру с фиксированным числом наблюде-
ний Бекхофера-Элмаграби-Морсе [3] (в зависимости от значений параметров её эф-
фективность варьируется от 0.1 до 0.5) и последовательную процедуру Бекхофера-
Голдсмана [4] (эффективность — от 0.25 до 0.95).
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ОБ АЛГЕБРАХ МНОГООБРАЗИЯ B1,1

В. К. Карташов1

1kartashovvk@yandex.ru, Волгоградский государственный социально-педагогиче-
ский университет

Через B1,1 обозначается многообразие алгебр с двумя унарными операциями f и
g , определяемое одним тождеством f g (x) = x. В работе [1] описаны сильно связные
и конгруэнц-простые алгебры этого многообразия.

Любой полигон над бициклической полугрупой можно интерпретировать как ал-
гебру многообразия B1,1 ([2, с. 68]).

Очевидно также, что B1,1 включает в себя многообразие A1,1 унарных алгебр с
двумя операциями f и g , заданное тождествами f g (x) = g f (x) = x. В настоящее вре-
мя получено значительное количество результатов об алгебрах многообразия A1,1
([3]-[5]). Внимание к многообразию B1,1 в некоторой степени оправдывает следую-
щая

Теорема 1. Многообразие B1,1 является покрытием для многообразия A1,1 в ре-
шетке всех многообразий алгебр с двумя унарными операциями.

Напомним, что алгебра называется сильно связной, если она порождается любым
своим элементом. Унарная алгебра сигнатуры 〈A,Ω〉, на которой для любых f , g ∈Ω
истинно тождество f g (x) = g f (x), называется коммутативной.

Известно [6], что для любой сильно связной коммутативной унарной алгебры A
имеет место равенство End A = Aut A, где через End A и Aut A обозначается полу-
группа эндоморфизмов и группа автоморфизмов алгебры A, соответственно.

Этот результат можно распространить и на сильно связные алгебры многообра-
зия B1,1.

Теорема 2. Для любой сильно связной алгебры A многообразия B1,1 справедливо
равенство End A = Aut A.
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Говорят, что алгебра A обладает свойством Хопфа, если каждый её эпиэндомор-
физм является автоморфизмом.

В [7] показано, что любая конечнопорожденная коммутативная унарная алгебра
обладает свойством Хопфа.

Теорема 3. Существует счётное число однопорожденных алгебр многообразия
B1,1, не обладающих свойством Хопфа.

Литература

[1] Бощенко А. П. Решетки конгруэнций унарных алгебр с двумя операциями f и g ,
удовлетворяющими тождествам f (g (x)) = g ( f (x)) = x или g ( f (x)) = x. // Деп. в
ВИНИТИ 20.04.98. – Волгоград, 1998. – № 1220-В98 – 32. с.

[2] Клиффорд А., Престон Г. Алгебраическая теория полугрупп. – Т. 1. – М.: Мир,
1972. – 285 c.

[3] Горбунов В. А. Покрытия в решетке квазимногообразий и независимая аксиома-
тизируемость. // Алгебра и логика. – 1977. – Т. 16. – № 5. – C. 507–548.

[4] Акатаев А. А., Смирнов Д. М. Решетки подмногообразий многообразий алгебр.
// Алгебра и логика. – 1968. – Т. 7. – № 1. – C. 5–25.

[5] Карташов В. К. Характеризация решетки квазимногообразий алгебр A1,1 // Ал-
гебраические системы. Межвузовский сборник. – Волгоград, 1989. – C. 37–45.

[6] Esik Z., Imreh B. Remarks on finite commutative automata. // Acta Cybern. – 1981. –
V. 5. – № 3. – C. 143–146.

[7] Карташов В. К. Независимые системы порождающих и свойство Хопфа для унар-
ных алгебр // Дискретная математика. – 2008. – Т. 20. – № 4. – C. 79–84.

О МАЛЬЦЕВСКОМ УМНОЖЕНИИ АНТИМНОГООБРАЗИЙ
АЛГЕБРАИЧЕСКИХ СИСТЕМ

А. В. Карташова1

1kartashovaan@yandex.ru, Волгоградский государственный социально-педагогиче-
ский университет

Антимногообразием (см. [1]) называется всякий класс алгебраических систем
фиксированной сигнатуры Ω, определяемый некоторым (возможно, пустым) мно-
жеством антитождеств, т.е. предложений вида

(∀x̄(¬α1(x̄)∨¬α2(x̄)∨ . . .∨¬αm(x̄)),

где αi (x̄) – атомная формула сигнатуры Ω для любого целого числа i ∈ {1,2, . . . ,m}.
Пусть теперь K – произвольный класс алгебраических систем. Произведение

M◦
K
N его подклассов M и N в K определено А.И. Мальцевым ([2]) как класс всех
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систем A ∈K, для которых

(∃θ)(A /θ ∈N & (∀a ∈A )(aθ ∈K⇒ aθ ∈M)),

где aθ обозначает смежный класс конгруэнции θ, содержащий элемент a.
В [2] показано, что подквазимногообразия произвольного квазимногообразия

алгебраических систем конечной сигнатуры относительно умножения образуют
группоид, найдены достаточные условия, при которых он является полугруппой.

Теорема 1. Пусть множество функциональных символов сигнатурыΩ конечно. То-
гда подантимногообразия каждого антимногообразия K алгебраических систем сиг-
натуры Ω образуют полугруппу относительно умножения в классе K.

Для любой сигнатуры Ω через UΩ обозначим класс всех алгебраических систем
данной сигнатуры, а через U′

Ω
– класс всех алгебраических систем этой сигнатуры,

не содержащих идемпотентов.

Теорема 2.Еслимножествофункциональных символов сигнатурыΩ бесконечно,то
подантимногообразия антимногообразия UΩ не образуют группоида относительно
мальцевского умножения в классе UΩ.

Теорема 3.ПустьK – антимногообразие алгебр сигнатурыΩ,M иN – подантим-
ногообразия антимногообразия K. Тогда

M◦
K
N=

{
U′
Ω

, если N=UΩ, M 6=UΩ,
N, в остальных случаях.

.

Следствие. Антимногообразия алгебр конечной сигнатуры Ω образуют относи-
тельно умножения в классеUΩ полугруппу с пустым центром без правых единиц, един-
ственной левой единицей которой является элемент UΩ.
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НОРМАЛЬНЫЙ ВИД ИЗОПЕРИМЕТРИЧЕСКОГО НЕРАВЕНСТВА В КЛАССЕ
КОНФОРМНЫХ МЕТРИК РИМАНОВА МНОГООБРАЗИЯ

В. M. Кесельман1

1vmkes@yandex.ru, Университет машиностроения (МАМИ)

Некомпактные n-мерные (n Ê 2) римановы многообразия (Mn , g ) разбиваются
на два типа инвариантно относительно конформных замен метрики: многообразия
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параболического конформного типа (например, евклидово пространство Rn) и мно-
гообразия гиперболического конформного типа (например, пространство Лобачев-
ского Hn).

(Не следует думать, что это связано с кривизной. Кривизна не является конформ-
ным инвариантом.)

В докладе рассматривается связь между конформным типом риманова многооб-
разия (Mn , g ) и нормальным видом, к которому на нём приводится изопериметри-
ческое неравенство в классе метрик, конформных его исходной метрике g .

Изопериметрическое неравенство — это неравенство вида Pg (Vg (D)) É Sg (∂D) ,
справедливое для любой предкомпактной области D ⊂ Mn , имеющей в метрике g
объем Vg (D) и площадь Sg (∂D) границы ∂D области D. Здесь Pg = Pg (x), 0 < x <
Vg (Mn) — некоторая неотрицательная функция, которая называется изоперимет-
рической функцией многообразия Mn в метрике g .

Хорошо известно, что в Rn выполняется евклидово изопериметрическое нера-
венство с изопериметрической функцией вида P (x) = c · x

n−1
n , а в Hn выполняется

линейное изопериметрическое неравенство с изопериметрической функцией ли-
нейного вида P (x) = c · x.

При этом евклидово изопериметрическое неравенство в Rn является точным, а
линейное изопериметрическое неравенство в Hn — асимптотически точным, при-
чём указанная точность реализуется на шаровых исчерпаниях этих пространств.

В отличие от конформного типа многообразия, его изопериметрическая функ-
ция Pg (x) в классе конформных метрик g имеет разный вид, однако её асимптоти-
ческое поведение при x →+∞ связано с конформным типом многообразия.

Теорема.ПустьMn —произвольное связное некомпактное n-мерное (n Ê 2) рима-
ново многообразие.

1) Многообразие Mn имеет гиперболический конформный тип тогда и только то-
гда, когда наMn можно построить конформную исходной метрике многообразия пол-
ную метрику g , в которой объём многообразия Mn бесконечен и существует изопе-
риметрическая функция Pg линейного вида: Pg (x) = a · x при всех x > 0, где a > 0 —
некоторая постоянная.

Болеетого, в этом критерииможно дополнительно считать, что для априори про-
извольно заданного ε> 0 изопериметрическая функцияPg является ε-асимптотичес-
ки точной на исчерпании многообразия, сколь угодно близком к шаровому исчерпанию.

2) Многообразие Mn имеет параболический конформный тип тогда и только то-
гда, когда для любого ε > 0 можно построить конформную исходной метрике много-
образия полную метрику g , в которой объём многообразия бесконечен и существует
ε-асимптотически точная изопериметрическая функция Pg евклидова вида Pg (x) =
b ·x n−1

n (где x > ε, b > 0—некоторая постоянная) при условии, что указанная ε-асимп-
тотическая точность реализуется на исчерпании многообразия ε-близком к шарово-
му в метрике g .
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МАКСИМАЛЬНЫЕ ИДЕАЛЫ И АВТОМОРФИЗМЫ

Р. К. Керимбаев1

1ker_im@mail.ru, Казахский национальный университет имени аль-Фараби

Речь идет о максимальных идеалах и P-автоморфизмах кольца многочленов
P [x1, ..., xn]. Если многочлены f1, ..., fn ∈ P [x1, ..., xn] задают P-автоморфизмы коль-
ца многочленов, то они образуют в нем максимальные идеалы. Более того, данные
многочлены имеют единственный общий корень кратности 1 и обладают обрати-
мым якобианом. Как известно, максимальные идеалы являются простыми. А иде-
ал является простым тогда и только тогда, когда соответствующее алгебраическое
многообразие неприводимо. Над алгебраически замкнутым полем алгебраическое
многообразие максимальных идеалов состоит из одной точки. В этой теории важ-
ную роль играют формула Тейлора и теорема Безу. Доказано, что келлеровые мно-
гочлены Ягжева-Басса-Коннелла-Райта задают инъективное полиномиальное отоб-
ражение.
Формула Тейлора. Пусть f (x1, ..., xn) — многочлен из кольца P [x1, ..., xn], а a =

(a1, ..., an) ∈ P n — произвольная точка. Тогда имеет место формула Тейлора:

f (x) = f (a)+
n∑

k=1

∑
k1+...+kn=k

∂k f (a)

∂
k1
x1

...∂kn
xn

(x1 −a1)k1 ...(xn −an)kn

k1!...kn !
.

Теорема (Безу). Пусть f ∈ P [x1, ..., xn]—многочлен, a ∈ P n —точка. Тогда a явля-
ется корнем многочлена f тогда и только тогда, когда f ∈ I . То есть f (a) = 0 ⇔ f ∈ I .
Теорема (кратность корней). Точка a ∈ P n является k кратным корнем много-

члена f ∈ P [x1, ..., xn] тогда и только тогда, когда

∂i−1 f (a)

∂
k1
x1

...∂kn
xn

= 0,

где i = 1, ...,k, k1 + ...+kn = i −1 и ∂0 f (a)
∂0

x1
...∂0

xn
= f (a).

Проблема Келлера (1939)[1]. Если якобиан многочленов f1, ..., fn обратим, то
они задают P-автоморфизмы кольца многочленов P [x1, ..., xn] и полиномиальный
автоморфизм аффинного пространства An(P ).

В [2], [3] установлено, что для обратимости полиномиального отображения, до-
статочно установить его инъективость.

В [4], [5] установлено, что проблему Келлера достаточно доказать для многочле-
нов Ягжева-Басса-Коннелла-Райта.

Определение.Многочлены вида

fi (x1, ..., xn) = xi + fi (3)(x1, ..., xn), (1)

где fi (3)(x1, ..., xn), i = 1, ...,n, — однородные степени три, называются многочленами
Ягжева-Басса-Коннелла-Райта.

Теорема. Многочлены Келлера типа (1) образуют максимальный идеал в кольце
P [x1, ..., xn], при этом все они имеют единственный общий корень кратности 1.
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Следствие 1. Для келлеровых многочленов f1, ..., fn типа (1) и для любой точки
a ∈ P n многочлены fi (x +a)− fi (a), i = 1, ...,n, образуют максимальный идеал в кольце
P [x1, ..., xn].
Следствие 2. Многочлены Келлера типа (1) устанавливают инъективное полино-

миальное отображение.
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НАХОЖДЕНИЕ ИНВАРИАНТА ФОМЕНКО-ЦИШАНГА
В СЛУЧАЕ КОВАЛЕВСКОЙ НА АЛГЕБРЕ ЛИ SO(4)

В. А. Кибкало1

1slava.kibkalo@gmail.com, Московский государственный университет

Работа посвящена анализу топологии интегрируемого аналога случая Ковалев-
ской на алгебре Ли so(4). С историей вопроса и описанием системы можно озна-
комиться в работе И. К. Козлова [3]. При исследовании системы будем пользовать-
ся теорией топологической классификации интегрируемых гамильтоновых систем,
разработанной А. Т. Фоменко (она подробно описана в [1]). Полным инвариантом
слоения Лиувилля на трехмерном многообразии является меченая молекула (инва-
риант Фоменко–Цишанга). По теореме Фоменко–Цишанга эквивалентность мече-
ных молекул изоэнергетических поверхностей двух систем равносильна совпаде-
нию их слоений и замыканий решений на этих поверхностях.

В случае нулевой постоянной площадей докладчиком (см. [4]) было обнаружено
9 попарно неэквивалентных слоений Лиувилля изоэнергетических поверхностей.
Некоторые из них встречались в случаях интегрируемости Ковалевской, Ковалев-
ской – Яхьи и Соколова на алгебре Ли e(3) (см. [2], [6], [5]). В случае произвольно-
го значения постоянной площадей докладчиком найдены допустимые базисы на
торах, расположенных вблизи дуг бифуркационной диаграммы. Для произвольной
допустимой трехмерной поверхности построена ее меченая молекула. Обнаружено,
что для построения меченой молекулы кругового многообразия (см. [2], [5]) особен-
ности типа центр-центр достаточно знать локальное устройство бифуркационной
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диаграммы, что оказалось полезным при вычислениях. В четырех из девяти воз-
можных случаев, указанных в [3], найдены все инварианты Фоменко–Цишанга изо-
энергетических поверхностей.

Теорема. В случаях VI-IX найден полный список инвариантов Фоменко-Цишанга,
состоящий из 9 меченых молекул. Четыре молекулы не встречались в случае нулевой
постоянной площадей. Две из них эквивалентны меченым молекулам случая Соколова
на алгебре Ли e(3) (см. [5]).
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О ПСЕВДОРИМАНОВЫХ ОДНОРОДНЫХ
C - ПРОСТРАНСТВАХ РАЗМЕРНОСТИ 4

П. Н. Клепиков1, О. П. Хромова2
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2khromova.olesya@gmail.com, Алтайский государственный университет

Пусть (M , g ) — (псевдо)риманово многообразие размерности n Ê 4, R — тензор
кривизны Римана, r — тензор Риччи, s — скалярная кривизна метрики g . Разделив
тензор кривизны R на метрический тензор g в смысле произведения Кулкарни -
Номидзу ∧○, получим тензор Вейля W и тензор одномерной кривизны A [1]:

R =W + A ∧○g , A = 1

n −2

(
r − sg

2(n −1)

)
.

Псевдориманово многообразие (M , g ) размерности n Ê 4 будем называть C - про-
странством, если divW = 0. Ряд примеров таких многообразий и необходимые све-
дения о них приведены в [1]. В размерности 3 тензор Вейля тривиален, а в размер-
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ности четыре и выше тензор Вейля, вообще говоря, отличен от нуля. Поэтому воз-
никает вопрос о гармоничности тензора Вейля на однородных римановых многооб-
разиях размерности n Ê 4. Четырехмерные группы Ли с левоинвариантной римано-
вой метрикой и divW = 0 изучались в работах [2–5]. Настоящая работа продолжает
исследования, начатые в [2–5], в случае четырехмерных однородных псевдорима-
новых многообразий.

В данной работе, с использованием классификации четырехмерных однородных
псевдоримановых многообразий (см. [8]), получена классификация четырехмерных
однородных псевдоримановых C-пространств.

Работа выполнена при поддержке РФФИ (гранты: №16–01–00336A, №16–31–
00048мол_а), Минобрнауки РФ в рамках базовой части государственного задания в
сфере научной деятельности ФГБОУ ВПО «Алтайский государственный универси-
тет» (код проекта: 1148).
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О ПРЕДПИСАННЫХ ЗНАЧЕНИЯХ ОПЕРАТОРОВ КРИВИЗНЫ
ЛЕВОИНВАРИАНТНЫХ ЛОРЕНЦЕВЫХ МЕТРИК ТРЕХМЕРНЫХ ГРУПП ЛИ
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Задача об установлении связей между топологией и кривизной риманова
многообразия является одной из важных проблем римановой геометрии. Рабо-
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та О. Ковальского и С. Никшевич [1] посвящена решению задачи о предписан-
ных значениях спектра оператора Риччи на трехмерных римановых локально-
однородных пространствах. В дальнейшем аналогичные результаты для операто-
ра одномерной кривизны, а также для оператора секционной кривизны получены
Д. Н. Оскорбиным, О. П. Хромовой [2].

В псевдоримановом случае известна работа Дж. Кальварузо, О. Ковальского [3], в
которой исследуется задача о существовании трехмерной группы Ли с левоинвари-
антной лоренцевой метрикой и заданным оператором Риччи.

При исследовании (псевдо)римановых многообразий важную роль играет опера-
тор одномерной кривизны, определяемый формулой

A = 1

n −2

(
ρ− s

2(n −1)
Id

)
,

где ρ — оператор Риччи, s — скалярная кривизна, n — размерность (псев-
до)риманова многообразия M .

Риманову тензору кривизны R в любой точке многообразия M можно поставить в
соответствие оператор секционной кривизны R : Λ2

x M → Λ2
x M , определяемый ра-

венством 〈X ∧Y ,R(T ∧V )〉x = Rx(X ,Y ,T,V ), где 〈·, ·〉 — индуцированное скалярное
произведение в слоях пространства расслоения Λ2

x M , определяемое правилом
〈X1 ∧X2,Y1 ∧Y2〉x = det

(
gx(Xi ,Y j )

)
.

Данные исследования являются продолжением работы Дж. Кальварузо,
О. Ковальского [3]. В работе доказаны аналогичные теоремы для оператора од-
номерной кривизны и оператора секционной кривизны на трехмерных группах Ли
с левоинвариантной лоренцевой метрикой. Этот результат естественно обобщается
на случай трехмерных локально однородных лоренцевых многообразий.

Работа выполнена при поддержке РФФИ (гранты: №16–01–00336A, №16–31–
00048мол_а), Минобрнауки РФ в рамках базовой части государственного задания в
сфере научной деятельности ФГБОУ ВПО «Алтайский государственный универси-
тет» (код проекта: 1148).
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О МИНИМАЛЬНО ПОЛНЫХ ПОЛУГРУППАХ
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В [1] предлагалась обширная программа по изучению универсальных алгебр, раз-
личных классов алгебр. В предыдущие годы проводились исследования по мно-
гим аспектам этой программы. Эти исследования убедительно показали плодотвор-
ность и важность предложенного в [1] подхода, идущего из теории абелевых групп,
для развития структурных теорий других универсальных алгебр. В 2016 году вышел
обзор [2], который подводит итоги проделанной работы, уточняет и ставит новые
проблемы для исследователей. В частности в [2] ставится задача (проблема 3.10) ха-
рактеризации минимально полных алгебр данного многообразия алгебр. Мы изу-
чали и продолжаем изучать минимально полные полугруппы.

Пусть V – многообразие всех полугрупп, L(V) – решетка подмногообразий мно-
гообразия V, X ∈ L(V), S ∈ V. Произвольное дизъюнктное семейство подполугрупп
полугруппы S называют россыпью полугруппы S, а полугруппы, которые ее состав-
ляют, – компонентами россыпи.

Пусть X(S) есть X-вербал полугруппы S, т.е. россыпь, компоненты которой в точ-
ности все классы X-вербальной конгруэнции полугруппы S, являющиеся подполу-
группами полугруппы S. Если X-вербал полугруппы S состоит из одной компонен-
ты, совпадающей с S, то полугруппу S называют X-полной полугруппой. Если равен-
ство X(S) = S выполняется для любого атома X из решетки L(V), то полугруппу S на-
зывают полной полугруппой. Полугруппа называется минимально полной, если она
содержит более одного элемента и является полной, но любая ее неодноэлементная
собственная подполугруппа не является полной.

Через Bn,k обозначим полугруппу, которую в классе полугрупп с нулем можно
задать копредставлением

Bn,k = 〈a,b | aba = a,bab = b, an = bk = 0〉, где n,k Ê 2.

Эта полугруппа играет важную роль при характеризации минимально полных
полугрупп.

Имеет место следующая

Теорема. Полугруппа Bn,k является минимально полной полугруппой.

Работа выполнена при финансовой поддержке Минобрнауки РФ (задание
№2014/336).
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ПРОДОЛЖАЕМОСТЬ ОПЕРАЦИИ УМНОЖЕНИЯ В ПОЛУГРУППЕ
НЕНУЛЕВЫХ ВЫЧЕТОВ

И. Б. Кожухов1, А. О. Петриков2
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Частичные операции, т.е. операции, определённые, возможно, не для всех значе-
ний аргументов, в последнее время привлекает всё больше внимание специалистов.
Интересен и важен вопрос: может ли частичная операция быть продолженной до
полной (т.е. всюду определённой) с сохранением тех или иных свойств, например,
ассоциативности? Понятие ассоциативности частичной операции было введено В.
В. Розеном в [1] двумя неэквивалентными способами. Здесь мы будем называть
частичную бинарную операцию ассоциативной, если для любых элементов a,b,c
произведения (ab)c и a(bc) либо оба не существуют, либо оба существуют и равны
друг другу. Множество с ассоциативной частичной бинарной операцией назовём
частичной полугруппой. Нетрудно видеть, что частичная полугруппа – это в точ-
ности множество ненулевых элементов полугруппы с нулём. Вариант продолжения
операции при помощи добавления дополнительного элемента (нулевого) отмечал-
ся в монографии Е.С.Ляпина и А.Е.Евсеева в [2]. Способы продолжения без добав-
ления элемента в теории практически нe исследовались. Существование непродол-
жаемых без добавления элемента частичных полугрупп было доказано в [3].

Напомним, что отношением Грина J на полугруппе S называется отношение
J = {(a,b)|S1aS1 = S1bS1}. Обозначим через J (a) J -класс элемента a. Частичный
порядок на множестве J -классов определяется так: J (a) É J (b) ⇔ S1aS1 ⊆ S1bS1.
Предложение 1. Если полугруппа S с нулём имеет одноэлементный минималь-

ный ненулевой J -класс, то частичная операция на S \ {0} может быть продолжена
до полной ассоциативной операции.

Для полугруппы (Zn , ·) как нетрудно проверить, J -классы образуют решётку,
изоморфную решётке делителей числа n (другими словами, прямое произведение
конечного числа конечных цепей). Если n чётно, то одноэлементный атомарный
J -класс – это J (n

2 ).
Следующая теорема даёт полный ответ на вопрос о продолжаемости операции в

частичной полугруппе S = (Zn \ {0}, ·).
Теорема 2. Пусть S = (Zn \{0}, ·) — частичная мультипликативная полугруппа вы-

четов. Частичная операция на S продолжается до полной ассоциативной операции
в том и только том случае, если выполнено одно из следующих условий:

(1) n чётно;

(2) n = pk , где k ∈N, а p — нечётное простое число.
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ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ ФУНКЦИИ БОЛЬЦАНО

И. А. Козлова1, А. И. Савотин
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В настоящей работе вычисляется фрактальная размерность Хаусдорфа-
Безиковича функции Больцано. Способ подсчета размерности основан на идее
покрывать исследуемую фигуру маленькими квадратиками (отрезками, кубиками
и т.д) со стороной длины δ. Тогда кривую можем измерить, определяя число N (δ)
прямолинейных отрезков длины δ [2]. Размерность Хаусдорфа-Безиковича множе-
ства есть критическая размерность, при которой мера Md изменяет свое значение
с нуля на бесконечность [3].

Построение функции Больцано начинается с прямолинейного отрезка длины
p

2,
соединяющего точки O(0;0) и A(1;1) [1]. Этот исходный отрезок — нулевое поко-
ление функции Больцано. Далее данный отрезок заменяется образующим элемен-
том — ломаной O A1 A2 A3 A, состоящей из четырех звеньев с длиной каждого звена√

(1/4)2 + (1/2)2 =p
5/4.

В результате такой замены мы получаем первое поколение функции Больцано,
длина которого L(

p
5/4) =p

5. Следующее поколение получается при замене каждо-
го из звеньев O A1, A1 A2, A2 A3, A3 A уменьшенным образующим элементом. В ре-
зультате получаем кривую второго поколения (рисунок), состоящую из N = 42 = 16
звеньев, каждое длиной

δ=
√(

1/42
)2 + (1/4)2 =p

17/16.

Длина кривой второго поколения равна L(
p

17/16) = p
17. Заменяя все звенья

предыдущего поколения кривой уменьшенным образующим элементом, получаем
новое поколение кривой. Кривая третьего поколения будет состоять из N = 43 = 64

звеньев, каждое длиной δ=
√(

1/43
)2 + (

1/23
)2 =p

65/64. Длина кривой третьего по-
коления равна L

(p
65/64

)=p
65.

Кривая n-го поколения при любом конечном n называется предфракталом. Да-
лее получим выражение для фрактальной размерности D функции Больцано.

Так как кривая n-го поколения состоит из N = 4n звеньев и каждое длиной δ =√
1+22n/4n , то получаем соотношение: N (δ) = 4n = δ−2

(
1/2+

√
1/4+δ2

)
.

Тогда мера Md = N (δ)δd = δd−2
(
1/2+

√
1/4+δ2

)
.

Из полученного равенства видно, что размерность Хаусдорфа-Безиковича для
функции Больцано равна 2.
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Рис. 1: График кривой второго поколения функции Больцано
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АБСОЛЮТНЫЕ ИДЕАЛЫ АБЕЛЕВЫХ ГРУПП
БЕЗ КРУЧЕНИЯ КОНЕЧНОГО РАНГА

Е. И. Компанцева1

1kompantseva@yandex.ru, МПГУ, Финуниверситет при Правительстве РФ

Кольцом на абелевой группе G называется кольцо, аддитивная группа которого
совпадает с G. Под абсолютным идеалом абелевой группы G понимается ее под-
группа, которая является идеалом в любом кольце на G. Понятие абсолютного иде-
ала было введено в [1]. Кольцо называется AI -кольцом, если в нем любой идеал яв-
ляется абсолютным идеалом его аддитивной группы. Если на абелевой группе су-
ществует хотя бы одно AI -кольцо, то она называется R AI -группой. Проблема опи-
сания R AI -групп сформулирована в [2, проблема 93].

Настоящая работа посвящена изучению колец на почти вполне разложимых
группах. Абелева группа без кручения конечного ранга называется почти вполне
разложимой (ПВР-группой), если она содержит вполне разложимую подгруппу ко-
нечного индекса. ПВР-группы изучаются давно, им посвящены исследования мно-
гих авторов.

Пусть G – жесткая ПВР-группа кольцевого типа с циклическим регуляторным
фактором (ЦРФ-группа). Согласно теории ПВР-групп [3], существуют такие элемен-
ты ei (i ∈ I ) регулятора A группы G, что A можно представить в виде A = ⊕

i∈I
Ri ei ,

где Ri – подкольца с единицей поля рациональных чисел. При этом любой элемент
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g ∈G представим в виде g = ∑
i∈I

ri
mi

ei , где ri ∈ Ri , mi (i ∈ I ) – целые числа, являющи-

еся инвариантами группы G.
В сдедующей теореме описаны главные идеалы ЦРФ-групп. Главным абсолют-

ным идеалом, порожденным элементом g ∈G, называют наименьший абсолютный
идеал 〈g 〉AI , содержащий g .

Теорема. Пусть G-жесткая ЦРФ-группа кольцевого типа, g = ∑
i∈I

ri
mi

ei ∈ G . Тогда

〈g 〉AI = 〈g 〉+ ⊕
i∈I

ri Ri ei .

Заметим, что элементы ri (i ∈ I ) в представлении элемента g ∈G определены од-
нозначно с точностью до множителя, обратимого в Ri . Поэтому вид главного идеала
〈g 〉AI не зависит от разложения A = ⊕

i∈I
Ri ei .

Также получено описание главых абсолютных идеалов блочно-жестких ЦРФ-
групп кольцевого типа, которое позволяет доказать, что любая группа из этого клас-
са является R AI -группой.
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В [1] построена серия градуированных гамильтоновых алгебр Ли над полем ха-
рактеристики 2, соответствующая симметрической (неальтернирующей) диффе-
ренциальной форме ω0 = (d x1)(2) + . . .+ (d xn)(2). Градуированные неальтернирую-
щие алгебры Ли исследовались в работах [2]–[4].

В данной работе строятся простые фильтрованные неальтернирующие гамильто-
новы алгебры Ли, допускающие невырожденные дифференцирования. Обозначим
через A(n : m) алгебру разделенных степеней от n переменных с вектором высот m
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над совершенным полем F характеристики 2.
Теорема 1. ПустьΩs - комплекс симметрических дифференциальных форм с коэффи-
циентами в A(n : m).
i) dim Hk (Ωs) = (n+k−1

k

)
,

ii) H2(Ωs) =< (d xi )(2), xi x j d xi ∧d x j , i , j = 1, . . . ,n >. Здесь xi = x(2mi −1)
i .

Теорема 2. Пусть m 6= 1, ω – замкнутая неальтернирующщая 2-форма, ω(0) =∑n
i=1(d xi )(2). Алгебра Ли P (n : m, ω) = A(n : m)/F со скобкой Пуассона, соответ-

ствующей форме ω является простой алгеброй Ли размерности 2N − 1, N = |m| =
m1 + . . .+mn.

Следующая теорема основана на результатах работы [5].
Теорема 3. Пусть ω= (ω1)(2)+ . . .+(ωn)(2), где ωi – замкнутые 1-формы над A = A(n :
m), образующие базис свободного A-модуля 1-форм, а их классы когомологий – базис
первой группы когомологий де Рама над A. Тогда алгебра Ли L = P (n : m, ω) допускает
невырожденное дифференцирование. Существует базис {ua , a ∈ F∗q , q = |m|, в L, та-
кой, что {ua ,ub} = f (a,b)ua+b для некоторой симметрической биаддитивной функ-
ции f на Fq со значениями в основном поле F .

Поэтому неальтернрующие гамильтоновы алгебры Ли естественно отнести к
классу неальтернирующих алгебр Блока характеристики 2.

Работа выполнена при финансовой поддержке Министерства образования и на-
уки России (госзаказ, проект 1.1410.2014/К).
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Пусть Mp,q ⊂ RP p+q+1, p, q ∈ N, пространство Мебиуса. Это пространство явля-
ется конформно-плоским и однородным со структурной группой G =O(p+1, q +1),
[5].

Мы рассматриваем 1-мерные конформные величины, т. е. сечения G-
однородных 1-мерных векторных расслоений над Mp,q , и их дифференциальные
инварианты. Имея в виду теорему Ли-Трессе (см. [4]), мы ограничиваемся только
алгебраическими расслоениями.

В данном случае это расслоения следующего типа. Пусть ξ : E(ξ) → Mp,q — огра-
ничение тавтологического расслоения над RP p+q+1 на подмногообразие Mp,q , а
ξw = ξ⊗w , ξ−1 = ξ∗, w ∈Z – его тензорные степени. Сечения расслоения ξw мы на-
зываем конформными величинами веса w (см. [2, 3]). Конформным инвариантом
порядка É k и веса w назовем рациональную функцию на многообразии k-джетов
J k (ξw ), инвариантную относительно продолженного действия группы G.

Заметим, что в случае w 6= 0, горизонтальная квадратичная форма gw = u
−2
w · g0,

где g0 плоский представитель конформного класса, является G-инвариантом.
Обозначим через ∇w – горизонтальную связность Леви-Чивита на расслоениях

горизонтальных форм в пространствах джетов, построенную по форме gw .
Пусть Ri cw – тензор Риччи этой связности, а Rw - оператор построенный из Ri cw

при помощи метрики gw . Функции Is = Tr Rs
w , s = 1,2, . . . ,n = p + q являются кон-

формными инвариантами второго порядка. Мы скажем, что 3-джет x3 ∈ J 3(ξw ) ре-
гулярен, если полные дифференциалы d̂ I1, . . . , d̂ In независимы в точке x3.

Пусть теперь R3
w = d

s ym
∇w

(Ri cw ) – симметрический, полный, квадратичный диф-
ференциал тензора Риччи (см. [1]). Тогда, в области регулярных 3-джетов, этот тен-
зор допускает разложение: R3

w =∑
iÉ j ,s U s

i j d̂ Ii · d̂ I j , где U s
i j – конформные инвари-

анты третьего порядка.

Теорема. Пусть p +q Ê 3, w 6= 0. Тогда, поле конформных инвариантов порождено

нивариантами I1, . . . , In , U s
i j и производными Трессе

DσU s
i j

D Iσ . Это поле разделяет регу-
лярные орбиты.
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О ВНУТРЕННИХ ДИФФЕРЕНЦИРОВАНИЯХ
ПРОСТЫХ ЛИЕВЫХ ПУЧКОВ РАНГА 1

Н. А. Корешков1

1Nikolai.Koreshkov@kpfu.ru, Казанский (Приволжский) федеральный университет,
Институт математики и механики им. Н.И. Лобачевского

Пусть L – конечномерное векторное пространство над полем P . Обозначим через
K пространство всех билинейных кососимметрических отображений из L×L в L.

Определение 1. Векторное пространство L над полем P называется лиевым пуч-
ком, если существуетподпространство S вK такое, что для любого s ∈ S выполняется
соотношение

(asb)sc + (bsc)sa + (csa)sb = 0, a,b,c ∈ L.

(Здесь xs y – образ пары (x, y) ∈ L×L при отображении s.)

Как показывают результаты работ [1], [2] лиевы пучки достаточно часто реализу-
ются в виде сэндвичевых алгебр.

Определение 2. Сэндвичевой алгеброй Mn(U ,V ) называется пара пространств
U ,V в пространстве матриц Mn(P ), для которых выполнено условие u1vu2−u2vu1 ∈
U , когда u1,u2 ∈U , v ∈V .

Легко проверить, что сэндвичева алгебра Mn(U ,V ) является лиевым пучком
U (V ) в смысле определения 1, если в качестве подпространства умножений S рас-
сматривать подпространство V .

Также как в алгебрах Ли для лиева пучка вводится понятие ранга. А именно, пусть
L0(x0, s0) = {x ∈ L | (ads0 x0)k x = 0, k ∈ N }, где ads0 – оператор левого умножения,
определённый элементом s0 ∈ S. Минимальная размерность нулькомпоненты
L0(x0, s0) называется рангом лиева пучка.

Как известно, тождество Якоби, определяющее структуру алгебры Ли L, равно-
сильно тому, что любой оператор левого умножения ad x, x ∈ L является диффе-
ренцированием в алгебре с антикоммутативным умножением. Такие дифференци-
рования называются внутренними.

Как показывает приводимая ниже теорема, условие быть дифференцированием
для операторов левого умножения в лиевом пучке, в отличие от алгебр Ли, обычно
не выполняется.

Теорема. Пусть L(S) – простой лиев пучок ранга 1 над алгебраически замкну-
тым полем P характеристики нуль, di m S > 1. Тогда операторы левого умножения



216 СЕКЦИОННЫЕ ДОКЛАДЫ

ads x, x ∈ L, s ∈ S пучка L(S) являются дифференцированиями, если L(S) является сэнд-
вичевой алгеброй M3(U ,D ′), где U-подпространство всех кососимметрических мат-
риц в M3(P ), а D ′ – любое подпространство, содержащее 〈E〉, в пространстве всех
диагональных матриц D.
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О ПРОЕКТИРОВАНИЯХ КОНЕЧНЫХ КОЛЕЦ С ЕДИНИЦЕЙ

С. С. Коробков1

1ser1948@gmail.com, Уральский государственный педагогический университет

Пусть R — конечное ассоциативное кольцо. Обозначим через L(R) решётку всех
подколец кольца R. Будем говорить, что ассоциативное кольцо Rϕ решёточно изо-
морфно кольцу R, если существует изоморфизм ϕ решётки L(R) на решётку подко-
лец L(Rϕ). Изоморфизм ϕ назовем проектированием кольца R на кольцо Rϕ.

Назовём кольцо R p-кольцом (p — простое число), если его аддитивная группа
является p-группой. Предположим, что R — p-кольцо с единицей e. Если при этом
решётка L(R) не является цепью, то в кольце Rϕ существует ненулевой идемпотент-
ный элемент u. Обозначим через 〈e〉 и 〈u〉 подкольца, порожденные элементами e и
u соответственно. Существуют примеры (см. [1]), показывающие, что либо u — еди-
ница в кольце Rϕ, но 〈e〉ϕ 6= 〈u〉, либо 〈e〉ϕ = 〈u〉, но u не является единицей в кольце
Rϕ. Если же кольцо Rϕ содержит единицу e′ и при этом выполняется равенство

〈e〉ϕ = 〈e′〉, (1)

то в ряде случаев (см. [2]) удаётся доказать изоморфизм между кольцами R и Rϕ.
В данном сообщении приводится ряд условий, при которых равенство (1) выпол-

няется.

Теорема. Пусть R — кольцо с единицей e, изоморфное одному из следующих колец:
1) конечному полю GF (pn), где n > 1, n не является степенью простого числа и не

является произведением двух простых чисел;
2) кольцу Галуа R =GR(pn ,m), где n > 1, m > 1;
3) коммутативному кольцу, разложимому в прямую сумму колец Ti (i = 1,k), удо-

влетворяющих условиям: Ti = Si + (ri ), Si
∼= GR(pni ,mi ), ni > 1, mi > 1, ri — нильпо-

тентный элемент;
4) кольцу Mn(K ) квадратных матриц порядка n Ê 2 над кольцом K =GR(pk ,1), где

k Ê 1.



Е. С. Корнев 217

Пусть Rϕ — кольцо, решёточно изоморфное кольцу R. Тогда кольцо Rϕ содержит
единичный элемент e′ и при этом выполняется равенство (1).
В случаях 2) и 4) R ∼= Rϕ.
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АФФИНОРНЫЕ МЕТРИЧЕСКИЕ СТРУКТУРЫ НА АЛГЕБРОИДАХ ЛИ

Е. С. Корнев1

1q148@mail.ru, Кемеровский государственный университет

Алгеброид Ли - это векторное расслоение E
π−→ M над многообразием M класса

C∞ c операцией скобки Ли [σ,τ] любых двух сеченийστ ∈C∞(E) и гомоморфизмом
A : C∞(E) →C∞(T M), таким, что

A[σ, f τ] = (Aσ)( f )[Aσ, Aτ]+ f [Aσ, Aτ],

для любой функции f на многообразии M . Полилинейной p-формой на алгеброиде
Ли E называется тензорное поле типа (p,0) на наборах из p сечений векторного рас-
слоения E . На алгеброиде Ли всегда определен внешний дифференциал dΩ внеш-
ней p-формы Ω. Радикалом полилинейной формы Ω на алгеброиде Ли E в точке x
называется подпространство radΩx = {σ ∈ Ex : IσΩx = 0}, где IσΩ обозначает внут-
реннее произведение сечения σ и полилинейной формы Ω. Радикалом 1-формы α

называется радикал внешней 2-формы dα. 1-форма α называется регулярной, если
rank (radαx) = const . В этом случае, radα есть векторное подрасслоение в E .

Теорема. Пусть α – незамкнутая регулярная 1-форма на алгеброиде Ли E ранга
k Ê 3, и R = rank (radα). Тогда:

1) Если k четно, то и r четно и 0 É r É k −2.

2) Если k нечетно, то и r нечетно и 1 É r É k −2.

Из этой теоремы следует, что ранг любого векторного подрасслоения трансвер-
сального подрасслоению radα будет четным при любом ранге алгеброида Ли E .

Аффинорной метрической структурой на алгеброиде Ли E называется четвёрка
(α,D,Φ, g ), гдеα– незамкнутая регулярная 1-форма на E , D – фиксированное транс-
версальное подрасслоение в E : E = D ⊕ radα, g – риманова метрика на E и Φ – аф-
финор ассоциированный с внешней 2-формой dα и метрикой g . Понятие аффинор-
ной метрической структуры является обобщениемпочти контактных симплектиче-
ских и кэлеровых структур для алгеброидов Ли произвольного ранга. Мы вводим
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и рассматриваем понятие аффинорной метрической структуры на алгеброиде Ли
произвольного ранга Ê 3, и определяем специальные классы таких структур (стро-
гие аффинорные метрические структуры, K -аффинорные структуры и нормальные
аффинорные метрические структуры). Основы теории аффинорных метрических
структур на алгеброидах Ли изложены в [1]. Мы показываем, какие понятия и свой-
ства можно перенести из теории почти контактных и симплектических структур
для многообразий на аффинорные метрические структуры на алгеброидах Ли, а ка-
кие из них отличаются для аффинорных метрических структур.

Характеристическим сечением аффинорной метрической структуры (α,D,Φ, g )
называется сечение ξ : Iξ g = α. Если выполняется условие ξ ∈ radα, то аффинор-
ная метрическая структура называется строгой. Если производная Ли Lξ g метри-
ки g вдоль характеристического сечения ξ равна 0, то аффинорная метрическая
структура называется K -аффинорной. Мы приводим некоторые важные результаты
и свойства для строгих и K -аффинорных метрических структур, многие из которых
являются обобщениями и расширениями результатов известных в теориии почти
контактных и контактных метрических структур. В частности, теоремы о значении
секционной кривизны и кривизны Риччи в направлениях, содержащих характери-
стическое сечение ξ. Аффинорная метрическая структура (α,D,Φ, g ) на алгеброиде
Ли E в случае максимально неинволютивного подрасслоения D индуцирует субри-
манову структуру (D, g ), а в случае инволютивного подрасслоения D, индуцирует
субкэлерову структуру (dα,Φ, g ).

Работа выполнена при финансовой поддержке программы Президента “Ведущие
научные школы РФ” (проект НШ-9740.2016.1).
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О СВОЙСТВАХ АСИМПТОТИЧЕСКИХ
НА ПСЕВДОСФЕРАХ ДЕ СИТТЕРА–ШИРОКОВА
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Асимптотические сети на поверхностях постоянной кривизны с индефинитной
метрикой в трёхмерном псевдоевклидовом пространстве являются чебышёвскими.
В работах [1], [2] сетевые углы таких сетей представлены как решения дифферен-
циальных уравнений в частных производных. В настоящей работе будут описаны
свойства асимтотических линий на псевдосферах де Ситтера–Широкова. Одна из
этих поверхностей, — воронка де Ситтера–Широкова, — была получена П.А. Ши-
роковым в ещё в студенческие годы [3]. В частности, будут описаны связи сетевых
углов асимптотических сетей на псевдосферах с функцией Лобачевского для угла
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параллельности, а также даны интерпретации функции Гудермана и обратной ей
функции с привлечением индефинитных метрик постоянной кривизны. Площади
сетевых многоугольников асимтотических сетей на псевдосферах допускают про-
стое выражение через значение этих функций.
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О ТЕОРЕМЕ КЕЗИ И ЕЕ АНАЛОГАХ
НА ПЛОСКОСТЯХ ЛОБАЧЕВСКОГО И ДЕ СИТТЕРА
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Теорема Кези является обобщением теоремы Птолемея евклидовой плоскости.
Гиперболические аналоги теоремы Птолемея рассматривали Т. Кубота [1] и П.А. Ши-
роков [2]. П.А. Широков доказал также различные “смежные” теоремы и варианты
теоремы Птолемея, в которых вершины четырёхугольника лежат на разных ветвях
эквидистанты. Теорема Кези евклидовой плоскости отличается от теоремы Птоле-
мея тем, что вершины вписанного четырёхугольника заменяются окружностями.
Приведём её формулировку.

Теорема. Пусть окружности ω1,ω2,ω3,ω4 касаются окружности ω на евклидовой
плоскости. Пусть ti j — длина отрезка внешней касательной окружностей ωi ,ω j , ес-
ли окружности ωi ,ω j касаются окружности ω одинаково (внутренним или внешним
образом), и ti j — длина отрезка внутренней касательной, если одна из окружностей
ωi ,ω j касается окружности ω внутренним образом, а другая — внешним. Тогда вы-
полняется соотношение

t12 · t34 + t23 · t14 = t13 · t24.

В работе [3] доказан гиперболический аналог теоремы Кези. Нами получены ори-
циклические аналоги теоремы Кези для плоскости Лобачевского и плоскости де
Ситтера, а также “точечные” интерпретации теоремы Кези и её аналогов. Часть этих
результатов отражена в [4].
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НЕКОТОРЫЕ СВОЙСТВА ЭЛЕМЕНТОВ ГРУПП ВИДА F /[N , N ]

А. Ф. Красников1

1phomsk@mail.ru, Омский государственный университет им. Ф.М.Достоевского

Пусть F — свободная группа с базой {x j | j ∈ J }. Обозначим через Dk (k ∈ J ) произ-
водные Фокса кольца Z(F ).

Теорема 1. Пусть F — свободная группа с базой X = {x j | j ∈ J }, N— нормальная
подгруппа в F , u → ū — функция, выбирающая правые шрайеровы представители F
по N , S — множество выбранных представителей, w ∈ F , k — целое, k 6= 0. Если
w ≡ w1

k w2 mod [N , N ], где w1 = sxi sxi
−1 6= 1, s ∈ S, xi ∈ X , а w2 — произведение

элементов вида (t xt x−1)±1, t ∈ S, x ∈ X , t xt x−1 6= w1, то

Di (w) ≡ ksxi
−1 + v mod N ,

где v — сумма элементов вида ±r−1, r ∈ S, r 6= sxi .

Следствие 1. Пусть F — свободная группа с базой {x j | j ∈ J }, N— нормальная под-
группа в F . Элемент w группы F принадлежит [N , N ] тогда и только тогда, когда

Dk (w) ≡ 0 mod N , k ∈ J .

Следствие 1 равносильно вложению Магнуса [1] для группы F /[N , N ]: Пусть F —
свободная группа с базой {x j | j ∈ J }, N — нормальная подгруппа в F , T — правый сво-
бодный Z(F /N )-модуль с базой {tk |k ∈ J }. Рассмотрим гомоморфизм

ϕ : F →
(
F /N 0

T 1

)
,

определяемый отображением

x j 7→
(

x j N 0
t j 1

)
( j ∈ J ).

Тогда kerϕ= [N , N ].
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Теорема 2. Пусть F — свободная группа, N — нормальная подгруппа в F , r1 и r2 —
элементы группы F /[N , N ] такие, что для некоторого положительного целого n эле-
мент r n

1 лежитв нормальном замыкании элемента r n
2 . Тогда и r1 лежитв нормальном

замыкании элемента r2.

Следствие 2 ([2]).Пусть r1 и r2—элементы свободной группы,такие, что для неко-
торого положительного целого n элемент r n

1 лежит в нормальном замыкании элемен-
та r n

2 . Тогда и r1 лежит в нормальном замыкании элемента r2.

Следствие 3. Пусть r1 и r2 — элементы свободной разрешимой группы, такие, что
для некоторого положительного целого n элемент r n

1 лежит в нормальном замыкании
элемента r n

2 . Тогда и r1 лежит в нормальном замыкании элемента r2.
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О НЕКОТОРЫХ ПОЛУПОЛЯХ ПОРЯДКА 64

О. В. Кравцова1

1ol71@bk.ru, Сибирский федеральный университет

Пусть W – n-мерное линейное пространство над полем GF (p), θ – биективное
отображение из W в GLn(p)∪ {0}, при условиях:

1) θ(x + y) = θ(x)+θ(y), x, y ∈W ;
2) множество R = {θ(y) | y ∈W } содержит единичную матрицу.
Определим на W умножение правилом x ∗ y = xθ(y), тогда 〈W,+,∗〉 – полуполе

порядка pn , R называется регулярным множеством (spread set, [1]).

Теорема. Если θ и σ – две аддитивных биекции изW вGLn(p)∪ {0}, удовлетворяю-
щие условиям 1-2, и

R = {θ(x) | x ∈W } = {σ(x) | x ∈W },

то полуполе 〈W,+,∗〉 изотопно полуполю 〈W,+,◦〉, где
x ∗ y = xθ(y), x ◦ y = xσ(y), x, y ∈W.

Такие изотопные полуполя в общем случае не изоморфны. Описано строение ис-
ключительного полуполя порядка 64 [2], не обладающего свойствами лево- и пра-
вопримитивности, и изотопных ему полуполей.

Работа выполнена при финансовой поддержке РФФИ (проект 16-01-00707).
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ТЕОРЕМЫ ВЛОЖЕНИЯ ДЛЯ ПРОСТРАНСТВ, ПОЛУЧЕННЫХ ПРИ
ИНТЕРПОЛЯЦИИ ПРОСТРАНСТВ ЛИЗОРКИНА-ТРИБЕЛЯ

В. Л. Крепкогорский1

1vkrepko@mail.ru, Казанский (государственный) архитектурно - строительный уни-
верситет

Теория вложения пространств дифференцируемых функций имеет важные при-
ложения в теории дифференциальных операторов с частными производными. Пер-
воначальные результаты были получены для пространств Соболева и Гельдера, а
затем класс пространств был значительно расширен. При этом широко использова-
лась интерполяция пространств [1], [2]. В настоящей работе рассматриваются клас-
сы пространств BLsk

pq (Ω) и BLsk
pq (∂Ω).

Пространства этих классов получаются при вещественной интерполяции [3](
F s0

p0,q0
(Rn) ,F s1

p1,q1
(Rn)

)
θ,q

= BL
sθ,k
pθ,q (Rn),

где k – угловой коэффициент прямой, проходящей через точки (1/pi , si ), i = 0,1.
Пусть Ω – ограниченная C∞ область в Rn , γ – внешняя нормаль к границе ∂Ω.

Оператор следаℜ ставит в соответствие функции f ∈ D ′(Ω) вектор нормальных про-

изводных ∂ j f
∂γ j |∂Ω, j = 0,1, . . . ,r . Нормы в пространствах на области определяются как

‖ f |F s
pq (Ω)‖ = inf‖g |F s

pq (Rn)‖, ‖ f |BLsk
pq (Ω)‖ = inf‖g |BLsk

pq (Rn)‖
где инфимум берется по всевозможным продолжениям функции f на Rn . Прямые и
обратные теоремы вложения формулируются в терминах ретракций и коретракций.

Теорема. Пусть r = 0,1,2, . . . . Если 1 É p <∞,1 É q É∞,k 6= 0, s > r +1/p, то ℜ –
ретракция BLsk

pq (Ω) на
∏r

i=0 BLs(k−1)
pq (∂Ω).

Это означает, что оператор ℜ отображает BLsk
pq (Ω) на

∏r
i=0 BLs(k−1)

pq (∂Ω) и, мало
того, найдется оператор продолжения S, который производит отображение в об-
ратную сторону и при этом является коретракцией, т. е. ℜS = E. Эти утверждения
соответствуют прямым и обратным теоремам вложения для пространств BLsk

pq (Ω).
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ОРБИТЫ ИНТЕГРИРУЕМЫХ КОЦИКЛОВ АЛГЕБРЫ ЛИ ТИПА G2
НАД ПОЛЕМ ХАРАКТЕРИСТИКИ 2

М. И. Кузнецов1, Н. Г. Чебочко2

1mikhail.kuznetsov@itmm.unn.ru, Нижегородский государственный университет им.
Н. И. Лобачевского

2chebochko@mail.ru, Нижегородский государственный университет им. Н. И. Лоба-
чевского

Пусть (L , µ) – многообразие структур алгебры Ли на векторном пространстве
L с отмеченной точкой µ. В данной работе под глобальной деформацией алгебры
Ли (L,µ) мы понимаем рациональный морфизм ft : (A1, 0) −→ (L , µ), а также лю-
бую его специализацию. Ряд Тейлора для ft в 0 имеет вид ft =µ+tφ1+t 2φ2+. . . , где
φ1 ∈ Z 2(L,L), φ j ∈C 2(L,L). Пусть L̃ – орбита µ относительно естественного действия
группы GL(L), Tµ(L̃) – касательное пространство к орбите в точке µ, Tµ(L ) – каса-
тельное пространство к L в µ. Пространство локальных деформаций алгебры Ли
(L, µ), Hloc (µ) = Tµ(L )/Tµ(L̃), может отличаться от группы формальных локальных
деформаций H2(L,L) (см. [1]).

Здесь исследуются глобальные деформации алгебры Ли G2 над алгебраически за-
мкнутым полем F характеристики 2. Доказано, что в этом случае Hl oc (L) = H2(L, L).
Коциклψ называется интегрируемым, если он продолжается до глобальной дефор-
мации. Согласно [2], для L =G2 в характеристике 2 dim H2(L, L) = 20. Мы использу-
ем метод исследования глобальных деформаций, изложенный в [1] и основанный
на изучении орбит действия группы автоморфизмов на H2(L, L). Сопряженные от-
носительно автоморфизмов интегрируемые коциклы приводят к изоморфным гло-
бальным деформациям. В [3] доказано, что группа автоморфизмов G алгебры Ли G2
в четной характеристике изоморфна Sp(6). Пусть V – стандартный 6-мерный Sp(6)-
модуль с симплектическим базисом {e±i , i = 1,2,3.}. В [2] построен изоморфизм G-
модулей Λ3(V ) и H2(L, L)(−).
Теорема. Для алгебры Ли L = G2 над алгебраически замкнутым полем характе-

ристики 2 классы интегрируемых коциклов образуют G-многообразие, изоморфное с
точностью до морфизма Фробениуса многообразию Грассмана G(3,6) ⊂Λ3(V ), кото-
рое состоит из двухG-орбит — орбиты элемента e1∧e2∧e3 (лагранжиан) и орбиты
3-вектора e−1 ∧e1 ∧e2.

Для каждого класса интегрируемых коциклов построены глобальные деформа-
ции алгебры Ли G2 и их реализации.

Работа выполнена при финансовой поддержке Министерства образования и на-
уки России (госзаказ, проект 1.1410.2014/К).
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СТРУКТУРА C∗-АЛГЕБРЫ, ПОРОЖДЕННОЙ «РУЧНЫМ» ОТОБРАЖЕНИЕМ
А. Ю. Кузнецова1

1alla.kuznetsova@gmail.com, Казанский (Приволжский) федеральный университет

Пусть задано ϕ : X −→ X — отображение счетного множества в себя, и пусть
sup
x∈X

cardϕ−1[x] = m < ∞. Будем предполагать, что на X отсутствуют циклические

элементы, то есть ϕn(x) 6= x ни при каких n ∈N и x ∈ X . C∗-алгеброй, порожденной
данным отображением, будем называть операторную алгебру C∗

ϕ(X ) ∈ B(l 2(X )), по-
рожденную оператором композиции

Tϕ : l 2(X ) −→ l 2(X ); Tϕ f = f ◦ϕ.

Отображение, заданное на X , индуцирует на l 2(X ) семейство частичных изометрий
{Uk }, причем

Tϕ =U1 +
p

2U2 +·· ·+p
mUm .

Отсюда C∗
ϕ(X ) порождается семейством частичных изометрий {Uk }, удовлетворяю-

щих соотношениям на начальные и конечные проекторы:

U∗
1 U1 +U∗

2 U2 +·· ·+U∗
mUm = Pϕ;

U1U∗
1 +U2U∗

2 +·· ·+UmU∗
m =Qϕ,

где операторы Pϕ и Qϕ — проекторы, определенные заданным на множестве отоб-
ражением [1].

Теорема.[2] Алгебра C∗
ϕ(X ) является Z-градуированной, причем ее центральная

подалгебра Cϕ,0 является AF -алгеброй.

Напомним, что множество частичных изометрий в унитальной C∗-алгебре на-
зывается ручным, если оно порождает инверсную полугруппу.

Определение.Множество X назовем ручным для отображения ϕ, если семейство
{Uk }∪ {U∗

k } есть ручное множество.

Теорема 1. Следующие утверждения эквивалентны:

1) центральная подалгебра C∗
ϕ,0 коммутативна;
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2) множество X ручное для ϕ.

Теорема 2. Пусть C∗
ϕ(X ) порождена отображением на ручном множестве. Тогда

либо

1) l 2(X ) =H0 ⊕
(
⊕
Z+

( ⊕
i∈I

Hi
))
, где I — конечномерное семейство индексов; либо

2) l 2(X ) =⊕
Z

( ⊕
i∈I

Hi
)
, где I — счетное семейство индексов,

и сужение Tϕ на каждоеHi является оператором обобщенного сдвига.
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ОБ ОДНОЙ КОНСТРУКЦИИ РАССЛОЕНИЯ ЦЕНТРОПРОЕКТИВНЫХ
РЕПЕРОВ

А. В. Кулешов1

1arturkuleshov@yandex.ru, Балтийский федеральный университет имени И. Канта

Г. Ф. Лаптев в работе [3] дал описание расслоения центропроективных реперов
над произвольным гладким многобразием Mn в терминах структурных форм. В на-
шей работе [2] предложена явная конструкция такого расслоения.

Пусть M — гладкое многообразие размерности n (n ∈N). Через r
p
x обозначим ре-

пер порядка p в точке x ∈ M . Как известно (см., напр., [1]), многообразие H p (M) всех
p-реперов наделено структурой главного расслоения над базой M с канонической
проекцией πp : H p (M) → M , где πp (r

p
x ) = x, и правым действием дифференциаль-

ной группы D
p
n порядка p. Стандартные координаты в Rn порождают глобальную

карту на D
p
n с координатами

(xi
j (l p ), xi

j k (l p ), . . . , xi
j1... jp

(l p )), l p ∈ D
p
n ,

симметричными по нижним индексам. Каждая локальная карта (U ,ϕ) на M порож-
дает тривиализацию ϕ̃ : r

p
x 7→ (x, l p ) расслоения H p (M) и, как следствие, карту на

H p (M). Структурные формы ωi ,ωi
j , . . . ,ωi

j1... jp−1
[1, c. 48] расслоения H p (M) инва-

риантны относительно замен указанных карт.
В [2] доказаны нижеследующие утверждения:

Утверждение 1. Соотношения xi
j (l 2) = δi

j , xk
j k (l 2) = 0 выделяют нормальный дели-

тель K группы D2
n , фактор-группа D2

n/K по которому изоморфна группе центропро-
ективных преобразований n-мерного проективного пространства.
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Координаты на D2
n/K имеют вид (xi

j (l 2K ), xi (l 2K )), где

xi
j (l 2K ) = xi

j (l 2), xi (l 2K ) = xm
i k (l 2)x̃k

m(l 2), x̃i
k xk

j = δi
j .

Утверждение 2.МногообразиеH2(M)/K орбит вида r 2
x K , где r 2

x ∈ H2(M), наделено
структурой главного расслоения над базой M с канонической проекцией π : r 2

x K 7→ x и
структурной группойD2

n/K , действующей по закону (r 2
x K )(l 2K ) = (r 2

x ·l 2)K . Каждая ло-
кальная карта (U ,ϕ) на M порождает тривиализацию ϕ̃ : r 2

x K 7→ (x, l 2K ) ∈U ×D2
n/K

расслоения H2(M)/K и локальную карту с координатами

(ϕi (x), xi
j (l 2K ), xi (l 2K )). (1)

Утверждение 3. Формы ωi , ωi
j , ωi

de f= ωk
i k инвариантны относительно замен ло-

кальных карт вида (1), причем

dωi =ωk ∧ωi
k , dωi

j =ωk
j ∧ωi

k +ωk ∧ωi
j k ,

dωi =ωk
i ∧ωk +ωk ∧ωi k , ωi k =ωm

i km .
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О ГИПОТЕЗЕ ВООТА ДЛЯ ВПОЛНЕ О-МИНИМАЛЬНЫХ ТЕОРИЙ

Б. Ш. Кулпешов1, С. В. Судоплатов2
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Пусть L — счетный язык первого порядка. Всюду здесь мы рассматриваем L-
структуры и предполагаем что L содержит символ бинарного отношения <, кото-
рый интерпретируется как линейный порядок в этих структурах. Настоящий до-
клад касается понятия слабой о-минимальности, первоначально глубоко исследо-
ванного в [1]. Подмножество A линейно упорядоченной структуры M называется
выпуклым, если для любых a,b ∈ A и c ∈ M всякий раз когда a < c < b мы имеем
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c ∈ A. Слабо о-минимальной структурой называется линейно упорядоченная струк-
тура M = 〈M ,=,<, . . .〉 такая, что любое определимое подмножество структуры M яв-
ляется объединением конечного числа выпуклых множеств в M .

В следующих определениях M — слабо о-минимальная структура, A ⊆ M , M —
|A|+-насыщенна, p, q ∈ S1(A) — неалгебраические.

Определение 1 ([2]). Будем говорить чтотип p не является слабо ортогональным
типу q (p 6⊥w q), если существуют A-определимаяформулаH(x, y),α ∈ p(M) иβ1,β2 ∈
q(M) такие что β1 ∈ H(M ,α) и β2 6∈ H(M ,α).

Определение 2 ([3]). Будем говорить что тип p не является вполне ортогональ-
ным типу q (p 6⊥q q), если существует A-определимая биекция f : p(M) → q(M). Бу-
дем говорить что слабо о-минимальная теория является вполне о-минимальной, ес-
ли понятия слабой и вполне ортогональности 1-типов совпадают.

Как известно, в работе [4] решена проблема Воота для о-минимальных теорий.
Байжанов Б. С. и Алибек А. [5] построили примеры слабо о-минимальных теорий
c k счетными моделями, где k ∈ {4,5,6, . . .}∪ {ω}. Здесь мы представляем теорему,
являющуюся решением проблемы Воота для вполне о-минимальных теорий:

Теорема. Пусть T — вполне о-минимальная теория в счетном языке. Тогда либо T
имеет 2ω счетных моделей, либо T имеет в точности 6a3b счетных моделей, где a и
b — неотрицательные целые числа.

Работа выполнена при финансовой поддержке Комитета науки МОН РК (грант
№0830/ГФ4).
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ОБ ОДНОЙ ОБОБЩЕННОЙ ЗАДАЧЕ ТИПА РИМАНА ДЛЯ
МЕТААНАЛИТИЧЕСКИХ ФУНКЦИЙ ВТОРОГО ТИПА

С. Ю. Курицын1, К. М. Расулов2

1KuritsynSergey@me.com, Смоленский государственный университет
2kahrimanr@yandex.ru, Смоленский государственный университет

Пусть T+− конечная односвязная область на плоскости комплексного перемен-
ного z = x + i y , ограниченная простым замкнутым гладким контуром L, а T− =
C \(T+∪L). Для определенности будем предполагать, что точка z = 0 принадлежит
области T+.

Рассматривается следующая краевая задача (см. также [1, с. 141]). Требуется най-
ти все исчезающие на бесконечности кусочно метааналитические функции второго
типа F (z) = {

F+(z),F−(z)
}
, принадлежащие классу M2(T±)∩H (q)(L) и удовлетворяю-

щие на L следующим краевым условиям:

∂F+(t )

∂x
+G1(t )

∂F−(t )

∂x
+

∫
L

A1(t ,τ)
∂F+(τ)

∂x
dτ+

∫
L

B1(t ,τ)
∂F−(τ)

∂x
dτ= g1(t ), (1)

∂F+(t )

∂y
+G2(t )

∂F−(t )

∂y
+

∫
L

A2(t ,τ)
∂F+(τ)

∂y
dτ+

∫
L

B2(t ,τ)
∂F−(τ)

∂y
dτ= i g2(t ), (2)

где Gk (t ), gk (t )(k = 1, 2)− заданные на L функции класса H (1)(L), причем Gk (t ) 6= 0, а
Ak (t ,τ), Bk (t ,τ) (k = 1, 2)− заданные фредгольмовы ядра из класса H (1)∗ (L×L).

Следуя [1], сформулированную выше краевую задачу будем называть первой ос-
новной обобщенной краевой задачей типа Римана для метааналитических функций
второго типа или, короче, задачей GR1,M .

Теорема. Если L = {t : |t | = 1}, то решение задачи GR1,M в классе кусочно метаана-
литическихфункций второготипа сводится к решению двух обобщенных задач Римана
вида

Φ+
1 (t )+G11(t )Φ−

1 (t )+
∫
L

A11(t ,τ)Φ+
1 (τ)dτ+

∫
L

B11(t ,τ)Φ−
1 (τ)dτ= g11(t ), t ∈ L,

Φ+
2 (t )+G21(t )Φ−

2 (t )+
∫
L

A21(t ,τ)Φ+
2 (τ)dτ+

∫
L

B21(t ,τ)Φ−
2 (τ)dτ= g21(t ), t ∈ L,

относительно исчезающих на бесконечности кусочно аналитических функций Φ±
1 (z) и

Φ±
2 (z) соответственно, где функции Gk1(t ) (k = 1,2) и фредгольмовы ядра Ak1(t ,τ) и

Bk1(t ,τ) (k = 1,2) определенным образом выражаются через коэффициенты краевых
условий (1), (2).
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МОДИФИЦИРОВАННАЯ ОБРАТНАЯ КРАЕВАЯ
ЗАДАЧА АЭРОГИДРОДИНАМИКИ

А. Г. Лабуткин1, Р. Б. Салимов
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университет

В плоскости z = x + i y имеется крыловой профиль Lz , обтекаемый потенциаль-
ным потоком невязкой несжимаемой жидкости, когда скорость невозмущенного
потока равна v∞eiη∞ , v∞ > 0, |η∞| > π

2 . Комплексный потенциал этого потока обо-
значим w(z) = ϕ+ iψ. Тогда w ′(z) = ve−iη, где v – величина скорости, η – угол на-
клона вектора скорости к оси Ox. Будем считать, что на Lz функция токаψ= 0, точ-
ка разветвления A потока находится на нижней поверхности профиля и потенциал
скороcти в ней ϕ=ϕA = 0. Примем, что B – точка схода потока с абсциссой x = 0, D
– передняя кромка профиля Lz с абсциссой x = d . Требуется найти форму профиля
Lz , если на нем потенциал скоростиϕ задан как функция абсциссы x точек Lz в виде
ϕ=ϕ+(x),0 É x É d на верхней поверхности BD; ϕ=ϕ−(x),0 É x É d на нижней по-
верхности B AD профиля Lz , причем ϕ+(d) = ϕ−(d),ϕ+(0) = ϕB ,ϕ−(0) = ϕH ,ϕB ,ϕH
– заданные числа, ϕB >ϕH > 0.

Для решения задачи, поступая как в [1] (с. 97-105), [2] (с. 25-33) в плоскости ком-
плексного переменного ζ = ρeiγ,ρ > 0,0 É γ < 2π, возьмем окружность |ζ| = 1, об-
текаемую с циркуляцией Γ = ϕB −ϕH потоком с комплексным потенциалом w =
ω(ζ) =−U0(ζ+ 1

ζ
)+ Γ

2πi lnζ+C∗, где U0 > 0,C∗ – действительные постоянные, кото-
рые выбираются так, чтобы функция ω(ζ) отображала конформно область |ζ| > 1 на
область Dw в плоскости w , когда точки eiγ1 ,eiγ2, в которых γ2 =π−γ1,−π

2 < γ1 < 0,
являются соответственно точками разветвления и схода потока. C∗ = 1

2(ϕB − Γ
2 ),γ1

определяется из уравнения cotγ1 =−γ1 −π(
ϕB
Γ − 1

2),U0 =− Γ
4πsinγ1

.

Из равенства w(z) =ω(ζ) при ζ= eiγ, получим
ϕ−(x) =ϕ1(γ)−Γ,γ2 É γ< 2π; ϕ−(x) =ϕ1(γ),0 É γ< γD ; ϕ+(x) =ϕ1(γ),γD É γ< γ2,

где ϕ1(γ) =−2U0 cosγ−2γU0 sinγ1 +C∗.
Из этих уравнений найдем функцию x = x(γ),0 É γ< 2π. Следовательно, получи-

ли задачу об определении функции z(ζ), аналитической в области |ζ| > 1 и имеющей
простой полюс на бесконечности, по краевому условиюℜz(eiγ) = x(γ),0 É γ< 2π. Ре-
шение этой обобщенной задачи Шварца для функции z(ζ) определяется формулой
[3] (с. 282-287):

z(ζ) =− 1

2π

∫ 2π

0
x(γ)

eiγ+ζ
eiγ−ζdγ+ i B0 + (A+ i B)ζ− A− i B

ζ
,

где B0, A,B – произвольные действительные постоянные, причем z′(∞) = A + i B .
Переходя к пределу при ζ→ eiγ(|ζ| > 1), найдем z(eiγ) = x(γ)+ i y(γ), где

y(γ)= 1

2π

∫ 2π

0
x(σ)ctg

σ−γ
2

dσ+B0 +2A sinγ+2B cosγ, 0Éγ<2π.

Постоянная B0 может быть выбрана произвольно. При заданных в двух точках носи-
ка профиля величинах скорости, для нахождения постоянных A и B получена систе-
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ма линейных уравнений, определитель которой не равен нулю. Получены формулы
для нахождения скорости v = v(s) на профиле и его подъемной силы.
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О КОНГРУЭНЦ-КОГЕРЕНТНЫХ УНАРАХ
И УНАРАХ С МАЛЬЦЕВСКОЙ ОПЕРАЦИЕЙ

А. Н. Лата1

1alex.lata@yandex.ru, Волгоградский государственный социально-педагогический
университет

Универсальная алгебра A называется конгруэнц–когерентной (coherent) [1], если
любая подалгебра B алгебры A, содержащая некоторый класс конгруэнции θ алгеб-
ры A, является объединением классов конгруэнции θ.

Унаром называется алгебра с одной унарной операцией.
Основные определения и обозначения, связанные с унарами, приведены в [2].

Теорема 1. Унар 〈A, f 〉 является конгруэнц–когерентным тогда и только тогда,
когда 〈A, f 〉 – один из унаров следующего вида: 1) C 0

n; 2) C 0
n +C 0

m; 3) C t
1, для некоторых

n,m ∈N и t ∈N∪ {∞}.

Унаром с мальцевской операцией [3] называется алгебра 〈A,d , f 〉 с унарной опе-
рацией f и тернарной операцией d , на которой истинны тождества Мальцева
d(x, y, y) = d(y, y, x) = x и тождество f (d(x, y, z)) = d( f (x), f (y), f (z)).

В [3] показано, что на любом унаре 〈A, f 〉 можно так задать тернарную операцию
p, что алгебра 〈A, p, f 〉 становится унаром с мальцевской операцией. Эта операция
определяется следующим образом.

Пусть 〈A, f 〉 — произвольный унар и x, y ∈ A. Для любого элемента x унара 〈A, f 〉
через f n(x) обозначим результат n-кратного применения операции f к элементу
x; при этом f 0(x) = x. Положим Mx,y = {n ∈N∪ {0} | f n(x) = f n(y)}, а также k(x, y) =
min Mx,y , если Mx,y 6= ;, и k(x, y) =∞, если Mx,y =;. Положим далее

p(x, y, z)
de f=

{
z, если k(x, y) É k(y, z)
x, если k(x, y) > k(y, z).

(1)

В [2] получено полное описание простых и псевдопростых алгебр в классе алгебр
〈A, p, f 〉.
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Теорема 2. Пусть 〈A, p, f 〉 — унар c мальцевской операцией p(x, y, z), определен-
ной по правилу (1). Алгебра 〈A, p, f 〉 является конгруэнц–когерентной тогда и только
тогда, когда выполняется одно из следующих условий: 1) операция f на A является инъ-
ективной; 2) унар 〈A, f 〉 содержит такой элемент a, что f (x) = a для любого x ∈ A,
где |A| Ê 3; 3) унар 〈A, f 〉 изоморфен C t

1 для некоторого t ∈N∪ {∞}.
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ПРИБЛИЖЕНИЕ ВЕЙВЛЕТАМИ РЕШЕНИЯ ИНТЕГРАЛЬНОГО УРАВНЕНИЯ
ЗАДАЧИ РАССЕЯНИЯ ВОЛН ПЕРИОДИЧЕСКИМИ СТРУКТУРАМИ

Е. К. Липачёв1

1elipachev@gmail.com, Казанский (Приволжский) федеральный университет, Инсти-
тут математики и механики им. Н.И. Лобачевского

Рассеяние электромагнитной волны идеально проводящей периодической
структурой в случае TM–поляризации моделируется краевой задачей для урав-
нения Гельмгольца ∆u

(
x, y

) + k2u
(
x, y

) = 0 с условием Неймана на границе{
(x, f (x))| f (x +d) = f (x)

}
: ∂~nu

(
x, f (x)

) = g (x), условий излучения парциального
типа, гарантирующим отсутствие приходящих из бесконечности волн, а также
условия квазипериодичности u(x + d , y) = exp(iαd)u(x, y), α = k sinθ (θ – угол
падения волны).

В пространстве квазипериодических функций поставленная краевая задача од-
нозначно разрешима и решение представимо в виде

u
(
x, y

)=V ρ (x) ≡
∫

G
(
k; x, y,τ

)
ρ (τ)d`τ,

где интеграл рассматривается на одном периоде, а плотность ρ(x) определяется из
интегрального уравнения

Kρ ≡ 1

2
ρ(x)+Tρ(x) = g (x), x ∈ [0,d ],

(
Tρ

)
(x) = ∂

∂~n(x, f (x))

[
V ρ

](
x, f (x)

)
,

G
(
k; x, y,τ

)= i

2d

∑
n∈Z

1

βn
exp

[
iαn (x −τ)+ iβn |y − f (τ) |] ,
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αn =α+ 2πn
d , βn =

√
k2 −α2

n (ветвь корня выбрана так, что Imβn Ê 0).
Алгоритм приближенного решения краевой задачи основан на приближении

вейвлетами решения интегрального уравнения. В качестве масштабирующей функ-
ции при построении кратномасштабного анализа используются B–сплайны ϕ по-
рядков 1 и 2. С помощью процесса периодизации образуются базисы

{
ϕ̃pq

}
,
{
ψ̃pq

}
пространства L2[0,d ] и цепочка конечномерных пространств

Ṽ0 ⊂ Ṽ1 ⊂ ·· · ⊂ Ṽi ⊂ ·· · , di mṼi = 2i , Ṽi+1 = Ṽi ⊕W̃i .

В качестве аппроксимирующих пространств в алгоритме приближенного реше-
ния выбираются пространства

Xn ≡ Ṽn = Ṽ0 ⊕W̃0 ⊕W̃1 ⊕·· ·⊕W̃n

и приближенное решение ρn интегрального уравнения ищется в виде

ρn(x) = a0ϕ̃00(x)+
n∑

i=0

2i−1∑
q=0

bi qψ̃i q (x),

где коэффициенты a00, bi q (i = 0, . . . ,n; q = 0, . . . ,2i−1) определяются из системы ли-
нейных алгебраических уравнений метода Галеркина.
Теорема. Приближенное решение ρn(x) при n → ∞ сходится к точному решению

ρ(x) интегрального уравнения краевой задачи рассеяния и справедлива оценка∥∥ρ−ρn
∥∥

L2 ÉC 2−n (∥∥ρ∥∥
L2 +

∥∥g
∥∥

H 1
)

,

где C – константа, не зависящая от n.

СЕТЬ C∗-АЛГЕБР, ПОРОЖДЕННАЯ ПОЛУГРУППОЙ ПУТЕЙ
Е. В. Липачева1, А. С. Ситдиков2, Т. А. Григорян3

1elipacheva@gmail.com, Казанский государственный энергетический университет
2airat−vm@rambler.ru, Казанский государственный энергетический университет
3tkhorkova@gmail.com, Казанский государственный энергетический университет

В последние годы в квантовой теории поля широко применяется алгебраиче-
ский подход [1]. Физическое содержание теории кодируется в сети C∗-алгебр, ин-
дексируемых частично-упорядоченным множеством {K ,É}. С помощью категории
частично-упорядоченных множеств можно образовывать симплициальные множе-
ства (0-симплексы, 1-симплексы и пути). Функториальное соответствие между этой
категорией и категорией унитальных С*-алгебр {Ao ,o ∈ K }, образующих сеть, поз-
воляет изучать свойства рассматриваемой физической системы с помощью алгеб-
раических методов [2-4].

Пусть K – частично упорядоченное множество. Тройка a,c, x ∈ K образует 1-сим-
плекс на множестве K , если a,c É x [4]. Будем обозначать его через b = [cx a]. При
этом ∂1b = a – начальная и ∂0b = c – конечная точки 1-симплекса, а x – его носитель.
Обратным к нему является 1-симплекс b−1 = [axc]. Под путем p : a 7→ c на K пони-
мается последовательность 1-симплексов p = bn ∗ ...∗b0, такая, что ∂1bk = ∂0bk−1,
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k = 1, ...,n. При этом ∂1p = a = ∂1b0 – начальная точка пути, ∂0p = c = ∂0bn – конеч-
ная точка пути. На множестве путей S можно ввести естественную структуру полу-
группы с умножением p1 ∗p0, отличным от нуля, если ∂1p1 = ∂0p0.

Полугруппу S, удовлетворяющую определенному набору аксиом, назовем полу-
группой путей. Полугруппа путей S является полугруппой с сокращением и одно-
временно инверсной полугруппой, где инверсным путем к p = bn ∗ ...∗b0 будет об-
ратный путь p−1 = b−1

0 ∗ ...∗b−1
n .

Рассмотрим гильбертово пространство l 2(S) комплексно-значных функций на S,
суммируемых с квадратом, с естественным ортонормированным базисом {ep }p∈S .
C∗-алгебра C∗

r ed (S) задается, как равномерно-замкнутая подалгебра в алгебре опе-
раторов B(l 2(S)), порожденная операторами частичной изометрии Tp , p ∈ S, где
Tp eq = ep∗q , q ∈ S.

Теорема. Справедливы следующие утверждения:
1) C∗-алгебра C∗

r ed (S) представляется в виде прямой суммы C∗-алгебр: C∗
r ed (S) =

⊕
a∈K

Aa;

2) существует сеть изоморфизмов {γca , a É c}a,c∈K , где γca : Aa →Ac , удовлетво-
ряющих равенству γdc ◦γca = γd a для a É c É d ;

3) множество изоморфизмов {γca , a É c} продолжается на 1-симплексы γb : A∂1b →
A∂0b , для которых выполняется тождество 1-коцикла [4]: γ[d x c]◦γ[c y a] = γ[d z a], если
существует w ∈ K такой, что x, y, z É w .

Заметим, что множество изоморфизмов можно расширить на пути {γp , p ∈ S},
где γp : A∂1p → A∂0p , для которых справедливо обобщение тождества 1-коцикла:
γp2 ◦γp1 = γp2∗p1.

Таким образом, мы получили сеть С*-алгебр {Aa ,γca , a É c}a,c∈K , ассоциирован-
ную с частично-упорядоченным множеством K .
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БЫСТРОЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ В ЛОКАЛЬНОМ ПОЛЕ
ПОЛОЖИТЕЛЬНОЙ ХАРАКТЕРИСТИКИ

С. Ф. Лукомский1

1lukomskiisf@info.sgu.ru, Саратовский национальный исследовательский государ-
ственный университет им. Н.Г.Чернышевского

Всплесковые базисы на локальных полях [1] представляются перспективным ин-
струментом при обработке многомерной информации, в том числе и видеоинфор-
мации. При решении этих задач возникает проблема вычисления как прямого, так и
обратного преобразования Фурье по системе характеров локального поля. Мы пред-
лагаем алгоритм быстрого преобразования Фурье, основанный на представлении
локального поля положительной характеристики в виде линейного пространства
над конечным полем [2].

Пусть K = F (s) = {x = (. . . ,0,xn ,xn+1, . . . )} – поле положительной характеристики
p, где x j = (x(0)

j , x(1)
j , . . . , x(s−1)

j ) ∈ GF (ps), x(l )
j ∈ G(p), GF (ps) – локальное поле, и

пусть gn = (. . . ,0n−1, (1,0, . . . ,0),0n+1, . . . ). Обозначим xks+l := x(l )
k , (l = 0,1, . . . , s − 1).

Функции Радемахера на K определим равенствами r̄
ᾱk
k = r

αks+0
ks+0 r

αks+1
ks+1 . . .r

αks+s−1
ks+s−1 ,

где r
αks+l
ks+l (x) = e

2πi
p xks+lαks+l . Характеры поля K в этом случае имеют вид χ= ∏

r̄
ᾱk
k .

Пусть Kn = {x = (. . . ,0n−1,xn ,xn+1, . . . )} – шар радиуса p−sn , f (n) – ступенчатая функ-
ция, постоянная на смежных классах по подгруппе K+

n с носителем supp f (n) ⊂ K0.
Такая функция однозначно представима в виде

f (n)(x) = ∑
ᾱ0,...,ᾱn−1∈GF (ps)

Cᾱ0ᾱ1...ᾱn−1 r̄ ᾱ0
0 r̄ ᾱ1

1 . . . r̄ ᾱn−1
n−1 =

=∑
Cᾱ0ᾱ1...ᾱn−1χᾱ0ᾱ1...ᾱn−1(x),

где Cᾱ0ᾱ1...ᾱn−1 – коэффициенты Фурье функции f (n)(x) по системе характеров поля
K . Рассмотрим задачу нахождения коэффициентов Cᾱ0ᾱ1...ᾱn−1.

Теорема. Функции f (n) и f (n+1) связаны соотношением

f (n+1)(x) = ∑
ᾱ0,...,ᾱn−1,ᾱn∈GF (ps)

Cᾱ0...ᾱn−1ᾱnχᾱ0...ᾱn−1ᾱn (x) =

= ∑
ᾱ0,...,ᾱn−1

Cᾱ0...ᾱn−10̄χᾱ0...ᾱn−10̄(x)+

+ ∑
γ̄n 6=0̄

r̄
γ̄n
n (x)

∑
ᾱ0,...,ᾱn−1∈GF (ps)

Cᾱ0...ᾱn−1γ̄nχᾱ0...ᾱn−1(x).

Если обозначить через f (n)
a0,...,an−1

значения функции f (n) на смежных классах
K+

n +̇an−1gn−1+̇an−2gn−2+̇ . . .+̇a0g0, то утверждение теоремы можно записать в ви-
де

f (n+1)
a0,...,an

= f (n)
a0,...,an−1,0 +

∑
jn 6=0

e
2πi

p (jn ,an)
f (n)

a0...an−1,jn
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Решая эту систему, находим значения функций f (n)
jn

на смежных классах

K+
n +̇an−1gn−1+̇an−2gn−2+̇ . . .+̇a0g0. Это равенство позволяет получить быстрый

алгоритм нахождения коэффициентов Cᾱ0...ᾱn−1, требующий psn sn операций.

Работа выполнена при финансовой поддержке РФФИ (грант 16-01-00152).
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НЕКОТОРЫЕ МОДЕЛИ АНАЛИЗА НЕТОЧНЫХ ДАННЫХ
ТИПА ВРЕМЕНИ ЖИЗНИ

С. В. Малов1
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В основе классической модели анализа данных типа времени жизни с правым
цензурированием лежит распределение пары случайных величин (T,U ) – времен
отказа и цензурирования. Наблюдаются время «события» (отказа или цензурирова-
ния) X = T ∧U и индикатор δ= 1I{TÉU }. В реальных ситуациях довольно часто вре-
мя «события» не наблюдается точно, а информация об отказе или цензурировании
поступает только в определенные моменты времени, вообще говоря случайные. В
этом случае обычно применяют модель интервального цензурирования [2], которая
не предусматривает наличия правого цензурирования, или же используют похожие
значения времен событий, вместо ненаблюдаемых реальных. В данной работе мы
рассмотрим модель интервального цензурирования цензурированных справа дан-
ных, в основе которой лежит цензурирование справа (X ,δ), но значение X не на-
блюдается точно, а информация о «событии» поступает только в моменты времени
Wi , i =1, . . . ,r . Следует отметить, что величина δ наблюдается только в случае, ес-
ли X ÉWi . Каждое наблюдение представляет собой набор W1, . . . ,Wr , а также пару
(κ,κδ), где κ=∑r

j=1 j 1I{W j−1<XÉW j }, W0=−∞. Случай произвольного r легко сводит-
ся к r =2 как при интервальном цензурировании.

Мы рассмотрим задачу непараметрического оценивания распределения време-
ни отказа T по выборке из распределения (κ,κδ) в предположении независимо-
сти T , U и (W1, . . . ,Wk ). Логарифм непараметрической функции правдоподобия
представляется в виде суммы двух слагаемых, первое из которых зависит толь-
ко от распределения X и совпадет с функцией правдоподобия цензурированных
справа данных. Предлагается трехшаговый алгоритм непараметрического оцени-
вания распределения T : 1) оценивание распределения X , 2) оценивание функции
R(x)=P (δ=1|X Éx), 3) восстановление распределения F . Для оценивания распреде-
ления X используется алгоритм наибольшей выпуклой миноранты [1]. Оценивание
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функции R(x) при известном распределении X приводит к принципиально отлич-
ной экстремальной задаче, которая уже не допускает столь простого решения.

Мы обсудим пути решения этой экстремальной задачи в случае r = 1 и уста-
новим условия состоятельности построенной непараметрической оценки функции
распределения времени отказа T . Отметим, что в частном случае «актуарных» дан-
ных с фиксированным временем наблюдения W1 не существует непараметриче-
ской состоятельной оценки функции распределения времени отказа T [2], однако
если распределение T доминировано распределением W1, то построенная оцен-
ка состоятельна. Результаты моделирования демонстрируют хорошее приближение
распределения T построеной оценкой и её бутстреп-версией.

Работа выполнена при финансовой поддержке Санкт-Петербургского госунивер-
ситета (грант № 1.37.165.2014).
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[2] Malov S.V., O’Brien S.J. Life Table Estimator Revisited. Submitted to Statistics &
Probability Letters, 2016.

ГОЛОМОРФНЫЕ СВЯЗНОСТИ НА МНОГООБРАЗИИ НАД АЛГЕБРОЙ
ДУАЛЬНЫХ ЧИСЕЛ

А. А. Малюгина1
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Пусть D — алгебра дуальных чисел a +bε, MD
n — D-гладкое многообразие, GD —

группа Ли над D такая, что слой канонического слоения G Ie , соответствующий иде-
алу I = εD, является замкнутым подмногообразием, G = GD/G Ie , gD — алгебра Ли
группы Ли GD, g = gD/IgD, и пусть PD = PD(MD

n ,GD) — D-гладкое главное расслое-
ние над MD

n со структурной группой GD.
Для присоединенного представления группы Ли GD в алгебре Ли gD и индуциро-

ванных представлений GD в алгебрах Ли IgD и g можно построить комплексы [1]

d̂ :Ω
r,p
ad (PD,h) →Ω

r+1,p
ad (PD,h), h= gD, IgD,g,

h-значных тензориальных дифференциальных форм на PD,D-гладко зависящих от
точки слоя. Точная последовательность алгебр Ли

0 → IgD
i−→ gD

p−→ g→ 0

индуцирует точную последовательность комплексов

0 →Ω
r,1
ad (PD, IgD)

i−→Ω
r,1
ad (PD,gD)

p−→Ω
r,1
ad (PD,g) → 0
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и соответствующую длинную точную последовательность в когомологиях

. . .
p∗−−→ H0,1

ad (PD,g)
d̂∗−−→ H1,1

ad (PD, IgD)
i∗−→ H1,1

ad (PD,gD)
p∗−−→ . . .

Оператор d̂ можно применить к форме связности ω D-линейной связности в PD.
В результате получается замкнутая тензориальная форма, и ее класс когомологий
(класс Атьи) a(PD) ∈ H1,1

ad (PD,gD) является препятствием для существования голо-
морфной связности в PD.

Эпиморфизм групп Ли π : GD → G индуцирует соответствующий эпиморфизм
главных расслоений πtr : PD → Ptr , где Ptr — трансверсальное (по отношению к
каноническому слоению на MD

n ) расслоение. По адаптированной связности [2] в Ptr

можно построить класс a(Ptr ) ∈ H1,1
ad (PD,g), который является препятствием для су-

ществования проектируемой связности в Ptr . Если в Ptr существует проектируемая
связность Γtr , по ней строится класс когомологий a(Γtr ) ∈ H1,1

ad (PD, IgD), являющий-
ся препятствием для существования голоморфной связности в PD, порождающей
связность Γtr .

Для расслоения D-линейных реперов на MD
n представлены выражения для рас-

смотренных выше классов в локальных координатах.
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ЗАКОНЫ СОХРАНЕНИЯ И ДИВЕРГЕНТНЫЕ ФОРМУЛЫ ДЛЯ СЕМЕЙСТВА
КРИВЫХ И ПОВЕРХНОСТЕЙ И ИХ ПРИЛОЖЕНИЯ

А. Г. Меграбов1

1mag@sscc.ru, Институт вычислительной математики и математической геофизики
СО РАН, Новосибирск, Новосибирский государственный технический университет

Доклад обобщает и развивает статьи автора в ДАН (2009, т. 424, № 5; 2010, т. 433,
№ 3, 4; 2011, т. 441, № 3). Рассматриваем семейство {Lτ} кривых Lτ с базисом Френе
(𝜏 ,𝜈,𝛽) (𝜏 — орт касательной, 𝜈 — главной нормали, 𝛽 — бинормали), кривизной k
и кручением Å, а также семейство {Sτ} поверхностей Sτ с единичной нормалью 𝜏 ,
главными направлениями 𝑙1, 𝑙2, главными кривизнами k1, k2 и гауссовой кривиз-
ной K (𝑙i — касательный орт линии кривизны на Sτ).

1. Найдено, что в плоском случае div𝑆(𝜏 ) = 0⇔ div𝑆∗ = 0,𝑆(𝜏 ) = rot𝜏×𝜏−𝜏div𝜏 ,
𝑆(𝜏 ) = 𝑆∗, где 𝑆∗ = 𝐾τ +𝐾ν — сумма векторов кривизны плоских кривых Lτ с
ортами Френе 𝜏 , 𝜈 и ортогональных к ним кривых Lν, что означает закон сохра-
нения для семейства плоских кривых. В трехмерном случае получены его аналоги:
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1) тождество div𝑆(𝜏 ) = 2(𝜏 · rot𝑅∗) ⇔ div𝑆∗ = (𝜏 · rot𝑅∗)− k(𝜏 · rot𝛽) для семей-
ства {Lτ}, где 𝑅∗ = κ𝜏 +k𝛽+𝛽div𝜈−𝜈div𝛽, поле 𝑆(𝜏 ) имеет смысл суммы трех век-
торов кривизны: кривой Lτ и двух любых взаимно ортогональных геодезических
линий на поверхности, ортогональной к {Lτ}; 𝑆∗ — сумма трех векторов кривиз-
ны векторных линий полей 𝜏 , 𝜈, 𝛽; 𝑆∗ =𝑆(𝜏 )+𝜏 ×𝑅∗; 2) законы сохранения вида
div𝐹 = 0 для семейства {Lτ} кривых и для семейства {Sτ} поверхностей. Поле 𝐹 вы-
ражается соответственно через характеристики кривых и поверхностей. Например,
div {𝜏div𝑆∗−Årot𝜏−krot𝛽} = 0 для {Lτ} и div {−K𝜏−k2(𝑙2 ·rot𝜏 )𝑙1+k1(𝑙1 ·rot𝜏 )𝑙2} = 0
для {Sτ}, где выражение в { } всюду равно rot𝑅∗.

2. Получены формулы связи между характеристиками поверхностей Sτ ∈ {Sτ} и
характеристиками кривых Lτ в случае их взаимной ортогональности: 𝑙1 = cosω𝜈+
sinω𝛽, 𝑙2 =−sinω𝜈+cosω𝛽, tg2ω=−A/B , k1 =−{div𝜏 ±

√
A2 +B2 }/2 =−(𝑙2 · rot𝑙1),

k2 = −{div𝜏 ∓
√

A2 +B2 }/2 = (𝑙1 · rot𝑙2), ⇒ K = k1k2 = {(div𝜏 )2 − (A2 +B2)}/4, K = (𝜏 ·
[rot𝜈×rot𝛽])−κ2 =−{(𝜈 ·rot𝛽)(𝛽·rot𝜈)+A2/4} = (𝜏 ·[rot𝑙1×rot𝑙2])−(rot𝑙i ·𝑙i )2, i = 1,2,

K =−(𝜏 · rot𝑅∗), где A = (𝜈 · rot𝜈)− (𝛽 · rot𝛽), B
def= (𝛽 · rot𝜈)+ (𝜈 · rotβ).

3. Найдено, что: 1) векторное поле 𝑃 в первой дивергентной формуле Ю. А. Ами-
нова для гауссовой кривизны K представимо в виде:𝑃 =−rot𝑅∗; 2) величины него-
лономности полей 𝑙1, 𝑙2 равны: (𝑙1 · rot𝑙1) = (𝑙2 · rot𝑙2) ⇔ tg2ω=−A/B .

4. С помощью этих общих геометрических формул получены дифференциальные
законы сохранения и другие формулы в плоском и в трехмерном случаях для реше-
ний уравнения эйконала (для поля времен в кинематической сейсмике (геометри-
ческой оптике)), гидродинамических уравнений Эйлера и др. При этом роль кри-
вых Lτ и поверхностей Sτ играют векторные линии полей решений и ортогональные
к ним поверхности. Например, в плоском случае для уравнения эйконала τ2

x +τ2
y =

n2(x, y) получен закон сохранения div𝑇 (gradτ) = div {grad lnn −∆τgradτ/n2} = 0 с
геометрическим смыслом: сумма 𝑆∗ векторов кривизны лучей и фронтов есть со-
леноидальное поле (div𝑆∗ = 0).

ИНТЕРПОЛЯЦИЯ РЯДАМИ ЭКСПОНЕНТ В ВЫПУКЛЫХ ОБЛАСТЯХ

С. Г. Мерзляков1, С. В. Попенов2

1msg2000@mail.ru, Институт математики с Вычислительным центром УНЦ РАН
2spopenov@gmail.com, Институт математики с Вычислительным центром УНЦ РАН

Пусть Λ ⊂ C – некоторое бесконечное множество. Для произвольной выпуклой
области D ⊂C oбозначим

Σ(Λ,D) =
{ ∞∑

n=1
cneλn z , {cn} ⊂C, {λn} ⊂Λ

}
,

где ряды абсолютно сходятся в D.
Рассматривается проблема кратной интерполяции в области D рядами экспо-

нент с показателями из заданного множестваΛ : для произвольной дискретной в D
последовательности {µk } ⊂ D, узлов интерполяции, любых кратностей mk ∈N∪{0}, и
для любых интерполяционных данных b

j
k ∈C, существует аналитическая в D функ-
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ция f , представимая в виде суммы ряда из Σ(Λ,D), и такая, что f ( j )(µk ) = b
j
k для

всех k ∈N и всех 0 É j É mk −1.
Получено описание универсального множества Λ, для которого в любой выпук-

лой области D ⊂ C разрешима указанная проблема интерполяции суммами рядов
из Σ(Λ,D).

Направление вектора s = eiϕ,ϕ ∈ R, называется предельным направлением
неограниченного множестваΛ в бесконечности, если s = limn→∞λn/|λn |, для неко-
торой последовательности {λn} ⊂Λ, уходящей в бесконечность.

Теорема. Для разрешимости в любой выпуклой области D ⊂ C проблемы интер-
поляции суммами рядов из Σ(Λ,D) с показателями экспонент из Λ необходимо и до-
статочно, чтобы множество Λ было неограниченным и множество его предельных
направлений в бесконечности совпадало с S = {s ∈C : |s| = 1}.

Для фиксированной выпуклой области D, D ∩R 6= ;, в случае, когда {µk } ⊂ D ∩R,
полностью решена проблема интерполяции рядами экспонент с показателями из
множества Λ в терминах предельных направлений в бесконечности, при этом нам
удалось снять дополнительные ограничения из предшествующих работ авторов.
Например, справедлива

Теорема. Если узлы {µk } имеют единственную конечную предельную точку x0 на
границе области,то для разрешимости рассматриваемой задачи интерполяции необ-
ходимо и достаточно, чтобы существовало такое предельное направление eiϕ0 , что
опорная прямая области D в направлении e−iϕ0 содержит точку x0. Если множество
D ∩R+ неограниченное и узлы {µk } имеют единственную предельную точку в +∞, то
для разрешимости задачи необходимо и достаточно, чтобы существовало предельное
направление eiϕ0 , |ϕ0| <π/2.

Работа выполнена при финансовой поддержке РФФИ (проекты 14-01-00720, 15-
01-01661).
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ГОМОМОРФИЗМЫ ГИЗИНА ДЛЯ КОГОМОЛОГИЙ ГОМОТОПИЧЕСКИ
ИНВАРИАНТНЫХ ПУЧКОВ С ТРАНСФЕРАМИ НА РЕГУЛЯРНЫХ

НЕТЕРОВЫХ СХЕМАХ

А. А. Мингазов1

1mingazov88@gmail.com, Институт систем обработки изображений РАН — филиал
ФНИЦ «Кристаллография и фотоника» РАН

Определение 1. Пучком с трансферами на категории регулярных нетеровых схем
над k мы будем называть пучок Зарисского F : (RSchk )op → Ab, удовлетворяющий
следующим двум условиям:
1) Для представления кольца в виде индуктивного предела S = lim−−→Sα выполнено

F (Spec S) = lim−−→F (Spec Sα);
2) Существует пучок Зарисского с трансферами G : Cork → Ab такой, что ограни-

чение F на категорию Smk гладких многообразий над k совпадает с ограничением G

на ту же категорию.

Теорема 2. Пусть X — регулярная нетерова неприводимая схема над полем k ха-
рактеристики 0, F — гомотопически инвариантный пучок с трансферами, опреде-
ленный на категории нетеровых k-схем. ТогдаF имеет вялую резольвенту на X

0 → (iξ)∗
(
F (K )

)
→ ⊕

x∈X (1)

(ix)∗
(
F−1(k(x))

)
→ . . . ,

где ξ— общая точка схемы X , X (i ) —точки схемы X коразмерности i , черезF−i (k(x))

обозначается постоянный пучок на точке x с группой сеченийF−i (k(x)).

Теорема 2 доказана в статьях [2] и [3].

Следствие 3. Пусть F — гомотопически инвариантный пучок с трансферами на
категории регулярных нетеровых схем, f : X → Y —проективныйморфизмрегулярных
нетеровых схем, и пусть n = dimY −dim X . Тогда существует канонический гомомор-
физм Гизина

G( f ) : H∗(X ,F−n) → H∗+n(Y ,F ),

обладающий свойствами аналогичными [1].
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ЗАДАЧА ДАРБУ ДЛЯ УРАВНЕНИЯ БИАНКИ ТРЕТЬЕГО ПОРЯДКА

А. Н. Миронов1

1miro73@mail.ru, Казанский (Приволжский) федеральный университет, Елабужский
институт

Речь идет об уравнении

ux y z +
1∑

i=0

1∑
j=0

1∑
k=0

i+ j+k<3

ai j k (x, y, z)uxi y j zk = f (x, y, z), (1)

которое рассматривалось, в частности, в работах [1]–[4].
Пусть область D ограничена плоскостями x = 0, y = 0, y = y0 > 0, z = z0 > 0, z = x.
Обозначим через X , Y , H грани D при x = 0, y = 0, z = x соответственно.

Задача Дарбу. В области D найти регулярное решение уравнения (1), удовлетво-
ряющее граничным условиям

u|X =ϕ1(y, z), u|Y =ϕ2(x, z), u|H =ψ(x, y),
ϕ1(y,0) =ψ(0, y), ϕ2(x, x) =ψ(x,0), ϕ1(0, z) =ϕ2(0, z),

ϕ1 ∈C 2(X ), ϕ2 ∈C 2(Y ), ψ ∈C 2(H).
(2)

Пусть коэффициенты уравнения (1) принадлежат классу C 2(D), f ∈C (D). Исполь-
зуя известную формулу решения задачи Гурса [4, с. 28] как представление произ-
вольного регулярного решения уравнения (1), получено интегральное уравнение
Вольтерры второго рода для определения условия Гурса u(x, y, z0), из существова-
ния и единственности решения которого следует существование и единственность
решения задачи Дарбу (1)–(2). Для частного случая уравнения (1) построено реше-
ние задачи Дарбу в терминах функции, аналогичной функции Римана-Адамара [2,
с. 35], [5].
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ИНВАРИАНТЫ ЛАПЛАСА ДЛЯ ГИПЕРБОЛИЧЕСКОГО УРАВНЕНИЯ
ЧЕТВЕРТОГО ПОРЯДКА

Л. Б. Миронова1

1lbmironova@yandex.ru, Казанский (Приволжский) федеральный университет, Ела-
бужский институт

Инвариантами Лапласа линейного дифференциального уравнения Lu = f на-
зывают инварианты преобразования u = λ(x1, . . . , xn)v , где v — новая неизвестная
функция [1, с. 116–125]. Инварианты Лапласа позволяют выделять классы эквива-
лентных по функции уравнений с определенными свойствами (в частности, допус-
кающих алгебры Ли наибольшей размерности).

Здесь для уравнения с тремя независимыми переменными

2∑
i=0

1∑
j=0

1∑
k=0

ai j k (x, y, z)D i
xD

j
y Dk

z u = 0, a211 ≡ 1,

рассмотренного, например, в работах [2], [3], получен следующий список инвариан-
тов Лапласа:

h1 = a210y +a210a201 −a200, h2 = a201z +a210a201 −a200,
h3 = 2a210x +a210a111 −a110, h4 = a111z +a210a111 −a110,
h5 = 2a201x +a201a111 −a101, h6 = a111y +a201a111 −a101,

h7 = 1
2 a111x + 1

4 a2
111 −a011,

h8=2a210x y+a200a111+a201a110+a210a101−2a210a201a111−a100,
h9=2a201xz+a200a111+a201a110+a210a1012a210a201a111−a100,

h10=a111y z+a200a111+a201a110+a210a101−2a210a201a111−a100,
h11 = a210xx +a210a011 + 1

2 a111a110 − 1
2 a210a2

111 −a010,
h12 = 1

2 a111xz +a210a011 + 1
2 a111a110 − 1

2 a210a2
111 −a010,

h13 = a201xx +a201a011 + 1
2 a111a101 − 1

2 a201a2
111 −a001,

h14 = 1
2 a111x y +a201a011 + 1

2 a111a101 − 1
2 a201a2

111 −a001,

h15 = a210xx y +a210a001 +a201a010 + 1
2 a111a100 + 1

2 a110a101+
+a200a011 −a210a111a101 −a201a111a110 −2a210a201a011−

−a201a110 − 1
2 a200a2

111 + 3
2 a210a201a2

111 −a000,
h16 = a201xxz +a210a001 +a201a010 + 1

2 a111a100 + 1
2 a110a101+

+a200a011 −a210a111a101 −a201a111a110 −2a210a201a011−
−a201a110 − 1

2 a200a2
111 + 3

2 a210a201a2
111 −a000,

h17 = 1
2 a111x y z +a210a001 +a201a010 + 1

2 a111a100 + 1
2 a110a101+

+a200a011 −a210a111a101 −a201a111a110 −2a210a201a011−
−a201a110 − 1

2 a200a2
111 + 3

2 a210a201a2
111 −a000.
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ВЫРОЖДЕНИЕ ПОРЯДКА ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И
ВВЕДЕНИЕ В СИНГУЛЯРНЫЙ АНАЛИЗ

Л. Г. Михайлов1

1leonid-mikhailov@yandex.ru, Институт математики Академии наук Республики Та-
джикистан

Ещё с пятидесятых годов 19–го века в математике стали изучаться дифференци-
альные уравнения с сингулярными коэффициентами (или же дифференциальные
уравнения с вырождениями порядка). Об этом см. нашу заказную статью в журнале
«Mathematisсhe Nachrichten» за 1976 год (Германия), написанную к 100–летию Эр-
хардта Шмидта — ученика и сотрудника великого Д. Гильберта.

В 1963 г. в Изд. АН Республики Таджикистан вышла в свет наша первая моно-
графия: «Новый класс особых интегральных уравнений и его применения к диффе-
ренциальным уравнениям с сингулярными коэффициентами», которая в переводе
на английский язык была переиздана гораздо более престижными научными из-
дательствами в Голландии, [Изд. Wolters-Noordhoff (Groningen), 1970] и в Германии
(Academie–Verlag, Berlin, 1970).

В 1986 г. была издана наша другая монография: «Некоторые переопределённые
системы уравнений в частных производных с двумя неизвестными функциями».
Изд. «Дониш», Душанбе. (Рецензенты: академик АН СССР С.М. Никольский и член-
корр. А.В. Бицадзе).

Многие задачи математической физики, как, например, уравнение Шрёдинге-
ра из квантовой механики, приводят к уравнениям в частных производных, ко-
эффициенты которых содержат особенности (сингулярности) первого либо второ-
го порядка. Используя представления решений через объёмные потенциалы, мы
их приводим к интегральным уравнениям с операторами, в знаменателях кото-

рых фигурируют расстояния в степенях (n−1) либо (n−2):
∫

D

b j (t )·r ′x j

r n−1(x,t )
·ϕ(t ) ·d t , или∫

D
c(t )·ϕ(t )·d t

r n−2(x,t )
, здесь n — размерность пространства, а r (x, t ) = |x − t | — расстояние

между точками x и t . Такие уравнения должны бы изучаться прежде всего.
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ВЫЧИСЛИМЫЕ ЛИНЕЙНЫЕ ПОРЯДКИ И ИЕРАРХИЯ ЕРШОВА

Я. А. Михайловская1

1yana.michailovskaya@yandex.ru, Казанский (Приволжский) федеральный универси-
тет

Данная работа посвящена изучению вычислимых линейных порядков, в сигна-
туру которых добавляются дополнительные отношения Sn

L
.

Определение 1. S2k
L

(x, y) ↔|(x, y)L | = 0∨|(x, y)L | = 2∨ ...∨|(x, y)L | = 2k.

Определение 2. S2k+1
L

(x, y) ↔|(x, y)L | = 1∨|(x, y)L | = 3∨ ...∨|(x, y)L | = 2k +1.
Здесь (x, y)L = {z|x <L z <L y}.

Заметим, что отношение S0
L

является просто отношением соседства на линей-
ном порядке, которое было объектом изучения разных авторов. Например, М. Мо-
зес [1] показал, что линейный порядок имеет 1-разрешимое представление тогда и
только тогда, когда он имеет вычислимое представление с вычислимым отношени-
ем соседства. Дж. Реммел [2] показал, что вычислимый линейный порядок является
вычислимо категоричным тогда и только тогда, когда он имеет лишь конечное чис-
ло соседних элементов. А.Н. Фролов [3] показал, что спектр отношения соседства
вычислимого не η-схожего линейного порядка замкнут наверх в в.п. степенях.

В данной работе были получены следующие результаты.

Предложение 1. Для любого (n+1)-в.п. множества A существует вычислимый ли-
нейный порядокL , упорядоченный по типу ω, такой, что Sn

L
≡T A.

Предложение 2. Для любого вычислимого линейного порядка L из вычислимости
S0

L
следует вычислимость Sn

L
для любого n.

Предложение 3. ПустьL – вычислимый линейный порядок, содержащий лишь ко-
нечное число блоков длиныÉ (n+1). Тогда из вычислимости Sn

L
следует вычислимость

S0
L
.
Теорема 1. Пусть вычислимый линейный порядок L имеет бесконечно много бло-

ков длины 2 и отношение S1
L
вычислимо. Тогда существует вычислимый линейный по-

рядокR такой, чтоR ∼=L , S1
R
вычислимо, но S0

R
не вычислимо.

К сожалению, теорема 1 не может быть обобщена для отношения Sn
L

вместо S1
L

.
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О ТРИ–ТКАНЯХ БОЛА С ОБЩЕЙ СЕРДЦЕВИНОЙ

А. А. Михеева1

1heathjensen@yandex.ru, Тверской государственный университет

Сердцевиной три-ткани Бола называется бинарная операция, которая естествен-
ным образом возникает на одном из семейств линий этой три-ткани. Понятие серд-
цевины средней три–ткани Бола ввел В.Д. Белоусов в [1] (см. также [2]). В случае, ес-
ли три-ткань Бола — многомерная три-ткань, образованная r -мерными слоениями
на гладком многообразии размерности 2r , то сердцевина является гладкой локаль-
ной квазигруппой и обладает дополнительным свойством — она определяет на базе
одного из слоений ткани симметрическую структуру.

Известно [3], что сердцевина левой ткани Бола Bl изотопна левой лупе Бола, но не
изотопна, вообще говоря, координатной квазигруппе этой ткани. Этот факт означа-
ет, что существуют различные (неэквивалентные) три–ткани Бола, определяющие
одну и ту же сердцевину. Нами найдены условия, при которых левые три–ткани Бо-
ла имеют общую сердцевину. Эти условия применяются для нахождения шестимер-
ных левых тканей с теми же сердцевинами, которые имеют ткани, полученные пре-
образованием парастрофии из известных шестимерных эластичных тканей E1 и E2
[4].

Доказано [5], что сердцевина четырехмерной левой три–ткани Бола B∗
l , получен-

ной преобразованием парастрофии из четырехмерной средней три-ткани Бола Π∗
параболического типа, не изотопна ее координатной квазигруппе. В [5] доказано
также, что квазигруппа, левая обратная указанной сердцевине, определяет сред-
нюю три–ткань Бола гиперболического типа.

Найдены все четырехмерные левые три-ткани Бола с той же сердцевиной, кото-
рую имеет единственная четырехмерная нерегулярная групповая три-ткань [6].

В [7] мы рассмотрели свойства сердцевины групповой ткани, определяемой груп-
пой Ли, и свойства соответствующей левой три-ткани Бола.
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СТРОЕНИЕ РЕШЕТКИ ЗАМКНУТЫХ КЛАССОВ ТРЕХЗНАЧНОЙ ЛОГИКИ

Е. А. Михеева1

1melalex05@rambler.ru, Ульяновский государственный университет

Изучено строение решётки (по включению) L3 всех замкнутых классов
трёхзначной логики P3. Здесь есть замкнутые классы без конечных базисов
[1]. Их семейство обозначим B3. Множество различных классов из L3 называется
цепью, если оно линейно упорядочено по включению. Цепь

F0 ⊃ F1 ⊃ ·· · ⊃ Fn

называется неуплотняемой цепью длины n между F и P3, если F0 = P3, Fn = F и Fi+1
– предполный класс в Fi для каждого i < n. Длина наименьшей конечной неуплот-
няемой цепи называется глубиной класса F в решётке L3.

Классы глубины 1 в L3 – это предполные классы в P3. Их 18 – они описаны в [3].
Доказана их конечная базируемость [4]. Классы глубины 2 в L3 – это классы, пред-
полные в предполных классах. Они описаны в [5] через предикаты – их 161.

Теорема 1 [6,7,8]. Все классы глубины 2 в решётке L3 имеют конечные базисы. Ми-
нимальная глубина в L3 замкнутых классов из B3 равна 3.

Назовёммаксимальными в P3 замкнутыми классами те, которые не имеют конеч-
ных базисов, но каждый их собственный замкнутый надкласс конечно базируем.

Теорема 2 [2,9]. Любой класс из B3 лежит в некотором максимальном классе из B3.
Максимальных классов в B3 не более чем счётно. В P3 построен максимальный класс
из B3, имеющий глубину 5 в L3. В B3 есть не менее 3-х разных максимальных классов.

Пример построен в предполном классе U3 [3].
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МЕТАБЕЛЕВЫ ПОЧТИ НИЛЬПОТЕНТНЫЕ МНОГООБРАЗИЯ
ПОЛИНОМИАЛЬНОГО РОСТА

С. П. Мищенко1

1mishchenkosp@mail.ru, Ульяновский государственный университет

Характеристика основного поля равна нулю. По аналогии со случаем алгебр Ли,
будем называть алгебру метабелевой, если в ней выполняется тождество

(x1x2)(x3x4) ≡ 0.

Не нильпотентное многообразие называется почти нильпотентным, если
любое его собственное подмногообразие является нильпотентным. Простей-
шим примером такого многообразия является многообразие всех ассоциативно-
коммутативных алгебр, причем, в классе ассоциативных алгебр другого почти
нильпотентного многообразия нет. Аналогичная ситуация и в случае алгебр Ли. В
этом классе только многообразие всех метабелевых алгебр Ли является почти ниль-
потентным.

Если отказаться от рассмотрения классических случаев, то почти нильпотент-
ных многообразий великое множество. Подробнее об этом направлении исследо-
вания можно прочитать в обзорной работе [1]. Отметим, что незначительный рост
многообразия кажется естественным свойством почти нильпотентного многообра-
зия. Однако, это свойство часто нарушается. Так, в работе [2] доказано существова-
ние почти нильпотентных коммутативных метабелевых многообразий любой це-
лой экспоненты. В то же время в этом же классе алгебр почти нильпотентных мно-
гообразий подэкспоненциального роста (полиномиального или промежуточного)
оказалось только два [3]. Аналогичный результат установлен также и в случае анти-
коммутативных метабелевых алгебр [4]. Если же отказаться от условия коммутатив-
ности или антикоммутативности, то описание всех почти нильпотентных многооб-
разий даже полиномиального роста и даже с тождеством метабелевости становится
проблематичным.
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Теорема. В случае нулевой характеристики основного поля существует контину-
альное множество метабелевых почти нильпотентных многообразий полиномиаль-
ного роста.

В заключении отметим, что в данной тематики остается открытым вопрос о
существовании почти нильпотентного многообразия промежуточного роста или
сверхэкспоненциального.
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ЗАВИСИМОСТЬ ОТ ПАРАМЕТРОВ НАИМЕНЬШЕГО НУЛЯ НЕПРЕРЫВНОЙ
ФУНКЦИИ

В. С. Мокейчев1, И. Е. Филиппов2

1Valery.Mokeychev@kpfu.ru, Казанский (Приволжский) федеральный университет
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При исследовании граничных задач для дифференциальных уравнений возник-
ла проблема о существовании корней функции, непрерывно зависящих от парамет-
ра. А именно, пусть g (τ,ξ) – непрерывная скалярная функция аргументов τ ∈ [a, b] ⊂
Rn−1, ξ ∈ [an , bn] ⊂ R1, удовлетворяющая условиям g (τ, an) > 0, g (τ,bn) < 0, вопрос:
существует ли корень, непрерывно зависящий от τ?

Мы не нашли источники, где предлагался бы ответ на поставленный вопрос.
Наименьший корень ξ(τ) ∈ (an , bn) уравнения g (τ,ξ) = 0 называется точкой пере-

мены знака функции g (τ,ξ), если существуюттакие ξ1,k → ξ(τ)+0, ξ2,k → ξ(τ)−0, что
g (τ,ξ1,k )g (τ,ξ2,k ) < 0.

Теорема 1.Если наименьший корень ξ(τ) уравнения g (τ,ξ) = 0 является точкой пе-
ремены знака для g (τ,ξ), то ξ(τ) непрерывно зависит от τ.

Теорема 2.При каждом ε> 0 существуеттакая непрерывная функция gε(τ,ξ), что
|g (τ,ξ)−gε(τ,ξ)| < ε, и наименьший её корень ξε(τ)— является точкой перемены знака
для gε(τ,ξ).
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Приведём идеи доказательств.
Теорема 1. На первом этапе проверяется: если {ξ(τ(k))} сходится при τ(k) →

τ(0), то ξ0 = lim
k→+∞

ξ(τ(k)) Ê ξ(τ(0)). Учитывая перемену знака устанавливается ξ0 =
ξ(τ(0)). На втором от противного доказывается ξ(τ) → ξ(τ(0)) при τ→ τ(0).

Теорема 2. На первом шаге так фиксируются ξ j = an + (bn − an) j /m, j = 0, ...,m,
чтобы |g (τ,ξ)−g (τ,ξ j )| < ε/(2+2bn −2an), и строится такая кусочно линейная функ-
ция ϕ0(τ,ξ), что ϕ0(τ,ξ j ) = g (τ,ξ j ) причём ε выбирается настолько малым, чтобы
ϕ0(τ, an) > 0, ϕ0(τ,bn) < 0. Если в окрестности наименьшего нуля функции ϕ0(τ,ξ)
она меняет знак, то полагается gε(τ,ξ) = ϕ0(τ,ξ). В противном случае вводится
ϕ1(τ,ξ) =ϕ0(τ,ξ)+ε/2+a0, где a0 ∈ (0,ε/2). Если наименьший нуль дляϕ0(τ,ξ) распо-
ложен в (ξ j ,ξ j+1], то наименьший нуль функции ϕ1(τ,ξ) расположен в (ξ j+1,ξ j+2].
Если наименьший нуль функции ϕ1(τ,ξ) является точкой перемены знака для неё,
то gε(τ,ξ) =ϕ1(τ,ξ). В противном случае аналогично строится ϕ2(τ,ξ), и так далее.

О ЗАДАЧЕ КОНКРЕТНОЙ ХАРАКТЕРИЗАЦИИ
УНИВЕРСАЛЬНЫХ АВТОМАТОВ

В. А. Молчанов1, Е. В. Хворостухина2

1v.molcanov@inbox.ru, Саратовский государственный университет им. Н. Г Черны-
шевского

2katyanew2007@rambler.ru, Саратовский государственный технический универси-
тет им. Гагарина Ю.А.

В последнее время проявился заметный интерес к исследованию автоматов, у
которых системы состояний и выходных символов являются объектами некоторой
категории K (см., например, обзор в [1]). В категории таких автоматов для любых
объектов K1,K2 ∈ K существует притягивающий объект Atm(K1,K2), который назы-
вается универсальным автоматом над объектами K1,K2 категории K. Ввиду про-
блемы Б. Йонсона [2] о конкретной характеризации алгебр отношений представ-
ляет интерес изучение для таких универсальных автоматов следующей проблемы
конкретной характеризации: при каких условиях для автомата A = (X ,S,Y ,δ,λ) на
множествах X ,Y можно так определить алгебраические структуры, что полученные
объекты KX ,KY ∈ K и A = Atm(KX ,KY ).

В настоящей работе данная задача решена для категории Hgr эффективных ги-
перграфов с p-определимыми ребрами [3], которая охватывает, в частности, плос-
кости и множества с разбиениями. В работе под гиперграфическим автоматом по-
нимается полугрупповой автомат [3] A = (X ,S,Y ,δ,λ), у которого множества со-
стояний X и выходных сигналов Y наделены такими структурами гиперграфов
HX , HY ∈ Hgr, что при каждом фиксированном входном сигнале s ∈ S преобра-
зование δs ∈ EndHX и отображение λs ∈ Hom(HX , HY ). Для любых гиперграфов
HX , HY ∈ Hgr алгебраическая система Atm(HX , HY ) = (HX ,S, HY ,δ′,λ′) с полугруп-
пой S = EndHX ×Hom(HX , HY ) и операциями δ′(x, (ϕ,ψ)) =ϕ(x), λ′(x, (ϕ,ψ)) =ψ(x)
(где x ∈ X , (ϕ,ψ) ∈ S ) является универсальным гиперграфическим автоматом над
гиперграфами HX , HY .

Для автомата A = (X ,S,Y ,δ,λ) на множествах X ,Y определим канонические (p +
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1)-арные отношения RX ,RY по следующим формулам: набор (a1, a2, ..., ap+1) ∈
X p+1((a1, a2, ..., ap+1) ∈ Y p+1) в том и только том случае принадлежит отношению
RX (соответственно отношению RY ), если для любых различных элементов x1, x2, ...,
xp+1 ∈ X найдется такой символ s ∈ S, что для каждого i = 1, p +1 выполняется ра-
венство δs(xi ) = ai (соответственно λs(xi ) = ai ).

С помощью таких канонических отношений в главной теореме работы получе-
но решение проблемы конкретной характеризации универсальных гиперграфиче-
ских автоматов. На основе этого результата можно исследовать взаимосвязь между
свойствами универсальных гиперграфических автоматов и их полугрупп входных
символов.
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ЗАДАЧИ ОБ ОПТИМАЛЬНЫХ УПАКОВКАХ ШАРОВ

О. Р. Мусин1

1oleg.musin@utrgv.edu, ИППИ РАН и UTRGV (University of Texas Rio Grande Valley)

В докладе предполагается обсудить серию наших работ по упаковкам шаров [1–
8]. Мы рассмотрим проблему контактных чисел, задачу Таммеса и другие экстре-
мальные задачи сферических упаковок.
Контактным числом k(n) называют наибольшее число непересекающихся шаров

одинакового радиуса вRn , которые можно расположить так, чтобы все они касались
одного (центрального) шара такого же радиуса. Этот вопрос в R3 был предметом
спора между И. Ньютоном и Д. Грегори в 1694 году. Ньютон считал, что k(3) = 12, в
то время как Грегори думал, что ответ может быть равен 13. К. Шютте и Б. Л. Ван дер
Варден доказали, что Ньютон был прав и k(3) = 12 только в 1953 году. Заметим, что
проблема контактных чисел решена только для размерностей n = 3,4,8 и 24 [1–3].

У проблемы 13 шаров имеется естественное обобщение: найти расположение
множества X , состоящего из N точек наS2, такое что минимальное расстояние меж-
ду точками X — максимально возможное. Эту задачу впервые поставил голланд-
ский ботаник Таммес в 1930 году.

Задача Таммеса решена только для нескольких значений N : для N = 3,4,6,12 ее
решил Л. Фейеш Тот (1943); для N = 5,7,8,9 — Шютте и ван дер Варден (1951); для
N = 10,11 — Л. Данцер (1963) и для N = 24 — Р. М. Робинсон (1961). Недавно мы
решили эту задачу для N = 13 [5] и для N = 14 [8].
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В работе [6] нами были перечислены все локально-жесткие упаковки конгруэнт-
ных кругов на сфере с числом кругов N < 12. Эта задача эквивалентна перечислению
сферических неприводимых контактных графов. С помощью списка неприводимых
контактных графов можно решать различные задачи об экстремальных упаковках
таких как задача Таммеса для сферы и проективной плоскости, задача о наиболь-
шем числе контактов у сферических упаковок, задачи Данцера и другие задачи о
неприводимых контактных графах [7].

Работа выполнена при частичной поддержке гранта NSF DMS–1400876 и гранта
РФФИ 15–01–99563.
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Д.Д. МОРДУХАЙ-БОЛТОВСКОЙ
И РОСТОВСКАЯ ГЕОМЕТРИЧЕСКАЯ ШКОЛА

Ю. С. Налбандян1

1ysnalbandyan@sfedu.ru, Южный федеральный университет

Основателем ростовской геометрической школы с полным основанием считает-
ся известный математик Дмитрий Дмитриевич Мордухай-Болтовской (1876–1952),
некоторые биографические данные о котором можно найти в [1], [2]. Выпускник Пе-
тербургского университета, он начал преподавательскую и научную деятельность в
Варшаве – сначала в Варшавском политехническом институте, затем в Варшавском
императорском университете, вместе с коллективом которого в 1915 году переехал
в Ростов-на-Дону. В варшавский период он подготовил к печати 9 работ геометри-
ческой тематики, при этом его интересы были сосредоточены на отдельных про-
блемах дифференциальной и проективной геометрий, на теории алгебраических
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кривых и на теории геометрических построений. В первой части доклада предпо-
лагается дать обзор этих публикаций, а также проанализировать программы курсов
аналитической геометрии, проективной геометрии и начертательной геометрии,
которые учёный читал в Ростове-на-Дону и в Новочеркасске.

В 1926 году в Ростове-на-Дону по инициативе Д. Д. Мордухай-Болтовского широ-
ко праздновалось 100-летие со дня знаменитого выступления Н. И. Лобачевского. В
воспоминаниях выпускницы мехмата Ю. Хаплановой [3] упоминается о поездке ро-
стовской делегации в Казань, где ученый выступил с речью «Лобачевский и основ-
ные логические проблемы в математике». Во второй части доклада речь пойдет и
об этом выступлении, и о работах ученика Д. Д. Мордухай-Болтовского, известного
ростовского геометра Николая Михайловича Несторовича (1891–1955), признанно-
го специалиста в области неевклидовой геометрии, который определился в выборе
тематики как раз после Казани.

Среди учеников Д. Д. Мордухай-Болтовского и лауреат премии имени Н. И. Ло-
бачевского, член-корреспондент АН СССР Николай Владимирович Ефимов (1910–
1982), уехавший из Ростова в 1930, но навсегда сохранивший привязанность к Alma
Mater, и Константин Константинович Мокрищев (1910–1981), который стал связу-
ющим звеном между геометрами факультета и Н. В. Ефимовым и передал свой пе-
дагогический талант и любовь к науке многим своим ученикам, продолжающим и
сегодня активную научную деятельность и формирующим свои научные школы. За-
вершающая часть доклада будет посвящена деятельности этих учёных и их после-
дователей.

В работе используются материалы из Государственного Архива Ростовской обла-
сти и Архива Ростовского государственного университета, собранные М. Б. Налбан-
дян.

Литература

[1] Минковский В. Л. Д.Д. Мордухай-Болтовской. К 50–летию научно-
педагогической деятельности // Математика в школе. – 1949. – № 2. – С. 45–57.

[2] Черняев М.П̇., Несторович Н. М., Ляпин Н. М. Дмитрий Дмитриевич Мордухай-
Болтовской (1876-1952)// УМН. – 1953. – Т. 8, в. 4(56). – C. 131-139.

[3] Хапланова Ю. С. Прошлое // Альманах «Ковчег». – 2003. – № 3. – С.172-254.

О ГЕОМЕТРИИ МНОЖЕСТВА ДОСТИЖИМОСТИ ВЕКТОРНЫХ ПОЛЕЙ

А. Я. Нарманов1, С. С. Саитова2

1narmanov@yandex.ru, Национальный Университет Узбекистана
2sayoss1985@mail.ru, Национальный Университет Узбекистана

Пусть M – гладкое многообразие размерности n, V (M) – множество всех гладких
векторных полей, определенных на M .

Рассмотрим множество D ⊂V (M), через A(D) обозначим наименьшую подалгеб-
ру Ли, содержащую множество D.
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Определение 1. Орбита L(x) семейства D векторных полей, проходящая через
точку x, определяется как множество таких точек y из M , для которых существуют
действительные числа t1, t2, . . . , tk и векторные поля X1X2, . . . , Xk из D (где k− произ-
вольное натуральное число) такие, что

y = X
tk
k (X

tk−1
k−1 (...(X t1

1 (x))...)).

Определение 2. Точка

y = X
tk
k (X

tk−1
k−1 (...(X t1

1 (x))...)) ∈ L(x)

называется T – достижимой из точки x ∈ M , если
∑
i

ti = T.

Обозначим через Ax(T ) множество точек, которые T – достижимы из точки x.
Изучению структуры множества достижимости и орбит систем гладких вектор-

ных полей посвящены исследования многих математиков в связи с ее важностью в
теории оптимального управления, в исследовании динамических систем, в геомет-
рии и теории слоений [1-4].

В работе [3] доказано, что каждая орбита семейства гладких векторных полей яв-
ляется гладким многообразием.

Нами доказана следующая теорема
Теорема 1.Множество Ax(T ) для каждого x ∈ M при любом T является погружен-

ным подмногообразием орбиты L(x) коразмерности единица или ноль.

Следующая теорема доказана в [3].
Теорема 2. Пусть M - гладкое связное многообразие размерности n. Существует

система D, состоящая из двух векторных полей такая, что L+(x) = M для каждой
точки x ∈ M .

С использованием теоремы 2 доказана следующая теорема
Теорема 3.ПустьM – гладкое связноемногообразие размерностиn Ê 2.Существу-

ет системаD, состоящая из трех векторных полей такая, что Ax(0) = M для каждой
точки x ∈ M .

Работа выполнена при финансовой поддержке Министерства высшего и среднего
специального образования республики Узбекистан (проект Ф4-04).
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НЕРАВЕНСТВА ТИПА ХАРДИ С ВЕСОВЫМИ ФУНКЦИЯМИ, ЗАВИСЯЩИМИ
ОТ ФУНКЦИИ БЕССЕЛЯ

Р. Г. Насибуллин1

1NasibullinRamil@gmail.com, Казанский (Приволжский) федеральный университет

В математике, в особенности в теории вложения функциональных пространств,
и в математической физике широкое развитие получили неравенства, включающие
функцию и ее производную. К таким видам неравенств относятся, например, нера-
венства типа Харди. Неравенства типа Харди развивались в разных направлениях.
Например, в работах Х. Брезиса и М. Маркуса, М. Хоффман-Остенхоф, Т. Хоффман-
Остенхоф и A. Лаптева, Дж. Тидблума, Ф.Г. Авхадиева и К.-Й. Виртса доказаны нера-
венства с дополнительными слагаемыми. В статье [1] установлены неравенства ти-
па Харди, точные константы в которых зависят от первого положительного корня
следующего дифференциального уравнения

r Jν(z)+2z J ′(z) = 0,νÊ 0,r > 0,

где Jν – функция Бесселя, определяемая следующим образом:

Jν(x) =
∞∑

k=0

(−1)k x2k+ν

22k+νk !Γ(k +1+ν)
, x > 0,νÊ 0.

Пусть Ω – выпуклая область с конечным внутренним радиусом

δ0 = δ0(Ω) = sup
x∈Ω

δ,

где δ= δ(Ω) – функция расстояния от точки x ∈Ω до границы областиΩ. Через C 1
0 (Ω)

обозначим семейство непрерывно дифференцируемых функций с компактным но-
сителем в Ω.

Приведем формулировку результата из [1]:
Пусть s ∈ (0,+∞), q ∈ (0,+∞), ν ∈

[
0, s

q

]
. Тогда для произвольной функции f ∈C 1

0 (Ω),

такой что
∫
Ω
|∇ f |2δ−s+1d x <∞, выполнено следующее точное неравенство

∫
Ω

|∇ f |2
δs−1

d x Ê s2 +ν2q2

4

∫
Ω

| f |2
δs+1

d x + q2λ2
ν(2s/q)

4δ
q
0

∫
Ω

| f |2
δs+1−q

d x, (1)

где δ0 = δ0(Ω) = supx∈Ωδ.
Мы доказали Lp-аналог неравенства (1). Отметим, что весовые функции в полу-

ченных неравенствах зависят от функции Бесселя порядка ν. Приведем лишь один
частный случай доказанного утверждения. Справедлива следующая
Теорема. Пусть Ω – n-мерная область выпуклая область с конечным внутрен-

ним радиусом δ0 и функция f ∈ C 1
0 (Ω), такая что

∫
Ω
|∇ f |pδ−(s−p+1)d x < ∞. Если

s ∈ (0,+∞), p ∈ [2,+∞),r = s/(p −1), то∫
Ω

|∇ f |p
δs−p+1

d x Ê (p −1)r pπp

2pδ2r
0

∫
Ω

| f |p
δ1−r

ctgp−2

(
πδr

2δr
0

)
d x.
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Литература

[1] Avkhadiev F. G., Wirths K. -J., Sharp Hardy-type inequalities with Lamb’s constants //
Bull. Belg. Math. Soc. Simon Stevin. – 2011 – V. 18 – P. 723–736.

ОДНОПАРАМЕТРИЧЕСКИЕ СЕМЕЙСТВА
МНОГОЛИСТНЫХ ОТОБРАЖЕНИЙ

С. Р. Насыров1
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В статье [1] нами был предложен приближенный метод нахождения полинома,
униформизирующего заданную компактную риманову поверхность рода нуль. В
[2–4] этот метод был распространен на случай компактных римановых поверхно-
стей рода 1 (комплексных торов). Существенным ограничением являлось то, что
над бесконечно удаленной точкой униформизируемые поверхности имели только
одну точку ветвления максимальной кратности.

Мы рассматриваем здесь более общую задачу, когда на рассматриваемые рима-
новы поверхности не накладывается никаких ограничений, кроме компактности и
фиксации рода ρ (ρ = 0 или ρ = 1). В случае односвязных поверхностей мы нахо-
дим униформизирующую заданную поверхность рациональную функцию, в случае
комплексных торов — соответствующую эллиптическую функцию.

Метод основан на рассмотрении однопараметрических семейств мероморфных
функций и включении заданной римановой поверхности S в гладкое семейство по-
верхностей S = S(t ), 0 É t É 1, в качестве финального элемента: S = S(1). Eсли при
t = 0 нам известна униформизирующая функция, то известны положения ее крити-
ческих точек и полюсов. Мы находим систему обыкновенных дифференциальных
уравнений, которым удовлетворяют критические точки и полюса семейства и, ре-
шая задачу Коши для нее с начальными данными, соответствующими поверхности
S(0), мы определяем все параметры для функции, униформизирующей поверхность
S(1).

Рассмотрены примеры, подтверждающие эффективность предложенного мето-
да.

Работа выполнена при финансовой поддержке РФФИ (проект 14-01-00351).

Литература

[1] Насыров С. Р. Нахождение полинома, униформизирующего заданную компактную
риманову поверхность // Матем. заметки. – 2012. – V. 91. – No 4. – P. 597–607.



256 СЕКЦИОННЫЕ ДОКЛАДЫ

[2] Насыров С. Р. One-parametric families of elliptic functions uniformizing complex tori //
Комплексный анализ и его приложения. Материалы VII Петрозаводской межд.
конф., Петрозаводск, Изд-во Петрозаводск. ун-та, 2014. – C. 78–79.

[3] Насыров С. Р. Однопараметрические семейства многолистных функций и рима-
новых поверхностей // Современные методы теории функций и смежные про-
блемы. Матер. межд. конф. «Воронежская зимняя матем. школа», Воронеж, Изд.
дом ВГУ, 2015. – C. 83–85.

[4] Насыров С. Р. Однопараметрические семейства комплексных торов над сферой
Римана с точками ветвления произвольного порядка // Теория функций, ее при-
ложения и смежные вопросы. Матер. 12-й межд. Казанск. школы-конф. Тр.
Матем. центра им. Н. И. Лобачевского. – Казань: Изд-во Казан. матем. об-ва,
2015. – T. 51. – C. 327-329.

АСИМПТОТИКИ КРИТЕРИЕВ ДЛЯ ОБОБЩЕННОГО
ГАММА-РАСПРЕДЕЛЕНИЯ

П. А. Новиков1

1novikov@it.kfu.ru, Казанский (Приволжский) федеральный университет, Высшая
школа ИТИС

В различных моделях теории надежности используется обобщенное гамма-ра-
спределение [1] с функцией плотности

1

θ
f
(x

θ
;d ,δ

)
= 1+δ
Γ((1+d)/(1+δ))

θ−(1+d)/(1+δ)xd ×exp(−x1+δ/θ);

x Ê 0, θ > 0; d ,δ>−1. (1)

В задаче проверки гипотез по выборке X1, . . . , Xn о параметрах формы d и δ обоб-
щенного гамма-распределения при мешающем параметре θ важную роль играет
статистика T = T (c1,c2) = c1T1 + c2T2, где T1 =∑

ln xk −n ln
(∑

xk
)
, T2 = n

[
ln

(∑
xk

)−∑
xk ln xk /

∑
xk

]
(см. [2], [3]).

Асимптотические разложения (при δ → 0) среднего и дисперсии статистики T
были получены в работе [3] (см. лемму), при этом точность асимптотики среднего
составляла O(δ2), а дисперсии — O(δ). В настоящей работе асимптотическое разло-
жение дисперсии T уточняется до O(δ2).

Теорема. Пусть X1, . . . , Xn , n Ê 2 — независимые случайные величины, одинаково
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распределеные согласно обобщенному гамма-распределению (1). Тогда

DT (c1,c2) = n
{

c2
1[ψ′(1+d)−nψ′(n(1+d))]+2c1c2[−ψ′(2+d)+nψ′(1+n(1+d))]

+ c2
2

[
−nψ′(1+n(1+d))+ n(2+d)

1+n(1+d)
ψ′(2+d)

]
+δ(1+d)

(
c2

1[−ψ′′(2+d)+n2ψ′′(1+n(1+d))]

+2c1c2

[
−n2ψ′′(1+n(1+d))+ n(2+d)

(1+n(1+d))
ψ′′(2+d)− (n −1)n

(1+n(1+d))2
ψ′(2+d)

]
+ c2

2

[
− n2(2+d)(3+d)

(1+n(1+d))(2+n(1+d))
ψ′′(2+d)+n2ψ′′(1+n(1+d))

− 3(n −1)n2(1+d)

(1+n(1+d))2(2+n(1+d))
ψ′(2+d)

])
+O(δ2)

}

при δ→ 0.
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НАДГРУППЫ УНИПОТЕНТНЫХ ПОДГРУПП
ГРУПП ЛИЕВА ТИПА НАД ПОЛЯМИ

Я. Н. Нужин1

1nuzhin2008@rambler.ru, Сибирский федеральный университет

Описаны подгруппы группы лиева типа над полем, содержащие ее максималь-
ную унипотентную подгруппу. Полученные результаты похожи на описание пара-
болических подгрупп групп с (B , N )-парой, данное Ж. Титсом.

Пусть Φ — приведенная неразложимая система корней, Π = {r1, ...,rl } — множе-
ство ее фундаментальных корней, Φ+ — множество положительных корней отно-
сительно Π. Далее Φ(F ) — группа Шевалле типа Φ ранга l над полем F . Группа Φ(F )
порождается корневыми подгруппами Xr = {xr (t ) | t ∈ F }, r ∈Φ, где xr (t ) — соответ-
ствующий корневой элемент из Φ(F ). Нам потребуются следующие естественные
подгруппы группы Φ(F ): унипотентная подгруппа U = 〈Xr | r ∈ Φ+〉, мономиаль-
ная подгруппа N = 〈nr (t ) | r ∈ Φ, t ∈ F∗〉, диагональная подгруппа H = 〈hr (t ) | r ∈
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Φ, t ∈ F∗〉 и борелевская подгруппа B = U H . Здесь 〈M〉— подгруппа, порожден-
ная подмножеством M некоторой группы, F∗ — мультипликативная группа по-
ля F и nr (t ) = xr (t )x−r (−t−1)xr (t ), hr (t ) = nr (t )nr (−1). Положим также nr = nr (1),
I = {1,2, . . . , l }.

Аналоги подгрупп Xr ,U , N , H ,B и множеств Φ,Φ+,Π, I для групп Шевалле Φ(F )
(нормального типа) существуют и для скрученных групп Шевалле Φn(F ). Совокуп-
ность всех групп Φ(F ) и Φn(F ) обычно называют группами лиева типа. Далее G(F )
— группа лиева типа на полем F , где G есть Φ или Φn , n — порядок скручивающего
автоморфизма.

Надгруппы борелевской подгруппы B и сопряженные с ними называются пара-
болическими подгруппами группы G(F ). В силу известного результата Ж.Титса [1]
параболические подгруппы, содержащие подгруппу B , исчерпываются подгруппа-
ми P J = 〈B ,nr j | j ∈ J〉, J ⊆ I . Здесь этот результат обобщается, а именно, описы-
ваются надгруппы унипотентной подгруппы U . Для любого J ⊆ I положим Q J =
〈U ,nr j | j ∈ J〉 и через ΦJ обозначим подсистему корней с базой {ri | i ∈ J }.

Теорема. Пусть M — подгруппа группы лиева типаG(F ) над полем F , содержащая
унипотентную подгруппуU . Тогда для некоторого подмножества J ⊆ I и подходящей
диагональной подгруппы HM É H , нормализуемой всеми элементами nr j , j ∈ J , под-
группа M совпадает с произведениемQ J HM , причемQ J = 〈Xr | r ∈Φ+∪ΦJ 〉.

Для группы Шевалле типа Al утверждение теоремы следует из результатов ста-
тьи Д.А.Супруненко [2], в которой описаны надгруппы унитреугольной подгруппы
общей линейной группы над произвольным телом.

Работа выполнена при финансовой поддержке РФФИ (проект 16–01–00707-а).
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A -(C3)- И A -(D3)-МОДУЛИ

Ч. Х. Н. Нян1

1tranhoaingocnhan@gmail.com, Казанский (Приволжский) федеральный универси-
тет, кафедра алгебры и математической логики

Пусть M — правый R-модуль и A — множество подмодулей модуля M , которое
замкнуто относительно изоморфных образов. Следуя [3] и [4] введем следующие
условия:

A -(C3): Для каждых прямых слагаемых M1, M2 модуля M таких, что M1, M2 ∈A

и M1 ∩M2 = 0, подмодуль M1 +M2 является прямым слагаемым модуля M .
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A -(D3): Для каждых прямых слагаемых M1, M2 модуля M таких, что M/M1,
M/M2 ∈A и M1+M2 = M , подмодуль M1∩M2 является прямым слагаемым модуля
M .

Модуль M назовем A -(C3)-модулем, если модуль M удовлетворяет условию A -
(C3). Аналогично определяется понятие A -(D3).
Теорема. Пусть A — класс правых R-модулей с локальными эндоморфизмами, со-

держащий все простые правые R-модули и замкнутый относительно изоморфизмов.
Если все правые R-модули A -инъективны, то следующие условия эквивалентны для
кольца R:
(1) R — полуцепное артиново кольцо с J 2(R) = 0.
(2) Над кольцом R каждый правыйA -C3-модуль является квазиинъективеным.
(3) Над кольцом R каждый правыйA -C3-модуль является C 3-модулем.
Следствие. [2, Теорема 3.4] Следующие условия эквивалентны для кольца R:
(1) R — полуцепное артиново кольцо и J 2(R) = 0.
(2) Над кольцом R каждый правый просто-прямо-инъективный модуль является

квазиинъективеным.
(3) Над кольцомR каждыйправый просто-прямо-инъективныймодуль являетсяC 3-

модулем.
Теорема. Пусть A — класс правых R-модулей с локальными эндоморфизмами, со-

держащий все простые правые R-модули и замкнутый относительно изоморфизмов.
Если все правые R-модули A -проективны, то следующие условия эквивалентны для
кольца R:
(1) R — полуцепное артиново кольцо и J 2(R) = 0.
(2) Над кольцом R каждый правыйA -D3-модуль является квазипроективеным.
(3) Над кольцом R каждый правыйA -D3-модуль является D3-модулем.
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О РАВНОМЕРНОЙ СХОДИМОСТИ МЕТОДА ВЕЙВЛЕТ-МОМЕНТОВ
РЕШЕНИЯ СИНГУЛЯРНОГО ИНТЕГРАЛЬНОГО УРАВНЕНИЯ

А. В. Ожегова1, Л. Э. Хайруллина2

1Alla.Ozhegova@kpfu.ru, Казанский (Приволжский) федеральный университет
2Liliya-v1@yandex.ru, Казанский (Приволжский) федеральный университет

В данной работе для решения сингулярного интегрального уравнения первого
рода с ядром Коши

K x ≡ 1

π

1∫
−1

√
1−τ2x(τ)

τ− t
dτ+

1∫
−1

√
1−τ2h(t ,τ)x(τ)dτ= f (t ), |t | < 1, (1)

где h(t ,τ), f (t ) — известные непрерывные функции в своих областях определения,
x(τ) — искомая функция, а сингулярный интеграл понимается в смысле главного
значения по Коши, применяется метод моментов, основанный на аппроксимации
искомой функции вейвлетами Чебышева II рода.

Указанное уравнение рассматривается на паре весовых пространств (X ,Y ), яв-
ляющихся некоторыми сужениями пространств непрерывных функций, в которых
установлена [1] корректность задачи.

Приближенное решение уравнения (1) ищется в виде

xm(t ) = a0ϕ0,0(t )+a1ϕ0,1(t )+
m−1∑
j=0

2 j−1∑
k=0

b j ,kψ j ,k (t ),

где

ϕm,k (t ) =
2m∑
j=0

U j (t )U j

(
ξ(2m+1)

k

) 2
∣∣∣sin π(k+1)

2m+2

∣∣∣
p
π(2m +2)

,m = 0,1, . . . ,k = 0,2m ,

ψm,k (t ) =
2m+1∑

j=2m+1
U j (t )U j

(
ξ(2m)

k

) 2
∣∣∣sin π(k+1)

2m+1

∣∣∣
p
π(2m +1)

,m = 0,1, . . . ,k = 0,2m −1

– так называемые масштабирующая функция и вейвлет функция Чебышева II рода
соответственно [2],U j (t ) = sin( j+1)arccos tp

1−t 2
, j = 0,1,2, . . . – полиномы Чебышева II рода,

ξ(n)
k = cos π(k+1)

n+1 ,k = 0, . . . ,n −1 – нули полинома Un(t ).

Неизвестные коэффициенты a0, a1,b j ,k ( j = 0,m −1,k = 0,2 j −1) находят-

ся из условия ортогональности невязки системе функций
{

T j+1(t )
}2m

j=0
,m =

1,2, . . . ,Tn(t ) =
cosn arccos t — полиномы Чебышева I рода.

В результате имеем систему линейных алгебраических уравнений

a0α0 +a1α1 +
m−1∑
j=0

2 j−1∑
k=0

b j ,kα j ,k = fi , i = 0,2m , (2)
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где

α0 =
1∫

−1

T j+1(t )
p
π
√

1− t 2

 1

π

1∫
−1

√
1−τ2h(t ,τ)(1+2τ)dτ− (2t 2 + t −1)

d t

α1 =
1∫

−1

T j+1(t )
p
π
√

1− t 2

 1

π

1∫
−1

√
1−τ2h(t ,τ)(1−2τ)dτ− (−2t 2 + t +1)

d t

a j ,k =−
1∫

−1

T j+1(t )√
1− t 2

2m+1∑
j=2m+1

T j+1(t )U j

(
ξ(2m)

k

) 2
∣∣∣sin π(k+1)

2m+1

∣∣∣
p
π(2m +1)

d t+

+ 1

π

1∫
−1

T j+1(t )√
1− t 2

1∫
−1

√
1−τ2h(t ,τ)ψ j ,k (τ)dτd t ,

f j =
1∫

−1

1√
1− t 2

f (t )T j+1d t .

Теорема. Пусть выполнены условия:
а) уравнение (1) имеет единственное решение x∗ ∈ X при любой правой части f ∈ Y ;
б) функция f (t ) ∈W r Hα, ядро h(t ,τ) ∈W r Hα по переменной t равномерно относи-

тельно τ.
Тогда начиная с некоторого m ∈N, система метода вейвлет-моментов (2) имеет

единственное решение a∗
0 , a∗

1 ,b∗
j ,k ( j = 0,m −1,k = 2 j −1), приближенные решения x∗

m

сходятся к точному решению x∗ в пространстве X со скоростью

‖x∗−x∗
m‖X =O

(
ln(2m +1)

(2m +1)r+α
)

,0 <αÉ 1,r Ê 0.
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O PЯДАХ ФУРЬЕ ПО СОБСТВЕННЫМ ФУНКЦИЯМ ДИСКРЕТНОГО
ОПЕРАТОРА ШТУРМА-ЛИУВИЛЛЯ

Б. П. Осиленкер1

1b_osilenker@mail.ru, НИУ “Московский государственный строительный универси-
тет”

Пусть

J =


b0 a1 0 0 . . .
a1 b1 a2 0 . . .
0 a2 b2 a3 . . .

. . . . . . . . . . . . . . .

 (1)

бесконечная якобиева симметричная матрица с an+1 > 0,bn ∈ R. Обозначим через
 L оператор

(Lu)n = an+1un+1 +bnun +anun−1(n = 0,1,2, . . . ;u−1 = 0),

где u = (un)∞n=0 ∈ l 2. Задача на собственные значения определяет систему полино-
мов pn(x), заданных трехчленным рекуррентным соотношением

xpn(x) = an+1pn+1(x)+bn pn(x)+an pn−1(x)

(n = 0,1,2, . . . ; p−1(x) = 0).

Если элементы якобиевой матрицы (1) ограничены, то существует единственная ко-
нечная положительная борелевская мера µ такая, что Supp(µ) = [−1,1]

⋃
S есть ком-

пакт в R и {pn(x)} образуют ортонормированную по мереµ систему полиномов n-ой
степени. Рассмотрим класс M якобиевых матриц (1), для которых

limn→∞ an = 1/2, limn→∞bn = 0.

Тогда Supp (µ) = [−1,1]
⋃

S, S – конечное или счетное множество действительных чи-
сел, лежащих вне отрезка [−1,1], которые могут накапливаться лишь к концам от-
резка. Как показал Е.А.Рахманов, если µ′(x) > 0 почти всюду, то ассоциированная
матрица Якоби принадлежит классу M. Будем говорить, что дискретный оператор
Lпринадлежит классу ℜ, если ассоциированная якобиева матриц (1) удовлетворяет
соотношению ∑∞

n=0(|an −an+1|+ |bn −bn+1|) <∞. (2)

Отметим, что матрицы Якоби (1) классических ортонормированных полиномов
Якоби, полиномов Поллачека и нагруженных полиномов Гегенбауэра удовлетво-
ряют оценке (2). В докладе будут рассмотрены линейные дискретные и полуне-
прерывные методы суммирования рядов Фурье по ортонормированным собствен-
ным функциям дискретного оператора класса ℜ. Получены весовые оценки част-
ных сумм и линейных средних, порожденных линейными треугольными матри-
цами суммирования. В качестве следствия доказаны утверждения о суммируемо-
сти рядов Фурье линейными методами почти всюду и равномерно на интервалах
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непрерывности. В случае полунепрерывных методов суммирования особое внима-
ние будет уделено результатам для обобщенных средних Пуассона -Абеля

Un( f ; x;λ) =∑∞
n=0e−λnhck ( f )pk (x), limn→∞λn =+∞;h > 0.

Доказательства полученных результатов основаны на построении “горбатых мажо-
рант” ядер и весовых оценках максимальных функций. Ряд скалярных утверждений
переносится на случай якобиевых матриц с матричными элементами.

О СОЛИТОНАХ РИЧЧИ НА МНОГООБРАЗИЯХ УОКЕРА
МАЛОЙ РАЗМЕРНОСТИ

Д. Н. Оскорбин1, Е. Д. Родионов2, И. В. Эрнст3

1oskorbin@yandex.ru, Алтайский государственный университет
2edr2002@mail.ru, Алтайский государственный университет
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Важным обобщением метрик Эйнштейна на (псевдо)римановых многообра-
зиях являются солитоны Риччи. Данное понятие впервые было предложено
Р. Гамильтоном в работе [1].

Полное (псевдо)риманово многообразие (M , g ) называется солитоном Риччи, ес-
ли метрика g удовлетворяет уравнению: r =C ·g +LX g , где r — тензор Риччи, C ∈ R
— константа, LX g — производная Ли метрики g по направлению полного диффе-
ренцируемого векторного поля X .

Исследованию солитонов Риччи на (псевдо)римановых многообразиях посвяще-
ны работы многих математиков (см., например, обзор [2]). Так, например, солитоны
Риччи на однородных псевдоримановых многообразиях малой размерности были
исследованы Дж. Кальварузо [3]. В данной работе на строение многообразия нала-
гается ограничение другого характера: предполагается, что оно является многооб-
разием Уокера.

Многообразие Уокера — это n-мерное псевдориманово многообразие, обладаю-
щее параллельным распределением изотропных r -плоскостей, где r É n

2 . Геометрия
многообразий Уокера рассмотрена в работе [4], известно их применение в теорети-
ческой физике. Группы голономии конформно плоских лоренцевых многообразий
изучены в работах А. С. Галаева [5].

Уравнение солитона Риччи на трехмерных лоренцевых многообразиях Уокера
изучалось в работе [6], где была показана его разрешимость. В данной работе най-
дены новые солитоны Риччи на трехмерных лоренцевых многообразиях Уокера, а
также исследовано уравнение солитона Риччи на четырехмерных конформно плос-
ких лоренцевых многообразиях Уокера, найдены нетривиальные решения.

Работа выполнена при поддержке РФФИ (гранты: №16–01–00336A,
№16–31–00048мол_а), Минобрнауки РФ в рамках базовой части государственного
задания в сфере научной деятельности ФГБОУ ВПО «Алтайский государственный
университет» (код проекта: 1148).
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О ГРАДУИРОВКАХ C∗-АЛГЕБРЫ,
ПОРОЖДЕННОЙ ОТОБРАЖЕНИЕМ И МУЛЬТИПЛИКАТОРАМИ

Е. В. Патрин1

1evgeniipatrin@mail.ru, Казанский (Приволжский) федеральный университет, ин-
ститут физики

Пусть задано отображение ϕ : X −→ X счётного множества X в себя, удовлетво-
ряющее условиям конечности прообразов card(ϕ−1[x]) <∞ для любого x ∈ X и от-
сутствия циклических элементов, т. е. ϕn(x) 6= x ни для каких n ∈N и x ∈ X .

Тогда в гильбертовом пространстве функций l 2(X ) возникает оператор

Tϕ : l 2(X ) −→ l 2(X ), Tϕ( f ) := f ◦ϕ
обратного образа отображения ϕ.

Утверждение. Операторы Tϕ∗Tϕ и TϕTϕ∗ замыкаемые, существенно самосопря-
жённые, их спектры совпадают и дискретные.

Они индуцируют разложения пространства l 2(X ) в прямые суммы своих инва-
риантных подпространств l 2(Xk ) и l 2

k , которые являются начальными и конечны-
ми подпространствами для оператора частичной изометрии Uk , при этом Tϕ =∑
k∈N

p
k Uk и Uk Ul

∗ = 0, при k 6= l . Рассмотрим семейство мультипликаторов

{M f : l 2(X ) −→ l 2(X ) : M f (g ) := f g } f ∈l∞(X ).
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Обозначим черезMϕ C∗-подалгебру алгебры B(l 2(X )), порождённую с помощью
семейства операторов частичной изометрии {Uk }k∈N и семейства мультипликато-
ров ([1]).
Мономом алгебры Mϕ назовем любое конечное произведение элементов мно-

жества {M f } f ∈l∞(X ) ∪ {Uk }k∈N∪ {Uk
∗}k∈N.

Введём понятие индекса мономов ind : Monϕ −→Z, положив ind(M f ) := 0,
ind(Uk ) := 1, ind(Uk

∗) := −1. Индексом ind(V ) ненулевого монома V положим
равным сумме индексов частичных изометрий, участвующих в его представлении.
Индекс нулевого монома положим равным нулю.

Обозначим через Mϕ,n операторное пространство в алгебре Mϕ, поро-
ждённое мономами индекса n.

Теорема 1 АлгебраMϕ является Z-градуированной алгеброй: Mϕ = ⊕
n∈Z

Mϕ,n .

Рассмотрим C0(N,Z) — аддитивную группу всех отображений из N в Z с конеч-
ным носителем относительно поточечного сложения. Каждый n ∈ C0(N,Z) имеет
вид

∑
k∈N

n(k)δk , где δk :N−→Z, δk (l ) := δk l . Определим мультииндекс монома как

отображение m-ind : Monϕ −→ C0(N,Z), полагая m-ind(M f ) := 0, m-ind(Uk ) := δk
и m-ind(Uk

∗) := −δk . Определим m-ind(V ) монома V как сумму мульти-индексов
чатичных изометрий, участвующих в его представлении.

Операторное пространство, порождённое мономами мульти-индекса n обозна-
чим через Mϕ,n.

Теорема 2.
Mϕ = ⊕

n∈C0(N,Z)
Mϕ,n.
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Пусть A — множество, n Ê 0. Тогда n-местная операция это f : An → A, а n-
местная мультиоперация это f : An → 2A.

Обозначим через P n
A, P A — множества n-местных и всех операций, а через Mn

A ,
MA — множества n-местных и всех мультиопераций. Операции можно рассматри-
вать как частный случай мультиопераций. Мультиоперация f на множестве A назы-
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вается пустой, полной, проектирования по i аргументу, если для любых a1, . . . , an из
A выполняется, соответственно, f (a1, ..., an) =∅, f (a1, ..., an) = A, f (a1, ..., an) = {ai }.

Определим суперпозицию мультиопераций f , f1, ..., fn так: f ∗
( f1, ..., fn)(a1, ..., am) =⋃

bi∈ fi (a1,...,am) f (b1, ...,bn);
разрешимость мультиоперации f по i аргументу так: µi f (a1, ...an) = {a | ai ∈

f (a1, ..., , ai−1, a, ai+1, ..., an)};
пересечение мультиопераций так:

( f ∩ g )(a1, ..., an) = f (a1, ..., an)∩ g (a1, ..., an).
Клоном над множеством A называется любое подмножество K ⊆ P A, содержащее

все операции проектирования и замкнутое относительно суперпозиций. Суперк-
лоном над множеством A называется любое подмножество R ⊆ MA, содержащее
все мультиоперации пустые, полные, проектирования и замкнутое относительно
суперпозиций и разрешимостей.

В [1] установлена совершенная связь Галуа между клонами и суперклонами.
Алгеброй n-местных операций над множеством A называется любое подмноже-

ство K ⊆ P n
A, содержащее все n-местные операции проектирования и замкнутое от-

носительно суперпозиций. Алгеброй n-местных мультиопераций над множеством
A называется любое подмножество R ⊆ Mn

A , содержащее все n-местные мультиопе-
рации проектирования, пустую, полную мультиоперации и замкнутое относитель-
но суперпозиций, разрешимостей и пересечений. Введем обозначения:
[S] — клон над A, порожденный множеством S ⊆ P A и
[S]n = [S]∩P n

A; [K ]n — алгебра n-местных операций над A, порожденная множе-
ством K ⊆ P n

A.
〈T 〉 — суперклон, порожденный множеством T ⊆ MA и 〈T 〉n = 〈T 〉 ∩ Mn

A , где T ⊆
MA; 〈R 〉n — алгебра n-местных мультиопераций над A, порожденная множеством
R ⊆ Mn

A .

Теорема. Если K ⊆ P n
A, R ⊆ Mn

A , то выполняются:
а) [K ]n = [K ]n ; б) 〈R 〉n = 〈R 〉n .

Следствие 1. а) Решетка алгебр n-местных операций и решетка клонов, порожда-
емых n-местными операциями, совпадают. б) Решетка алгебр n-местных мультио-
пераций и решетка суперклонов, порождаемых n-местными мультиоперациями, сов-
падают.
Следствие 2. а) Решетка алгебр n-местных операций изоморфно вложима, как

верхняя полурешетка, в решетку клонов. б) Решетка алгебр n-местных мультиопе-
раций изоморфно вложима, как верхняя полурешетка, в решетку суперклонов.
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НЕКОММУТАТИВНАЯ АЛГЕБРА И КРИПТОСИСТЕМА RSA

К. А. Петухова1
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В работах [1], [2] было предложено обобщение известной криптосистемы RSA,
котором вместо натуральных чисел рассматривались идеалы коммутативных де-
декиндовых колец. При этом требовалась лишь конечность факторколец по макси-
мальным идеалам.

При дальнейшем анализе стало понятно, что при построении алгоритма, обоб-
щающего RSA, можно отказаться от ряда первоначальных ограничений. В частно-
сти, вместо требования коммутативности кольца можно ограничиться условием
коммутативности произведений иделалов. Назовем такие кольца CI-кольцами.

Пусть I — идеал CI-кольца R. Назовем его RSA-идеалом, если выполнены сле-
дующие условия. 1) Группа обратимых элементов R/I конечна. Ее порядок обозна-
чим черезϕ(I ), это аналог функции Эйлера. 2) Существуют натуральные числа e,d , t ,
1 < e,d <ϕ(I ), такие, что ed = 1+ϕ(I )t , и для каждого r ∈ R выполняется соотноше-
ние r ed ≡ r (mod I ).

Теорема. Пусть R есть CI-кольцо. Идеал I ⊂ R есть RSA-идеал тогда и только то-
гда, когда он является произведением различных максимальных идеалов.

Следствие. В определении RSA-идеала можно выбрать число e произвольным обра-
зом при условии НОД(e,ϕ(I )) = 1.

Примерами CI-колец, для которых представляется правдоподобным построение
эффективных аналогов криптосистемы RSA, являются некоторые некоммутатив-
ные кольца главных идеалов, в частности, некоторые кольца косых многочленов и
кольцо кватернионов Гурвица.
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АЛГЕБРАИЧЕСКИ ПОЛНЫЕ АЛГЕБРЫ
И ПСЕВДОПРЯМЫЕ ПРОИЗВЕДЕНИЯ

А. Г. Пинус1
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Алгебру A =< A;σ > назовем n-алгебраически полной, если для любого B ⊆ An

существует mB ∈ An такой, что BA = {mB }A. Здесь CA n-алгебраическое замыкание
множества C в алгебре A (наименьшее алгебраическое множество алгебры A вклю-
чающее в себя C ⊆ An). Алгебру A′ =< A′;σ > назовем n-алгебраическим пополне-
нием алгебры A, если A′ расширение A, A′ n-алгебраически полна и для любого
CA′ ⊆ (A′)n CA′ = {mB }A′ для некоторого B ⊆ An . Оператор n-алгебраического за-
мыкания на алгебре A может быть описан в терминах идеалов I hm-квазипорядка
на n-алгебраических пополнениях алгебры.

Теорема 1.Для любой универсальной алгебры не более чем счетной сигнатуры име-
ющей мощность ℵ Ê 2ℵ0 и любого натурального n существует n-алгебраическое по-
полнение этой алгебры мощности ℵ.

Пусть K некоторый класс n-порожденных алгебр сигнатуры σ обогащенных
до сигнатуры σ′ с помощью n констант порождающих эту алгебру. Под K-
псевдопрямым произведением алгебр Ai (i ∈ I ) из K будем пониматьσ′ — алгебру A
изK такую, что существуют гомоморфизмыπi алгебрыAнаAi (для i ∈ I ) и при этом
для любой L ∈K и любых гомоморфизмов ϕi алгебры L на Ai (для i ∈ I ) существует
гомоморфизм ψ алгебры L на A такой, что πiψ=ϕi (для i ∈ I ).

Через SubngA обозначим класс n-порожденных подалгебр алгебры A обогащен-
ных до сигнатуры σ′ своими порождающими.

Теорема 2. Алгебра A n-алгебраически полна тогда и только тогда, когда класс
SubngA замкнут относительно SubngA-псевдопрямых произведений.

Работа выполнена при финансовой подддержке Министерства образования и на-
уки РФ, гос. задание № 2014/138, проект 1052.

К ТЕОРИИ СИСТЕМ ПЯТИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В
ЧАСТНЫХ ПРОИЗВОДНЫХ ВТОРОГО ПОРЯДКА С ДВУМЯ

НЕИЗВЕСТНЫМИ ФУНКЦИЯМИ

Р. Пиров1, Ф. Ш. Рахимов
1pirov_60@mail.ru, Таджикский государственный педагогический университет

им. С. Айни

В отличие от [1], где рассматривались системы дифференциальных уравнений
(д.у.) первого порядка с одной, с двумя и более неизвестными функциями (на плос-
кости и в пространстве) [2-5], в настоящей работе изучаются системы пяти д.у. с
двумя неизвестними функциями U =U (x, y),V =V (x, y) с правыми частями, содер-
жащими нелинейным образом одну из производных Uxx ,Ux y ,Uy y ,Vxx ,Vx y ,Vy y :

Uxx ,Ux y ,Uy y ,Vxx ,Vx y = f i (x, y ;U ,V ,Ux ,Uy ,Vx ,Vy ,Vx y ), i = 1,5,(x, y) ∈ R2, (1)
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Uxx ,Uy y ,Vxx ,Vx y ,Vy y = f i (x, y ;U ,V ,Ux ,Uy ,Vx ,Vy ,Vx y ), i = 1,5,(x, y) ∈ R2. (2)

Неизвестные функции ищутся в классе C 4(Π0); здесьΠ0 = {(x, y) : |x−x0| É a, |y−y0| É
a} при некотором a > 0.

Основной метод исследования вышеуказанных систем состоит в замене произ-
водных первого и второго порядка на новые неизвестные функции (см., к приме-
ру, [5]), переходе к системам с бо́льшим числом неизвестных и в установлении свя-
зи с достаточно хорошо изученными системами в полных дифференциалах (п.д.-
системы).

1. Пусть дана система (1). ЧерезΠ=Π(a;b) обозначим прямоугольник в простран-
стве R9, заданный неравенствами: |x − x0| É a, |y − y0| É a, |U −U0| É b, |V −V0| É
b, |Ux −U 0

x | É b, |Uy −U 0
y | É b, |Vx − V 0

x | É b, |Vy − V 0
y | É b, |Vy y − V 0

y y | É b. Здесь и
всюду ниже индексом «ноль» будем снaбжать значения функций в точке (x0, y0).
Пусть f i = C 2(Π), i = 1,5. В силу замен Ux = p(x, y),Uy = q(x, y)Vx = τ(x, y),Vy =
θ(x, y),Uy y = θy = t (x, y) и очевидных тождеств py = qx ,τy = θx система (1) примет
вид: 

Ux = p(x, y),Uy = q(x, y),Vx = τ(x, y),Vy = θ(x, y),

px , py , qy ,τx ,τy = f i (x, y ;u, v, p, q,τ,θ, t ), i = 1,5.

qx = f 2,θx = f 5,θy = t ,

(3)

Пополняем (3) за счет равенств смешанных производных (р.с.п.) px y = py x , qx y =
qy x ,τx y = τy x ,èθx y = θy x , которые после несложных преобразованный, приводят к
уравнениям

f 2
t · tx − f 1

t · ty = L1, f 3
t · tx − f 2

t · ty = L2, f 5
t · tx − f 4

t · ty = L3, tx − f 5
t · ty = L4,

где Li , i = 1,4 явно выражаются через правые части (3) и их частные производные
первого порядка.
Теорема 1. Пусть f i ∈C 2(Π), f 1

t · f 3
t − (

f 2
t
)2 6= 0 и выполняются условия

f 5
t · f 6 − f 4

t · f 7 ≡ L3, f 6 − f 4
t · f 7 ≡ L4.

Тогда при тождественном выполнении условия

H(x, yu, v, p, q,τ,θ, t , ) ≡ f 6
y − f 7

x + f 6
u ·q − fu ·p + f 6

v ·τ− f 7
v ·τ+ f 6

p · f 2 − f 7
p · f 1+

+ f 6
q · f 3 − f 7

q · f 2 + f 6
τ · f 5 − f 7

τ · f 4 + f 6
θ · t − f 7

θ · f 5 + f 6
t · f 7 − f 7

t · f 6 ≡ 0

и α < min
(
a, b

M

)
, M = max | f i |, на Π(α,b) задача (1) и [U ]0 = c1, [V ]0 = c2, [Ux ]0 =

c3, [Uy ]0 = c4, [Vx ]0 = c5, [Vy ]0 = c6, [Uy y ] = c7 в классеC 4(Π0) разрешима единственым
образом.

2. Рассмотрим теперь нелинейную систему (2). Здесь, в отличие от (1), через Π=
Π(a,b) в R9 обозначается прямоугольник заданный неравенствами |x − x0| É a, |y −
y0| É a, |U −U0| É b, |V −V0| É b, |Ux −U 0

x | É b, |Uy −U 0
y | É b, |Vx −V 0

x | É b, |Vy −V 0
y | É

b, |Ux y −U 0
x y | É b.

Теорема 2. Пусть f i ∈ C 2(Π) и в некоторой окрестности точки
(
x0, y0,u0, v0,

u0
x ,u0

y , v0
x , v0

y ,u0
x y

)
выполнено условие Dx f 7 ≡ D y f 6. Пусть α < min

(
a, b

M

)
, M =
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max | f i |. Тогда на Π(α,b) задача (2) и [U ]0 = c1, [V ]0 = c2, [Ux ]0 = c3, [Uy ]0 = c4, [Vx ]0 =
c5, [Vy ]0 = c6, [Võy ] = c7 в классе C 4(Π0) разрешима единственным образом.
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НЕПОДВИЖНЫЕ ТОЧКИ И СОВПАДЕНИЯ ОТОБРАЖЕНИЙ
УПОРЯДОЧЕННЫХ МНОЖЕСТВ

Д. А. Подоприхин1

1podoprikhindmitry@gmail.com, Московский государственный университет имени
М.В.Ломоносова

Результаты доклада получены совместно с Т. Н. Фоменко.
Пусть заданы метрические пространства (X ,ρ), (Y , g ). Известно, что некоторые

результаты о совпадении пары отображений ψ,ϕ : X → Y при некоторых услови-
ях могут быть сведены к известной теореме Надлера о неподвижной точке много-
значного отображения, путем построения композиции отображения ϕ и обратного
к отображению ψ. Пример такой редукции представлен, например, в работе [1].

В докладе рассматривается вопрос об аналогичной редукции для отображений
упорядоченных множеств. Будут представлены новые результаты о существовании
неподвижных точек многозначного изотонного отображения. В частности, иссле-
дуется вопрос о наличии наименьшего элемента во множестве неподвижных точек
такого отображения. Кроме теорем существования, будут также представлены ре-
зультаты об итерационном поиске неподвижных точек.

В докладе будет продемонстрирована связь полученных теорем с недавними ре-
зультатами работы [2] о совпадениях пары отображений упорядоченных множеств,
одно из которых является изотонным, а другое – упорядоченно накрывающим.
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Также будет рассмотрен вопрос существования общей неподвижной точки се-
мейства коммутирующих отображений. Полученные результаты являются обобще-
нием результатов [3, теорема 2.1], [3, теорема 2.3].
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ИНФИНИТЕЗИМАЛЬНЫЕ КОНЦИРКУЛЯРНЫЕ ПРЕОБРАЗОВАНИЯ В
РИМАНОВОМ ПРОСТРАНСТВЕ ВТОРОГО ПРИБЛИЖЕНИЯ

С. М. Покась1, А. В. Крутоголова2

1pokas@onu.edu.ua, Одесский национальный университет им. И. И. Мечникова, Ин-
ститут математики, экономики и механики

201link01@rambler.ru, Одесский национальный университет им. И. И. Мечникова,
Институт математики, экономики и механики

Для заданного риманова пространства Vn(x; g ) в окрестности его произвольной
фиксированной точки M0 строится инвариантно связанное с ним пространство вто-
рого приближения Ṽ 2

n (y ; g̃ ) ([2],[3]):

g̃i j (y) = gi j
◦

+1

3
Riαβ j
◦

yαyβ, (1)

где gi j ◦ = gi j (M0), Riαβ j
◦

= Riαβ j (M0).

В пространстве Ṽ 2
n исследуются инфинитезимальные конциркулярные преобра-

зования ([4])

y ′h = yh + ξ̃h(y)δt (2)

Исследуя первую группу уравнений систесы ([1])

L
ξ̃

g̃i j =ψg̃i j

ψ,i j =φg̃i j ,

(3)
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получаем вектор смещения ξ̃h(y) этих преобразований в виде равномерно сходя-
щегося степенного ряда

ξ̃h(y) = ah
. +ah

.l y l +aαt h
α + 1

2

(
b
1

yh − 1

2
Abh

)
+

+
∞∑

p=2

[
(−1)p+1

2p −1
aαt (p)h

α+ 1

2p

(
b

2p−1
yh − 1

2
A bh
2p−2

)
+

+ (−1)p

4(2p −1)
A

p−1∑
s=1

2p −2s −1

p − s
bα

2p−2s−2
t (s)h

α

]
+ 1

3

(
b
2

yh − 1

2
A bh

1

)
+

+ 1

12
A bα

1
t h
α + 1

5

(
b
4

yh − 1

2
A bh

3

)
+

+
∞∑

p=3

{
1

2p +1

(
b

2p
yh − 1

2
A bh
2p−1

)
+ A

2p

[
p +1

2p +1
bα

2p−3
t h
α+

+
p−1∑
s=2

(−1)s+1(p − s)

2p −2s +1
bα

2p−2s+1
t (s)h

α

]}
, (4)

где A = gl1l2◦
y l1 y l2, t h

p = 1

3
Rh

.l1l2p
◦

y l1 y l2, t (p)h
s = t (p−1)h

αtαs (p = 2,3, ...).

Исследуя вторую группу уравнений системы (3), получено выражение функции
ψ(y) через функцию φ(y) и объекты пространства Vn в точке M0.
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О КОРРЕКТНОСТИ И НЕПРЕРЫВНОЙ ЗАВИСИМОСТИ ОТ ВХОДНЫХ
ДАННЫХ ОДНОЙ ЗАДАЧИ ТЕПЛОМАССОПЕРЕНОСА

А. Н. Поляков1, М. А. Степович2, Д. В. Туртин3

1andrei–polyakov@mail.ru, Калужский государственный университет им. К. Э. Циол-
ковского
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Ранее [1] были рассмотрены некоторые аспекты математического моделирова-
ния процессов взаимодействия широких электронных пучков с однородными по-
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лупроводниками с целью идентификации электрофизических параметров мише-
ней по спектрам катодолюминесценции. В настоящей работе продолжено иссле-
дование качественных свойств этой двумерной математической модели диффузии
экситонов, возбуждаемых электронным зондом низкой (единицы килоэлектрон-
вольт) энергии в нитриде галлия, а именно:

∂c/∂t = D∆c − c/τ

при начальном условии

c(x, y,0) = n(x, y).

Здесь c(x, y, t ) — концентрация экситонов в точке с координатами (x, y) в момент
времени t , D — коэффициент диффузии экситонов, τ— время их жизни, а функция
n(x, y) удовлетворяет стационарному дифференциальному уравнению, описываю-
щему диффузию экситонов в состоянии квазиравновесия:

∆n −n/λ2 =−Φ(x, y),

где λ=p
Dτ — диффузионная длина свободных экситонов, а Φ(x, y) — функция ис-

точника генерации экситонов, заданная двухмерным распределением Гаусса.
Применение качественных методов теории дифференциальных уравнений к

изучаемой математической модели позволяет сделать вывод о том, что для этой мо-
дели решение единственно и оно непрерывно зависит от начальных данных. Дан-
ный вывод говорит о несущественном влиянии погрешности входных данных на
результаты проведенного эксперимента [2], что позволяет использовать рассмот-
ренную модель для идентификации электрофизических параметров полупровод-
ника: коэффициента диффузии и подвижности экситонов.

Работа выполнена при частичной финансовой поддержке Минобрнауки РФ (ба-
зовая часть государственного задания, задание № 340/2015, проект № 1416), РФФИ
(проекты № 15–31–50648 и № 16–03–00515), а также РФФИ и правительства Калуж-
ской области (проект № 14–42–03062).
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О ЗАМКНУТОСТИ ПОДГРУППЫ В ГРУППЕ ЛИ, ПОРОЖДЕННОЙ
ВЕКТОРНЫМИ ПОЛЯМИ КИЛЛИНГА

В. А. Попов1

1vlapopov@gmail.com, Финансовый университет при Правительстве РФ, Москва,
Россия

Рассмотрим алгебру Ли g всех векторных полей Киллинга на римановом анали-
тическом многообразии M и её стационарную подалгебру h. Для фиксированной
точки p ∈ M X ∈ h ⇐⇒ X (p) = 0. Алгебра g порождает локальную группу локаль-
ных изометрий на M , однако, аналитическое продолжение этих изометрий до изо-
метрий какого-нибудь риманова аналитического многообразия локально изомет-
ричного M возможно не всегда. Принципиальным препятствием служит возмож-
ная незамкнутость подгруппы Ли H , порождённой подалгеброй h, в односвязной
группе Ли G, порожденной алгеброй g. Укажем свойства алгебр g и h, выполнение
которых необходимо в случае незамкнутости H в G.

Теорема.Пусть g—алгебраЛи всех векторных полейКиллинга на римановом веще-
ственно аналитическом многообразии M , h— её стационарная подалгебра в некото-
рой точке p ∈ M , G — группа, порожденная алгеброй g и H — подгруппа, порождённая
подалгеброй h. Если H не замкнута вG, то алгебры Ли g и h⊂ g обладают следующими
свойствами.
1. g имеет ненулевой центр z.
2. di m(h∩ (z+ [g;g])) > di m(h∩ [g;g]) , где z+ [g;g]— подалгебра, порождённая цен-

тром z и коммутантом [g;g].

Приведём идею доказательства теоремы. Рассмотрим замыкание H группы H
в G и подалгебру Ли h ⊂ g подгруппы H ⊂ G. Подалгебра h является нормальной
подалгеброй алгебры h, [1]. Рассмотрим однопараметрическую подгруппу ht ∈ H ,
ht ∉ H . Тогда внутренний автоморфизм x 7→ ht xh−1

t , x ∈G, являются пределом по-

следовательности внутренних автоморфизмов x 7→ hn xh
−1
n , hn ∈ H . Так как внут-

ренние автоморфизмы x 7→ hn xh−1
n определяют изометрии x 7→ hn x шара B ⊂ M ,

то внутренний автоморфизм определяет изометрию x 7→ ht xh
−1
t шара B . Тогда для

всех достаточно малых t определена локальная изометрия x 7→ ht x и, следователь-
но, локальная изометрия x 7→ xht . Таким образом, умножения справа на элементы
локальной однопараметрической группы ht порождает векторное поле Киллинга,
коммутирующее со всеми элементами алгебры g.

Как было показано выше, группа G содержит однопараметрическую подгруппу
zt умножений справа на ht ∈G ⊂ AutG. Как показано выше zt ∈ H . Известно, что ht
принадлежит компактной подгруппе группы G и, следовательно ht ∈ (G ;G), [1]. То-
гда zt ∉ (G ;G) (автоморфизм, порождённый умножением справа не может быть рав-
ным автоморфизму, порождённому умножением слева), и ht z−1

t ∉ (G ;G). Но локаль-

ная изометрия группа ht z−1
t порождена внутренним автоморфизмом x 7→ ht xh

−1
t

и, поэтому ht z−1
t ∈ H . Следовательно, векторное поле Киллинга, порождённое ло-

кальной группой изометрий ht z−1
t принадлежит z+ [g;g], но не принадлежит [g;g].
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ПРИЛОЖЕНИЕ КОМБИНАТОРНО-АЛГЕБРАИЧЕСКОГО МЕТОДА
ВЫЧИСЛЕНИЯ ПРОИЗВЕДЕНИЯ АДАМАРА К ОДНОЙ ИЗ

КОМБИНАТОРНО-ВЕРОЯТНОСТНЫХ ЗАДАЧ

Е. А. Потехина1
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Произведением Адамара формальных степенных рядов G(x) =∑∞
k=0 gk xk и

H(x) =∑∞
k=0 hk xk называется степенной ряд G(x)∗H(x) =∑∞

k=0 gk hk xk .
Рассмотрим задачу замощения бесконечной полосы ширины k плитками раз-

меров 1×1, 1×2, 1×3,. . . , имеющими соответственно вероятности выпадения для
первого ряда — q11, q12, q13,. . . , и т. д., для k-го ряда — qk1, qk2, qk3,. . . , соответ-
ственно. Укладка плиток начинается с первого ряда. Каждая новая плитка уклады-
вается в ряд, имеющий наименьшую длину. Если несколько рядов плиток имеют
одинаковую длину и она является наименьшей, то укладка выполняется в ряд с наи-
меньшим номером.

Пусть
(

X1 j

)∞
j=1

, . . . ,
(

Xk j

)∞
j=1

— не зависящие друг от друга последовательности

независимых одинаково распределённых случайных величин, принимающих нео-
трицательные целые значения, gi (x) =∑∞

j=0 P
(

Xi j = j
)

x j =∑∞
j=0 qi j x j , i = 1, . . . ,k,

причем qi j — вероятность того, что плитка i -го ряда будет иметь длину j . Рассмот-
рим производящую функцию Gk (x, t ) =∑∞

n=0
∑∞

m=0 pk,n,m xn t m , где pk,n,m — веро-
ятность того, что в случайном процессе на каком-то шаге появится прямоугольник
размера k ×n, состоящий из m плиток. В [1] доказана следующая теорема.

Теорема 1. Cправедливо равенство:

Gk (x, t ) = (
1− g1 (x) t

)−1 ∗ . . .∗ (
1− gk (x) t

)−1 .

Если случайные величины в рассмотренной выше задаче имеют равномерное
распределение, то для вычисления произведений Адамара может быть применена
теорема 2.

Теорема 2. Для любых целыхm, k (m Ê 2, k < m) справедлива следующая формула:(
1−d1x −d2x2 −d3x3

)−1 ∗xk /
(
1−b1x −bm xm)= P (x)/Q (x) ,
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P (x) = fk xk +b1
(
d2 fk−1 +d3 fk−2

)
xk+1 +b2

1d3 fk−1xk+2+
+bm

((
d2 fk−1 +d3 fk−2

)
fm−1 +

(
d3 fk−1 −d2 fk

)
fm−2

)
xm+k−

−2bmd3 fk fm−3xm+k +b1bmd2
3
(

fk−1 fm−4 + fk−2 fm−3
)

xm+k+1+
+b1bmd3

(
fk−1 fm−1 − fk fm−2

)
xm+k+1+

+b2
md2

3

(
fk−2 f 2

m−2 − fk−2 fm−3 fm−1 − fk−1 fm−3 fm−2

)
x2m+k+

+b2
md2

3

(
fk−1 fm−4 fm−1 − fk fm−4 fm−2 + fk f 2

m−3

)
x2m+k ,

Q (x) = 1−b1d1x −b2
1d2x2 −b3

1d3x3 −bm
(

fm +d2 fm−2 +2d3 fm−3
)×

×xm +b1bm
(
d1d2 fm−2 +2d1d3 fm−3 −2d2 fm−1 −3d3 fm−2

)
xm+1+

+
(
d2 fm−2 fm +2d3 fm−3 fm +d2

3 f 2
m−3 −d2 f 2

m−1 −2d3 fm−2 fm−1

)
×

×b2
m x2m +b1b2

m

(
fm−2 fm − f 2

m−1 +2d3
(

fm−3 fm−2 − fm−4 fm−1
))×

×d3x2m+1 +b1b2
md1d3

(
fm−4 fm−2 − f 2

m−3

)
x2m+1 +b3

mdm
3 x3m ,

fm = d1 fm−1 +d2 fm−2 +d3 fm−3 при m > 0, fm = 1 при m = 0, fm = 0 при m < 0.
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О РАДИУСАХ РОБЕНА НЕНАЛЕГАЮЩИХ ОБЛАСТЕЙ
В ЕВКЛИДОВОМ ПРОСТРАНСТВЕ

Е. Г. Прилепкина1

1pril-elena@yandex.ru, Дальневосточный федеральный университет, Институт при-
кладной математики ДВО РАН

Задачи об экстремальном разбиении восходят к известной теореме М.А. Лаврен-
тьева о произведении внутренних радиусов плоских неналегающих областей, име-
ют богатую историю и тесно связаны с различными экстремальными вопросами
геометрической теории функций. В [1] введено понятие радиуса Робена плоской об-
ласти, которое является обобщением понятия внутреннего (конформного) радиуса.
Отметим, что величина, обратная радиусу Робена в бесконечно удаленной точке,
называется емкостью Робена и имеет многочисленные применения. В частности, в
[2] аппарат емкостей Робена c успехом применяется к исследованию обобщенной
задачи М.А. Лаврентьева о нахождении формы дужки заданной длины максималь-
ной подъемной силы при ограничении на ее кривизну. В настоящем докладе мы
рассматриваем неравенства для радиусов Робена неналегающих пространственных
областей.
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Пусть Rn обозначает n-мерное евклидово пространство точек z = (z1, . . . , zn),
n Ê 3, D ограниченная область в Rn и γ непустое замкнутое подмножество ∂D. Па-
ру (D,γ) назовем допустимой, если существует функция Робена gγ(z, z0,D), то есть
функция, гармоническая D \{z0}, непрерывная в D \{z0}, удовлетворяющая гранич-

ным условиям
∂gγ
∂n = 0 на (∂D)\γ, gγ = 0 на γ, и имеющая в окрестности z0 следующее

разложение

gγ(z, z0,D) =λn

(
|z − z0|2−n − r (D,γ, z0)2−n +o(1)

)
, z → z0.

Здесь λn = Γ(n/2)
2πn/2(n−2)

, ∂
∂n производная по внутренней нормали и r (D, z0,γ) некото-

рая константа, которую мы назовем радиусом Робена в точке z0 области D и множе-
ства γ. В случае γ=;мы также рассматриваем функцию g;(z, z0,D), заменяя требо-

вания на границе ∂D условием
∂gγ
∂n = 1

µn−1(∂D) , гдеµn−1(∂D) означает (n−1)-мерную
меру Хаусдорффа. В качестве примера приведем следующий результат.

Теорема. Пусть D1 и D2 неналегающие области, лежащие в единичном шаре U ,
ak ∈ Dk ,

(
∂Dk

)∩U ⊂ γk ⊂ ∂Dk , k = 1,2.Тогда

r
(
D1,γ1, a1

)2−n + r
(
D2,γ2, a2

)2−n Ê
r (U ,;, a1)2−n + r (U ,;, a2)2−n +2g;(a1, a2,U )/λn

В частности, для n = 3 приведенное в теореме неравенство имеет вид

r
(
D1,γ1, a1

)−1 + r
(
D2,γ2, a2

)−1 Ê 2

|a1 −a2|
+ 2|a2|
|a1|a2|2 −a2|

−2log

(
1− (a1, a2)−

∣∣a1|a2|2 −a2
∣∣

|a2|

)
− 1

1−|a1|2
− 1

1−|a2|2
+ log(4(1−|a1|2)(1−|a2|2)),

где (a1, a2)– скалярное произведение.

Работа выполнена при финансовой поддержке РНФ (проект 14-11-00022).
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О РАЗРЕШИМЫХ КОНЕЧНЫХ ГРУППАХ

С. В. Путилов1

1algebra.bgu@yandex.ru, Брянский государственный университет имени академика
И. Г. Петровского

Теорема 1. Если в конечной группе индекс любой ненильпотентной ненормальной
максимальной подгруппы равен простому числу или квадрату простого числа,то груп-
па разрешима.

Теорема 2. В конечной группе индекс любой ненильпотентной ненормальной мак-
симальной подгруппы равен простому числу тогда и только тогда, когда группа сверх-
разрешима.

Теоремы 1–2 усиливают соответственно известные теоремы М. Холла [1, VI. 9.4]
и Б. Хупперта [1, VI. 9.5].
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ИЗОТОПЫ АЛЬТЕРНАТИВНОГО МОНСТРА И АЛГЕБРЫ СКОСЫРСКОГО

С. В. Пчелинцев1

1pchelinzev@mail.ru, Финансовый университет при Правительстве РФ

Первичная алгебра, содержащая ненулевые абсолютные делители нуля, называ-
ется исключительной. К настоящему времени известно довольно много примеров
исключительных алгебр. Алгебра, построенная в [1], называется монстром и обо-
значается S [X ]; она относительно свободна над X , коммутативна и удовлетворя-
ет тождеству x3 = 0. В [2] построена коммутативная алгебра J0 (G ,D), в [3] указаны
некоммутативные алгебры B0

(
G ,D,γ

)
, γ ∈G0, где G — алгебра Грассмана с 1.

При изучении тождеств исключительных алгебр важную роль играют изотопы
и деформации. Изотоп S(c) = 〈S;+, ·c〉 алгебры S — это пространство S, на котором
задано новое умножение x ·c y = (xc) y; при этом считается, что c обратим в S или в
алгебре Φ1+S.

Основные результаты относятся к изотопам исключительных коммутативных
алгебр S [X ] и J0 (Γ,D), где Γ – ассоциативная алгебра Грассмана (без единицы), а
D — её четное дифференцирование. Доказано, что изотопы алгебр S [X ] и J0 (Γ,D)
удовлетворяют тождеству

∏4
i=1

[
xi , yi

] = 0. Следовательно, в них верно тождество
Π4 = 0, где Πn =∏n

i=1

(
c, xi , yi

)
. Показано также, что Π3 6= 0 в этих алгебрах.

В работе [4] А. Н. Гришков и И. П. Шестаков построили подалгебры Cn в алгебрах
вида J0 (Γ,D) и высказали гипотезу: алгебра Cn при n Ê 3 является свободной комму-
тативной альтернативной ниль-алгеброй индекса 3.

Показано, что ни одно из тождеств Πn = 0 не является следствием тождеств
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[
x, y

] = x3 = 0. Поскольку алгебра J0 (Γ,D) удовлетворяет тождеству Π4 = 0, то ги-
потеза Гришкова–Шестакова не имеет места при n Ê 9.
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ПРОСТЫЕ КОНЕЧНОМЕРНЫЕ ПРАВОАЛЬТЕРНАТИВНЫЕ УНИТАЛЬНЫЕ
СУПЕРАЛГЕБРЫ С СИЛЬНО АССОЦИАТИВНОЙ ЧЕТНОЙ ЧАСТЬЮ

С. В. Пчелинцев1, О. В. Шашков2

1pchelinzev@mail.ru, Финансовый университет при Правительстве РФ
2o.v.shashkov@yandex.ru, Финансовый университет при Правительстве РФ

Простые конечномерные ассоциативные супералгебры описаны Уоллом [1].
Мы изучаем только унитальные супералгебры, т.е. супералгебры с единицей. От-

метим, что унитальный случай принципиально отличается от общего. Так, в [2]
указан пример 5-мерной простой правоальтернативной супералгебры B2|3, чётная
часть которой — двумерная алгебра с нулевым умножением, а нечетная часть явля-
ется неприводимым бимодулем над чётной частью. Алгебра называется унитарной,
если она получена внешним присоединением единицы к ниль-алгебре.
Теорема 1. Пусть B = A+M — простая конечномерная правоальтернативная су-

пералгебра над полем Φ характеристики 0. Если чётная часть A унитарна и её еди-
ница является единицей в супералгебре B , то супералгебра B ассоциативна и, значит,
является удвоением основного поля, т. е. совпадает с супералгеброй Φ

[p
1
]
.

Подалгебра A сильно ассоциативна в B , если (B , A, A) = (A,B , A) = (A, A,B) = 0.
Простые конечномерные правоальтернативные унитальные супералгебры с

сильно ассоциативной чётной частью ранее изучались авторами в [3] и [4]. Так, в
[3] классифицированы конечномерные супералгебры абелева типа; в [4] описаны
бесконечномерные супералгебры абелева типа, четная часть которых является по-
лем.
Теорема 2.ПустьB = A+M —простая конечномерная правоальтернативная уни-

тальная супералгебра над полемΦ характеристики 0. Если четная часть A сильно ас-
социативна в B , то A полупроста.
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Теорема 3. Простая конечномерная правоальтернативная унитальная суперал-
гебра с полупростой сильно ассоциативной чётной частью над алгебраически замкну-
тым полем характеристики p 6= 2 изоморфна одной из следующих супералгебр:

Mn

[p
1
]

, Mm|n , B1|2
(
p = 3

)
, B2|2 (ν) , Bn|n .
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ОБ ЭКВИВАЛЕНТНОСТИ ФОРМАЦИЙ УНАРОВ КАК КАТЕГОРИЙ

А. Л. Расстригин1
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университет

Класс алгебраических систем называетсяформацией [1], если он замкнут относи-
тельно взятия гомоморфных образов и конечных подпрямых произведений.

Алгебру с одной единственной унарной операцией называют унаром. В настоя-
щей работе рассматривается класс не более чем счетных унаров с конечным числом
циклов. Унар называется унаром с конечным числом циклов, если он содержит в ка-
честве подалгебр лишь конечное число попарно неизоморфных циклов, т. е. таких
подалгебр, которые порождаются любым своим элементом.

Для произвольной формации унаров F через AlgF далее обозначается категория,
объектами которой являются все алгебры из F, а морфизмами — все гомоморфиз-
мы между алгебрами из F. Показав, что если две формации эквивалентны в смысле
категорий, то их порождающие классы совпадают, мы докажем следующее утвер-
ждение:

Теорема. Пусть F1 и F2 — произвольные непустые формации не более чем счетных
унаров с конечным числом циклов. ТогдаF1 иF2 совпадаютвтомитолькотом случае,
когда категории AlgF1 и AlgF2 эквивалентны.
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ПРЕДСТАВЛЕНИЕ ОБЩЕГО РЕШЕНИЯ СИСТЕМА ТИПА КОШИ–РИМАНА С
ОСОБЕННОСТЯМИ РАЗНОГО ПОРЯДКА В КОЭФФИЦИЕНТАХ

А. Б. Расулов1
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Пусть область G содержит точку z = 0 и окружность L = {z : |z| = R} и ограниче-
на простым ляпуновским контуром ∂G , ориентированным против часовой стрелки.
Удобно положить G0 =G \{0

⋃
L} и Gε =G \{g0ε

⋃
g1ε} с малым ε> 0, где g0ε = {z : |z| <

ε} и g1ε = {z : R −ε< |z| < R +ε}. В области G0 рассмотрим уравнение

uz̄ − z(|z||R −|z||n)−1a(z)u +|z|−mb(z)u = f (z), (1)

где 2∂z = ∂x + i∂y , a,b ∈ C (G), f ∈ Lp (G), n > 1,0 < m < 1 и p > 2. Через T и Tε соот-
ветственно обозначим оператор Векуа [1] по областям G и Gε.
Лемма 1. В предположении A0(z) = z(a(z)−a(R))(|z||R −|z||n)−1 ∈ Lp (G) сингуляр-

ный интеграл Ω(z) = limε→0(TεA)(z), z 6= L, существует и определяет функцию, ко-
торая представима в видеΩ(z) = a(R)ω(z)+h(z), где h(z) ∈ H(G) определяется равен-
ством

h(z) = (T A0)(z)+ 1

πi

a(R)

(n −1)

∫
∂G

1

|R −ρ|n−1

dζ

ζ− z
.

На основы этой леммы построена общего решения уравнения

uz̄ − Au = f , (2)

где для краткости положено A(z) = z(|z||R −|z||n)−1a(z), a(z) ∈ C (G). В данном слу-
чае коэффицент A ограничен в начале координат и имеет сильную неподвижную
особенность на окружности L.

В случае, когда коэффициенты a(z) 6= 0,b(z) 6= 0 для любого z ∈G, используя обще-
го решения уравнения (2) приходим к интегральному уравнению V +T (BV ) =φ+F,
где V = e−Ωu, B = |z|−mb(z)e−2i ImΩ, F = T (e−Ω f ), значение Ω указано в лемме 1.

В случае отсутствия сингулярности коэффициентов подобное уравнение возни-
кало у И.Н. Векуа [1]; для его обращения он предложил метод последовательных
приближений. Однако этот метод применим лишь в предположении, что коэффи-
циент b по модулю достаточно мал. В общем случае необходимо построить в явном
виде резольвенту этого уравнения, что и является предметом рассмотрения в на-
стоящей работы.

С этой целью предварительно изучим действие в Lp (G) более общего интеграль-
ного оператора вида

(Kϕ)(z) =
∫

G

ϕ(ζ)d2ζ

|ζ|α0 |ζ− z|α1
, z ∈G ,

с положительными α j .
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Лемма 2. Пусть 0 <α0 < 1 Éα1 < 2, α0 +2α1 < 3, p > 2/(3−α0 −2α1), так что
0 <µ0 = 3−α0 −2α1 −2/p < 1. Тогда оператор K : Lp (G) →Cµ(G) ограничен.

На основе этой леммы построена резольвента интегрального уравнения и най-
дено интегральное представление общего решения.
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О ЕДИНСТВЕННОСТИ РЕШЕНИЯ КРАЕВОЙ ЗАДАЧИ ДИРИХЛЕ В КЛАССАХ
КВАЗИГАРМОНИЧЕСКИХ ФУНКЦИЙ

К. М. Расулов1

1kahrimanr@yandex.ru, Смоленский государственный университет

Пусть T+− конечная односвязная область на плоскости комплексного перемен-
ного z = x + i y , ограниченная кусочно-гладким замкнутым контуром L.

Напомним [1], что квазигармоническими функциями рода n в области T+ называ-
ются регулярные в этой области решения дифференциального уравнения

∂2W

∂z∂z
+ n(n +1)

(1+ zz)2
W = 0,

где
∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
,
∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)
, а n — некоторое фиксированное натураль-

ное число.
Известно [1], что всякую квазигармоническую функцию рода n в области T+ мож-

но представить в виде

W (z) =
n∑

k=0
An

k

(
z

1+ zz

)n−k dkϕ+(z)

d zk
, (1)

где An
k = (−1)n−k (2n −k)!

k !(n −k)!
, а ϕ+(z) — аналитическая в области T+ функция, называ-

емая аналитической компонентой квазигармонической функции W (z).
Определение. Будем говорить, что квазигармоническая функция W (z) принадле-

жит классу C m(T++L), если в представлении (1) аналитическая компонента ϕ+(z)
непрерывно (в смысле Гельдера) продолжается на контур L вместе со своими производ-
ными до порядкаm включительно, т.е. ϕ+(z) ∈ A(T+)∩H (m)(L) (здесьm — некоторое
фиксированное неотрицательное целое число).

Рассматривается следующая краевая задача.
Задача Dn. Требуется найти все квазигармонические функции рода n (n Ê 1), при-

надлежащие классу C n(T++L) и удовлетворяющие на L условию

W (t ) = g (t ),
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где g (t ) — заданная на контуре L функция класса H(L) (т.е. удовлетворяющая на L
условию Гельдера).

В дальнейшем соответствующую Dn однородную задачу (g (t ) ≡ 0) будем называть
задачей D0

n .
В сообщении устанавливается следующий результат.

Теорема. Если r 6= 1, то однородная задача Дирихле D0
n в круге T+

r = {z : |z| < r } не
имеет нетривиальных (ненулевых) решений. Если же r = 1, то однородная задача Ди-
рихле D0

n в единичном круге T+
1 = {z : |z| < 1} имеет нетривиальные решения, которые

можно задавать следующей формулой:

W0(z) =
n∑

k=0
An

k

(
z

1+ zz

)n−k dk

d zk

(
n∑

m=1
Cm z2m−1

)
,

где C1,C2, ...,Cn — произвольные комплексные постоянные.
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НЕ ЕДИНСТВЕННОСТЬ СЛАБО ПЕРИОДИЧЕСКИХ (НЕ ПЕРИОДИЧЕСКИХ)
МЕР ГИББСА ДЛЯ АНТИФЕРРОМАГНИТНОЙ МОДЕЛИ ИЗИНГА НА

РЕШЕТКЕ БЕТА

М. М. Рахматуллаев1

1mrahmatullaev@rambler.ru, Институт математики при Национальном Университе-
те Узбекистана, Ташкент, Узбекистан

Трансляционно-инвариантные и периодические меры Гиббса для модели Изинга
изучена в работах [1]-[3]. Для ферромагнитной модели Изинга слабо периодические
мери Гиббса изучена в работах [4], [5].

Известно, что существует взаимнооднозначное соответствие между множеством
V вершин решетки Бета порядка k Ê 1 и группой Gk , являющейся свободным произ-
ведением k +1 циклических групп второго порядка с образующими a1, a2, . . . , ak+1
соответственно.

Известно, что каждой мере Гиббса модели Изинга на решетке Бета соответствует
совокупность величин h = {hx , x ∈ T k }, удовлетворяющих

hx = ∑
y∈S(x)

f (hy ,θ), (1)

где S(x)− множество “прямых потомков” точки x ∈ T k и f (x,θ) = arcth(θthx), θ =
th(β),β= 1

T ,T > 0−температура (см., напр., [2], [3]).
Пусть Gk /Ĝk = {H1, ..., Hr } фактор группа, где Ĝk нормальный делитель индекса

r Ê 1.
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Для x ∈Gk обозначим через x↓ = {y ∈Gk :< x, y >}\S(x).
Определение 1. Совокупность величин h = {hx , x ∈Gk } назовем Ĝk-слабо периоди-

ческой, если hx = hi j при x ∈ Hi , x↓ ∈ H j для ∀x ∈Gk .
Определение 2.Меруµ назавем Ĝk-слабо периодической, если она соответствует

Ĝk-слабо периодической совокупности величин h.
Пусть A ⊂ {1,2, ...,k + 1} и HA = {x ∈ Gk :

∑
i∈A

wx(ai ) четно} нормальний делитель

индекса 2.
Пусть α= 1−θ

1+θ . Для анти-ферромагнитной модели Изинга верна следующая
Теорема.Пусть |A| = k.При k = 4 существует критическое значениеαcr (≈ 6,3716)

такое, чтоприα<αcr существуетоднаHA-слабо периодическаямера Гиббса; приα=
αcr существуют три HA-слабо периодические меры Гиббса; при α>αcr существуют
пять HA-слабо периодических мер Гиббса.
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ОБ ОДНОЙ ТЕОРЕМЕ В.К. ИОНИНА

Е. Д. Родионов1, В. В. Славский2, М. В. Куркина3
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В работе [1] замкнутой выпуклой n-мерной поверхности Φ пространства Лоба-
чевского Hn+1 кривизны (−κ), где κ > 0, сопоставляются четыре специальные по-
верхности: Si (Φ) — вписанная сфера, Se(Φ) — описанная сфера, S0(Φ) — сфера, сво-
бодно перекатывающаяся по внутренней стороне поверхностиΦ, и Σ(Φ) — эквиди-
стантная поверхность, по внутренней стороне которой свободно перекатываетсяΦ.
В работе [1] найдена точная зависимость между этими четырьмя специальными по-
верхностями.

В работах [2-4] было установлено взаимноодназначное соответствие между вы-
пуклыми поверхностями в Hn+1 гомеоморфными сфере и конформно-плоскими
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метриками d s2 = d x2

f 2(x)
определенными на единичной сфере x ∈ Sn ⊂ Rn+1 евкли-

дового пространства и ограниченной одномерной кривизны:

−κ
2
< K1/2( f , x,ξ) = f

d2 f

dξ2
− 1

2
|∇ f |2 < κ

2
,

где x ∈ Sn ⊂ Rn+1, функция f (x) по однородности продолжена на Rn+1,
d2 f

dξ2
— вто-

рая производная вдоль единичного вектора ξ касательного к сфере Sn ⊂ Rn+1, ∇ f
— градиент функции в Rn+1. В данной работе показано как можно переформулиро-
вать теорему В. К. Ионина в терминах конформно-плоских метрик ограниченной
кривизны:

Теорема. Конформно-плоской метрике d s2 = d x2

f 2(x)
на сфере Sn с ограниченной од-

номерной кривизной сопоставляются четыре специальные конформно-плоские мет-
рики:

d s2
1 = d x2

f 2
i (x)

, d s2
2 = d x2

f 2
e (x)

, d s2
3 = d x2

f 2
0 (x)

, d s2
4 = d x2

f 2
Σ

(x)
.

Указана точная зависимость между этими четырьмя функциями на сфере: f 2
i (x),

f 2
e (x), f 2

0 (x), f 2
Σ

(x).

Работа выполнена при финансовой поддержке грантов правительства Россий-
ской Федерации: (14.B25.31.0029, Nsh of RF (2263.2014.1)), the RFBR (15-41-00092-r
– Urals, 15-41-00063-r – Urals, 15-01-06582-a, 16-01-00336-a).
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О ВЫБОРЕ ЕВКЛИДОВОЙ МОДЕЛИ ДЛЯ ОПИСАНИЯ ГЕОМЕТРИИ
ОКРУЖАЮЩЕГО ПРОСТРАНСТВА

Л. Н. Ромакина1

1romakinaln@mail.ru, Саратовский национальный исследовательский государ-
ственный университет имени Н. Г. Чернышевского

Почему из множества различных геометрических систем для описания “реаль-
ного” мира человечество принимает евклидову геометрию? Почему мы видим мир
евклидовым, и может ли он быть таковым? Почему Н. И. Лобачевский считал раз-
виваемую им гиперболическую геометрию воображаемой, а Ф. Клейн, “вооружив-
шись” деревянным клином, уже допускал ее проявления в окружающем физиче-
ском пространстве. В докладе предполагается обсуждение этих и других вопросов
о выборе геометрической модели окружающего мира.
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РЕТРАКТЫ, АЛГЕБРАИЧЕСКИ И ВЕРБАЛЬНО ЗАМКНУТЫЕ ПОДГРУППЫ
ГРУПП UTN (Z)
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верситет им. Д. Серикбаева

Ретрактом группы G называется такая подгруппа H ÉG , для которой существует
эндоморфизм ϕ : G → H , тождественный на H . Подгруппа H является ретрактом
группы G тогда и только тогда, когда существует нормальная подгруппа U группы
G такая, что G = H ·U = {hu|h ∈ H ,u ∈U }, H ∩U = {1}.

Ретракты связаны с вербально и алгебраически замкнутыми подгруппами групп.
Подгруппа H группы G называется вербально замкнутой, если для любого группо-
вого слова w(x1, ..., xt ) от независимых переменных x1, ..., xt без констант и любо-
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го элемента h ∈ H уравнение w(x1, ..., xt ) = h разрешимо в группе G тогда и толь-
ко тогда, когда оно разрешимо в группе H . Подгруппа H группы G называется ал-
гебраически замкнутой, если для любого набора групповых слов wi (x1, ..., xt ), i =
1, ...,m, с константами из H от независимых переменных x1, ..., xt система уравне-
ний wi (x1, ..., xt ) = 1, i = 1, ...,m, имеет решение в группе G тогда и только тогда,
когда она имеет решение в H .

В [1] доказано, что множество ретрактов свободной нильпотентной группы Nr,k
ранга r Ê 1 ступени нильпотентности k Ê 1 совпадает с множествами ее вербаль-
но замкнутых подгрупп, алгебраически замкнутых подгрупп, а также с множеством
свободных множителей в многообразии Nk всех нильпотентных групп ступени
нильпотентности не выше, чем k.

Очевидно, что ретракт любой группы G является алгебраически замкнутой под-
группой. Обратное в общем случае неверно, но может утверждаться при опреде-
ленных условиях. Например, в [2] показано, что если группа G конечно определена,
а ее подгруппа H конечно порождена и алгебраически замкнута, то H — ретракт.
Отсюда следует, что подгруппа конечно порожденной нильпотентной группы ал-
гебраически замкнута тогда и только тогда, когда она — ретракт.

Теорема. Для любого n существует алгоритм, который определяет алгебраиче-
скую замкнутость произвольной подгруппы H группы UTn(Z) унитреугольных матриц
размера n ×n над кольцом Z целых чисел.

Построен пример конечной нильпотентной группы, в которой указана вербально
замкнутая, но не алгебраически замкнутая подгруппа.

Работа выполнена при финансовой поддержке РФФИ (проект 16-01-00577) и Ми-
нистерства образования и науки Республики Казахстан (проект №111/ГФ).
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СПЕКТРАЛЬНЫЙ КРИТЕРИЙ ДИХОТОМИИ ДЛЯ СИСТЕМЫ ФДУ
ГИПЕРБОЛИЧЕСКОГО ТИПА
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1. Работа примыкает к [1]. В Π=R× [0,∞) рассматривается задача Коши Lu = Du +
∫ 1

0
[dB (s)]u (x, t − s) = 0, t > 1,

u
∣∣
Π0 =ϕ ∈ E, Π0 =R× [0,1].

(1)
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Здесь D = d
d t + A d

d x , A = diag(a1, . . . , aN ), a1 > . . . > aN, ak 6= 0, B : [0,1] → CN×N,∨1
0 (B) <∞, u = (

u1, . . . ,uN )T, E – банахово пространство непрерывных ограничен-
ных функций Π0 →CN с нормой sup

∣∣ϕ∣∣.
Через каждую точку

(
x0, y0

) ∈ Π проходят характеристики q1, . . . , qN с уравнени-
ями x = σk (t , x0, t0) = x0 + ak (t − t0). Оператор D далее понимается в обобщённом
смысле D = diag(D1, . . . ,DN ), где Dk uk – производная по t вдоль qk . Под решением
задачи (1) понимается функция u ∈ C(Π,CN ) с гладкими вдоль “своих” характери-
стик qk компонентами uk , удовлетворяющая (1). Имеет место однозначная разре-
шимость в этом классе, обозначаемом далее C1

x .
В работе исследуется дихотомия решений задачи (1) сведением к такой же про-

блеме для разностной задачи Коши вида

un = Γun−1,n = 1,2, . . . , u0 =ϕ ∈ E (2)

с компактным оператором Γ в фазовом пространстве E.
2. Определим операторы из End(E) формулами

B0ϕ=
∫ t

0
[dB (s)]ϕ (x, t − s) ,B1ϕ=

∫ 1

t
[dB (s)]ϕ (x,1+ t − s) ,

Sϕ=
∫ t

0

 ϕ1 (σ1 (τ, x, t ) ,τ)
. . .

ϕN (σN , (τ, x, t ) ,τ)

dτ,Pϕ=
 ϕ1 (x −a1t ,1)

. . .
ϕN (x −aN t ,1)

 (3)

Лемма. 10. Оператор I +SB0 имеет ограниченный обратный E → E.
20. Формула Γ= (I +SB0)−1 (P −SB1) задаёт компактный оператор E → E.
30. Функция u : Π→ CN является решением класса C1

x задачи (1) точно тогда, когда
последовательностьun (x, t ) = u (x, t +n) , (x, t ) ∈Π0,n = 0,1, . . . является решением за-
дачи (2) с оператором 20.
3. Будем говорить, что имеет место экспоненциальная дихотомия решений за-

дачи Коши (1), если это верно для решений задачи (2): фазовое пространство E рас-
падается в прямую сумму подпространств E = E1+̇E2,Ek 6= {0} так, что для решений
задачи (2) верны при некоторых µ,ν> 0 оценки

ϕ ∈ E1 ⇒ ∥∥Γnϕ
∥∥

E Éµe−νn‖ϕ‖E ,
ϕ ∈ E2 ⇒ ∥∥Γnϕ

∥∥
E Êµeνn‖ϕ‖E .

Поставим в соответсвие оператору (1) матричный пучок

∆
(
λ,µ

)=λI +µA+
∫ 1

0
e−λsdB (s).

Теорема. Экспоненциальная дихотомия решений задачи Коши (1) имеет место
точно тогда, когда при каждом µ ∈ iR уравнение

det∆
(
λ,µ

)= 0

не имеет λ-корней на мнимой оси и имеет хотя бы один корень в полуплоскости
Reλ> 0.
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ГРАНИЧНОЕ УПРАВЛЕНИЕ ГИПЕРБОЛИЧЕСКОЙ СИСТЕМОЙ

Р. К. Романовский, Ю. А. Медведев1
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1. Рассматривается краевая задача в полуполосе
Π= [−l , l ]× [0,∞) {

Lu =
(
∂
∂t + A ∂

∂s +B
)

u = 0, (s, t ) ∈Π,

u(s,0) = 0, u+(−l , t ) =µ1(t ), u−(l , t ) =µ2(t ).
(1)

Здесь A = di ag (a1, . . . , an), a1 > . . . > am > 0 > am+1 > . . . > an , u = [u+ u−]T , u+ =
[u1 . . .um]T , u− = [um+1 . . .un]T ,µk ∈ C , µk (0) = 0, B = [bi j ]n

1 . Задача (1) однозначно
разрешима в классе SL [1, гл. 2]. При заданных t∗ > 2l/a, a = min{am , |am+1|}, u∗ ∈
C [−l , l ] ищется пара µ= (µ1,µ2) (управление), обеспечивающая выполнение равен-
ства

u(s, t∗;µ) = u∗(s), s ∈ [−l , l ]. (2)

Будем говорить, что задача (2) асимптотически разрешима, если при некоторой
{µν}∞1 u(s, t∗;µν) â u∗(s) на [−l , l ]. Последовательность {µν} с таким свойством
будем называть асимптотическим решением задачи (2). В работе построен класс
асимптотических решений. Далее V (s, t ) — матрица Римана второго рода системы
(1) [1, гл. 1].
2. Построим по матрицам Pk = di ag (0, . . . ,1, . . . ,0),Vk =V (s −σ+ak t∗, t∗)Pk ,E1 =∑n−1

k=2 Vk +
{

V1, s >σ,
Vn , s <σ,

,E2 = V (s − σ, t∗),B = di ag (b11, . . . ,bnn) и вектору ψ =
(ψ1, . . . ,ψn)T ∈ C (∆),∆ = [−l − a1t∗, l − an t∗] векторное интегральное уравнение
Фредгольма

e−Bt∗ϕ(s)+
∫ l

−l
E1(s,σ)ϕ(σ)dσ= u∗(s)−Λψ, (3)

где Λψ= ∫
∆

E2(s,σ)ψ(σ)dσ+e−Bt∗
 ψ1(σ−a1t∗)

. . .
ψn(σ−an t∗)

 .

Лемма. Для однозначной разрешимости (3) в C [−l , l ] достаточно, чтобы

2ρexp(ρ+|B|)t∗ < (2l )−1 ·min(a j −a j+1), ρ = 2n|B |. (4)

3. Зафиксируем {εν}∞1 ,εν ↓ 0, и пустьΠkν = (l−ak t∗, l−ak t∗+εν],Π̂kν = [−l−ak t∗−
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εν,−l −ak t∗),k = 1,n,ν= 1,2, . . .. Положим ϕ̂— решение (3),∆k = [−l −ak t∗, l −ak t∗],

αkν(s) = ε−1
ν (l −ak t∗+εν− s) на Πkν;0 на ∆\Πkν,

βkν(s) = ε−1
ν (l +ak t∗+εν+ s) на Π̂kν;0 на ∆\ Π̂kν.

γν(s;ψ) =
 α1νϕ̂1(l )
αkνϕ̂k (l )+βkνϕ̂k (−l ), k ∈ [2,n −1]

βnνϕ̂n(−l )

 ,

ϕ̂∗(s;ψ) =
 ϕ̂1(s +a1t∗) на ∆1;0 на ∆\∆1,

. . .
ϕ̂n(s +an t∗) на ∆n ;0 на ∆\∆n

 ,

hν(s;ψ) = ϕ̂∗+γν+ψ, s ∈∆, ν= 1,2, . . . . (5)

Теорема. При условии (4) каждому вектору ψ ∈ C (∆) отвечает асимптотическое
решение задачи управления (2)

µ1ν = (F hν)+
∣∣
s=−l , µ2ν = (F hν)−

∣∣
s=l , ν= 1,2, . . . ,

где hν — вектор (5), F — разрешающий оператор задачи Коши для системы (1).
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ГРУППЫ ДИМЕРОВ ГРАФОВ КВАДРАТНЫХ РЕШЕТОК
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В теории графов паросочетания изучаются обычно с точки зрения числовых ин-
вариантов графов. В работе [1] В.Г.Тураев предложил новый подход к изучению
паросочетаний: с каждым паросочетанием в графе он связал группу, называемую
группой паросочетания πA(Γ). Группа паросочетания отнесенная к совершенному па-
росочетанию, также называемому димерным покрытием, называется группой диме-
ров D(Γ).

В.Г.Тураев показал, что группа димеров имеет естественное описание на язы-
ке алгебраической топологии – она может быть определена как фундаментальная
группа некоторого кубического комплекса неположительной кривизны.

Работа посвящена исследованию вопроса о возникновении соотношений в груп-
пе димеров. Хорошо известный факт из теории CAT(0)–пространств состоит в том,
что плоские торы в пространстве неположительной кривизны соответствуют абеле-
вым подгруппам фундаментальной группы. Более точно (см. [2]), если X – компакт-
ное пространство неположительной кривизны и π1(X ) содержит абелеву подгруппу
G ранга k > 1, то X содержит выпуклое подмножество, изометричное k – мерному
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плоскому тору. Для комплексов димеров некоторых графов нам удалось дать комби-
наторное описание такого подмножества, отвечающего абелевой подгруппе ранга
два.
Граф квадратной решётки – это граф, вершины которого соответствуют точкам

на плоскости с различными координатами, x-координатами из диапазона 1, ...,n, y-
координатами из диапазона 1, ...,m, и вершины которого соединены ребром, если
соответствующие точки находятся на расстоянии 1. Такие графы изучаются в значи-
тельной степени в связи с точно решаемыми моделями статистической механики.

Теорема. Пусть Γ – граф квадратной решетки с n вершинами по x и m вершина-
ми по y . Для любых n и m группа димеров D(Γ) не является свободной тогда и только
тогда, когда у графа Γ существует 5 димерных покрытий A0, A1, ..., A4 и набор сколь-
жений {s1, s2, ..., s6}, удовлетворяющих следующим условиям :
1) {(s1, s4), (s1, s5), (s1, s6), (s2, s4), (s2, s5), (s2, s6), (s3, s4),
(s3, s5), (s3, s6)} – пары независимых скольжений,
2) A1 = s1 A0, A2 = s2 A1, A0 = s3 A2, A3 = s4 A0, A4 = s5 A3, A0 = s6 A4.

Работа выполнена при финансовой поддержке Лаборатории квантовой тополо-
гии Челябинского государственного университета (грант правительства РФ
№ 14.Z50.31.0020) и РФФИ (грант № 16-01-00414).
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АНАЛОГИ ТОЖДЕСТВ ГРЕЯ РИМАНОВОЙ КРИВИЗНЫ ПОЧТИ
КОНТАКТНЫХ МЕТРИЧЕСКИХ МНОГООБРАЗИЙ КЛАССА NC10
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Определение 1 [1]. Почти контактное метрическое многообразие, характеризу-
емое тождеством

∇X (Φ)Y +∇Y (Φ)X = ξ∇X (η)ΦY +ξ∇Y (η)ΦX+
+η(X )∇ΦY ξ+η(Y )∇ΦX ξ;∀X ,Y ∈X(M),

называется NC10-многообразием.

Контактными аналогами тождеств А. Грея R1, R2 и R3 кривизны почти эрмито-
вых многообразий для тензора римановой кривизны являются тождества кривизны
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C R1, C R2 и C R3 для почти контактных метрических многообразий:

C R1 : 〈R(ΦX ,ΦY )ΦZ ,ΦW 〉 =
〈

R(Φ2X ,Φ2Y )ΦZ ,ΦW
〉

;

C R2 : 〈R(ΦX ,ΦY )ΦZ ,ΦW 〉 =
〈

R(Φ2X ,Φ2Y )ΦZ ,ΦW
〉
+

+
〈

R(Φ2X ,ΦY )Φ2Z ,ΦW
〉
+

〈
R(Φ2X ,ΦY )ΦZ ,Φ2W

〉
;

C R3 : 〈R(ΦX ,ΦY )ΦZ ,ΦW 〉 =
〈

R(Φ2X ,Φ2Y )Φ2Z ,Φ2W
〉

;

X ,Y , Z ∈X(M).

Назовем NC10-многообразие, обладающее тождествами C R1, C R2 и C R3, соот-
ветственно, C R1-, C R2- и C R3-многообразием.

Теорема 1 [2]. Пусть S = (ξ,η,Φ, g = 〈·, ·〉) – AC-структура.
(1) S = (ξ,η,Φ, g = 〈·, ·〉) – структура класса C R1 тогда и только тогда, когда на

пространстве присоединенной G-структуры Rabcd = Râbcd = Râb̂cd = 0;
(2) S = (ξ,η,Φ, g = 〈·, ·〉) – структура класса C R2 тогда и только тогда, когда на

пространстве присоединенной G-структуры Rabcd = Râbcd = 0;
(3) S = (ξ,η,Φ, g = 〈·, ·〉) – структура класса C R3 тогда и только тогда, когда на

пространстве присоединенной G-структуры Râbcd = 0.

Теорема 2. NC10-многообразие является C R3-многообразием.

Теорема 3. Пусть NC10-многообразие является C R2-многообразием. Тогда это
многообразие является точнейшим косимплектическим многообразием.

Теорема 4. Пусть NC10-многообразие является C R2-многообразием. Тогда оно
локально эквивалентно произведению приближенно келерова многообразия на веще-
ственную прямую.

Теорема 5. Пусть NC10-многообразие является C R1-многообразием. Тогда это
многообразие является косимплектическим, а значит локально эквивалентно произ-
ведению келерова многообразия на вещественную прямую.
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ДИФФЕРЕНЦИАЛЬНО-ГЕОМЕТРИЧЕСКАЯ СТРУКТУРА,
АССОЦИИРОВАННАЯ С ЛАГРАНЖИАНОМ,
И ЕЕ ДИНАМИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ

А. К. Рыбников1

1arybnikov@mail.ru, Московский государственный университет имени М.В. Ломо-
носова

Доклад посвящен исследованию методом Картана-Лаптева дифференциально-
геометрической структуры, ассоциированной с лагранжианом L, зависящим от n
функций x1, . . . , xn одного переменного t и их производных. Переменные t , x1, . . . , xn

мы рассматриваем как адаптированные локальные координаты расслоения общего
типа M с 1-мерной базой ( t одновременно является локальной координатой ба-
зы) и n-мерным типовым слоем. Лагранжиан L, будучи коэффициентом подынте-
гральной 1-формы вариационного интеграла, является относительным инвариан-
том, поле которого задано на J 1M (где J 1M - многообразие 1-струй расслоенного
пространства M).

В настоящей работе построен фундаментальный объект структуры, ассоцииро-
ванной с лагранжианом. Построен также охваченный продолженным фундамен-
тальным объектом ковектор с компонентами Ei (i = 1, . . . ,n) (в работе он назван
эйлеровым ковектором ) такой, что система равенств Ei = 0 (i = 1, . . . ,n) является
инвариантным представлением уравнений Эйлера для вариационного функциона-
ла. Вследствие этого возможна невариационная интерпретация уравнений Эйлера.
Подобная интерпретация уравнений Эйлера возможна и для лагранжиана, завися-
щего от функции n переменных и ее частных производных [1,2] .

Кроме того, инвариантным образом выделен класс специальных лагранжианов,
которые порождают связность в расслоении центроаффинной структуры над ба-
зой M .

В случае, когда лагранжиан L - специальный, существует заданный на M относи-
тельный инвариант Π (в работе он назван потенциальным относительным инвари-
антом), который порождает на M поле ковектора (его можно назвать силовым по-
лем) и послойную метрику в расслоении центроаффинной структуры над базой M .
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СИММЕТРИИ УРАВНЕНИЯ ГРЭДА–ШАФРАНОВА

П. О. Рыжих1

1pasharpo@mail.ru, Институт проблем управления им. В. А. Трапезникова РАН

Проблема групповой классификации дифференциальных уравнений впервые
была поставлена основателем теории непрерывных групп Софусом Ли. В дан-
ной работе представлен результат групповой классификации уравнения Грэда–
Шафранова, которое в цилиндрических координатах r , z имеет вид [1]:

∂2Ψ

∂r 2
− 1

r

∂Ψ

∂r
+ ∂2Ψ

∂z2
=−µ0r 2 dP

dΨ
− µ2

0

4π2
F (Ψ)F ′(Ψ), (1)

гдеΨ=Ψ(r, z) — магнитный поток через внешнюю полоидальную перегородку, F –
полоидальный ток, P – давление плазмы, µ0 – магнитная постоянная.

Уравнение Грэда–Шафранова описывает стационарную плазму в токамаке. Это
уравнение получено В.Д. Шафрановым в 1957 году и независимо Г. Грэдом и Г. Руби-
ным в 1958. Уравнение (1) определяет гиперповерхность E = {F = 0} в пространстве
2-джетов J 2(R2) гладких функций на плоскости. Здесь

F = v20 −
v10

r
+ v02 + r 2µ0P ′(v)+ µ2

0

4π2
f (v) f ′(v)

и r, z, v, v10, . . . , v02 — канонические координаты на пространстве J 2(R2) [2]. Инфи-
нитезимальной точечной симметрией уравнения (1) называется векторное поле X
на пространстве 0-джетов J 0(R2) такое, что ограничение производной Ли функции
F вдоль векторного поля X (2)

h на гиперповерхность E равно нулю:

X (2)(F )|E = 0. (2)

Здесь X (2) — продолжение векторного поля X в пространство 2-джетов J 2(R2).

Теорема. Уравнение (1) допускает бесконечномерную алгебру инфинитезимальных
точечных симметрий с образующими ∂

∂z и β(r, z) ∂
∂r тогда и только тогда, когда функ-

ция p квадратична:

P (v) = 1

2
p2v2 +p1v +p0,

а функция f имеет вид

f (v) =±
√

f2v2 + f1v + f0,

где p0, p1, p2, f0, f1, f2 — некоторые постоянные. Здесь функция β(r, z) удовлетворяет
дифференциальному уравнению в частных производных

∂2β

∂r 2
+ ∂2β

∂z2
− 1

r

∂β

∂r
+

(
µr 2p2 +

1

4

µ2 f2

π2

)
β= 0.

В остальных случаях уравнение (1) допускает одномерную алгебру Ли точечных сим-
метрий с образующей ∂

∂z .
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СТАТИСТИЧЕСКАЯ КРИВИЗНА МОДЕЛИ ВЕЙБУЛЛА–ГНЕДЕНКО

А. А. Рылов1

1alexander_rylov@mail.ru, Финансовый университет при Правительстве РФ

Настоящая работа посвящена геометрии статистической структуры [1] на семей-
стве S вероятностных распределений Вейбулла–Гнеденко с функцией распределе-
ния

F (x|λ,k) = 1−exp

(
−

( x

λ

)k
)

, x > 0,

гладко параметризованном двумя параметрами λ = θ1 > 0, k = θ2 > 0. Статистиче-
ская структура на S определяется метрикой g , задаваемой информационной мат-
рицей Фишера Ii j (θ) = ∫

∂i ln p ·∂ j ln p · p dp, где p = p(x|θ) — плотность вероятно-
сти случайной величины относительно некоторой общей доминирующей меры P
на выборочном пространстве, ∂i = ∂

∂θi , и тензорным полем K структуры с ковари-

антными компонентами Ki j k (θ) =−1
2

∫
∂i ln p ·∂ j ln p ·∂k ln p ·p dp.

По заданной статистической структуре (g ,K ) на статистической модели S инва-
риантно определяется 1-параметрическое семействоα-связностей Ченцова–Амари
∇α = D +α ·K , где D — связность Леви–Чивита метрики g ,α — параметр. Если связ-
ность ∇α имеет постоянную кривизну, то получаем статистическую структуру по-
стояннойα-кривизны. Если оператор кривизны RαX Y (для векторных полей X и Y на
S) любой связности Амари–Ченцова удовлетворяет условию RαX Y g = 0, то получаем
сопряженно симметрическую структуру [2].

Для статистической модели Вейбулла–Гнеденко нами вычислена матрица Фише-
ра

I =


(

k
λ

)2 γ−1
λ

γ−1
λ

π2+6γ2−12γ+6
6k2,


гдеγ=limn→∞(

∑n
k=1

1
k −lnn)≈0,577. . . – константа Эйлера–Маскерони, и ковариант-

ные компоненты тензорного поля K структуры

K111 =−(
k

λ
)3, K112 = K121 = K211 = (2−γ)k

λ2
,

K122 = K212 = K221 =−π
2 +6γ2 −24γ+12

6λk
,
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K222 = π2(2−γ)−4ζ(3)−2γ3 +12γ2 −12γ+2

2k3
,

где ζ(3) = ∑∞
n=1

1
n3 ≈ 1,202. . . — константа Апери. Далее показано, что 1-связность

Ченцова–Амари имеет постоянную кривизну

k(1) = 12π2γ−144γ+72

π4
≈ 0,59.

Таким образом, статистическая модель Вейбулла–Гнеденко, как и логистическая
модель [3], относится к классу сопряженно симметрических. Она имеет положи-
тельную 1-кривизну k(1) в отличие от нормальной модели, для которой k(1) = 0, и
модели Парето: k(1) =−4.
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РАЗЛОЖЕНИЕ ПО КОРНЕВЫМ ЭЛЕМЕНТАМ НЕРЕГУЛЯРНОГО
ДИФФЕРЕНЦИАЛЬНОГО ПУЧКА С КРАТНЫМИ ХАРАКТЕРИСТИКАМИ

В. С. Рыхлов1

1RykhlovVS@yandex.ru, Саратовский государственный университет

Рассмотрим в пространстве L2[0,1] пучок L(λ)

y ′′′−3λy ′′+3λ2y ′−λ3, y(0) = 0, y ′(0) = 0, y(1)− y ′′(0) = 0.

Характеристический многочлен ω3 − 3ω2 + 3ω− 1 пучка имеет кратные корни
ω1 = ω2 = ω3 = 1. Характеристический определитель ∆(λ) = eλ−2 является вырож-
денным, а пучок L(λ) — нерегулярным [1, c. 66–67]. Собственные значения пучка
есть числа λk = ln2+2kπi , k ∈Z.

Решается задача нахождения таких условий на вектор-функцию (в.-ф.)
f = ( f1, f2, f3)T , при которых имеет место трехкратная разложимость этой в.-ф.
в биортогональный ряд Фурье по производным цепочкам пучка L(λ) (см. [1, c. 102]),
соответствующим его корневым элементам (к.э.).

В нерегулярном случае дифференциального оператора 3-го порядка, когда ха-
рактеристики лежат в вершинах правильного треугольника, задача о разложении
решена в [2]. Случай нерегулярного пучка второго порядка с простыми характери-
стиками рассматривался в [3].
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Для данной в.-ф. f = ( f1, f2, f3)T определим функцию

F (x,λ) :=−λ2 f1(x)−λ(
3 f ′1(x)− f2(x)

)+ (
3 f ′′1 (x)−3 f ′2(x)+ f3(x)

)
.

Обозначим через Γν круговые контуры в λ-плоскости с центрами в начале коор-
динат и радиусами

√
ln2 2+4π2(ν+1/2)2, ν ∈N. Пусть G(x, t ,λ) есть функция Грина

задачи (1)–(2).

Теорема. Пусть в.-ф. f удовлетворяет условиям:

f (5)
1 , f (4)

2 , f (3)
3 ∈ Lp [0,1], 1 < p É+∞,

f (s)
j (0) = f (s)

j (1) = 0, j = 1,3, s = 0,5− j .

Для того чтобы имели местотрехкратное разложение в.-ф. f по к.э. пучка L(λ) с рав-
номерной сходимостью на [0,1]

lim
k→+∞

−1

2πi

∮
Γk

λs−1
∫ 1

0
G(x, t ,λ)F (x,λ)dλ= fs(x), s = 1,3,

необходимо и достаточно, чтобы выполнялись тождества

ϕ1(x) ≡ 0, ϕ2(x) ≡ 0, где

ϕ1(x) := x f ′′1 (x)− f ′1(x)−2x f ′2(x)+ f2(x)+x f3(x),

ϕ2(x) := x2

2
f ′′1 (x)−x f ′1(x)+ f1(x)−x2 f ′2(x)+x f2(x)+ x2

2
f3(x).

Работа подготовлена в рамках выполнения государственного задания Минобр-
науки России (проект № 1.1520.2014/K).
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МНОГООБРАЗИЯ И ПОВЕРХНОСТИ
С ЛОКАЛЬНО ЕВКЛИДОВОЙ МЕТРИКОЙ

И. Х. Сабитов1

1isabitov@mail.ru, Московский Государственный университет им. Ломоносова

1. Метрика риманового многообразия Mn называется локально евклидовой
(л.е.), если каждая его точка имеет окрестность, изометричную некоторому шару
в евклидовом пространстве Rn со стандартной метрикой. Мир многообразий с л.е.
метрикой очень богат, но он к настоящему времени изучен еще совсем мало. Доста-
точно напомнить, что любая многогранная поверхность с проколотыми вершинами
имеет л.е. метрику.
2. В теории изометрических погружений л.е. метрик, в отличие от метрик нену-

левой кривизны, есть специальный вопрос об изометрических погружениях этих
метрик в стандартное евклидовое пространство той же размерности Если мы мо-
жем изометрически погрузить или даже вложить данную л.е. метрику в евклидо-
во пространство, тогда мы можем сказать, что имеем натуральное представление
этой метрики как метрики области с естественной евклидовой метрикой. В докла-
де будет рассказано о некоторых результатах в случае изометрических погружений
двумерных л.е. метрик в R2, а также и в R3.
3.Структура поверхностей с л.е. метрикой хорошо известна, начиная с предполо-

жения их C 2-гладкости. C 1-гладкие поверхности с аналогичным строением называ-
ются нормальными развертывающимися поверхностями, для которых мы получаем
их полное аналитическое описание.
4. Поверхности с л.е. метрикой, заданные в виде графика функции z = f (x, y),

являются решениями тривиального уравнения Монжа-Ампера

zxx zy y − z2
x y = 0, (1)

для решений которого можно поставить вопрос об их локальном и глобальном по-
ведении в предположени наличия изолированных особенностей. Ниже формулиру-
ются пока неопубликованные результаты.

Теорема 1. Пусть C 1-гладкая нормальная развертывающаяся поверхность z =
z(x, y) определена над кругом с проколотым центром D0 : 0 < x2 + y2 É r . Тогда функ-
ция z(x, y) непрерывно продолжается в точку (0,0).

Теорема 2. Пусть решение z = z(x, y) уравнения (1) принадлежит C n−1(D) ∩
C n(D0), n Ê 2. Тогда функцию z(x, y)можно непрерывно продолжить в функцию класса
C n(D).

О решениях уравнения (1) над всей плоскостью с проколотыми точками можно
доказать следующее утверждение

Теорема 3.Пусть на плоскости (x, y) задано произвольное конечноемножеството-
чек M . Тогда уравнение (1) имеет решения, определенные на всей плоскости, принад-
лежащие классу C∞ всюду, кроме точек множества M , в которых они непрерывны и
графически локально устроены как конические поверхности с вершиной в этих точках.
При некоторых специальных расположениях множества особых точек их количество
может быть и счетным.
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НАЧАЛЬНО-ГРАНИЧНАЯ ЗАДАЧА ДЛЯ НЕОДНОРОДНОГО УРАВНЕНИЯ
СМЕШАННОГО ПАРАБОЛО-ГИПЕРБОЛИЧЕСКОГО ТИПА

К. Б. Сабитов1

1sabitov_fmf@mail.ru, Институт прикладных исследований РБ, г. Стерлитамак

Рассмотрим уравнение смешанного типа

Lu = F (x, t ), (1)

где

Lu =
{

ut −uxx +b2u, t > 0,

ut t −uxx +b2u, t < 0,
F (x, t ) =

{
F1(x, t ), t > 0,

F2(x, t ), t < 0,

в прямоугольной области D = {(x, t )|0 < x < l , −α < t < β}. Здесь b Ê 0, l > 0, α > 0,
β > 0 – заданные действительные числа, Fi (x, t ), i = 1,2, – известные функции и
поставим следующую задачу.
Начально-граничная задача. Найти в области D функцию u(x, t ), удовлетворя-

ющую следующим условиям:

u(x, t ) ∈C (D)∩C 1(D)∩C 1
x(D)∩C 2

x(D+)∩C 2(D−);

Lu(x, t ) = F (x, t ), (x, t ) ∈ D−∪D+;

u(0, t ) = h1(t ), u(l , t ) = h2(t ), −αÉ t Éβ;

u(x,−α) =ϕ(x), 0 É x É l ,

где F1(x, t ), F2(x, t ), ϕ(x), h1(t ) и h2(t ) – заданные достаточно гладкие функции, при
этом h1(−α) =ϕ(0), h2(−α) =ϕ(l ), D− = D ∩ {t < 0}, D+ = D ∩ {t > 0}.

В 1959 году И.М. Гельфанд [1] предложил изучить задачу о движении газа в ка-
нале, окруженном пористой средой, при этом в канале движение газа описывалось
волновым уравнением, а вне его – уравнением диффузии. В этой работе не было
математической постановки задачи, и из физического смысла предлагаемой зада-
чи вытекало, что такая задача должна изучаться в прямоугольной области. В связи
с чем в нашей работе [2] была впервые поставлена и изучена указанная задача для
уравнения (1) при Fi (x, t ) ≡ 0, hi (t ) ≡ 0, i = 1,2, l = 1. В данной работе показано, что
единственность решения и сходимость построенного ряда по собственным функци-
ям одномерной спектральной задачи существенным образом зависят от отношения
сторон α̃ = α/l прямоугольника D− из гиперболической подобласти области D. По
сравнению с работой [2] расширен диапазон изменения параметра α̃, при которых
получены оценки об отделенности от нуля малого знаменателя. Установлен крите-
рий единственности. Решение задачи построено в виде суммы ряда Фурье.

Работа выполнена при финансовой поддержке РФФИ-Поволжье (проект № 14-
01-97003).
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О МНОГООБРАЗИИ ЭЛЛИПТИЧЕСКИХ ПРЯМЫХ
КВАЗИЭЛЛИПТИЧЕСКОГО ПРОСТРАНСТВА S1

N

И. И. Савоськина1

1subzero92@mail.ru, Калужский государственный университет
им. К. Э. Циолковского

Квазиэллиптическое пространство S1
n [1,c.284] является важным частным случа-

ем квазириманова пространства V 1
n , которое пригодно для геометрического мо-

делирования объектов с разноименными величинами. Будем называть прямые эл-
липтическими, если они не пересекаются с абсолютной плоскостью пространства
S1

n . Рассмотрим многообразие всех таких прямых. Можно к прямой этого многооб-
разия так присоединить подвижной репер, чтобы уравнения инфинитезимального
перемещения имели вид:

d Aa =ωb
a Ab +ωιa Aι, d Aι =ω j

ι A j , dωa
ι = 0, ωb

a =−ωa
b , ω

j
ι =−ω j

ι .

Индексы здесь и в дальнейшем принимают следующие значения: a,b = 0,1; ι, j ,k =
2,3, ...,n.

Уравнения структуры этого многообразия записываются в виде:

Dωιa =ωb
a ∧ωιb +ω j

a ∧ωιj , Dω
j
ι =ωk

j ∧ω
j
k , Dω1

0 = 0.

Так как тензор кривизны многообразия равен нулю, то можно построить изо-
метричное отображение многообразия эллиптических прямых пространства S1

n на
евклидово пространство EN , где N = 2n−2 [1, c.469], а группа движений этого мно-
гообразия изоморфна не группе движений пространства EN , а ее подгруппе. Эта
подгруппа переводит в себя метрическую сегреану S1,n−2 : r ang ||xιa || = 1 в беско-
нечно удаленной гиперплоскости пространства EN . Эта сегреана состоит из 1-па-
раметрического семейства паратактичных (n −2)-мерных плоскостей и из (n −2)-
параметрического семейства ортогональных им паратактичных прямых. Евклидо-
во пространство EN , за фундаментальную группу которого принимается эта под-
группа, называется Сегре-евклидовым пространством и обозначается sE2n−2.

Теорема. Сегре-евклидово пространство sE2n−2 является моделью многообразия
эллиптических прямых квазиэллиптического пространства S1

n .

Конгруэнция ((n −1)-параметрическое семейство) эллиптических прямых изоб-
ражается в Сегре-евклидовом простанстве (n −1)-мерной поверхностью. Рассмат-
ривая различные случаи расположения касательной плоскости этой поверхности
относительно сегреаны, можно выделить частные классы конгруэнций прямых.
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О ЗАКОНЕ БОЛЬШИХ ЧИСЕЛ ДЛЯ КОМПОЗИЦИЙ СЛУЧАЙНЫХ
ОПЕРАТОРОВ И ПОЛУГРУПП

В. Ж. Сакбаев1

1fumi2003@mail.ru, Московский физико-технический институт, Российский уни-
верситет дружбы народов

В настоящей работе будут исследованы такие объекты как случайные операто-
ры, случайные полугруппы и их итерации. Для последовательности композиций n
независимых одинаково распределенных случайных полугрупп операторов изуча-
ется асимптотика отклонения композиции от ее математического ожидания при
n →∞.

Для последовательностей Sn = 1
n

n∑
k=1

, n ∈ N, сумм независимых числовых случай-

ных величин ηn , n ∈ N, закон больших чисел утверждает, что P ({|Sn −Mη| > ε}) → 0
при n →∞ для любого числа ε > 0, где Mη – математическое ожидание случайной
величины ηk и P ({|Sn − Mη| > ε}) – вероятность отклонения случайной величины
Sn от ее математического ожидания более чем на ε. В настоящей статье для по-
следовательности {Un} независимых случайных величин со значениями в множе-
стве однопараметрических полугрупп линейных операторов в гильбертовом про-
странстве H ставится вопрос об асимтотическом поведении последовательности

U(n) = U
1
n
n ◦...◦U

1
n
1 , n ∈ N, композиций независимых случайных полугрупп Un , n ∈ N.

Будем говорить, что для последовательности {U(n)} композиций случайных по-
лугрупп со значениями в банаховом пространстве операторнозначных функций X
выполняется закон больших чисел, если вероятность того, что отклонения компо-
зиции U(n) от ее математического ожидания по норме пространства X превосходит
некоторое положительное число, стремится к нулю при n →∞. Будем говорить, что
для последовательности {U(n)} композиций случайных полугрупп со значениями в
топологическом векторном пространстве операторнозначных функций Y выпол-
няется закон больших чисел, если для каждой полунормы p из семейства S, опреде-
ляющего топологию на пространстве Y , вероятность того, что отклонения компози-
ции U(n) от ее математического ожидания по полунорме p превосходит некоторое
положительное число, стремится к нулю при n →∞.

В настоящей работе исследуются случайные полугруппы линейных преобразова-
ний банахова пространства, введенные и исследованные в статьях [1] и [2]. Установ-
лены условия на случайные полугруппы операторов, достаточные для выполнения
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закона больших чисел; приведены примеры случайных полугрупп операторов, для
которых закон больших чисел не выполнен.
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ОБ ОДНОЙ ГИПОТЕЗЕ ДЛЯ ЖЕСТКОСТИ КРУЧЕНИЯ

Р. Г. Салахудинов1

1rsalakhud@gmail.ru, Казанский (Приволжский) федеральный университет

Одной из классических проблем теории упругости является задача построения
приближенной формулы для жесткости кручения через различные геометрические
характеристики области. Постановка проблемы восходит к работам Лорда Рэлея,
Коши и Сен–Венана [1]. Рассматриваемая проблема эквивалентна задаче построе-
ния двухсторонних изопериметрических неравенств, связывающих жесткость кру-
чения и некоторый геометрический функционал области.

Существенное продвижение классической проблемы в классе односвязных об-
ластей было сделано в 1995 г. Авхадиевым [2]. Оказалось, что привычных класси-
ческих геометрических характеристик области (длина границы, площадь и т. д.) не
достаточно для решения задачи. В [2] дано её качественное решение в терминах ин-
тегрального функционала — евклидового момента инерции относительно границы,
т. е.

I2(G) :=
∫

G
ρ(x,G)2dA,

где ρ(x,G) — функция расстояния до границы области.
В докладе рассматривается вопрос о точных границах для отношения функци-

оналов жесткости кручения и евклидового момента инерции в некоторых классах
областей. Будут представлены известные результаты, а также новые изоперимет-
рические неравенства, подтверждающие известную гипотезу о константе 3.

Работа выполнена при финансовой поддержке РФФИ и Правительства Республи-
ки Татарстан (проект 15-41-02433).
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ОБ АСИМПТОТИЧЕСКИ D-ГАРАНТИЙНЫХ ПРОЦЕДУРАХ ПРИ
РАЗЛИЧЕНИИ ДВУСТОРОННИХ ГИПОТЕЗ

Р. Ф. Салимов1

1rustem.salimov@gmail.com, Казанский (Приволжский) федеральный университет,
Институт вычислительной математики и информационных технологий

X (n) = (X1, ..., Xn) — выборка с функцией плотности f (x|θ), зависящей от неиз-
вестного параметра θ ∈ R1. Предлагается построить критерий различения двух
сложных гипотез H0 : θ ∈ Θ0 = [θ0 −∆;θ0 +∆] и H1 : θ 6∈ Θ0, когда параметр θ есть
реализация случайной величины ϑ c известной плотностью g (θ) относительно ме-
ры Лебега. Предполагается, что g (θ) непрерывна в точках θ0 и θ1 и ограничена в R1.
Обычный критерий для проверки двусторонних гипотез, основанный на эффектив-
ных оценках параметра θ, имеет вид |θ̂n −θ0| <∆+ c/

p
n.

В данном сообщении константа c находится из условия оптимизации необходи-
мого объема выборки (НОВ) для достижения малых ограничений на d−апостери-
орные вероятности ошибок первого, второго рода:

Rk = P{ϑ 6∈Θk | |θ̂n −θ0| <> ∆+ c/
p

n} Éβk , k = 0,1.

В [1] рассматривалась аналогичная постановка задачи, в которой предлагался
критерий, основнный на статистике вклада.

Пусть
Q(c) =ϕ(Φ−1(c))+ cΦ−1(c), 0 < c < 1,

ρ = ρ(θ0,θ1) =
(
g (θ0)I (θ0)−1/2 + g (θ1)I (θ1)−1/2

)
,

тогда с находится из уравнения

Q(c0)

Q(1− c0)
=

(
1

G(θ1)−G(θ0)
−1

)
K .

НОВ n∗ находится по формуле

n∗ ³
(
ρ Q(1− c0)

G(θ1)−G(θ0)

)2 1

β2
0

.

Теорема. Пусть статистика X̂ асимптотически нормальна N (θ,σ2(θ)/n). Если
асимптотическая дисперсия удовлетворяет условию:∫ ∞

−∞
σ2(θ)

u2 +1
du <∞,

тогда:
1) критерий указанного вида асимптотически d-гарантиен: Rk (δ∗n) →βk .



304 СЕКЦИОННЫЕ ДОКЛАДЫ

2) асимтотикаминимального объема выборки n̂ находится поформуле дляНОВn∗.

Точность аппроксимации была проанализирована на ряде конкретных вероят-
ностных моделей: нормально-нормальная, экспоненциальная-гамма, коши-коши.
Во всех моделях аппроксимации из теоремы показали удовлетворительную точ-
ность.
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О СВЯЗНОСТИ В ПРОСТРАНСТВЕ ВЕКТОРНЫХ ПЛОТНОСТЕЙ

А. Э. Сатторов1
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Учеником П. А. Широкова, профессором Казанского университета Б. Л. Лаптевым
[1] еще в 1946 году было введено понятие пространство опорных элементов (x,ω),
где опорный объект ω — произвольный дифференциально-геометрический объ-
ект. Рассматриваемое пространство векторных плотностей относится к классу про-
странств опорных элементов, здесь опорным объектом служит векторная плотность
ui произвольного веса p [2].

Понятие связности в пространстве опорных элементов Б. Л. Лаптев вводит акси-
оматическим путем, т.е. задаются объекты связности в пространстве, которые удо-
влетворяют определенным условиям. Если воспользоваться этим подходом, то объ-
ектами связности в пространстве векторных плотностей являются Li

j k (x,u) — объ-

ект аффинной связности и C i
j k (x,u) — тензорная плотность веса −p.

Б. Н. Шапуков [3], рассматривая пространство опорных элементов, как расслоен-
ное пространство, вводит понятие линейной связности. Аналогичную ситуацию мы
рассмотрим для пространства векторной плотности. Рассматриваемое простран-
ство может быть отождествлено как векторное расслоение Х с базой В (dimB = n)
и типовым слоем F (dimF = n).

Рассмотрим отображение h : Xn,u → X , тогда имеет место x → (X A) = (xi ,ui ), где
x ∈ϕ−1(u), U ⊂C , ϕ : x → B , A = 1,n.

Преобразование ui ′ =∆−p f i ′
i ui определяет структурную группу Gn ⊂ GL(n) век-

торного расслоенного пространство Х. В нашем случае преобразования группы G
определяется матрицей вида

f =
[

f i ′
i 0

0 ∆−1 f i ′
i .

]
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Рассмотрим G0 ⊂ G, где компоненты ∆−p f i ′
i ⊂ G0 определены через ui ′ =

∆−p f i ′
i ui .

Согласно [3] вводится форма связности

ωi = B i
j d xi +C i

j du j ,

где C i
j — тензор слоя, и i , j ... — индексы слоя. Тогда имеют место следующие опре-

деления.
A. Линейная связность ω называется регулярной, если тензор P i

j
= δi

j
+C i

j
невы-

рожденный.
B. Регулярная линейная связность ω, удовлетворяющая условию

ωi
j
=ωi

j −dΓi
i +Γk

i ω
i
j = 0,

где Γi
j = P̃ i

k
Bk

i (P̃ взаимный к P), называется приводимой.
C. Связностью Б. Л. Лаптева называется регулярная приводимая связность, линей-

ная форма которой задана своими значениями в подалгебре Ли a0.
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ДВОЯКОПЕРИОДИЧЕСКИЕ РЕШЕНИЯ ОДНОЙ НЕЛИНЕЙНОЙ
ЭЛЛИПТИЧЕСКОЙ СИСТЕМЫ ВТОРОГО ПОРЯДКА

Д.С. Сафаров1, М.С. Шодиев
1safarov-5252@mail.ru, Курган - Тюбинский госуниверситет, Таджикистан

На комплексной плоскости C рассмотрим нелинейную эллиптическую систему в
комплексной форме

f (z)w wzz + g (z)w2
z +h(z)w wz + c(z)w2 = 0, (1)

где z = x + i y, w = u + iϑ, 2∂z = ∂x + i∂y — дифференциальный оператор Коши-
Римана, 4∂zz = ∂xx−∂y y +2i∂x y — дифференциальный оператор Бицадзе [1], f (z) 6=



306 СЕКЦИОННЫЕ ДОКЛАДЫ

0, g (z),h(z),c(z) — заданные двоякопериодические функции с основными периода-
ми ω1,ω2, Im(ω2/ω1) 6= 0.

Будем искать периодические решения уравнения (1) с периодами ω1,ω2,
Im(ω2/ω1) 6= 0 и допускающие полюсы как мероморфные функции. Случай f (z) =
−g (z) ≡ const изучен в [2]. Как и в работе [2], решения уравнения (1) будем искать в
виде

w(z) =Φ(z)expTζϕ, (2)

где Φ(z)− — мероморфная функция, имеющая полюсы в основном параллелограм-
меΩ решетки Γ, Γ= {z0+m1ω1+m2ω2, ; m1,m2−целая числа},Tζϕ— интегральный
оператор вида

Tζϕ=− 1

π

Ï
Ω
ϕ(t )ζ(t − z)dtΩ, ϕ0 =− 1

π

Ï
Ω
ϕ(t )dtΩ.

Здесь ζ(z) — дзета-функция Вейерштрасса [3], построенная на периодах ω1,ω2,ϕ(z)
— искомая двоякопериодическая функция с периодами ω1,ω2 из класса C 1(Ω), то
есть ϕ(z) ∈C 1∗.

Тогда в силу cвойства функции F (z) = Tζϕ [3] в представлении (2) Φ(z) — эллип-
тическая функция второго рода [4], удовлетворяющая условиям

Φ(z +ω j ) =Φ(z)exp(−η jϕ0), j = 1,2. (3)

Подставляя (2) в (1) для искомой функции ϕ(z) получим нелинейное уравнение
первого порядка типа Риккати, вида

f ϕz + ( f + g )ϕ2 +hϕ+ c = 0. (4)

Таким образом, для поставленой задачи достаточно найти регулярное, то есть
класса C 1∗ двоякопериодическое решение уравнения (4) [3].

Предположим, что f 6= 0, g ,h,c — двоякоперодические непрерывные по Гельдеру
функции, с периодами ω1,ω2 и показателем α, 0 <α< 1, и

f (z)+ g (z)+h(z)+ c(z) = 0. (5)

Теорема. Пусть b1,b2, ...,bp — полюсы решения уравнения (1), выполнено условие
(5) и ϕ(z) ∈C 1∗— решения уравнения (4). Тогда если ϕ(z) не принимает значения один и
ϕ0 ∈ Γ, то уравнение (1) допускает решение с полюсами b1,b2, ...,bp , когда выполнено
условие

p∑
k=1

Resz=bk
Φ(z) = 0.

Если ϕ0∈ Γ, то уравнение (1) всегда допускает решение с задаными полюсами.
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О ЗАДАЧЕ ДИРИХЛЕ ДЛЯ УРАВНЕНИЯ СМЕШАННОГО ТИПА ВТОРОГО
РОДА С СИНГУЛЯРНЫМ КОЭФФИЦИЕНТОМ

Р. М. Сафина1

1rimma77705@mail.ru, Поволжская государственная академия физической культу-
ры, спорта и туризма

Рассмотрим уравнение смешанного типа второго рода с сингулярным коэффи-
циентом

Lu ≡ uxx + (sgny)|y |muy y + k

x
ux −a2u = 0 (1)

в прямоугольной области D = {(x, y)|0 < x < l ,−α< y <β}, где k < 1, 1 < m < 2, l , a Ê 0,
α> 0,β> 0 – заданные действительные числа.
Задача Дирихле. Требуется определить функцию функцию u(x, y), удовлетворяю-

щую следующим условиям:

u(x, y) ∈C 2(D+∪D−)∩C (D), (2)

lim
y→0+0

ym−1uy (x, y) =− lim
y→0−0

(−y)m−1uy (x, y),0 < x < l , (3)

Lu(x, y) ≡ 0, (x, y) ∈ D+∪D−, (4)
u(x,β) =ϕ(x), u(x,−α) =ψ(x), 0 É x É l , (5)

u(l , y) = 0, −αÉ y Éβ, (6)
u(0, y) = 0, −αÉ y Éβ, (7)

где ϕ(x) и ψ(x) – заданные достаточно гладкие функции, ϕ(0) =ϕ(l ) =ψ(0) =ψ(l ) = 0,
D+ = D ∩ {y > 0}, D− = D ∩ {y < 0}.

Отметим, что ранее первая граничная задача для уравнения смешанного типа в
второго рода (1) при k = 0 методом спектральных разложений изучена в [1]. В [2]
исследована задача Дирихле для уравнения (1) при всех k < 1 и m = 0.

В данной работе методом спектрального анализа установлен критерий един-
ственности решения задачи Дирихле при всех k < 1 и 1 < m < 2. Решение построе-
но в виде суммы ряда Фурье-Бесселя. При обосновании сходимости ряда возникает
проблема малых знаменателей, как в работах [3, 4]. В связи с этим найдена оценка
об отделенности малого знаменателя от нуля с соответствующей асимптотикой, ко-
торая позволило обосновать равномерную сходимость построенного ряда в классе
функций (2).

Работа выполнена при финансовой поддержке РФФИ (проект № 16-31-50008).
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СВЯЗЬ ГОЛОМОРФНЫХ ВЕКТОРНЫХ РАССЛОЕНИЙ И КОГОМОЛОГИЙ НА
РИМАНОВОЙ ПОВЕРХНОСТИ С КРАЕВЫМИ ЗАДАЧАМИ СОПРЯЖЕНИЯ

Е. В. Семенко1, Т. И. Семенко
1semenko54@gmail.com, Новосибирский государственный педагогический универ-

ситет

Теория голоморфных векторных расслоений, в частности когомологий с коэффи-
циентами в пучке сечений расслоения, и теория краевых задач сопряжения анали-
тических функций на римановых поверхностях долгое время развивались незави-
симо друг от друга, в частности, пользовались совершенно различным математи-
ческим аппаратом.

Нами установлена тесная связь между голоморфными векторными расслоения-
ми и решением однородной краевой задачи, с одной стороны, и между когомоло-
гиями и решением неоднородной задачи, с другой стороны.
Однородная задача и голоморфные векторные расслоения. По краевому ко-

эффициенту строится голоморфное векторное расслоение (расслоение решений од-
нородной задачи), сечениям которого канонически соответствуют решения одно-
родной задачи сопряжения. При этом установлено, что любое голоморфное век-
торное расслоение эквивалентно расслоению решений некоторой однородной за-
дачи, причем соответствие между расслоениями и коэффициентами краевого усло-
вия взаимно однозначно с точностью до эквивалентности расслоений. Фактически
это означает, что метод решения однородной задачи сопряжения автоматически
задает классификацию векторных расслоений, равно как и наоборот, классифика-
ция расслоений дает возможность строить решения однородной краевой задачи.
Неоднородная задача и когомологии. Введем пространство X правых ча-

стей, для которых неоднородная задача разрешима, и фактор-пространство H1
0 =

Cα(L)/X . Пространство H1
0 задает условия разрешимости неоднородной задачи, в

частности его размерность есть число условий разрешимости. Если расслоение E
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эквивалентно расслоению решений однородной задачи, то имеется каноническое
соответствие между 1-коциклами с коэффициентами в пучке сечений расслоения E
и локальными решениями неоднородной задачи. При этом первая группа когомо-
логий с коэффициентами в пучке сечений расслоения H1(E) изоморфна H1

0 . Фак-
тически это утверждение сводит решение неоднородной задачи к анализу разре-
шимости 1-коциклов с коэффициентами в пучке сечений расслоения, в частности
условия разрешимости неоднородной задачи задают “коциклические препятствия”
к разрешимости 1-коциклов, т. е. первую группу когомологий.

Установленная связь между расслоениями/когомологиями и решением краевых
задач дает возможность использовать в теории векторных расслоений методы и ма-
тематический аппарат теории краевых задач. Полученные утверждения позволяют
уточнить место теории краевых задач в общей теории римановых поверхностей.

ЭВОЛЮЦИОННЫЕ УРАВНЕНИЯ ТРЕТЬЕГО ПОРЯДКА С ОДНОЙ
ПРОСТРАНСТВЕННОЙ ПЕРЕМЕННОЙ,

ДОПУСКАЮЩИЕ ПРЕОБРАЗОВАНИЯ БЭКЛУНДА

К. В. Семенов1

1ksemen@mech.math.msu.su, МГУ имени М. В. Ломоносова

Работа посвящена геометрической теории преобразований Бэклунда (ПБ) для
эволюционного уравнения 3-го порядка с одной пространственной переменной. О
геометрической теории ПБ уравнений 2-го порядка см. [1, 2].

Следуя Ф. Пирани и Д. Робинсону [3], преобразование Бэклунда (ПБ) рассматри-
вается как частный случай более общего понятия отображения Бэклунда (ОБ). За-
дание ОБ интерпретируется как задание связности, определяющей представление
нулевой кривизны для заданного эволюционного уравнения.

Ранее было установлено, что эволюционное уравнение 3-го порядка допускает
ОБ (в указанном определении) в том и только в том случае, когда оно имеет вид

zt +K (z, zx , zxx) · zxxx +L(z, zx , zxx) = 0.

Частным случаем этих уравнений являются уравнения типа: zt +zxxx+M(z, zx) =
0.
Доказано, что такие уравнения допускают ОБ только тогда, когда они имеют вид

zt + zxxx +β(z)(zx)3 +α(z) · zx = 0.

Среди этих уравнений содержатся уравнения

zt + zxxx +α(z) · zx = 0,

одним из которых является известное уравнение Кортевега-де Фриза zt − 6z · zx −
zxxx = 0.

Доказано, что уравнения указанного вида допускают ПБ (в указанном смысле) в
том и только в том случае, когда они имеют вид

zt + zxxx + ϕ(z)

az +b
· zx = 0,
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при этом получена система уравнений с частными производными, задающая ПБ
(т.н. система Бэклунда).

В работе изучается результат применения данного ПБ к указанному уравнению.
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ТОПОЛОГИЯ ДИНАМИКИ НЕОДНОРОДНОГО ЭЛЛИПСОИДА ВРАЩЕНИЯ,
ДВИЖУЩЕГОСЯ ПО ГЛАДКОЙ ПЛОСКОСТИ

Г. М. Сечкин1

1ego-rish@ya.ru, Московский государственный университет, Мехенико-
математический факультет, Кафедра Дифференциальной геометрии и приложений

Постановка задачи. Рассмотрим тяжелое твердое тело, имеющее форму сим-
метричного эллипсоида, которое движется по гладкой горизонтальной плоскости,
под действием силы тяжести. Пусть распределение масс таково, что тело обладает
осью динамической симметрии, которая совпадает с осью геометрической симмет-
рии, причем центр масс лежит на этой оси (аналог волчка Лагранжа) на расстоянии
s от центра тела.

Основная цель исследования - классификация слоений Лиувилля на трехмерных
изоэнергетических поверхностях. То есть, классификация с точностью до совпаде-
ний замыканий интегральных траекторий.
Системы уравнений и первые интегралы. Как известно, свободное твердое

тело обладает шестью степенями свободы.
В рассматриваемом нами случае имеется одна голономная связь: высота центра

масс над плоскостью определяется ориентацией центральных главных осей. Таким
образом, число степеней свободы понижается до пяти.

Теорема. Рассматриваемая система, при любом значении параметра s, обладает
четырьмя функционально независимыми интегралами. А именно: геометрический —
Γ= 〈R,R〉, интеграл площадей — G= 〈S,R〉, гамильтониан — H= 1

2〈MS,S〉+mg (b2
1R2

1 +
b2

1R2
2 + b2

3R2
3)1/2 +mg sR3, и интеграл Лагранжа K= S3. Матрица M задает переход

от вектора угловых скоростей к каноническим импульсам S. А R — проекции вектора
восходящей нормали на главные оси эллипсоида.
Таким образом система является вполне интегрируемой.
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Жуковский обнаружил обобщение интегрируемого случая Эйлера: гиростат с
присоединенными массами. Гамильтониан H = S2

1 + S2
2 + S2

3 совпадает с эйлеров-

ским, а дополнительный интеграл обобщает интеграл Эйлера K = Σ
(Si+λi )2

2Ai
, i ∈

1,2,3. В данной задаче роль параметров играют Ai ,λi . Первые соответствуют рас-
пределению масс в гиростате, а λi отвечают за моменты, создаваемые присоеди-
ненными массами вокруг главных осей инерции. В механике этот случай носит на-
звание гиростата Жуковского-Вольтерра. А.А. Ошемков построил бифуркационные
диаграммы [3], а П. Й. Топалов посчитал инварианты Фоменко-Цишанга [4].

Теорема Система динамически симметричного эллипсоида на гладкой плоскости
полностью вкладывается, в смысле лиувиллевой эквивалентности, в систему тяже-
лого гиростата Жуковского-Вольтерра. То есть для любого значения параметров за-
дачи эллипсоида существуют такие параметры системыЖуковского-Вольтерра, для
которых инварианты совпадают.
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ОПРЕДЕЛЯЕМОСТЬ ПОЛУПОЛЕЙ НЕПРЕРЫВНЫХ ПОЛОЖИТЕЛЬНЫХ
ФУНКЦИЙ С MAX-СЛОЖЕНИЕМ РЕШЕТКАМИ ИХ ПОДАЛГЕБР

В. В. Сидоров1

1sedoy_vadim@mail.ru, Вятский государственный университет

Мы продолжаем исследование, начатое в работе 1, и доказываем следующую тео-
рему.

Теорема. Для любого топологического пространства X полуполеU∨(X ) определя-
ется каждой из решеток A(U∨(X )) и A1(U∨(X )).

Работа выполнена в рамках государственного задания Минобрнауки РФ (про-
ект 1.1375.2014/K).
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НЕЛОКАЛЬНАЯ ОБРАТНАЯ ЗАДАЧА ПО ОТЫСКАНИЮ СОМНОЖИТЕЛЕЙ
ПРАВЫХ ЧАСТЕЙ УРАВНЕНИЯ ПАРАБОЛО-ГИПЕРБОЛИЧЕСКОГО ТИПА С

ВЫРОЖДАЮЩЕЙСЯ ГИПЕРБОЛИЧЕСКОЙ ЧАСТЬЮ

С. Н. Сидоров1

1stsid@mail.ru, Институт прикладных исследований РБ, г. Стерлитамак

Рассмотрим уравнение смешанного типа

Lu = F (x, t ) =
{

f (x)g1(t ), t > 0,

f (x)g2(t ), t < 0,
(1)

Lu =
{

uxx −ut −b2u, t > 0,

(−t )muxx −ut t −b2(−t )mu, t < 0,

в прямоугольной области D = {(x, t )|0 < x < l , −α< t <β}, где b Ê 0, m > 0, l > 0,α> 0,
β> 0 и g1(t ) и g2(t ) – заданные соответственно действительные числа и функции, и
поставим следующую задачу.
Обратная задача. Найти в области D функции u(x, t ) и f (x), удовлетворяющие

следующим условиям:

u(x, t ) ∈C (D)∩C 1(D)∩C 1
x(D)∩C 2(D−)∩C 2

x(D+);

f (x) ∈C (0, l )∩L2[0, l ];

Lu(x, t ) ≡ F (x, t ), (x, t ) ∈ D−∪D+;

u(0, t ) = u(l , t ) = 0, −αÉ t Éβ;

u(x,−α)−u(x,β) =ϕ(x), ut (x,−α) =ϕ(x), 0 É x É l ,

где ϕ(x) и ψ(x) – заданные достаточно гладкие функции, при этом ϕ(0) = ϕ(l ) = 0,
ψ(0) =ψ(l ) = 0, D− = D ∩ {t < 0}, D+ = D ∩ {t > 0}.

Отметим, что прямая задача с нелокальным условием u(x,−α)−u(x,β) = χ(x),
0 É x É 1, для уравнения (1) при F (x, t ) ≡ 0 в прямоугольной области D была изучена
в работе [1]. Обратная задача с другим нелокальным условием ut (x,−α)−ut (x,β) =
ζ(x), 0 É x É 1, для уравнения (1) при g1(t ) = g2(t ) ≡ 1 рассмотрена в статье [2].

В данной работе найдены необходимые и достаточные условия единственности
решения. Решение задачи строится в виде суммы ряда по собственным функциям
соответствующей одномерной спектральной задачи. При обосновании существова-
ния решения задачи возникает проблема малых знаменателей [1, 2], затрудняющая
сходимость построенного ряда. В связи с чем установлены оценки об отделенности
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от нуля малого знаменателя с соответствующей асимптотикой, которые позволили
обосновать равномерную сходимость построенного ряда в классе регулярных реше-
ний.

Работа выполнена при финансовой поддержке РФФИ-Поволжье (проект № 14-
01-97003).

Литература

[1] Сабитов К. Б., Сидоров С. Н. Об одной нелокальной задаче для вырождающегося
параболо-гиперболического уравнения // Дифф. ур. – 2014. – Т. 50. – № 3. – С. 356–
365.

[2] Сабитов К. Б., Сидоров С. Н. Обратная задача для вырождающегося параболо-
гиперболического уравнения с нелокальным граничным условием // Изв. вузов. Ма-
тематика. – 2015. – № 1. – С. 46–59.

ПРОЦЕДУРЫ РАЗЛИЧЕНИЯ МНОГИХ ГИПОТЕЗ
ПРИ МНОЖЕСТВЕННОМ ТЕСТИРОВАНИИ

Д. С. Симушкин1

1simdim555@gmail.com, Казанский (Приволжский) федеральный университет, Ин-
ститут вычислительной математики и информационных технологий

При статистической обработке биологических испытаний в настоящее время
наиболее популярной характеристикой процедуры выступает коэффициент FDR (от
false discovery rate), показывающий относительную долю ошибочно отвергнутой ну-
левой гипотезы. В монографии Б. Эфрона [1] этот коэффициент анализируется с
точки зрения байесовского подхода на примере выявления генов, активность кото-
рых повышается при наличии заболевания. Предложена следующая модель. Сред-
няя активность того или иного гена в группе пациентов с изучаемым заболеванием
отличается от средней активности этого же гена у здоровых пациентов на величи-
ну θ. Параметр θ есть реализация бинарной случайной величины ϑ, принимающей
с вероятностью π0 значение ϑ = 0 и некоторое фиксированное значение ϑ = θ0 с
вероятностью π1 = 1−π0.

Стандартный анализ данных из монографии [1], на которых иллюстрируются
предлагаемые методы, не соответствуют описанной выше модели. Кроме того, в
подобного рода исследованиях представляет интерес не только вероятность оши-
бочного отклонения нулевой гипотезы в пользу односторонней альтернативы.

Мы предлагаем, во-первых, обобщение модели Б. Эфрона, в которой параметр ϑ
имеет распределение смеси из трёх нормальных законов: с вероятностью π0 сред-
нее значение нормального распределения равно 0, с вероятностями π1,π2 (π0+π1+
π2 = 1) это среднее равно µ1 (< 0) и µ2 (> 0) соответственно. Эта модель прекрасно
согласуется с данными [1] (p-значение критерия минимума хи-квадрат равно 0.79).

Во-вторых, в рамках предлагаемой модели рассмотрена задача построения кри-
терия различения трех гипотез H1 : θ ∈ Θ1 = (−∞,0), H0 : θ ∈ Θ1 = 0, H2 : θ ∈ Θ1 =
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(0,+∞). Гипотезы H1, H2 отвечают ситуациям, когда заболевание приводит к пони-
жению или повышению активности гена. В качестве контролируемых характери-
стик решающей функции δ выбираются условные вероятности

Qk (δ) = P {ϑ ∈Θk | δ= dk }

с соответствующим решением dk в пользу гипотезы Hk , k = 0,1,2.
Установлено, что среди решающих функций, отвергающих нулевую гипотезу в

пользу H1 или H2, если наблюдаемая статистика X <C1 или X >C2 соответственно,
максиминным свойством обладает та решающая функция, для которой все три ха-
рактеристики надежности совпадают: Q1 =Q2 =Q3. Отметим, что для данных, при-
веденных в [1], для этого критерия характеристики надежности достаточно высоки
Q1 =Q2 =Q3 = 0.944. В то же время, при различении только двух гипотез, например
H0 : θ = 0 и H1 : θ >6= 0, нельзя построить критерий с достаточной надежностью обоих

решений.
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НАИБОЛЕЕ ТОЧНЫЕ НАДЕЖНЫЕ ИНТЕРВАЛЫ
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В статье [1] проблема доверительного оценивания рассматривалась с точки зре-
ния d-апостериорного подхода к надёжности статистического вывода. Примени-
тельно к задаче построения двусторонних доверительных множеств предложенный
в [1] способ предполагает, что для каждого результата наблюдений X = x выдаёт-
ся семейство B = B(x) интервалов вида [a;b], удовлетворяющее при любых a < b
условию

P{ϑ ∈ [a;b] | B(X ) 3 [a;b] } Ê 1−β,

где ϑ — истинное (случайное) значение оцениваемого параметра, индексирующе-
го вероятностное распределение наблюдаемой сл.в. X , (1−β) — заранее заданный
уровень надёжности. Здесь предлагается другой подход к определению надёжно-
сти, адаптированный к обычному способу построения доверительных интервалов
с помощью двух статистик.

Определение. Пара статистик θ < θ образует надёжный интервал (уровня (1−
β)), если с вероятностью единица условная вероятность, вычисляемая относительно
сигма-алгебры, порождённой вектором (θ ,θ ),

P{ϑ ∈ [θ ;θ ] | (θ ,θ ) } Ê 1−β.
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Любой байесовский интервал, т.е. интервал [θ ;θ ], для которого R(θ ,θ |x) Ê 1−β,
где апостериорная вероятность

R(a,b |x) = P{ϑ ∈ [a;b] | X = x },

будет надёжным интервалом. Среди байесовских интервалов часто существует ин-
тервал минимальной ширины.

Для построения оптимального надёжного интервала определим χ = χ(a,b) как
точку достижения максимума (по x) апостериорной вероятности R(a,b |x), а также
функцию T∗(a) = min{b : R(a,b |χ) Ê 1−β}.

Теорема. Если найдётся статистика θ∗(x) такая, что при всех x имеет место
равенство χ(θ∗(x),θ∗(x)) = x с θ∗(x) = T∗(θ∗(x)), то
a) интервал [θ∗;θ∗ ] — надёжный интервал уровня (1−β);
b) для любого другого надёжного интервала [θ;θ ]

P
{
θ∗(ξ) < θ(X ) < θ(X ) < θ∗(ξ)

}= 0,

где X ,ξ— независимые копии выборки.
Другими словами, если в каком-то эксперименте построен интервал [θ∗;θ∗], то

никакая другая пара надёжных границ ни в каком другом эксперименте не даст бо-
лее узкий интервал.

Примеры.
1. Если выборка X поступает из нормального распределения со средним θ, а θ в

свою очередь есть реализация нормальной случайной величиныϑ, то оптимальный
надёжный интервал совпадает с байесовским интервалом минимальной ширины
[θ;θ ] = argmin

{
b −a : R(a,b |x) Ê 1−β}

.
2. В случае выбора из экспоненциального распределения со средним 1/θ и гамма-

распределением ϑ интервал [θ∗;θ∗] совпадает с байесовским интервалом мини-
мальной относительной ширины [θ;θ ] = argmin

{
b/a : R(a,b |x) Ê 1−β}

.
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Рассмотрение в римановом пространстве V n римановой системы координат
позволяет как для произвольного тензора, так и для объекта аффинной связности
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этого пространства получить инвариантный ряд типа ряда Тейлора, члены которо-
го зависят не только от координат текущей точки, но и от касательного элемента
в ней. Если в рядах для компонент gi j (x) метрического тензора пространства V n и
для компонент Γh

i j (x) объекта аффинной связности пространства V n соответствен-
но отказаться от слагаемых третьего, второго и больших порядков малости отно-
сительно компонент yh касательного элемента, получаются компоненты метриче-
ского тензора

g̃i j (x; y) = gi j (x)+ 1

3
Riαβ j (x)yαyβ

и компоненты объекта аффинной связности

Γ̃h
i j (x; y) = Γh

i j (x)− 1

3
Rh

(i j )α(x)yα,

которые определяют на V n геометрию, подобную финслеровой, но отличную от неё,
естественным образом связанную с инвариантной теорией приближений в римано-
вых пространствах [1]. С использованием операции типа полного лифта [2] на каса-
тельном расслоении T (V n) построена метрика

d s2 = g̃αβ(x; y)D yαD̃ yβ,

где

D yh = d yh +Γh
αβ(x)yαd xβ,

D yh = d yh + Γ̃h
αβ(x; y)yαd xβ.

Изучены некоторые геометрические свойства пространства касательного рассло-
ения T (V n) с такой метрикой. В частности, рассмотрены вопросы существования
геодезических отображений и проективных преобразований таких пространств в
случаях, когда базовое пространство V n является пространством постоянной кри-
визны или пространством Эйнштейна. При этом частично использован аппарат ис-
следования автоморфизмов расслоенных пространств, построенный Б.Н. Шапуко-
вым [3].
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ЛЕВОИНВАРИАНТНЫЕ НОРМАЛЬНЫЕ ПОЧТИ КОНТАКТНЫЕ
МЕТРИЧЕСКИЕ СТРУКТУРЫ НА ПЯТИМЕРНЫХ ГРУППАХ ЛИ

Я. В. Славолюбова1
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Рассмотрим 5-мерную алгебру Ли a f f (R) × u, являющуюся прямым произве-
дением аффинной алгебры Ли a f f (R) и трехмерной унимодулярной алгебры Ли
u. Напомним, что алгебра Ли a f f (R) имеет одно коммутационное соотношение
[e1,e2] = e2. Классификация трехмерных унимодулярных алгебр Ли известна [1], она
включает следующие алгебры Ли: su(2), so(3), sl (2,R), o(1,2), e(2), e(1,1), h3, R3.

В базисе (e1,e2,e3,e4,e5) алгебра Ли a f f (R)×u имеет следующие выражения ско-
бок Ли:

1. a f f (R)× su(2) ∼= a f f (R)× so(3): [e1,e2] = e2, [e3,e4] = e5, [e4,e5] = e3, [e3,e5] =
−e4.

2. a f f (R) × sl (2,R) ∼= a f f (R) × o(1,2): [e1,e2] = e2, [e3,e4] = 2e4, [e3,e5] = −2e5,
[e4,e5] = e3.

3. a f f (R)× e(2): [e1,e2] = e2, [e3,e4] =−e5, [e3,e5] = e4.
4. a f f (R)× e(1,1): [e1,e2] = e2, [e3,e4] = e5, [e3,e5] =−e4.
5. a f f (R)×h3: [e1,e2] = e2, [e3,e4] = e5.
Определим левоинвариантную почти контактную метрическую структуру

(η,ξ,ϕ0, g0) на группе Ли, соответствующей алгебре Ли a f f (R)×u, относительно ба-
зиса (e1,e2,e3,e4,e5). Действие аффинора ϕ0 на базисных векторах (e1, ...,e5) зада-
дим следующим образом: ϕ(e1) = e2, ϕ(e2) = −e1, ϕ(e3) = e4, ϕ(e4) = −e3, ϕ(e5) = 0.
Зафиксируем также метрику g0 = e∗1

2+e∗2
2+e∗3

2+e∗4
2+e∗5

2, где e∗i – ковекторы, ду-
альные к ei . В качестве характеристического векторного поля ξ можно взять одно
из базисных векторных полей ξ = ±ei , i = 1, ..,5. Соответствующие наиболее про-
стые почти контактные формы η = ±e∗i , i = 1, ..,5. В результате исследования по-
строенных левоинвариантных почти контактных метрических структур (η,ξ,ϕ0, g0)
получим следующий результат.

Теорема 1. Пусть R – группа Ли размерности 5, соответствующая алгебре Ли
a f f (R) × u, где u – любая трехмерная унимодулярная алгебра Ли, наделена левоин-
вариантной почти контактной метрической структурой (η = ±e∗i ,ξ = ±ei ,ϕ0, g0),
i = 1, ..,5. Тогда:
1. При η = ±e∗3 нормальную структуру допускают группы Ли, соответствующие

следующим алгебрам Ли: a f f (R)× e(2), a f f (R)× e(1,1).
2. При η=±e∗5 нормальную структуру допускает группа Ли, соответствующая ал-

гебре Ли a f f (R)×h3.

Работа выполнена при финансовой поддержке программы Президента “Ведущие
научные школы РФ” (проект НШ-9740.2016.1).
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РАНГИ ПЛАНАРНОСТИМНОГООБРАЗИЙ КОММУТАТИВНЫХ ПОЛУГРУПП

Д. В. Соломатин1
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Весьма актуальной является проблема нахождения рангов планарности много-
образий полугрупп, сформулированная Л. М. Мартыновым [1].

Определение. Пусть V – произвольное многообразие полугрупп. Если существует
такое натуральное число r Ê 1, что все V-свободные полугруппы ранга É r допус-
кают планарный граф Кэли, а V-свободная полугруппа ранга r + 1 уже не допускает
планарный граф Кэли, то рангом планарности многообразия V называется это число
r = rπ(V). Если для многообразия V такого натурального числа не существует, то го-
ворят, чтомногообразиеV имеет бесконечный ранг планарности и пишут rπ(V) =∞.

Нами исследовались вопросы планарности многообразий коммутативных моно-
идов и графов Кэли во многих классах полугрупп [2]–[3]. В частности, известно [2],
что рангами планарности многообразий моноидов могут быть только числа 1, 2 и
3. Все указанные числа могут быть рангами планарности и многообразий коммута-
тивных полугрупп, но здесь появляется многообразие полугрупп с нулевым умно-
жением с бесконечным рангом планарности. В связи с этим, возникает естествен-
ный вопрос: будет ли ранг планарности любого нетривиального многообразия ком-
мутативных полугрупп принимать лишь значения 1, 2, 3 или ∞? Положительный
ответ на него даёт следующая

Теорема. Нетривиальное многообразие коммутативных полугрупп либо имеет
бесконечный ранг планарности и при этом совпадает с многообразием полугрупп с ну-
левым умножением, либо имеет ранг планарности 1, 2 или 3.

Идея доказательства теоремы заключается в применении конфигураций (см.,
например, рис.1), иллюстрирующих непланарность основ графов Кэли свобод-
ных полугрупп некоторых многообразий коммутативных полугрупп относительно
небольшого числа образующих, и их модификаций, получаемых путем отождеств-
ления некоторых вершин, для доказательства непланарности графов Кэли свобод-
ных полугрупп широкого класса многообразий полугрупп, либо для сведения зада-
чи к многообразиям, ранги планарности которых известны.

a

bcd

acd

abd

abcd

ac abc

ab bc

c

b

Рис.1
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ОСНОВНЫЕ МЕТРИЧЕСКИЕ ИНВАРИАНТЫ
КОНЕЧНЫХ МЕТРИЧЕСКИХ ПРОСТРАНСТВ
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Пусть K — множество конечных метрических пространств одной и той же мощ-
ности N > 1.
1. Функция F : K→ R называется основным метрическим инвариантом, если вы-

полняются следующие условия (i–i i i ).
(i ) F (X ) = F (Y ) для любых изометричных метрических пространств X , Y ∈K.
(i i ) Для любого (X ,ρ) ∈K
F (X ) ∈ {ρ(x, y) : x, y ∈ X , x 6= y}.
(i i i ) Для любых (X ,ρ), (Y ,d) ∈ K |F (X ) − F (Y )| É 2ds(X ,Y ), где ds(X ,Y ) =

1
2 min{dis f : f : X → Y — биекция}, dis f = max{|ρ(x, y)−d( f (x), f (y))| : x, y ∈ X } [1].

Примерами основных инвариантов являются диаметр пространства D(X ) (см. [1],
[2], с. 305) и K -радиусы, где 1 É K É N −1, пространства X : RK (X ) = min{β(X ,S) : S ⊂
X , 1 É card(S) É K }, здесь β(X ,S) = max{ρ(x,S) : x ∈ X }, card(S) — мощность множе-
ства S [1].
2. Пусть S ⊂ X , card(S) = k, где 2 É k É N , Ld(S) — упорядоченный по неубыванию

набор всех расстояний между различнымиточками в S. Ldn(S)— n-й элемент из Ld(S)
(1 É n ÉC 2

k ). Ldmnk (X ) — m-й элемент в упорядоченном по неубыванию списке из эле-

ментов Ldn(S), полученном при переборе всех S ⊂ X мощности k (1 É m ÉC k
N ). Отме-

тим, что Ldm12(X ) = Ld1mN (X ) = Ldm(X ), Ld11k (X ) = Ld1(X ) = RN−1(X ), Ld21k (X ) =
Ld2(X ) = RN−2(X ), LdC k

N ,C 2
k ,k (X ) = LdC 2

N
(X ) = D(X ).

3. Пусть S ⊂ X , card(S) = r , где 1 É r É [N /2], [N /2] — целая часть N /2. Обозна-
чим через Lc(S) упорядоченный по неубыванию набор всех расстояний между точками,
первая из которых пробегает S, а вторая пробегает X \S, и Lcq (S) — q-й элемент из
Lc(S) (1 É q É r (N − r )). Lcl qr (X ) — l-й элемент в упорядоченном по неубыванию спис-
ке из элементов Lcq (S), полученном при переборе всех S ⊂ X мощности r (1 É l ÉC r

N ).
Отметим, что Lc11r (X ) = Ld1(X ), Lc21r (X ) = Ld2(X ), LcC r

N ,r (N−r ),r (X ) = D(X ).

4. Пусть S ⊂ X , card(S) = s, где 3 É s É N . Lri j s(X ) — i-й элемент в упорядоченном
по неубыванию списке из элементов R j (S) (1 É j É N −1), полученном при переборе всех
S ⊂ X мощности s (1 É i É C s

N ). Отметим, что Lr1 j N (X ) = R j (X ), LrC s
N ,(s−1),s(X ) =

LdC s
N ,1,s(X ), LrC s

N ,(s−2),s(X ) = LdC s
N ,2,s(X ).

Теорема. Пусть 2 É k É N , 1 É n É C 2
k , 1 É m É C k

N , 1 É r É [N /2], 1 É q É r (N − r ),
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1 É l É C r
N , 3 É s É N , 1 É j É N −1, 1 É i É C s

N . Тогда функции Ldmnk , Lcl qr , Lri j s
являются основными метрическими инвариантами на множестве K.
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О МНОГОГРАННИКАХ
С СИММЕТРИЧНЫМИ РОМБИЧЕСКИМИ ВЕРШИНАМИ

В. И. Субботин1

1geometry@mail.ru, Южно-Российский государственный политехнический универ-
ситет (НПИ)

В работе рассмотрены два класса замкнутых выпуклых многогранников в трёх-
мерном евклидовом пространстве. Особенностью многогранников обоих классов
является то, что звёзды некоторых их вершин состоят из равных ромбов.

Определение 1. Вершина многогранника называется ромбической, если её звезда
состоит из равных одинаково расположенных ромбов.
Определение 2. Ромбическая вершина называется симметричной, если она распо-

ложена на нетривиальной оси вращения многогранника.
Определение 3.Ромбическая вершина называется изолированной, если её звезда не

имеет общих элементов со звездой любой другой ромбической вершинымногогранника.

Отметим, что во втором определении требование расположения вершины на
оси вращения можно заменить на более слабое: вершина должна располагаться на
нетривиальной оси вращения звезды и совокупности граней, имеющих общие эле-
менты со звездой рассматриваемой вершины [1].

Если ограничиться многогранниками, каждая вершина которых является сим-
метричной ромбической, но не изолированной, то класс таких многогранников ис-
черпывается ромбическим додекаэдром и ромботриаконтаэдром [2].

Первый из введённых классов многогранников определяется так, что каждая его
вершина является изолированной ромбической. При этом каждая грань F , не вхо-
дящая в звезду ромбической вершины, имеет нетривиальную ось вращения, пер-
пендикулярную F . Предполагается, что эта ось вращения является осью вращения
звезды грани F .

Второй класс многогранников определяется как класс с двумя симметричными
изолированными ромбическими вершинами, разделёнными равными правильны-
ми многоугольниками одного типа. Причём, ромбические “шапочки” обеих вершин
равны между собой.
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Доказана следующая теорема, на основании которой находятся все пять типов
многогранников первого класса.

Теорема. Всякий многогранник первого класса может быть получен при помощи
преобразования отсечения некоторых трёхгранных вершин одного из сильно симмет-
ричных относительно вращения граней многогранников и последующего симметрич-
ного продления полученных треугольных сечений до ромбов.

Доказана также теорема о перечислении всех трёх типов многогранников второ-
го класса.
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НЕКОТОРЫЕ СВОЙСТВА СИНЕКТИЧЕСКОЙ СВЯЗНОСТИ А.П. ШИРОКОВА
НА СУММЕ УИТНИ КАСАТЕЛЬНЫХ РАССЛОЕНИЙ

A. Я. Султанов1

1sultanovaya@rambler.ru, Пензенский гос. университет

Изучая касательные расслоения T k (Mn), А.П. Широков установил, что на T k (Mn)
существует гладкая структура над алгеброй плюральных чиселR(εk ). Он также пока-
зал, что вещественная реализация голоморфной линейной связности ∇̃ на T k (Mn)
задается линейной связностью ∇ и тензорными полями Γλ (λ= 1,2, ...,k) типа (1,2).
Эта связность называется синектическим расширением полного лифта связности ∇
c помощью тензорных полей Γλ [1].

В настоящем сообщении рассматривается синектическая связность ∇Sh А.П. Ши-

рокова на сумме Уитни
k⊕

i=1
Ti (Mn) касательных расслоений Ti (Mn) = T (Mn). Это

расслоение можно рассматривать как расслоение А. Вейля MA
n над алгеброй A =

{a0+aλε
λ|a0, aλ ∈R,ελεµ = 0,λ,µ= 1,2, ...,k}, которая изоморфна сумме Уитни k эк-

земпляров алгебры дуальных чисел R(ε). Для функции f ∈ C∞(Mn) функция f A,
заданная на MA называется естественным продолжением функции f в алгебру
C∞(MA

n ). Пусть a∗ : A→ R – линейная форма, тогда можно определить функцию
f(a∗) = a∗◦ f A. Для произвольного векторного поля X на Mn и фиксированного эле-
мента a ∈ A существует единственное векторное поле X (a) на MA

n , удовлетворяю-
щее условию X (a) f(b∗) = (X f )(b∗·a) [2].

Предположим, что на базе M расслоения MA
n заданы линейная связность ∇= Γ0 и

тензорные поля Γλ (λ= 1,2, ...,k) типа (1,2). Cинектическая связность ∇Sh А.П. Ши-
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рокова на MA
n определяется условием [2]

∇Sh
X (a)Y (b) = (Γα(X ,Y ))(εαab),

где по α ведется суммирование от 0 до k, a,b – произвольные элементы алгебрыA.
Тензорные поля кручения T Sh и кривизны RSh удовлетворяют соотношениям

T Sh = T (α)
α , RSh = R(α)

α (по α ведется суммирование от 0 до k) [2]. Среди связностей
∇Sh существуют локально симметрические пространства, которые выделяются сле-
дующими условиями П.А. Широкова: T Sh = 0,∇ShRSh = 0.

Теорема 1. Связность∇Sh является локально симметрической тогда и только то-
гда, когда Tα = 0 и ∇Rα = 0(α= 0,1, ...,k).

Отметим свойство связности ∇Sh относительно действия группы автоморфиз-
мов AutA алгебры A на MA

n .

Теорема 2. Линейная связность ∇Sh А.П. Широкова, заданная на MA
n является ин-

вариантной относительно действия группы AutA наMA
n тогда итолькотогда, когда

∇Sh =∇C , ∇C – полный лифт линейной связности ∇.
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ДВИЖЕНИЯ В КАСАТЕЛЬНЫХ РАССЛОЕНИЯХ СО СВЯЗНОСТЬЮ
ПОЛНОГО ЛИФТА НАД ПРОЕКТИВНО-ЕВКЛИДОВОЙ БАЗОЙ

Г. А. Султанова1

1sultgaliya@yandex.ru, Пензенский гос. университет

Пусть T (M) – касательное расслоение над многообразием M . В работе [1] при-
ведены определения лифтов функций, векторных полей, линейных связностей из
M в T (M). Пусть X ∈ ℑ1

0(M). На T (M) векторные поля X (1) и X (0) в локальных
координатах определяются соотношениями: X (1) = (X i )(0)∂

1
i , X (0) = (X i )(0)∂

0
i +

(∂ j X i )(0)x
j
1∂

1
i . Если на базе M задана линейная связность ∇, то на T (M) существует

единственная линейная связность ∇(0), удовлетворяющая условиям [1]: ∇(0)
X (0)Y (0) =

(∇X Y )(0), ∇(0)
X (0)Y (1) = ∇(0)

X (1)Y (0) = (∇X Y )(1),∇(0)
X (1)Y (1) = 0. Векторное поле X̃ называ-

ется инфинитезимальным аффинным преобразованием расслоения T (M) со связ-
ностью ∇(0), если L X̃ ∇(0) = 0 [1].
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Известно, что инфинитезимальное аффинное преобразование X̃ пространств
(T (M),∇(0)) над проективно-евклидовой базой имеет вид [3]:

X̃ = X (0) +Y (1) +γG , (1)

где X ,Y ∈ ℑ1
0(M), G ∈ ℑ1

1(M), удовлетворяющие условиям: LX ∇ = 0,LY ∇ = 0, ∇G =
0,R

1•G −G
1•R = 0, причем R

1•G(X ,Y , Z ) = R(G(X ),Y )Z , G
1•R(X ,Y , Z ) =G(R(X ,Y )Z ), а

векторное поле γG определяется условием γG = (G
j
i )(0)xi

1∂
1
j .

Обозначим через L̃ алгебру Ли векторных полей вида (1), а через Lα(α= 0,1,2) – ее
подалгебры Ли векторных полей вида X (0),Y (1), γG и перейдем к оценке сверху их
размерностей. Рассмотрим случай, когда компонента симметрической части тен-
зора Риччи c11 6= 0 и существует составляющая антисимметрической части тензора
Риччи a12 6= 0. Тогда группа движений пространств (M ,∇) в этом случае содержит не
более n2−n+1 параметров [2]. Отсюда получаем, что dimL0+dimL1 É 2n2−2n+2.

Оценим размерность подалгебры L2, рассмотрев пространство решений урав-
нения ∇G = 0. Используя условия интегрируемости этого уравнения, соотношения

R
1•G −G

1•R = 0, и соотношения, выражающие тензор кривизны R для проективно-
евклидовых пространств через тензор Риччи, мы получим, что G i

k = δi
k g . Подставив

найденные компоненты G i
k в уравнение ∇G = 0, получим ∂k g = 0, следовательно g –

произвольная постоянная. Значит, dimL2 = 1. Если c11 6= 0, а все составляющие вида
a1i = 0, но существует составляющая c23 6= 0, то dim L̃ É 2n2 −4n +7 < 2n2 −2n +3.
Таким образом, имеет место

Теорема. Размерность алгебр Ли L̃ инфинитезимальных аффинных преобра-
зований пространства (T (M),∇(0)) над проективно-евклидовой базой с несимметрич-
ным тензором Риччи не превосходит 2n2 −2n +3.
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ПОЛУГРУППЫ ЭНДОМОРФИЗМОВ УНАРОВ
НЕРЕГУЛЯРНЫХ МНОГООБРАЗИЙ

С. В. Сыроватская1
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университет

Унаром называется алгебра A = 〈
A, f

〉
с одной унарной операцией f . Необходи-

мые термины из теории унаров можно найти в [1]. Всякое многообразие унаров
определяется одним тождеством вида x f k = x f k+h (регулярное многообразие) ли-
бо вида x f m = y f m (нерегулярное многообразие) (k,h,m ∈N0) [2].

Пусть R = 〈R,∗〉, S = 〈S,∗〉 — полугруппы. Сплетением RwrY S полугрупп R и
S посредством правогоS-полигона Y [см. 3] называется полугруппа

〈
RY ×S,∗〉

, где
RY — множество всех отображений множества Y во множество R и для произволь-
ных τ1,τ2 ∈ RY , s1, s2 ∈ S, (τ1, s1)∗ (τ2, s2) = (τ3, s1 ∗ s2), где yτ3 = (yτ1)∗ ((y s1)τ2) для
любого y ∈ Y .

Теорема 1. Полугруппа эндоморфизмов любого унара из нерегулярного многообра-
зия является делителем полугруппы эндоморфизмов некоторого унара из этого же
многообразия, не имеющего нециклических узловых элементов.

Подполугруппу
{

f m | m ∈N0
}

полугруппы EndA будем обозначать через χA.
Далее A — неодноэлементный унар нерегулярного многообразия, не имеющий
нециклических узловых элементов.{

ai | i ∈ I
}

— множество всех минимальных элементов A. Определим два семейства
идеалов полугруппы χA:

для любого i ∈ I , Ji =
{

f k |N0 3 k Ê d(ai )
}

; для произвольных i , j ∈ I ,

Ki , j =
{
χA , если d(ai ) É d(a j ),{

f l |N0 3 l Ê d(ai )−d(a j )
}

, если d(ai ) > d(a j ).
T(X )= 〈T (X ), ·〉 — правая

симметрическая полугруппа X . Пусть X = {
xi | i ∈ I

}
.

Теорема 2. Если A не является моногенным, тогда EndA∼= K /θ, где
K =

{
(τ, t ) ∈χX

A
×T (X ) | (∀i ∈ I )(xi t = x j ⇒ xiτ ∈ Ki , j )

}
есть подполугруппа сплетения

χA wrXT(X ) (X — естественный полигон над T(X )), конгруэнция θ определена по пра-
вилу: для любых (τ1, t1), (τ2, t2) ∈ K

(τ1, t1)θ(τ2, t2)
de f⇔

(∀i ∈ I )
[
(xiτ1 θJi xiτ2)&(xiτ1 ∉ Ji ⇒ xi t1 = xi t2)

]
,

(θJi — конгруэнция Риса полугруппы χA по идеалу Ji ).
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ПОДПОСЛЕДОВАТЕЛЬНОСТЬ НУЛЕЙ ЦЕЛЫХ ФУНКЦИЙ, ВЫДЕЛЯЕМЫХ
МАЖОРАНТОЙ КЛАССА КАРТРАЙТ

Г. Р. Талипова1
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Полагаем C± :=C\R, R∗ :=R\ {0}, C∗ :=C\ {0}.
Для произвольной функции M : C→ [−∞,+∞] определим весовой класс Ent(exp

M):= {
f — целая функция :

∣∣ f (z)
∣∣É const f eM(z), z ∈C}

, где const f Ê 0 — постоянная.
Следуя В. И. Мацаеву и М. Л. Содину (2002 г.), функцию u : C→ [−∞,+∞] называ-

ем функцией класса Картрайт, если∫ +∞
−∞

max{0,u(x)}

x2
d x <+∞

и выполнены условия: 1) u — субгармоническая в C с гармоническим сужением
u

∣∣
C±; 2) u(z) = u(z̄) для всех z ∈ C и u(0) = 0; 3) u — функция конечного типа при

порядке 1. Класс всех функций Картрайт обозначаем через C .
Класс тестовых функций RP0 — подмножество всех полунепрерывных сверху функ-

цийφÊ 0 наR∗ для которых выполнены 1) условие финитностиφ≡ 0 вне некоторого
отрезка;
2) условие полунормировки в нуле limsup0 6=x→0φ(x)/| log|x||É1; 3) для любого x0 ∈ R∗
при некотором rx0 ∈

(
0, |x0|

]
φ(x0) É 1

π2

∫ +∞
−∞

ϕ(x0 +x)
1

x
log

∣∣∣x + r

x − r

∣∣∣d x при всех r ∈ (0,rx0).

Теорема. Пусть 0 ∉Λ = {λk }k=1,2,... ⊂ C, а M ∈ C с функцией распределения νRM на
R ее меры Рисса νM . Тогда
1) если Λ — последовательность неединственности для Ent(exp M), функция M огра-
ничена снизу на некотором интервале (−b,b) ⊂R, b > 0, то имеетместо соотношение

sup
φ∈RP0

(∑
k

(PC±φ)(λk )−
∫ +∞
−∞

φ(t )dνRM (t )

)
<+∞, (1)

где PC±φ— преобразование Пуассона функции φ в C±;
2) если соотношение (1) выполнено для φ ∈ RP0, то для любого числа ε > 0 последова-
тельность Λ— последовательность неединственности для Ent(exp M∗ε), где

M∗ε(z) := 1

2π

∫ π

−π
M(z +εeiθ)dθ при |ℑz| < ε,

M∗ε(z) := M(z) при |ℑz| Ê ε.

Работа выполнена при финансовой поддержке гранта РФФИ, проект № 16-01-00024.
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ОБОБЩЕННЫЕ АЛГЕБРЫ ИНЦИДЕНТНОСТИ

Д. Т. Тапкин1

1danil.tapkin@yandex.ru, Казанский (Приволжский) федеральный университет

В теории колец и модулей большую роль играют кольца формальных матриц.
Среди них часто выделяют один интересный класс колец. А именно, кольца фор-
мальных матриц K ({Mi j } : {ϕi k j }) порядка n, в которых Mi j = R для всех 1 É
i , j É n. Эти кольца называются кольцами формальных матриц порядка n над (со
значением в кольце) R и обозначаются Kn(R) или Kn(R : {ϕi k j }). В этом случае
ϕi j k (a ⊗b) = ηi j k ab для всех a,b ∈ R и некоторого ηi j k ∈ C (R). Кольцо Kn(R) будет
алгеброй если и только если кольцо R коммутативно.

Пусть теперь кольцо R коммутативно. Рассмотрим алгебру формальных матриц
порядка n, в которой Mi i = R, для всех 1 É i É n, а каждый бимодуль Mi j , i 6= j , равен
либо R, либо 0. Нетрудно видеть, что снова ϕi j k (a ⊗b) = ηi j k ab для всех a ∈ Mi j ,
b ∈ M j k и некоторого ηi j k ∈ R. Назовем эту алгебру A и положим η= {ηi j k }.

С алгеброй A можно связать множество с отношением (X ,É), где X = {1, ...,n} и
i É j в X если и только если Mi j отличен от нуля. Заимствуя нотацию из теории
алгебр инцидентности, множество X :

• рефлексивно;

• η-транзитивно: если a É b, b É c и ηabc 6= 0, то a É c.

Также потребуем наличие обобщенной локальной конечности: множество {z |x É
z É y и ηxz y 6= 0} конечно ∀x, y ∈ X . В этом случае будем говорить что задана обоб-
щенная алгебра инцидентности I (X ,R;η) порядка n над (со значением в кольце) R.
Множество X будем называть η-предпорядком. Если же дополнительно выполня-
ется свойство a É b, b É a, ηaba 6= 0 влечет a = b (η-антисимметричность), то будем
говорить что на X задан частичный η-порядок. На множестве X можно ввести отно-
шение эквивалентности: x ∼ y если и только если ηx y x ∈U (R).
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Были изучены обобщенные алгебры инцидентности конечного порядка со значе-
нием в коммутативном локальном кольце R. Получен критерий изоморфизма таких
алгебр, в ослабленной форме имеющий следующий вид.

Теорема. Пусть R — коммутативное локальное кольцо, X – -конечный η-
предпорядок, а Y — конечный µ-предпорядок. Тогда если I (X ,R;η) ∼= I (Y ,R;µ) как ал-
гебры, то найдется биекция ϕ : X → Y , сохраняющая отношение ′ É′, такая что для
любой тройки x É y É z ∈ X ηx y z = vx y z µx y z , где vx y z ∈U (R).

Изучен вопрос обратимости ослабленного критерия, автоморфизмы обобщен-
ных алгебр инцидентности. Результаты перенесены на кольца формальных матриц
над коммутативными локальными кольцами. Получены приложения для классиче-
ских алгебр инцидентности.
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О ДОСТАТОЧНОМ УСЛОВИИ ГАРМОНИЧНОСТИ ФУНКЦИЙ ДВУХ
ПЕРЕМЕННЫХ, УДОВЛЕТВОРЯЮЩИХ РАЗНОСТНОМУ УРАВНЕНИЮ

ЛАПЛАСА

Д. С. Теляковский1

1—, Национальный исследовательский ядерный университет МИФИ

В работе ослабляются достаточные условия гармоничности функций двух пере-
менных.

Пусть функция u(z) определена в области G ⊂ R2, точка z0 ∈ G и Az0 =
{z1, z2, z3, z4} — набор из четырёх точек области G, для которого отрезки [z1;z2] и
[z3;z4] взаимно перпендикулярны и пересекаются в своей внутренней точке z0.
Обозначим r j := |z j − z0|, u j := u(z j ), j = 1, . . . ,4. Положим

∆(∗)u(z0) = 2
u1r2 −u0(r1+r2)+u2r1

r1r2(r1+r2)
+2

u3r4 −u0(r3+r4)+u4r3

r3r4(r3+r4)
.

Будем говорить, что функция u(z) удовлетворяет в точке z0 обобщённому раз-
ностному уравнению Лапласа ∆(∗)u = 0, если предел ∆(∗)u(z0; A(n)

z0
) равен нулю хо-

тя бы для одной последовательности наборов узлов {A(n)
z0

}, стягивающейся к z0. Для
разных последовательностей наборов узлов {A(n)

z0
}, стягивающихся к точке z0, пре-

делы ∆(∗)u(z0; A(n)
z0

) могут быть разными или не существовать.
Прямоугольным крестиком с центром в точке ζ будем называть объединение двух

взаимно перпендикулярных интервалов a1(ζ) и a2(ζ), которые пересекаются в своей
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середине — точке ζ. Теперь определим условие непрерывности, которое будет на-
кладываться на функцию u(z) в точках области G. Пусть h(t ), t Ê 0, — функция типа
модуля непрерывности. Если найдутся прямоугольный крестик Tζ и число Lζ > 0,
для которых во всех точках z ∈ Tζ выполнено неравенство |u(z)−u(ζ)| É Lζh(|z−ζ|),
то функцию u(z) будем называть h-регулярной в точке ζ ∈G относительно крести-
ка Tζ.

Теорема. Пусть функция |u(z)| локально суммируема в области G ⊂ R2, а h(t ),
t Ê 0, — некоторая функция типа модуля непрерывности. Если в каждой точке ζ ∈ G
функция u(z) удовлетворяет обобщённому разностному уравнению Лапласа и явля-
ется h-регулярной относительно некоторого прямоугольного крестика Tζ, то функ-
ция u(z) гармонична в областиG .

АФФИННЫЕ СИСТЕМЫ ФУНКЦИЙ

П. А. Терехин1

1terekhinpa@mail.ru, Саратовский национальный исследовательский государствен-
ный университет имени Н. Г. Чернышевского

Пусть f = w+∑∞
n=2 an wn – ряд Фурье–Уолша функции f ∈ L2[0,1].Дуальной функ-

циейназовем формальный ряд по системе Уолша g ∼ w+∑∞
n=2 bn wn , коэффициенты

которого определяются из рекуррентных соотношений
k∑
ν=0

a(s0, . . . , sν−1)b(sν, . . . , sk−1), k Ê 1,

где полагаем, что x(s0, . . . , sk−1) = xn при n =∑k−1
ν=0 sν2ν+2k (двоичное разложение).

Аффинной системой функций типа Уолша, порожденной функцией f , называется
последовательность

fn(t ) = f (2k t )
k−1∏
ν=0

r sν
ν (t ), n = 1,2, . . . ,

где снова (s0, . . . , sk−1) – коэффициенты двоичного разложения числа n и rk (t ), k =
0,1, . . . , – функции Радемахера.

Обозначим через L 2[0,1] – пространство функций h ∈ L2[0,1], имеющих абсо-
лютно сходящийся по пачкам ряд Фурье–Уолша, т. е.

∑∞
k=0

(∑2k+1−1
n=2k |(h, wn)|2)1/2 <

∞.
Теорема. Для того чтобы аффинная система функций типа Уолша { fn}∞n=1 была

базисом Рисса, необходимо, чтобы дуальная функция g ∈ L2[0,1] и достаточно, чтобы
обе функции f , g ∈L 2[0,1].

Работа выполнена при финансовой поддержке РФФИ (проект 16-01-00152).
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ОБ ОДНОМ ОБОБЩЕНИИ РЕЗУЛЬТАТОВ Х.ХАДВИГЕРА

Б. С. Тимергалиев1

1timergalievbs@mail.ru, Казанский (Приволжский) федеральный университет

Классическое неравенство Брунна-Минковского позволяет сравнить площади и
объемы областей, оно имеет вид:

|Ω0 +Ω1|1/n Ê |Ω0|1/n +|Ω1|1/n ,

где |Ω| – мера множестваΩ,Ω0,Ω1−выпуклые тела в Rn ,Ω0+Ω1 := {z0+z1 ∈Rn : z0 ∈
Ω0, z1 ∈Ω1} — векторная сумма.

Наш интерес к этой тематике связан с результатами Г. Кэди [1], который доказал
неравенство типа Брунна-Минковского для функционала, введенного Ф.Г. Авхадие-
вым [2]. Развитие результата Г. Кэди, а также неравенства для новых типов функци-
оналов были получены в работах [3], [4]. Целью данной работы является обобщение
результатов Х. Хадвигера [5], доказавшего неравенство типа Брунна-Минковского
для двух моментов выпуклой области.

Пусть Ω — ограниченная область в Rn , представимая в виде объединения конеч-
ного числа выпуклых областей. Определим функционал

I (k,Ω) =
∫
Ω

(
α1|x1 − s1|k +·· ·+αn |xn − sn |k

)m
d x,

где s1, s2, . . . , sn− координаты точки минимума функции

I (y) =
∫
Ω

(
α1|x1 − y1|k +·· ·+αn |xn − yn |k

)m
d x,

переменных y = (y1, y2, . . . , yn) ∈Rn; x1, x2, . . . , xn — декартовы координаты точки x ∈
Ω; k ∈ (0, 1] при m ∈ (0,1)∪ (1,+∞) и k ∈ (0,+∞) при m = 1; α j ( j = 1,n) ∈ (0, +∞) —
произвольные действительные числа.

Теорема.ПустьΩ0,Ω1 – ограниченные области в Rn , представимые в виде объеди-
нения конечного числа выпуклых областей. Тогда имеет место неравенство

I (k;m;Ωt )1/(km+n) Ê (1− t )I (k;m;Ω0)1/(km+n) + t I (k;m;Ω1)1/(km+n),
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где Ωt = {(1− t )z0 + t z1 | z0 ∈Ω0, z1 ∈Ω1}, 0 É t É 1, k ∈ (0, 1] при m ∈ (0,1)∪ (1,+∞) и
k ∈ (0,+∞) при m = 1.

Работа выполнена при финансовой поддержке РФФИ (грант № 14-01-00351).
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О ВЫПУКЛЫХ ТЕЛАХ С ПАРКЕТНЫМИ ГРАНЯМИ

А. В. Тимофеенко1, Е. С. Отмахова2

1a.v.timofeenko62@mail.ru, Сибирский федеральный университет
2nasait123@mail.ru, Краевое бюджетное образовательное учреждение Школа ди-

станционного образования

Паркетным называется выпуклый равноугольный или составленный из равно-
угольных многоугольников многоугольник. В докладе будет отражено состояние во-
проса классификации выпуклых многогранников с паркетными гранями. Среди та-
ких тел находим правильногранную пирамиду 2M3 с пятиугольным основанием и
рёбрами длины 2, архимедово тело M19 с пятиугольником и двумя шестиугольника-
ми в каждой вершине. Пирамида 2M3 рассекается на правильногранную пирамиду
M3 с единичными рёбрами и усечённую пирамиду M3a (рис. 1).

Рис. 1: Семигранник M3a под пирамидой M3.

Усечённый икосаэдр M19 можно рассечь на несоставные части двумя или тремя
плоскостями. Две параллельные плоскости от M19 отрезают усечённые пирамиды
M3a , а оставшуюся часть будем обозначать M19a . Если непараллельными плоско-
стями отсекать три семигранника M3a , то останется фигура, которую будем обо-
значать M19b .



А. В. Тимофеенко, Е. С. Отмахова 331

Рис. 2: Слева: многогранник M19à, в центре: фундаментальные пятиугольные
грани тела M19b , справа: рёбра фигуры Q6,1.

Как может быть видно по следующей теореме списки (2)–(6) её многогранников
получены по алгоритму, входными данными для работы которого служат тела спис-
ка (1). По такой схеме были найдены все выпуклые многогранники с правильными
и сложенными из правильных многогранников гранями так, что каждая вершина
такого многогранника служит и вершиной грани [1].

Теорема. Существуют только следующие выпуклые соединения многогранников

M3, M3a , M19a , M19b (1)

при условии, что любые два ребра каждого соединения либо равны, либо одно вдвое ко-
роче другого, а число соединяемых тел для каждого соединения Qi , j , расположенного в
списке ( j ) на месте i , минимально:

M3 +M3, M3 +M3a , M3 +M19a , M3 +M19b , M3 +M ′
19b ,

M3 +M ′′
19b , M3a +M3a , M3a +M19a , M3a +M19b ;

(2)

Q2,2 +M3a ,Q2,2 +M19a ,Q2,2 +M19b ,Q2,3 +M3,Q2,3 +M ′
3,

Q2,3 +M ′′
3 ,Q2,3 +M3a ,Q2,3 +M ′

3a ,Q2,4 +M3,Q2,4 +M ′
3,

Q2,4 +M ′′
3 ,Q2,4 +M3a ,Q2,5 +M3,Q2,5 +M ′

3,Q2,5 +M3a ,
Q2,5 +M ′

3a ,Q2,8 +M3,Q2,8 +M3a ;

(3)

Q3,1 +M3,Q3,2 +M3,Q3,2 +M3a ,Q3,3 +M3,Q3,3 +M ′
3,

Q3,3 +M ′′
3 ,Q3,4 +M3,Q3,4 +M3a ,Q3,5 +M3a ,Q3,5 +M ′

3a ,
Q3,6 +M3a ,Q3,9 +M3,Q3,9 +M3a ,Q3,9 +M ′

3a ,Q3,10 +M3a ,
Q3,11 +M3a ,Q3,11 +M ′

3a ,Q3,11 +M ′′
3a ,Q3,13 +M3,Q3,13 +M ′

3,
Q3,13 +M3a ,Q3,13 +M ′

3a ,Q3,14 +M3;

(4)

Q4,2 +M3,Q4,2 +M3a ,Q4,3 +M3,Q4,4 +M3,
Q4,7 +M3a ,Q4,7 +M ′

3a ,Q4,12 +M3a ,Q4,12 +M ′
3a ;

(5)

Q5,1 +M3a . (6)

Доказательство теоремы основано на алгебраическом и компьютерном модели-
ровании с контролем на “живых” моделях многогранников.
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ПОРОЖДАЮЩИЕ ТРОЙКИ ИНВОЛЮЦИЙ ГРУПП ШЕВАЛЛЕ
ТИПА E6, E7, E8 НАД КОЛЬЦОМ ЦЕЛЫХ ЧИСЕЛ

И. А. Тимофеенко1

1ivan.timofeenko@gmail.com, Сибирский федеральный университет

В 2002 году Я.Н. Нужин записал в Коуровской тетради вопрос [1,вопрос 15.67]

(А) Какие присоединенные группы Шевалле (нормального типа) над кольцом целых
чисел порождаются тремя инволюциями, две из которых перестановочны?

по данному вопросу получены следующие результаты:

• Cпециальная линейная группа SLn(Z), при n Ê 14, порождается тремя инво-
люциями, две из которых перестановочны [2]. Следовательно, и PSLn(Z, при
n Ê 14 обладает такой тройкой порождающих инволюций;

• Для проективной специальной линейной группы PSLn(Z) ответ на вопрос (А)
положтельный тогда и только тогда, когда n Ê 5 [3];

• Из непорождаемости тремя инволюциями, две из которых перестановочны,
проективной симплектической группы PSp4(3) [4] следует отрицательный от-
вет вопрос (А) для группы PSp4(Z), которая изоморфна присоединенной груп-
пе Шевалле B2(Z).

• Для группы Шевалле G2(Z) ответ на вопрос (А) положительный [5];

Доказана

Теорема. Присоединенные группы Шевалле E6(Z), E7(Z), E8(Z) над кольцом целых чи-
сел Z порождаются тремя инволюциями, две из которых перестановочны.

Работа выполнена при финансовой поддержке РФФИ (проект 16-01-00707)
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ЕЩЕ РАЗ О РЕШЕТКЕ ПОДМНОГОБРАЗИЙ СПЛЕТЕНИЯ МНОГООБРАЗИЯ
ПОЛУРЕШЕТОК И МНОГООБРАЗИЯ ПОЛУГРУПП С НУЛЕВЫМ

УМНОЖЕНИЕМ

А. В. Тищенко1

1alextish@bk.ru, Финансовый университет при Правительстве, Российской Федера-
ции

Операция произведения многообразий групп определялась через сплетения
групп. При определении произведения полугрупповых многообразий возникли
разные подходы. Один из подходов был предложен Мальцевым (см. обзор [3]). Дру-
гой расматривался в (см. [4]). Эта же операция рассматривалась автором под терми-
ном “моноидное сплетение” полугрупповых многообразий. В работе автора [1] дан
ответ на вопрос, в каких случаях сплетение полугрупповых атомов решетки полу-
групповых многообразий является кроссовым многообразием, т.е. обладает тремя
свойствами конечности, а именно: 1) имеет конечный базис тождеств, 2) порож-
дается конечной полугруппой и 3) имеет конечную решетку подмногоообразий. В
случае, если решетка подмногообразий сплетения атомов конечна, то она имеет,
как правило, не более 11 подмногообразий. Исключение представляет собой спле-
тение W = SlwN2 многообразия Sl полурешеток и многообразия N2 полугрупп с ну-
левым умножением (см. [1], теорема 3.1). В той же работе найден базис тождеств
этого сплетения, а именно:

β(W) = {z1z2y ≈ z1z2y2, z1z2y x ≈ z1z2x y}.

В [2] было указано разложение
L = L′∪L"

в объединение двух непересекающихся подрешеток решетки подмногообразий L =
L(W), а именно L′ - решетка всех подмногообразий в L, содержащих многообразие
Sl полурешеток, а L" - решетка всех подмногообразий в L, не содержащих полуреше-
ток. При этом решетка L′ точно вычислена и имеет мощность 13, а вторая решетка
L" содержит подрешетку L0, состоящую из 20 подмногообразий.

Пока мы не имеем полной информации о решетке L и о ее мощности. Доказаны
две следующие теоремы.
Теорема 1. Многообразие W содержит в точности три максимальных подмного-

образия.
Теорема 2. Решеточное объединение подмногообразий L2,3 ∨Sl в решетке L, где

L2,3 - наибольшее подмногообразие в L′, совпадает с многообразием V27 =
var {β(W), z1z2x ≈ z1z2

2z1x}.
Следствие. Решетка L содержит не менее 39 элементов.
Работа выполнена при финансовой поддержке РФФИ (проект 16-01-00756).
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ОБ ЭКВИВАЛЕНТНОСТИ МОРИТЫ ДЛЯ МНОГООБРАЗИЙ ЛИНЕЙНЫХ
АЛГЕБР НАД ОПЕРАДАМИ

С. Н. Тронин1

1stronin@kpfu.ru, Казанский (Приволжский) федеральный университет

То, что к настоящему времени известно о теории эквивалентности Мориты для
алгебр над линейными симметрическими операдами, содержится в работах [1]–[3].
Аналоги ряда существенных результатов из соответствующей теории для колец до
сих пор не получены. Однако в теории операд есть особенности, отсутствующие в
теории колец. Одной из таких особенностей является понятие модуля над алгеб-
рой над операдой (см., например, [4]). При этом по каждой алгебре над операдой
можно построить ассоциативное кольцо (называемое универсальной обертываю-
щей алгеброй данной алгебры), и модули над алгеброй над операдой оказываются
обычными модулями над этим кольцом. Категорию (многообразие) линейных ал-
гебр над линейной симметрической операдой R обозначим через Al g (R), и если A
— алгебра над R, то категорию модулей над A обозначим через Mod(A).

Теорема.ПустьR иD —линейные симметрические операды.Функторы, осуществ-
ляющие эквивалентность категорий Al g (R) и Al g (D), индуцируют эквивалентности
категорий модулей над соответствующими алгебрами.
Точнее, если F : Al g (R) → Al g (D) — эквивалентность категорий, и A ∈ Al g (R), то

существует функтор FA : Mod(A) → Mod(F (A)), являющийся эквивалентностью ка-
тегорий.

Если функтор F и обратный к нему заданы в виде Морита-контекста, то можно
указать явно Морита-контекст, соответствующий функтору FA и обратному к нему.

Данная теорема является обобщением результата из [1], где в качестве операды
D рассматривался операдный аналог кольца матриц над R.
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МНОЖЕСТВО МАНДЕЛЬБРОТА НА ПЛОСКОСТИ ЛОБАЧЕВСКОГО

П. И. Трошин1

1Paul.Troshin@gmail.com, Казанский (Приволжский) федеральный университет

Мы задались целью изучить разнообразные возможности построения фракталь-
ных множеств в пространстве Лобачевского. В данной работе строится аналог клас-
сического множества Мандельброта и множеств Жюлиа на плоскости Лобачевского.
Построения совершаются в модели Бельтрами–Клейна, а затем с помощью изомет-
рии переносятся и на другие модели.

Классическое множество Мандельброта — эффективный и эффектный пример
из геометрии и теории динамических систем: оно является фрактальным множе-
ством, порожденным единственным простым правилом — квадратичной зависи-
мостью, и вместе с этим демонстрирует сложную динамику этой зависимости, пе-
реход к хаосу через каскады бифуркаций периода. Это множество в C обычно опре-
деляется так: пусть fc (z) = z2 + c, c, z ∈C, и f ◦n

c = fc ◦ . . .◦ fc︸ ︷︷ ︸
n

, тогда

M = {c ∈C : последовательность { f ◦n
c (0)}∞n=0 ограничена}.

Пусть Λ — модель Бельтрами–Клейна плоскости Лобачевского (открытый еди-
ничный круг B(O,1) ⊂ R2 c метрикой ρ(x, y) = kArch 1−(x,y)p

1−x2
√

1−y2
, (x, y) — скалярное

произведение вR2, x2 = (x, x), |x| =
√

x2, мы взяли константу k = 1). Определим опе-
рацию q : Λ→Λ

q(z) ≡ th(Arth2|z|)
|z| z, q(O) =O,

таким образом ρ(O, q(z)) = ρ2(O, z). Как известно [1], параллельный перенос вдоль
геодезического сегмента [O,c] ⊂Λ задается равенством

gc (z) = ((c, z)(1−
√

1− c2)+ c2)c + c2z

c2(1+ (c, z))
, gO(z) = z.

Мы определяем операцию Fc : Λ→Λ (c ∈Λ) — аналог fc :

Fc (z) ≡ gc (q(z)) =
thArth2|z|

|z|
(
((c, z)(1−

√
1− c2)+ c2)c + c2z

)
c2

(
1+ thArth2|z|

|z| (c, z)
) ,

и гиперболические множества Мандельброта и Жюлиа:

MΛ = {c ∈Λ : последовательность {F ◦n
c (0)}∞n=0 ограничена},
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JΛc = {z ∈Λ : последовательность {F ◦n
c (z)}∞n=0 ограничена}.

Основным препятствием изучения свойств этих множеств на плоскости Лобачев-
ского является трансцендентный характер формул, задающих даже простые преоб-
разования.

Мы предлагаем критерий, позволяющий эффективно строить множества MΛ и
JΛc (обобщение известного критерия для C) и изучаем топологические и дина-
мические свойства получающихся конструкций (негомеоморфность классическим
множествам в C, нахождение константы Фейгенбаума и др.).

Рис. 1. Множества MΛ (слева) и JΛc (справа, при c = {−0.8,−0.126}) в модели
Бельтрами–Клейна.
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СИСТЕМЫ ИТЕРИРОВАННЫХ ФУНКЦИЙ В МОДЕЛИ
БЕЛЬТРАМИ-КЛЕЙНА ПРОСТРАНСТВА ЛОБАЧЕВСКОГО
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Наша цель — построение фракталов в пространстве Лобачевского. Для этого из
известных моделей пространства Лобачевского мы выбрали модель Бельтрами –
Клейна на открытом круге единичного радиуса B(O,1) ⊂ R2. Среди всевозможных
способов построения фракталов мы решили использовать системы итерированных
функций (СИФ) и L-системы [1].

Поскольку плоскость Лобачевского является полным метрическим простран-
ством, мы можем рассматривать на ней аттракторы СИФ. Тогда по известной теоре-
ме Хатчинсона [1] для СИФ {{ fi }N

i=1, B(O,1)} (N ∈N), где fi : B(O,1) −→ B(O,1) — сжи-
мающие отображения, существует и единственно непустое компактное множество
A =∪ fi (A), называемое аттрактором этой СИФ. Зачастую A является фрактальным
множеством.
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В случае СИФ на R2 наиболее часто используют аффинные преобразования fi .
Эти преобразования представимы в виде композиции сжатий по двум осям, пово-
рота, отражения и параллельного переноса. Мы даем аналоги этих преобразований
для модели Бельтрами–Клейна и строим СИФ на B(O,1), аттракторы которых явля-
ются некоторыми геометрическими аналогами аттракторов СИФ наR2. Для постро-
ения аналогии между преобразованиями нами используются формулы и результа-
ты из [2]-[3].

Рис 1. Пример аналога Ковра Серпинского в пространстве Лобачевского (слева
аттрактор в B(O,1), справа — в R2 ).
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“ОДНОСТОРОННИЙ” ПРИЗНАК ДИНИ-ЛИПШИЦА ДЛЯ СХОДИМОСТИ
ЗНАЧЕНИЙ ОПЕРАТОРОВ ЛАГРАНЖА-ШТУРМА-ЛИУВИЛЛЯ

А. Ю. Трынин1

1atrynin@gmail.com, tayu@rambler.ru, Саратовский государственный университет
им. Н.Г. Чернышевского

Определим оператор Лагранжа по собственным функциям регулярной задачи
Штурма-Лиувилля { U ′′+ [λ−q]U = 0,

U ′(0)−hU (0) = 0,
U ′(π)+HU (π) = 0

(1)

с непрерывным потенциалом q ограниченной вариации на [0,π] и граничными
условиями h 6= ±∞, H 6= ±∞ следующим образом

LSL
n ( f , x) =

n∑
k=1

f (xk,n)
Un(x)

U ′
n(xk,n)(x −xk,n)

,
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где Un есть n−ая собственная функция задачи Штурма-Лиувилля (1). Здесь через
0 < x1,n < x2,n < ·· · < xn,n < π обозначены нули функции Un . Он обладает интерпо-
ляционным свойством Лагранжа: LSL

n ( f , xk,n) = f (xk,n), 1 É k É n, n ∈N.
Обозначим через Ω множество всех действительнозначных непрерывных,

неубывающих, выпуклых вверх на [0,π], исчезающих в нуле функцийω. Будем гово-
рить, что для любой фиксированнойω ∈Ω непрерывная на отрезке [0,π] функция f
принадлежит классу C (ωL , [0,π]), (C (ωR , [0,π])), если существует константа K f (вы-
бор которой зависит только от f ) такая, что для любых x и x +h, 0 É x < x +h É π,
справедливо неравенство

f (x +h)− f (x) Ê−K f ω(h)
(

f (x +h)− f (x) É K f ω(h)
)
.

В отличие от определения модуля непрерывности здесь оценивается только ско-
рость убывания (возрастания) функции f . Ограничений же на скорость её возрас-
тания (убывания) (кроме свойства непрерывности) в этом классе нет.

Справедливо следующее обобщение полученного в [1] классического признака
Дини-Липшица для равномерной сходимости синк-аппроксимаций внутри интер-
вала (0,π).

Теорема. Пусть функция ω ∈Ω удовлетворяет условию

lim
n→∞ω

( 1

n

)
lnn = 0,

а функция f принадлежит одному из классовC (ωL , [0,π]) илиC (ωR , [0,π]), тогда спра-
ведливы соотношения

lim
n→∞‖LSL

n ( f , ·)− f ‖C [a,b] = 0, [a,b] ⊂ (0,π).

Несложно убедиться, что в концах отрезка сходимости значений опреаторов
LSL

n ( f , ·) к аппроксимируемой функции не будет даже для случая q ≡ 0, h = H = 0,
f ≡ 1.
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ВЕКТОРНЫЕ ПОЛЯ КИЛЛИНГА И ГЕОМЕТРИЯ СУБМЕРСИЙ

Б. А. Турсунов1

1t.bayramali@yandex.ru, Национальный университет Узбекистана

Пусть M – гладкое риманово многообразие размерности n с римановой метри-
кой g , ∇ – связность Леви-Чивита. Множество всех гладких векторных полей на M ,
является алгеброй Ли относительно скобки Ли векторных полей.
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Дифференцируемое отображение π : M → B максималь-ного ранга при n > m на-
зывается субмерсией, где m = di mB . Cубмерсия π : M → B порождает слоение F
размерности k = n −m на многообразии M , слоями которого являются подмного-
образия Lq = π−1(q), p ∈ B. Если дифференциал dπ субмерсии π : M → B сохраняет
длину горизонтальных векторов, то она называется римановой субмерсией.

Отображение S : V (F )×H(F ) →V (F ), заданное формулой S(X ,U ) =∇v
X U , называ-

ется втором основным тензором, где V (F ), H(F ) – множество всех вертикальных и
горизонтальных векторных полей соответственно.

Горизонтальное векторное поле U называется слоеным, если для каждого поля
Y ∈ V (F ), поле [Y ,U ] также является вертикальным. В случае, когда поле U являет-
ся слоеным, собственные значения матрицы A называется главными кривизнами
слоения F. Если главные кривизны локально постоянны вдоль слоев, то слоение F
называется изопараметрическим.

Рассмотрим некоторе множество D ⊂ V (M), и обозначим через A(D) наимень-
шую подалгебру Ли алгебры K (M), содержащую множество D. Так как алгебра K (M)
конечномерна, то существуют такие векторные поля X1, X2, ..., Xm из A(D), что век-
торы X1(x), X2(x), ..., Xm(x) образуют базис для подпространства Ax(D) для каждого
x ∈ M .

С использованием результатов работ [1,2] построена следующая субмерсия.
Рассмотрим векторные поля Киллинга X = ∂

∂x , Y = ∂
∂y , Z =−z ∂

∂x + x ∂
∂z . Нетрудно

проверить, что базисом минимальной алгебры A(D) являются векторные поля X1 =
∂
∂x , X2 = ∂

∂z , X3 =−z ∂
∂x +x ∂

∂z , X4 = ∂
∂y и поэтому орбита L(p) для каждой точки p ∈ R3

совпадает с R3.
Полагая π(t1, t2, t3, t4) = X t4

4 (X t3
3 (X t2

2 (X t1
1 (O)))) определим следующее отображе-

ние π : R4 → R3, где O−начало координат в R3.

Теорема. Существует такая риманова метрика g̃ на R3, что
1) Отображение π : R4 → R3 является римановой субмерсией;
2) Субмерсия π : R4 → R3 порождает на R4 изопараметрическое слоение;
3) (R3, g̃ ) является многообразием неотрицательной кривизны.
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О СВОЙСТВАХ КОНГРУЭНЦИЙ АЛГЕБР С ОДНИМ ОПЕРАТОРОМ И
ОСНОВНОЙ ОПЕРАЦИЕЙ ПОЧТИ ЕДИНОГЛАСИЯ

В. Л. Усольцев1

1usl2004@mail.ru, Волгоградский государственный социально-педагогический
университет

Алгеброй с операторами называется универсальная алгебра с дополнительной
системой операторов — унарных операций, действующих как эндоморфизмы от-
носительно основных операций.

Операцией почти единогласия (near-unanimity operation) называется n-арная
операция ϕ, удовлетворяющая тождествам ϕ(x, . . . , x, y) =ϕ(x, . . . , x, y, x) = . . . =
ϕ(y, x, . . . , x) = x (n Ê 3). В тернарном случае ϕ называют операцией большинства.
Пусть d(x1, x2, x3) — операция большинства на множестве A. Определим на A се-
мейство n-арных операций h(n) по правилам: h(3)(x1, x2, x3) = d(x1, x2, x3) и
h(n)(x1, x2, . . . , xn) = d(h(n−1)(x1, x2, . . . , xn−1), xn−1, xn) для всех n > 3.

Предложение 1. Операции h(n)(x1, x2, . . . , xn) являются операциями почти еди-
ногласия при всех n Ê 3.

В [1] показано, что на любом унаре 〈A, f 〉 можно так определить операцию боль-
шинства m(x, y, z), что алгебра 〈A,m, f 〉 становится алгеброй с оператором f .

Определим на унаре 〈A, f 〉 для n Ê 3 семейство n-арных операций g (n) по прави-
лам: g (3)(x1, x2, x3) = m(x1, x2, x3), g (n)(x1, x2, . . . , xn) = m(g (n−1)(x1, x2, . . . , xn−1),
xn−1, xn).

Предложение 2. Операция g (n)(x1, x2, . . . , xn) есть операция почти единогласия,
а алгебра 〈A, g (n), f 〉 является алгеброй с оператором f .

Определения и обозначения, связанные с унарами, см. в [2].

Теорема 1. Неодноэлементная алгебра 〈A, g (n), f 〉 является конгруэнц-простой
тогда и только тогда, когда либо операция f инъективна, либо унар 〈A, f 〉 содержит
такой элемент a, что f (x) = a для любого x ∈ A.

Теорема 2. Каждая конгруэнция унара 〈A, f 〉 является конгруэнцией алгебры
〈A, g (n), f 〉тогда итолько тогда, когда 〈A, f 〉—один из унаров следующего вида: 1)C 0

p ,
где p - простое число; 2) C 0

1 +C 0
1 ; 3) C t

1, где t ∈N∪ {0}∪ {∞}.

Получено описание строения атомов в решетке конгруэнций алгебры 〈A, g (n), f 〉.

Теорема 3. Решетка конгруэнций алгебры 〈A, g (n), f 〉 является атомной.
Теорема 4.Алгебра 〈A, g (n), f 〉 подпрямо неразложиматогда итолькотогда, когда

унар 〈A, f 〉 удовлетворяет одному из следующих условий: 1) операция f инъективна;
2) унар 〈A, f 〉 изоморфен C t

1, где t ∈ N∪ {∞}; 3) 〈A, f 〉 — связный периодический унар,
имеющий единственный узловой элемент, который является циклическим; 4) 〈A, f 〉
— связный унар без кручения, имеющий единственный узловой элемент; 5) унар 〈A, f 〉
является суммой одной компоненты связности вида 2)–4) и произвольного числа ком-
понент вида 1).
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УНИВЕРСАЛЬНЫЕ ВЫЧИСЛИМЫЕ НУМЕРАЦИИ КЛАССОВ
ФУНКЦИОНАЛЬНЫХ СЕМЕЙСТВ

М. Х. Файзрахманов1

1marat.faizrahmanov@gmail.com, Казанский (Приволжский) федеральный универси-
тет, Институт математики и механики им. Н. И. Лобачевского

В докладе рассматриваются вычислимые нумерации классов семейств всюду
определенных функций. Устанавливается их связь с арифметическими нумераци-
ями семейств подмножеств натуральных чисел. Также приводится критерий суще-
ствования универсальной вычислимой нумерации конечного класса вычислимых
семейств всюду определенных функций.

Теорема. Конечный класс функциональных семейств

F = {F0,F1, . . . ,Fk }

обладает универсальной вычислимой нумерациейтогда итолькотогда, когда для каж-
дого i É k подкласс

{F j : j É k, F j =Fi },

где F j – замыкание семейства F j в бэровском пространстве, имеет наименьшее по
включению семейство.

Работа выполнена за счет финансовых средств субсидии, выделенной Казанско-
му (Приволжскому) федеральному университету на выполнение гос. задания, про-
ект № 1.2045.2014.

ФОРМУЛА СЛЕДОВ ОГРАНИЧЕННЫХ ВОЗМУЩЕНИЙ ОДНОГО КЛАССА
ДВУМЕРНЫХ ОПЕРАТОРОВ В ЧАСТНЫХ ПРОИЗВОДНЫХ

З. Ю. Фазуллин1

1fazullinzu@mail.ru, Башкирский государственный университет

Пусть L0 – самосопряженный полуограниченный снизу оператор с дискретным
спектром σ(L0), действующий в сепарабельном гильбертовом пространстве H ,
σ(L0) = {λk }∞k=1, λk < λk+1, νk – кратность λk , Pk – оператор проектирования на
собственное подпространство, соответствующееλk . Для ограниченного самосопря-
женного оператора V , действующего также в пространстве H , положим L = L0 +V
и обозначим µ(k)

s , s = 1, . . . , νk , собственные числа оператора L, соответствующие
собственному числу λk оператора L0.
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Теорема 1. Пусть существует постоянная C > 0 такая, что λk =C (k +a), a Ê 0, и
при k >> 1

‖PkV ‖ É constk−γ, γ> 0.

Тогда при k >> 1 имеет место неравенство

|µ(k)
s −λk | É constk−2γ.

Теорема 2. Пусть выполнены условия теоремы 1 и
∑n

k=1λkαk = o(λn), n → ∞,

где αk = ∑
m 6=k

trPkV PmV
λm−λk

.

Тогда

∞∑
k=1

(
νk∑

s=1
(λk −µ(k)

s )+ trPkV

)
= lim

n→+∞
1

2λn

n∑
k=1

tr
(
PkV 2 − (PkV )2

)
.

В качестве применений теоремы 2 можно отметить работы [1], [2].
Работа выполнена при финансовой поддержке Минобрнауки РФ, грант №
01201456408.
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НОРМА ИНТЕРПОЛЯЦИОННОГО ОПЕРАТОРА ЛАГРАНЖА В
МНОГОМЕРНОМ ПРОСТРАНСТВЕ СОБОЛЕВА С ВЕСОМ

А. И. Федотов1

1fedotov@mi.ru, Московский социально-гуманитарный институт

Обозначим H s
ρ пространство Соболева порядка s ∈R с весом ρ, то есть замыкание

множества всех гладких действительнозначных функций, определенных на отрезке
[−1,1], относительно нормы

‖x‖H s
ρ
= {

∑
l∈Z

l 2s x̂2(l )}1/2,

где

l =
{ | l |, l 6= 0,

1, l = 0,
l ∈ Z,
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а

x̂(l ) = 1

π

∫ 1

−1
ρ(τ)x(τ)Tl (τ)dτ, l ∈ Z,

коэффициенты Фурье функции x по системе полиномов {Tl }l∈Z.
Обозначим Pn интерполяционный оператор Лагранжа порядка n по узлам Чебы-

шева первого рода.

Теорема 1. Для любых n ∈ N0 и s ∈ R, s > 1/2, справедлива оценка

‖Pn‖H s
ρ→H s

ρ
<

√
1+ζ(2s),

где ζ(t ) =∑∞
j=1 j−t – дзета-функция Римана, ограниченная и убывающая при t > 1.

Обозначим En(x)s наилучшее приближение функции x ∈ H s
ρ алгебраическими

полиномами степени не выше n ∈ N0.

Теорема 2. Для любых n ∈ N0, и σ, s ∈ R, s > 1/2, 0 ÉσÉ s, и любой функции x ∈ H s
ρ

справедлива оценка

‖x −Pn x‖Hσ
ρ
É

√
1+ζ(2s)(n +1)σ−sEn(x)s .

Пусть теперь H s
ρ обозначает пространство Соболева размерности m Ê 2.

Теорема 3. Для любых m ∈ N , m Ê 2, n ∈ N0, s ∈ R, s > m/2 справедлива оценка

‖Pn‖H s
ρ→H s

ρ
É 2

m
2 −sm

s+1
2 M s(n+1)

√
1+ζ(2s −m +1),

M(n+1) =
√

(n+1)2

min(n+1)
.

Теорема 4. Для любых m ∈ N , m Ê 2, n ∈ N0, σ, s ∈ R, s > m/2, 0 É σ É s, и любой
функции u ∈ H s

ρ справедлива оценка

‖u −Pnu‖Hσ
ρ
É

É
√

1+2m−2sms+1M2s(n+1)ζ(2s −m +1)(n+1)(σ−s)En(u)s .

БЕСКОНЕЧНО МАЛЫЕ ИЗГИБАНИЯ ПОВЕРХНОСТЕЙ ПРИ ВТУЛОЧНЫХ
СВЯЗЯХ В КОНФОРМНО ЕВКЛИДОВЫХ ПРОСТРАНСТВАХ

В. Т. Фоменко1

1vtfomenko@rambler.ru, Таганрогский институт имени А.П. Чехова (филиал) РГЭУ
(РИНХ)

Пусть V 3 — трехмерное конформно евклидово пространство с координатами X ,
Y , Z и метрикой d s2 = E(Z )(d X 2 +dY 2 +d Z 2), где E = E(Z ) – заданная функция
координаты Z . Пусть далее F 2 – поверхность в V 3, заданная уравнениями X = x,
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Y = y , Z = f (x, y), (x, y) ∈ D, край ∂F 2 которой лежит на заданной поверхности Σ,
называемой втулкой.

Рассматривается следующая задача: допускает ли поверхность F 2 бесконечно
малые изгибания, при которых край поверхности F 2 скользит по втулке Σ, не по-
кидая её. Указанное условие, налагаемое на изгибающее поле поверхности F 2, на-
зывают втулочной связью. Если поверхности F 2 и Σ в точках кривой ∂F 2 ортого-
нальны, то втулочную связь в этих точках называют ортогонольной.

Имеют место следующие утверждения.

Теорема 1. Односвязная поверхность F 2 положительной внешней кривизны с глад-
ким краем, подчиненная вдоль края ортогональной втулочной связи, допускает точно
три линейно независимых бесконечно малых изгибания.

Теорема 2. Односвязная поверхность F 2 положительной внешней кривизны с глад-
ким краем в V 3, подчиненная всюду вдоль края неортогональной втулочной связи, до-
пускает не менее трех линейно независимых бесконечно малых изгибания.

Доказательство приведенных теорем сводится к доказательству существования
ненулевых решений следующей краевой задачи в области D относительно компо-
нент ξ, η, ζ изгибающего поля поверхности F 2:
ξx + fxζx + (ln

p
E)′(1+ f 2

x ) = 0,
ξy +ηx + fxζy + fyζx +2(ln

p
E)′ fx fyζ= 0,

ηy + fyζy + (ln
p

E)′(1+ f 2
y )ζ= 0, (x, y) ∈ D,

αξ+βη+γζ= 0, (x, y) ∈ ∂D,
где α, β, γ – известные функции, определяемые втулкой Σ.

О СОВПАДЕНИЯХ ОТОБРАЖЕНИЙ УПОРЯДОЧЕННЫХ МНОЖЕСТВ

Т. Н. Фоменко1

1tn-fomenko@yandex.ru, Московский государственный университет имени
М.В.Ломоносова

Доклад составлен по материалам совместной работы с аспирантом Д. А. Подо-
прихиным, представленной в печать.

Рассматривается задача о совпадениях набора из n (n Ê 2) многозначных отоб-
ражений упорядоченных множеств. Пусть (X ,¹), (Y ,¹) — частично упорядоченные
множества, F = {F1, ...,Fn} — набор из n многозначных отображений F1, ...,Fn : X â
Y , n Ê 2, x0 ∈ X — фиксированначя точка. Скажем, что отображения F1, ...,Fn−1 со-
гласованно накрывают отображения F2, ...,Fn на OX (x0) = {x ∈ X |x ¹ x0}, если для лю-
бой точки x ∈OX (x0) и любой невозрастающей цепи {yi }1ÉiÉn F -значений в точке
x, то есть yi ∈ Fi (x), i = 1, ...,n, и y1 º y2... º yn , существует такая точка x′ ∈ X , x′ ¹ x,
что yi+1 ∈ Fi (x′), i = 1, ...,n−1. Обозначим через C3(x0;F ) множество всевозможных
пар вида (S, f ), где S ⊆OX (x0) — цепь в X , f — специальный цепной F -селектор на S,

то есть f = { fi }1ÉiÉn , fi : S → Y , fi (x) ∈
(

n⋂
j=i+1

F j (OX (x0))

)⋂
Fi (x), i = 1, ...,n −1, fn(x) ∈

Fn(x), f1(x) º ... º fn(x), x ∈ S, и кроме того, если x, z ∈ S, x ≺ z, то f1(x) ¹ fn(z).
Доказано следующее утверждение.
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ТеоремаПусть в описанной ситуации для отображений Fi : X â Y , i = 1, ...,n,n Ê 2,
выполнены следующие условия.
1) Для некоторой точки x0 ∈ X существует невозрастающая цепь y0 =

{y0, j } j∈{1,...,n} F -значений в x0, то есть y0, j ∈ F j (x0), j = 1, ...,n, и y0,1 º ... º y0,n;
2) отображения F1, ...,Fn−1 согласованно накрывают отображения F2, ...,Fn on

OX (x0);
3) отображение Fn изотонно, то есть для любых x ∈ X , y ∈ Fn(x), x′ ¹ x,∃y ′ ∈ F (x′),

y ′ ¹ y;
4) для любой пары (S, f ) ∈ C3(x0;F ) цепь S имеет нижнюю границу w ∈ X , и суще-

ствует невозрастающая цепь z0 = {z0, j }1É jÉn F -значений в точке w , где каждое зна-
чение z0, j есть нижняя граница множества { f j (x)|x ∈ S}, j = 1, ...,n.

Тогда множество совпадений Coin(F1, ...,Fn) = {x ∈ X |
n⋂

i=1
Fi (x) 6= ;} отображений

F1, ...,Fn непусто.

В докладе будут также представлены усиления этой теоремы, обеспечивающие
наличие в множестве совпадений Coin(F1, ...,Fn) минимального и наименьшего эле-
ментов, и проведено сравнение полученных результатов с некоторыми известными
утверждениями о совпадениях двух многозначных отображений.

РАСПРЕДЕЛЕНИЕ НУЛЕЙ ГОЛОМОРФНЫХ ФУНКЦИЙ И
ГИПЕРБОЛИЧЕСКИЙ РАДИУС

Б. Н. Хабибуллин1, Н. Р. Таминдарова2

1Khabib-Bulat@mail.ru, Башкирский государственный университет
2nargiza89@gmail.com, Башкирский государственный университет

Пусть C∪ {∞} — расширенная комплексная плоскость, O ⊂ C∪ {∞} — открытое
множество в C∪ {∞}, sbh (O ) — класс всех субгармонических в O функций u с мерами
Рисса νu := 1

2π∆u, где ∆ — оператор Лапласа, D 6=∅ — область в C∞ 6= D с границей
∂D, K 6=∅ — компакт в D. Функцию v ∈ sbh (D \ K ) называем тестовой вне K , если
v(z) Ê 0 во всех точках z ∈ D \ K и lim

D\K 3z′→z
v(z′) = 0 для всех z ∈ ∂D.

Теорема 1 [1; Следствие 1.1].Пусть v —тестовая функция вне K ,−∞ 6≡ u ∈ sbh(D)
и

∫
D\K

v dνu < +∞, f — голоморфная функция в D и
∣∣ f (z)

∣∣ É expu(z) при всех z ∈ D \

K . Если f (zk ) = 0 на попарно различных точках zk ∈ D \ K , k = 1,2, . . . , и при этом∑
k v(zk ) =+∞, то f ≡ 0 на D.

По теореме 1 каждая построенная тестовая функция v порождает теорему един-
ственности. Обсуждаем построения таких функций через гиперболический радиус
RD : D → (0,+∞) области D, когда на ∂D не менее трёх различных точек [2]. Пусть
f : [0,+∞) → [0,+∞) — выпуклая возрастающая функция и f (0) = 0, а s ∈ sbh(D \ K ) —
положительная функция.
Теорема 2 [1; Пример 5.5]. Пусть область D ⊂ C выпуклая и∞∉ ∂D. Тогда −RD ∈

sbh(D) и при ограниченности образа (s/RD )(D \ K ) ⊂ [0,+∞) произведение f (s/RD )RD
—тестовая функция вне K .
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Другой подобный результат с участием гиперболического радиуса RD возможен,
когда a priori конечна характеристика

S(K ,D) := sup
z∈D\K

(∆RD )(z). (1)

Теорема 3 [1; Пример 5.6]. Если S(K ,D) É 4N ∈ [0,+∞) и ∞ ∉ ∂D, то − log(1 +
N RD ) ∈ sbh(D \K ) и при ограниченности образа

(
s/log(1+N RD )

)
(D \K ) ⊂ [0,+∞) про-

изведение f
(
s/log(1+N RD )

)
log(1+N RD ) —тестовая функция вне K .

Роль компакта K в теореме 3 несущественна. В связи с теоремой 3 возникают
интересные и сами по себе
Задачи. Выяснить, желательно в геометрических терминах,

• при каких условиях на D, или ∂D, S(K ,D)
(1)< +∞?

• как вычислять, по возможности точно, S(K ,D)?

• имеет свойство конечности характеристики S(K ,D) из (1) локальный характер
на ∂D или не всегда?

• как характеристика S(K ,D) связаны с другими классическими геометрическими,
топологическими и прочими характеристиками области D и/или границы ∂D?

Работа выполнена при финансовой поддержке РФФИ (проект № 16–01–00024).
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СЕКВЕНЦИАЛЬНЫЕ СВОЙСТВА СОСТОЯНИЙ
НА АЛГЕБРАХ ФОН НЕЙМАНА

С. Г. Халиуллин1

1Samig.Haliullin@kpfu.ru, Казанский (Приволжский) федеральный университет

Мы вводим понятие контигуальности двух последовательностей состояний, за-
данных на алгебрах фон Неймана. Использование техники ультрапроизведений [1],
[2] позволяет свести это понятие к понятию эквивалентности двух состояний.

Обозначим элементы банахова пространства (Hn)U, являющегося ультрапроиз-
ведением последовательности банаховых пространств (опр. см. в [3]), через (hn)U,
где U — произвольный нетривиальный ультрафильтр на N.
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Пусть (xn) — последовательность линейных ограниченных операторов, задан-
ных на соответствующих пространствах Hn со свойством supn ‖xn‖ <∞. Определим
на (Hn)U оператор ультрапроизведения, полагая (xn)U((hn)U) = (xn(hn))U. При та-
ком определении оператор (xn)U является линейным и ограниченным и ‖(xn)U‖ =
limU‖xn‖.

Пусть (Mn) — последовательностьσ-конечных алгебр фон Неймана,ϕn — точное
нормальное состояние на Mn . Положим

l∞(N,Mn) = {(xn), xn ∈Mn : sup
n

‖xn‖ <∞},

NU(Mn ,ϕn) = {(xn) ∈ l∞(N,Mn) : lim
U
ϕn(x∗

n xn +xn x∗
n)

1
2 = 0},

MU(Mn ,ϕn) = {(xn) ∈ l∞(N,Mn) : (xn)NU(Mn ,ϕn) ⊂
⊂NU(Mn ,ϕn), NU(Mn ,ϕn)(xn) ⊂NU(Mn ,ϕn)}.

Теперь определим ультрапроизведение алгебр фон Неймана с заданными на них

состояниями как фактор-пространство

(Mn ,ϕn)U =MU(Mn ,ϕn)/NU(Mn ,ϕn).

Зададим состояние на ультрапроизведении (Mn ,ϕn)U как

ϕU((xn)U) = lim
U
ϕn(xn).

Известно (см. [1]), что тогда (Mn ,ϕn)U есть алгебра фон Неймана с точным нор-
мальным состоянием ϕU.
Определение 3. Пусть (Mn) — последовательность σ-конечных абгебр фон Ней-

мана, (ϕn) и (ψn)—точные номальные состояния наMn , n ∈N. Последовательности
(ϕn) и (ψn) называются контигуальными, если ϕn(xn) → 0 ⇔ψn(xn) → 0, xn ∈Mn .

Это определение обобщает понятие эквивалентности (взаимной абсолютной
непрерывности) состояний.
Теорема. Пусть (Mn) — последовательность σ-конечных алгебр фон Неймана,

(ϕn) и (ψn) — точные нормальные состояния на Mn , n ∈ N. Тогда последовательно-
сти (ϕn) and (ψn) контигуальны тогда и только тогда, если состояния (ϕn)U и (ψn)U
эквивалентны для любого нетривиального ультрафильтра U на N.
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О ПРИБЛИЖЕНИИ ПОЧТИ-ПЕРИОДИЧЕСКИХ ФУНКЦИЙ
В РАВНОМЕРНОЙ МЕТРИКЕ

Ю. Х. Хасанов1

1yukhas60@mail.ru, Российско-Таджикский (славянский) университет

Непрерывная на всей действительной оси функция f (x) называется равномер-
ной почти-периодической, если для каждого ε> 0 можно указать такое положитель-
ное число l = l (ε), что в каждом интервале длины l найдется хотя бы одно число τ,
для которого выполняется неравенство | f (x +τ)− f (x)| < ε, −∞< x <∞.

Пусть B(R) — пространство всех ограниченных и равномерных почти-периоди-
ческих функций f (x) ∈ B с нормой ‖ f (x)‖B = sup{| f (x)| : x ∈ R}. Рассмотрим величи-
ну

R( f ; x) = ‖Uσ( f ;ϕ; x)− f (x)‖B , (1)

в которой

Uσ( f ;ϕ; x) =
∫ ∞
−∞

f (x + t )Φσ(t )d t ,

Φσ(t ) = 1

2π

∫ ∞
0

ϕσ(u)Ku(t )du, Ku(t ) = 4sin(ut )

t
,

ϕσ(u) — четная функция, абсолютно интегрируемая в интервале (0,∞) при любом
фиксированном σ> 0 и такая что∫ ∞

−∞
|Φσ(t )|d t <∞,

∫ ∞
−∞

Φσ(t )d t = 1.

В данной работе исследуется вопрос о поведении величины (1) в зависимости от
скорости стремления к нулю

Eσ( f )B = inf
An

‖ f (x)− ∑
|λn |Éσ

An exp(iλn x)‖B (σ→∞),

в случае, когда в качестве ϕσ(u) выбраны функции

f (x) =


1, |u| É a (0 < a <σ);
σ−|u|
σ−a , a < |u| <σ;

0, |u| Êσ.

(2)

Теорема 1. Если f (x) ∈ B(R), функция ϕσ(u) определена соотношением (2), то при
любом Λ (0 <Λ< a <σ) справедлива оценка

R( f ;ϕσ) É M
σ+a

σ−a
EΛ( f )B ,

где M — константа.
Далее рассмотрим отклонение функции f (x) ∈B от сумм типа Марцинкевича [1]

Ω( f ; x) = 1

n +1

n∑
k=0

Sk ( f ; x),

где Sk ( f ; x) — частичные суммы порядка k ряда Фурье функции f (x) ∈B.
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Теорема 2. Пусть f (x) ∈B. Если

Ek ( f )B = inf
An

∥∥∥∥∥ f (x)− ∑
|λn |Ék

An exp(iλn x)

∥∥∥∥∥
B

— наилучшее приближение функции f (x) тригонометрическими полиномами порядка
не выше k, то справедлива оценка

‖ f (x)− 1

n +1

n∑
k=0

Sk ( f ; x)‖B É M

n +1

n∑
k=0

Ek ( f )B .

Заметим, что аналогичные результаты для периодических функций рассмотрены
в работе [2], а для почти-периодических в смысле Безиковича функций автором [3].
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ХАРАКТЕРИЗАЦИЯ КЛАССОВ C 1-РЕШЕНИЙ УРАВНЕНИЯ ЭЙКОНАЛА

И. Г. Царьков1
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моносова

Мы будем изучать аппроксимативные свойства непустого и замкнутого множе-
ства M в произвольном действительном конечномерном банаховом пространстве
X с нормой ‖·‖, что имеет отношение к уравнению эйконала вида ‖∇u‖X ∗ = 1. Здесь
X∗ – сопряженное с X пространство, а u = u(x) – функция на подмножестве про-
странства X . Отметим, что более общий вид этой задачи может быть записан в ви-
де f (∇u) = 1 для некоторой выпуклой функции на X∗. В частности рассмотрение
функции f (x∗) := ‖x∗‖X ∗ + (x0, x∗) (‖x0‖X < 1) приводит к необходимости исследо-
вания задач геометрической теории приближения в несимметричном пространстве

(X ,‖ ·−x0‖). В случае X = Rm с несимметричной нормой ‖x| :=
√

1+ |a|2
4 |x| + 1

2(x, a)

уравнение эйконала эквивалентно уравнению: |∇u|2 + (a,∇u) = 1, где a ∈ Rm –
некоторый постоянный вектор. Последнее уравнение сводится заменой перемен-
ных к известному уравнению распространению фронта световой волны в анизо-
тропной среде с постоянной скоростью v и постоянным вектором преломления

n = (n1, . . . ,nm) ∈Rm:
n∑

k=1

(u′
xk

nk

)2 + 2
c (v,∇u) = 1.
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Через %(x, M) обозначим величину inf
y∈M

‖x− y‖. Точка y0 ∈ M называется ближай-

шей точкой в M для точки x, если ‖x − y0‖ = %(x, M). Точка x ∈ X \ M называется
регулярной для замкнутого множества M ⊂ X , если все точки некоторой окрестно-
сти O(x) являются точками единственности (т.е. для них существует единственная
ближайшая в M). Точки, не являющиеся регулярными или принадлежащие замыка-
нию int M , будем называть особыми. Роль этих множеств в задаче эйконала можно
посмотреть в обзоре [1].

Теорема 1. Пусть X – гладкое строго выпуклое конечномерное пространство, N
– выпуклая оболочка замкнутого множества T ⊂ X , представляющая собой такое за-
мкнутое множество, не совпадающее с X , что во внешности некоторой окрестности
Or (N ) все точки регулярны для T. Тогда ∂N ⊂ T.

Теорема 2. Пусть X – гладкое конечномерное пространство. Тогда, если область
Ω⊂ X состоит из регулярных точек по отношению к ее границе, то X \Ω выпукло.

Теорема 3.Пусть X – строго выпуклое конечномерное пространство с непрерывно
дифференцируемой нормой, Ω ⊂ X – область, граница которой T = ∂Ω компактна.
Тогда весь классC 1-решений уравнения эйконала ‖∇u‖X ∗ = 1 состоит из функций вида
u(x) = c±%(x, M), где M ⊂ X – некоторая произвольная выпуклая поверхность, особые
точки которой лежат в X \Ω.

Работа выполнена при поддержке РФФИ, проект № 16-01-00295-a.
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ПЕРИОДИЧЕСКИЕ ФУНКЦИИ И ОДНОСТОРОННИЕ ПОВЕРХНОСТИ
В ЕВКЛИДОВОМ ПРОСТРАНСТВЕ

М. А. Чешкова1

1cma41@yandex.ru, cma@math.asu.ru, Алтайский государственный университет

Если на поверхности в E 3 существует замкнутая кривая (дезориентирующий кон-
тур), обладающая тем свойством, что при ее обходе локальная ориентация в каса-
тельном пространстве меняет знак, то поверхность называется односторонней.

Простейшей однрсторонней поверхностью является лента Мебиуса. К односто-
ронним поверхностям относятся: скрещенный колпак, бутылка Клейна, римская
поверхность [1-4].

В евклидовом пространстве E 3 рассмотрим гладкую замкнутую неплоскую кри-
вую γ, заданную 4π-периодической вектор-функцией ρ = ρ(u), которая не является
2π-периодической и 2π-антипериодической.
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Так как ρ(u) = ρ(u + 4π), то вектор-функция s(u) = 1
2(ρ(u) + ρ(u + 2π)) есть 2π-

периодическая, а вектор-функция l (u) = 1
2(ρ(u)−ρ(u +2π)) есть 2π - антипериоди-

ческая.
С помощью этих функций построим примеры односторонних поверхностей.
Определим поверхность M уравнением

r (u, v) = s(u)+ vl (u),u = [−π,π], v = [−1,1]. (1)

Утверждение 1. Поверхность M есть модель ленты Мебиуса, для которой кривая
ρ = ρ(u) есть край.

Дезориентирующий контур поверхности M (средняя линия) имеет вид r (u,0) =
s(u).

Рассмотрим замкнутую поверхность K :

r (u, v) = (p + cos(v))s(u)+ si n(v)l (u), p 6= ∓1, (2)

u = [−π,π], v = [−π,π].
Утверждение 2. Формула (2) определяет модель бутылки Клейна.

Поверхности K имеет два дезориентирующих контура r (u,0) = (p +
1)s(u),r (u,π) = (p −1)s(u).

Разрежем K вдоль кривой r = r (u, v0),u = [−2π,2π], v0 6= 0,∓π. Получим две ленты
Мебиуса (криволинейные) со средними линиями r (u,0) = (p + 1)s(u),r (u,π) = (p −
1)s(u).

Рассмотрим замкнутую поверхность P :

r (u, v) = (1+ cos(v))s(u)+ si n(v)l (u),u = [−π,π], v = [−π,π]. (3)

Утверждение 3. Формула (3) определяет модель проективной плоскости P .
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О НАИЛУЧШЕЙ ПРИБЛИЖЕННОЙ ЗАМЕНЕ КОНСТАНТЫ ЛЕБЕГА
ОПЕРАТОРА ФУРЬЕ

И. А. Шакиров1

1iskander@tatngpi.ru, Набережночелнинский институт социально-педагогических
технологий и ресурсов

В процессе изучения равномерной сходимости частичных сумм ряда Фурье функ-
ции принципиальное значение имеет поведение соответствующих констант Лебега
[1, с. 125]

Ln = 16

π2

∞∑
k=1

cn,k

4k2 −1
, cn,k =

(2n+1)k∑
m=1

1

2m −1
, n ∈ N ; (1)

L0 = 1, L1 = 1
3 + 2

p
3

π .
Исследованием их свойств в первой половине прошлого столетия активно зани-

мались А. Лебег, Л. Фейер, Г. Сеге, Г. Харди, Г. Ватсон, а во второй половине – со-
ветские математики С. Б. Стечкин, Н. И. Ахиезер, С. А. Теляковский, Ю. Н. Суббо-
тин, П. В. Галкин [2], Г. И. Натансон [3] и др. Однако некоторые вопросы наилучшего
приближения константы (1) вполне определенной функцией из семейства функций
вида (4/π2) ln(n +a)+b до сих пор оставались неизученными. Рассматривается при-
ближение

Ln ≈ 4

π2
ln(n +a)+b (a ∈ [0,+∞),b ∈ [0,+∞),n ∈ N ), (2)

где в смысле оптимальности содержательным является лишь случай (a,b) ∈ D =
[0,1]× [0,2].

С использованием результатов работ [2] и [3], доказаны следующие теоремы.

Теорема 1. Для всех значений параметра a ∈ [0,1/2] остаточный член O(n, a) ≡
Ln − (4/π2) ln(n +a) является строго убывающей функцией натурального аргумента

n, где α0 = lim
n→∞O(n, a) = 8

π2

∞∑
k=1

lnk
4k2−1

+ 4
π2 (3lnn +γ) = 1,27035324... – известное [4]

предельное значение остаточного члена, не зависящее от выбора a.

Теорема 2.В условияхтеоремы 1 наилучшее равномерное приближение в (2) дости-
гается при значениях a = a0 = 0.5 и b = b0 = (α0+O(1,0.5))/2 = 1,27100777..., которые
определяют решение следующей экстремальной задачи:

sup
n∈N

inf
(a,b)∈D

∣∣∣∣Ln − 4

π2
ln(n +a)−b

∣∣∣∣=
= sup

n∈N

∣∣∣∣Ln − 4

π2
ln(n +a0)−b0

∣∣∣∣= ε1 = 0,00065453... (3)

Примечание. Рассматривая задачу (3) на вложенных друг в друга подмноже-
ствах множества натуральных чисел, погрешность ε1 = L1− (4/π2) ln(1+a0)−b0 мы
можем сколько угодно уменьшить. Например, соответствующая множеству N2 =
{3,4,5, . . .} ⊂ N погрешность, вычисленная согласно использованному в теореме 2
алгоритму, уже равна ε2 = 0.00012195..., т. е. она уменьшена более чем в 5 раз.
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ОБ ИССЛЕДОВАНИИ ОДНОЙ ПЕРЕОПРЕДЕЛЕННОЙ СИСТЕМЫ
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА С ОСОБЫМИ

КОЭФФИЦИЕНТАМИ

Ф. М. Шамсудинов1

1faizullo100@yahoo.com, Курган-Тюбинский государственный университет, Таджи-
кистан

Пусть D — прямоугольник D = {
(x, y) : 0 < x < δ1,0 < y < δ2

}
, Γ1 = {y = 0, 0 < x <

δ1}, Γ2 = {x = 0, 0 < y < δ2}.
В области D рассмотрим систему

∂2u

∂x∂y
+ a1(x, y)

rα
∂u

∂x
+ b1(x, y)

rβ
∂u

∂y
+ c1(x, y)

rα+β
u = f1(x, y)

rα+β
,

∂2u

∂x2
+ a2(x, y)

rγ
∂u

∂x
+ c2(x, y)

rγ
u = f2(x, y)

rγ
,

(1)

где r 2 = x2 + y2, a j (x, y), b1(x, y), c j (x, y), f j (x, y), j = 1,2 — заданные функции в
области D, α< 1, β> 2, γ> 2 (β, γ — целые положительные числа).

Проблеме исследования дифференциальных уравнений и переопределенных си-
стем с регулярными, сингулярными и сверхсингулярными коэффициентами посвя-
щены работы [1]–[3].

С использованием методики, разработанной в [2] и [3] для системы (1), получено
представление многообразия решений системы уравнений (1) при помощи одной
произвольной функции одной независимой переменной и одной произвольной по-
стоянной.

В дальнейшем под C2(D) понимаем класс функций, которые имеют производные
первого порядка в D и такие, что ux y ∈C (D).
Теорема. Пусть в системе уравнений (1) коэффициенты и правые части удовле-

творяют следующим условиям
A. a1(x, y), a2(x, y) ∈C 1

x(D), a2(x, y) ∈C 1
y (D), c j (x, y), f j (x, y) ∈C (D), j = 1,2;

B. c1(x, y) = rα+β ∂

∂x

(
a1(x, y)

rα

)
+a1(x, y)b1(x, y), c2(x, y) = rγ

∂

∂x

(
a2(x, y)

rγ

)
;
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C. | b1(x, y)−b1(0,0) | É H1rβ1 , H1 = const, β1 >β−1,
| a2(x,0)−a2(0,0) | É H2xν1 , H2 = const, ν1 > γ−1;
D. b1(0,0) > 0, a2(0,0) > 0;

E. a)
∂

∂x

(
a1(x, y)

rα

)
= ∂

∂y

(
a2(x, y)

r

)
в D,

b) f1(x, y) и f2(x, y) связаны при помощи коэффициентов системы в явном виде;
F. f1(x, y) = o(rµ1), µ1 >α+β−1, f2(x,0) = o(xν2), ν2 >α−1.
Тогда любое решение системы уравнений (1) из класса C2(D) представимо в виде

u(x, y) =χ(
ϕ1(x),ψ1(y), f1(x, y)

)
, ϕ1(x) = N

(
c1, f2(x,0)

)
,

ψ1(y) = M( f1(0, y),ψ2(y)),

где χ
(
ϕ1(x),ψ1(y), f1(x, y)

)
, N

(
c1, f2(x,0)

)
— известные интегральные операторы

M( f1(0, y),ψ2(y)) — известная функция, ψ2(y) — произвольная функция одной незави-
симой переменной y точек Γ2, c1 — произвольная постоянная.
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ПРЕДСТАВЛЕНИЯ РЕШЕНИЙ ОДНОГО КЛАССА СИСТЕМЫ УРАВНЕНИЙ В
ПОЛНЫХ ДИФФЕРЕНЦИАЛАХ С СИНГУЛЯРНЫМИ ЛИНИЯМИ

Б. Шарипов1

1safarov-5252@mail.ru, Институт предпринимательства и сервиса, г. Душанбе

В предлагаемой сообщении по аналогии с работами [1-3] рассматриваются неко-
торые типы нелинейных систем уравнений в полных дифференциалах (п.д.-систем)
с сингулярными линиями, для которых в случае тождественного выполнения усло-
вия совместности их решения находятся как непрерывные функции.

Рассмотрим п.д.-систему вида
∂u

∂x
= a(x, y ;u),

∂u

∂y
= b(x, y ;u)

xn , (n Ê 0), (1)

где a,b ∈ C 1(D), u(x, y) ∈ C 2(D0), D0 = D − (Ã1 : x = 0). Условие совместности п.д.-
системы (1) имеет вид:

D y (a) = Dx(
b

xn ); xn+1a′
y +x(ba′

x −b′
x −ab′

u)+nb. (2)
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Допустим, что необходимое условие совместности (2) выполняется. То есть, пусть
существует некоторое решение системы (1). Тогда при подстановке этой условной
функции в каждое уравнение системы должны получиться тождества. Покажем,
что тождественное выполнение условия (2) является также достаточным. Для этого,
учитывая задачу Коши, или начальное условие, для первого уравнения системы (1)
в виде

ux=x0 = u0 (x0 6= 0), (u0 = u(x0, y)), (3)

будем интегрировать первое уравнение системы (1) как обыкновенное дифферен-
циальное уравнение (ОДУ) по переменной x, считая y параметром. После примене-
ния метода последовательных приближений будем иметь:

u(x, y) = h[x, y ;V (y)], (h′
x = a(x, y ;h)), (4)

где V (y) = u(x0, y), (V (y0) = u0) — новая функция, а h[x, y ;V (y)] — известная, причём
непрерывная по всем переменным. Дифференцируя соотношение (4) по перемен-
ной y , подставляя результат во второе уравнение системы (1), получим регулярное
ОДУ вида:

dV

d y
= f (y,V ), f (y,V ) = 1

h′
y

(
b

xn −h′
y ), (h′

y 6= 0). (5)

Легко показать, что правая часть ОДУ (5) не зависит от переменной x. Поэтому
интегрируя ОДУ (5) по переменной y , с учётом условия Коши вида (3), получим:
V = Φ(C , y) или V = Φ(V0, y), (V0 = V (x0, y0)). Тогда все решения системы (1) будут
представлены соответствующей формулой:

u(x, y) = h[x, y ;Φ(V0, y)]. (6)

Теорема. Пусть в п.д.-системе (1) a,b ∈C 1(D), u(x, y) ∈C 2(D0),D0 = D−{Γ1}. Если
условие совместности (2) будет выполнено, но не тождественно, тогда из этого со-
отношения можно определить некоторую функцию u = p(x, y), являющуюся частным
решением системы (1). Если же условие (2) для п.д.- системы (1) будет выполнено тож-
дественно, тогда существует многообразие всех решений системы (1), либо решение
задачи Коши для системы (1), даются формулой вида (6), непрерывной во всей области
D.
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О ЛИНЕЙНЫХ K -УПОРЯДОЧЕННЫХ АЛГЕБРАХ

Е. Е. Ширшова1

1shirshova.elena@gmail.com, Московский педагогический государственный универ-
ситет

Пусть F – частично упорядоченное (po-) поле [1], A – линейная алгебра над по-
лем F . Алгебра A =< A,+, ·,É> называется K -алгеброй, если: < A,+,É> является po-
группой; из a É b следуетαa Éαb для всех a,b ∈ A иα ∈ F (α> 0); из 0 É a ∈ A следует
ab,ba É a для всех b ∈ A. A+ = {a ∈ A| 0 É a}.

Теорема 1. В K -алгебре A над po-полем F для каждого a ∈ A+(a 6= 0) существует
выпуклый направленный идеал [a], где u ∈ [a]+, если u Éαa для некоторого α ∈ F .

Теорема 2. Пусть A – K -алгебра над po-полем F , I – выпуклая направленная под-
группа группы G =< A,+,É>, где F I ⊂ I , ε – естественный гомоморфизм группы G на
группу G/I . Тогда существует K -алгебра A/I над F , и ε является o-гомоморфизмом
K -алгебры A на K -алгебру A/I .
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ПЕРИОДИЧЕСКИЕ ГРУППЫ, НАСЫЩЕННЫЕ КОНЕЧНЫМИ ПРОСТЫМИ
ГРУППАМИ ТИПА L3,U3.

А. А. Шлепкин1

1shlyopkin@mail.ru, Сибирский федеральный университет

Говорят, что группа G насыщена группами из множества групп R, если любая ко-
нечная погруппа из G содержится в подгруппе группы G, изоморфной некоторой
группе из R. Получен следующий результат [1].

ПустьM— множество, элементами которого являются простые трёхмерные уни-
тарные группы U3(q) или линейные группы L3(q) над конечными полями. Доказы-
вается, что периодическая группа, насыщенная группами из M локально конечна
и изоморфна U3(Q) или L3(Q) для некоторого локально конечного поля Q.

Теорема. Пусть периодическая группаG насыщена группами из множества

M= {U3(q),L3(q) | q — степень простого числа, q Ê 3}.

ТогдаG изоморфнаU3(Q) или L3(Q) для некоторого локально конечного поляQ.
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КОНДЕНСАТОРЫ НА РИМАНОВОЙ ПОВЕРХНОСТИ И СОБОЛЕВСКИЕ
КЛАССЫ ФУНКЦИЙ

В. А. Шлык1, А. А. Яковлев
1shlykva@yandex.ru, Дальневосточный федеральный университет

Ниже под римановой поверхностью понимается поверхность R, склеенная из
конечного или счетного числа областей замкнутой комплексной плоскости таким
образом, чтобы выполнялось условие: проекция точки поверхности R совпадает с
точкой склеиваемой области, окрестность каждой точки R представляет собой од-
нолистный или конечнолистный круг (подробнее см. [1, гл. 8, §10]).

Операция проектирования R 3 W → пр W = w индуцирует на поверхности R
метрику |dW |, площадь dσ.

Пусть далее G — открытое множество с компактным замыканием в R, u : G →
(−∞;+∞) — гладкая функция. Положим

‖u‖ =
∫

G

|∇u|2 dσ

1/2

+
∫

G

|u|2 dσ

1/2

и определим соболевское пространство H2
1 (G) как пополнение {u ∈C∞(G) : ‖u‖ <∞}

в ‖ ·‖.
Пусть F0, F1 — непересекающиеся компакты в замыкании открытого множества

Ω⊂R. Тогда тройку (F0,F1,G) назовем конденсатором на поверхностиR. Конформ-
ную емкость C (F0,F1,G) конденсатора на R определим равенством

C (F0,F1,G) = inf
∫
G

|∇u|2 dσ,

где инфимум берется по всем допустимым функциям u, т.е. числовым функциям,
равным нулю в окрестности F0 и единице в окрестности F1 и удовлетворяющим ло-
кально условию Липшица в G \ (F0 ∪F1) (см. [2]).

Компакт E ⊂R назовем N ED-множеством, если для каждого однолистного круга
U ⊂R проекция пр (U ∩E) — N ED-множество в комплексной плоскости (см. [3]).

Обозначим через m(F0,F1,G) конформный модуль семейства всех локально
спрямляемых кривых, соединяющих F0 и F1 в G ⊂ R. Справедливы следующие
утверждения:

Теорема 1. m(F0,F1,G) =C (F0,F1,G) для конденсатора (F0,F1,G) наR.

Теорема 2.N ED-множество E является устранимыммножеством для H2
1 (G) и не

влияет на конформный модуль m(F0,F1,G).
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О ПРОИЗВЕДЕНИИ МНОЖЕСТВ РАЦИОНАЛЬНЫХ ЧИСЕЛ

Ю. Н. Штейников1

1yuriisht@yandex.ru, Математический институт имени В.А. Стеклова

Пусть имеются два подмножества A,B множества рациональных дробей с огра-
ниченными числителями и знаменателями, то есть:

A,B ⊆ FQ := {
r

s
: 1 É r, s ÉQ}.

Везде ниже будем считать Q – достаточно большим натуральным числом. Ж. Бур-
гейн, С. В. Конягин и И. Е. Шпарлинский установили следующий интересный ре-
зультат [1].
Теорема 1. Если A,B ⊆ FQ то справедлива следующая оценка

|A∗B | Ê |A||B |exp

{
(−9+o(1))

logQ√
loglogQ

}
.

Отметим, что эта оценка неоднократно использовалась при получении различ-
ных утверждений. Х. Силлеруело другим способом установил теорему 1, при этом
улучшил показатель 9 и несколько расширил этот результат [3]. Для ознакомления
с этим утверждением и его различным приложениям мы отсылаем читателя к ра-
ботам [1-3].

В своем докладе я расскажу о более сильном варианте теоремы 1. А именно, спра-
ведлива
Теорема 2. Существует такая абсолютная постоянная C > 0, что если A,B ⊆ FQ

то справедлива следующая оценка

|A∗B | Ê |A||B |exp{(−C +o(1))
logQ

loglogQ
},Q →∞.

при этом в качестве C можно взять 8log2.

Работа выполнена при финансовой поддержке гранта РНФ 14-50-00005
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ОБ ЭКВИВАЛЕНТНОСТИ УРАВНЕНИЙ АБЕЛЯ ПЕРВОГО ПОРЯДКА С
КОЭФФИЦИЕНТАМИ, ЗАВИСЯЩИМИ ОТ УПРАВЛЯЮЩЕГО ПАРАМЕТРА

В. В. Шурыгин (мл.)1

1vshjr@yandex.ru, 1Vadim.Shurygin@kpfu.ru, Казанский (Приволжский) федеральный
университет

Мы рассматриваем вопрос об эквивалентности уравнений Абеля первого поряд-
ка

y ′ = a(x,u)y3 +b(x,u)y2 + c(x,u)y +d(x,u),

коэффициенты которых зависят от одномерного управляющего параметра u, отно-
сительно действия псевдогруппы G преобразований вида

x 7→ f (x), u 7→ w(x,u), y 7→ g (x) · y +h(x).

Действие псевдогруппы G продолжается до действия на пространстве джетов рас-
слоения π : R6 → R2, где π : (x,u, a,b,c,d) 7→ (x,u). Каждое уравнение Абеля есть се-
чение такого расслоения.
Дифференциальным инвариантом порядка É k будем называть функцию I ∈

C∞(J kπ), инвариантную относительно продолженного действия псевдогруппы G.
Под инвариантнымдифференцированием будем понимать комбинацию полных про-
изводных ∇= A d

d x +B d
du , где A,B ∈C∞(J∞π), инвариантную относительно продол-

женного действия G.

Теорема 1. Алгебра дифференциальных инвариантов порождена двумя инвариан-
тами первого порядка

I1 = a2(3aucu −b2
u)

(abu −bau)2
, I2 = (2b3

u −9aubucu +27a2
udu)a3

(abu −bau)3
,

двумя инвариантами второго порядка

J1 = a2(aubuu −bu auu)

a2
u(abu −bau)2

, J2 = au M2

(abu −bau)4
,

гдеM2 = a2(9abx−9bax+27a2d−9abc+2b3)(aubuu−bu auu)+9a2(bu a−aub)(bu axu−
aubxu)−au(bu a−aub)(−9a2cbu+27a2d au+3ab2bu−b3au), и двумя инвариантными
дифференцированиями

∇1 = 9aa2
u

(abu −bau)2

d

d x
− aa2

u(9abx −9bax +27a2d −9abc +2b3)

(abu −bau)3

d

du
,

∇2 = a

au

d

du
.



360 СЕКЦИОННЫЕ ДОКЛАДЫ

Рассмотрим пространства R2 с координатами (x,u) и R17 с координатами
(i1, i2, j1, j2, i11, i12, i21, i22, i111, i121, i122, i211, i221, i222, j11, j12, j21). Каждое уравне-
ние Абеля E определяет отображение σE : R2 → R17 по формулам ik = IE

k , jk = JE
k ,

ik` = ∇`IE
k , jk` = ∇` JE

k , ik`m = ∇`∇m IE
k , где верхний индекс E означает, что диф-

ференциальные инварианты вычисляются для коэффициентов уравнения E . Образ
ΣE = imσE ⊂ R17 зависит только от класса эквивалентности уравнения E относи-
тельно действия G.

Теорема 2. Два уравнения Абеля E и E ′ эквивалентны относительно действия
псевдогруппыG тогда и только тогда, когда ΣE =ΣE ′ .
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ИНДУКТИВНЫЕ И ПРОЕКТИВНЫЕ ПРЕДЕЛЫ ПРОСТРАНСТВ С
ПОРЯДКОВЫМИ ЕДИНИЦАМИ

З. Эскандариан1, А. А. Новиков2

1Zohreh.Eskandarian@gmail.com, Казанский (Приволжский) федеральный универси-
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За L0(Ω,Σ,µ) обозначено пространство всех измеримых вещественно-значных
функций на Ω, определенных с точностью до почти всюду.

Пусть f ∈ L+
0 (Ω,Σ,µ). Рассматривается множество

I ( f ) = {g ∈ L0(Ω,Σ,µ) | ∃λ ∈R+ : −λ f É g Éλ f }.

За p f обозначается отображение

p f (g ) := inf{λ ∈R+|−λ f É g Éλ f }.

Очевидно, p f норма на I ( f ). Также очевидно, что I (1) = L∞(Ω,Σ,µ) [1, 5, 8, 9]. Для
f ∈ L+

0 (Ω,Σ,µ), λ ∈R+, верно равенство λpλ f = p f . Для f , g ∈ L+
0 (Ω,Σ,µ), если f É g ,

то p f Ê pg .
Далее f ′ обозначает f |Ω\ker f . Соответственно ‖ f ′‖′∞ := ‖ f |Ω\ker f ⊕0|ker f ‖∞. Так-

же всюду далее I ( f ′) идентифицируется с I ( f ), а p f ′ идентифицируется с p f .

Теорема 1. Для f ∈ L+
0 (Ω,Σ,µ) следующие условия эквивалентны:

i ) ∃α, β ∈R+ p f α ∼ p f β;
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i i ) ∀α ∈R+ p f α ∼ ‖·‖′∞;
i i i ) ∀α, β ∈R+ p f α ∼ p f β.

Пусть τα обозначает топологию нормы p f α на I ( f α), где α ∈ R+ \ {0}. Для α É β

τ
β
α := {A ∩ I ( f β)|A ∈ τα}. Если α É β, то τβα ⊂ τβ. Включения τβα ⊂ τβ и I ( f β) ⊂ I ( f α)

выполняются всегда, когда αÉβ и ‖ f ‖∞ <+∞.
В случае, когда ‖ f −1‖ É 1 (т.е. f Ê 1), для α É β, ‖ f −1‖ < +∞ верны включения

I ( f α) ⊂ I ( f β). Для α É β определим τα
β

как топологию на I ( f α) индуцированную
топологией τβ. Верно, что τα ⊃ τα

β
.

Пусть Ω0 = {x ∈Ω| f É 1} и Ω∞ = {x ∈Ω| f > 1}. При этом f представима в виде f =
f0⊕ f∞, где f0 = f |Ω0, f∞ = f |Ω∞ причем ‖ f0‖∞ É 1 и ‖( f∞)−1‖∞ É 1. Соответственно,
I ( f ) = I ( f0)⊕ I ( f∞) в том смысле, что I ( f ) представимо как декартово произведение
I ( f0)× I ( f∞) и p f (g ) = max{p f0(g0), p f∞(g∞)} для любого g ∈ I ( f ).

Теорема 2. Линейное пространство I∞( f ) ≡ lim I ( f n) корректно определено, при-
чем

I∞( f ) = ⋃
α>0

⋂
βÊα

I ( f β) = ⋂
α>0

⋃
βÊα

I ( f β) = ⋂
α>0

I ( f α0 )× ⋃
α>0

I ( f α∞).

Пусть τ0
α обозначает топологию на I∞( f0) индуцированную τα. На I∞( f0) есте-

ственно определить инициальную топологию τ0 для вложений L∞( f0) в (L( f α0 ),τ0
α).

Лемма 1. (I∞( f0),τ0) – полное метризуемое локально выпуклое пространство
(пространство Фреше).

Пусть τ∞α обозначает топлогию на I ( f α∞) индуцированную топологией τα. На
I∞( f∞) естественно ввести финальную топологию τ∞ Топология на I ( f α∞) индуци-
рованная τ∞ обозначена τα∞.
Лемма 2. Топология τα∞ совпадает с

⋂
β>α

(τ∞
β

)α для всех α> 0.

Пусть RI ( f ) = {g ∈ L0(Ω∞,Σ∞,µ∞)|∀α > 0 ∃ Cα f α∞ É Cαg на Ω∞}, где Σ∞ =
{A ∩Ω∞|A ∈ Σ}, µ∞ = µ|Σ∞. Топология нормы pg на I (g ) обозначена τ(g ). Соответ-
ствующая индуцированная топология на I ( f α∞) ⊂ I (g ) обозначена τα(g ).

Предложение. Для любого α > 0 верно, что
⋂
β>α

(τ∞
β

)α не слабее топологии Tα∞ с

базой
⋃

g∈RI ( f )
τα(g ).

Лемма 3. Инициальная топология T∞ вложений fg : x ∈ I∞( f∞) 7→ x ∈ (I (g ),τ(g )),
где g ∈RI ( f ), не сильнее топологии τ∞.

Предельной топологией τ на I∞( f ) естественно считать топологию с базой τ0 ×
τ∞. Также разумно рассмотреть топологию T , базой для которой является τ0×T∞.

Теорема 3. Топология τ мажорирует отделимую локально выпуклую топологию T .
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АСИМПТОТИЧЕСКИЕ ФОРМУЛЫ РАСПРЕДЕЛЕНИЯ НУЛЕЙ
КВАЗИПОЛИНОМОВ
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1yum_mg@mail.ru, Башкирский государственный университет

Пусть n – натуральное число и α0(t ), α1(t ), . . . , αn−1(t ) – функции ограниченной
вариации на отрезке [0,r ], где r > 0. Рассмотрим функцию комплексного перемен-
ного p:

L(p) = pn +
n−1∑
j=0

p j
r∫

0

e−psdα j (s) ,

где интегралы понимаются в смысле Лебега-Стилтьеса. Функцию L(p) называют
квазиполиномом степени n. Квазиполином L(p) является целой функцией ком-
плексного переменного p. Она обладает свойствами:

– функция L(p) не может иметь более чем счетное число нулей;
– кратность каждого из нулей функции L(p) конечна;
– функция L(p) может иметь лишь конечное число вещественных нулей;
– множество нулей функции L(p) не может иметь конечную точку сгущения.
Пусть функция L(p) имеет счетное число нулей. Тогда они могут быть распо-

ложены в последовательность τ1, τ2, . . . ,τk , . . . , в порядке возрастания их модулей:
|τk | É |τk+1|, при этом |τk |→∞. В докладе обсуждаются условия, при которых име-
ют место следующие асимптотические формулы распределения нулей τk : Reτk =
O(lnk) и Imτk =O(k) при k →∞.
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АСИМПТОТИЧЕСКИЕ СВОЙСТВА ВЫБОРОЧНЫХ ОЦЕНОК СОБСТВЕННЫХ
ЗНАЧЕНИЙ И ФУНКЦИЙ ЛИНЕЙНЫХ ОПЕРАТОРОВ НА МНОГООБРАЗИЯХ

Ю. А. Янович1

1yyanovich@hse.ru, Институт проблем передачи информации имени А. А. Харкевича
Российской академии наук, Национальный исследовательский университет Высшая
школа экономики

Многие задачи анализа данных, такие как распознавание образов, классифи-
кация, кластеризация, восстановление регрессии и другие, связаны с реальными
данными, которые лежат в пространствах высокой размерности, и “проклятие раз-
мерности” часто является препятствием для использования алгоритмов машинно-
го обучения при решении таких задач.

К счастью, во многих приложениях реальные многомерные данные заполняют
лишь очень малую часть многомерного пространства наблюдений Rp , чья внутрен-
няя размерность q мала (обычно, q ¿ p) [1]. Так, множество алгоритмов снижения
размерности (извлечения признаков), чьей задачей является нахождение низкораз-
мерной параметризации многомерных данных по конечным выборкам, могут быть
использованы для сведения таких “многомерных” задач к низкоразмерным с со-
хранением их свойств [2].

Наиболее популярной моделью многомерных данных, занимающей малую часть
пространства наблюдений Rp , является модель многообразия, в соответствии с ко-
торой данные лежат на или вблизи неизвестного многообразия (многообразия дан-
ных) X меньшей размерности q < p, вложенного в многомерное пространство вхо-
довRp (гипотеза многообразия [3] о многомерных данных). Снижение размерности
при условии гипотезы многообразия для обрабатываемых данных обычно называ-
ется оцениванием многообразий.

Большинство алгоритмов оценивания многообразий рассматривают задачу ми-
нимизации функционала вида

∫
X

f (X ) ·L f (X )dF (X )

по скалярной функции f (X ) при ограничениях, исключающих тривиальные реше-
ния, где X — точка многообразия, L — специфический для каждого алгоритма ли-
нейный (дифференциальный) оператор, F (X ) — вероятностная мера на многооб-
разии. Данная задача эквивалентна задаче нахождения наименьших собственных
значений оператора L и соответствующих им собственных функций. Однако, так
многообразие X неизвестно, а оператор L зависит от него, то возникает подзадача
оценивания L f (X ) по конечной выборке.

Автором доказана состоятельность непараметрических оценок L f (X ), найдена
верхняя граница на вероятность максимального по многообразию уклонения оцен-
ки собственных функций и собственных значений от истинных (равномерная оцен-
ка). Равномерность является необходимым условием для использования результа-
тов работы алгоритмов в суррогатной оптимизации.
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О СРЕДНИХ ПОЛИГАРМОНИЧЕСКИХ ФУНКЦИЙ В ШАРЕ

В. В. Карачик1
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Найдем значения интеграла по единичной сфере ∂S от нормальных производ-
ных полигармонической в единичном шаре функции. Пусть (a,b)k = a(a +b) · · · (a +
(k − 1)b) – обобщенный символ Похгаммера, с соглашением (a,b)0 = 1, а t [k] =
t (t − 1) . . . (t −k + 1) – факториальная степень t . Обозначим N0 = N∪ {0} и пусть ωn
– площадь ∂S.

Справедливо следующее утверждение.

Теорема 1. Для любого m ∈ N0 и всякой полигармонической в единичном шаре S
функции u ∈C m(S̄) справедливо равенство

1

ωn

∫
∂S

∂mu

∂νm d sx =
∞∑

k=0

(2k)[m]

(2,2)k (n,2)k
∆k u(0),

где ν – внешняя нормаль к единичной сфере ∂S.

Найдем значения полигармонической функции u(x) и лапласианов от нее
∆mu(x) в центре единичного шара, выраженные через интегралы по единич-
ной сфере от нормальных производных этой функции. Рассмотрим оператор Λ =∑n

i=1 xi
∂
∂xi

. В работе [1] было установлено следующее равенство ∂k u
∂νk = Λ[k]u, спра-

ведливое на ∂S.

Теорема 2.Для всякой полигармонической в единичномшаре S функции u ∈C k−1(S̄)
справедливо равенство

∆mu(0) = 1

ωn

(2,2)m(n,2)m

H (m)
k−1(2m)

∫
∂S

H (m)
k−1(Λ)u(x)d sx , (1)

где многочлен H (m)
k−1(λ) находится из равенства

H (m)
k−1(λ) =λ(λ−2) · · · (λ−2m +2)(λ−2m −2) · · · (λ−2k +2)

и m = 0, . . . ,k −1.
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При m = 0 коэффициенты в формуле (1) образуют арифметический треугольник
[2]. Эти числа связаны с условиями разрешимости задачи Неймана [3,4]. Некоторые
свойства среднего исследованы также в [5].
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Пусть f = h+g – гармоническое отображение кругаD на однолистную область на
комплексной плоскости. Здесь g и h – аналитические компоненты этого отображе-
ния. С. Поннусами [1] была выдвинута гипотеза, которая состоит в том, что если f –
выпуклая функция, т.е. образ круга при этом отображении является выпуклым, то
найдется вещественное число α, такое, что функция h + eiαg является выпуклой в
круге D.

Нами выделены классы выпуклых гармонических отображений в которых эта ги-
потеза справедлива.
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О ДВУХ ПРОБЛЕМАХ ТЕОРИИ КРИВОЛИНЕЙНЫХ ТРИ-ТКАНЕЙ

В. Б. Лазарева1, А. М. Шелехов2
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Сообщение посвящается двум известным проблемам теории криволинейных
три-тканей на плоскости, которые авторам удалось решить в течение последних
лет. Первая проблема была сформулирована Вильгельмом Бляшке в начале 50-х го-
дов 20 века: найти все регулярные три-ткани, образованные пучками окружностей
(регулярной называется три-ткань, эквивалентная (локально диффоморфная) трем
семействам параллельных прямых). Все найденнные три-ткани перечислены в [1].
Доказательство основано на теореме о границах, по которой границами регулярной
три-ткани являются линии этой ткани [2].

Вторая проблема связана со следующей гипотезой: всякий локальный диффео-
морфизм плоскости, преводящий прямолинейную три-ткань (т.е. 3 семейства пря-
мых) также в прямолинейную три-ткань, является проективным преобразованием.
Это утверждение в эквивалентной, но несколько более тяжелой формулировке, бы-
ло высказано в 1912 году Гронволом (Gronwall). К настоящему времени реализовано
несколько подходов к доказательству гипотезы Гронвола, но до сих пор убедитель-
ного ответа их авторы не получили. Мы предлагаем положительное решение про-
блемы Гронвола, основанное на применении классического метода Эли Картана [3].

В [4] доказано следующее утверждение (теорема Дюфура): всякий локальный го-
меофорфизм плоскости, переводящий три семейства гладких кривых в три семей-
ства гладких кривых, является гладким преобразованием. Имея в виду положитель-
ное решение проблемы Гронвола, отсюда получаем: всякий локальный гомеофор-
физм плоскости, переводящий прямолинейную три-ткань в прямолинейную три-
ткань, является проективным преобразованием.

Верно также следующее многомерное обобщение: всякий локальный диффео-
морфизм, преводящий грассманову три-ткань в грассманову три-ткань, является
проективным преобразованием [5].

Близкие вопросы рассматривались в [6]–[9].

Работа выполнена в рамках государственного задания по проекту 1686.
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НЕРАВЕНСТВА ТИПА ВИЛАНДТА ДЛЯ СТЕПЕНЕЙ КОМПЛЕКСНЫХ
МАТРИЦ

Ю. А. Альпин1, С. Н. Ильин2
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Неотрицательная матрица A называется примитивной, если для некоторого по-
казателя k матрица Ak не содержит нулей. Наименьший из таких показателей на-
зывают экспонентом примитивной матрицы. Виландт доказал следующее [1], [2]:

Теорема 1. Экспонент примитивной матрицы порядка n не превышает числа
w(n) = n2 − 2n + 2. Эта оценка точная: существует такая примитивная матрица A,
что матрица An2−2n+1 содержит 0.

Цель этого сообщения — установить связь теоремы 1 со следующим результатом,
также принадлежащим Виландту [1]. Символом ρ(A) ниже обозначается спектраль-
ный радиус матрицы A.

Теорема 2. Пусть A — неразложимая комплексная матрица, |A| — её модуль, т.е.
матрица, составленная из модулей элементов A. Тогда ρ(A) É ρ(|A|), причём равен-
ство имеет место в том и только том случае, если существуют число ε, |ε| = 1, и диа-
гональная унитарная матрица D, такие, что A = εD−1|A|D.

Условие равенства ρ(A) = ρ(|A|), сформулированное в теореме 2, эквивалентно,
как нетрудно доказать, бесконечной последовательности равенств:

|Ak | = |A|k ,k = 1,2, . . .
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Возникает естественный вопрос: существует ли такой показатель Å(A), что |AÅ| =
|A|Å ⇒ ρ(A) = ρ(|A|)? Оказывается, что существует, и наименьшее значение этого
показателя для комплексных матриц порядка n равно числу Виландта w(n).

Теорема 3. Пусть A — неразложимая комплексная матрица порядка n. Если
|Aw(n)| = |A|w(n), то ρ(A) = ρ(|A|). Число w(n) — наименьшее, для которого это
утверждение верно.

Из теоремы 3 следует теорема Маржика–Птака [3] о матричной норме ||A|| =
max

n∑
j=1

|ai j |.

Теорема 4. Для любой комплексной матрицы A порядка n равенство
||An2−n+1|| = 1 влечет ρ(A) = 1. В этом утверждении показатель n2 − n + 1 нель-
зя уменьшить: существует матрица A, для которой ||An2−n || = 1, но ρ(A) < 1.
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СХОДИМОСТЬ ИТЕРАЦИОННЫХ СХЕМ И ИСКУССТВЕННОЕ
СВЯЗЫВАНИЕ ПОПРАВОК НЕИЗВЕСТНЫХ В СОСЕДНИХ УЗЛАХ
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Pracht W.E. и другие в 1970-х годах предложили изменённый итерационный ме-
тод Ньютона. Автор [1] использовал его, для создания схем, не являющихся, по сути,
схемами Ньютона. В данной работе для простейшего случая одномерных акустиче-
ских уравнений, доказывается и исследуется сходимость итерационной схемы при
любом числе Куранта.

Разностные схемы, для этой дифференциальной задачи, приводятся в работе со-
гласно [2], но с помощью невязок

Qv ≡ v
j+1
i − v

j
i −γ[(1−α)(u

j
i −u

j
i−1)+α(u

j+1
i −u

j+1
i−1 )], (1)

Qu ≡ u
j+1
i −u

j
i −γ[(1−β)(v

j
i+1 − v

j
i )+β(v

j+1
i+1 − v

j+1
i )]. (2)

Здесь число Куранта γ= aτ/h. Сеточные значения давления u
j
i относятся к полуце-

лым точкам по пространству и целым точкам по времени (si+1/2, t j ). Значения ско-

рости v
j
i относятся к целым точкам (si , t j ). Начальные приближения v0

i = v
j
i , u0

i =
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u
j
i . Последующие приближения находим так

vk+1
i = vk

i − Qk
v

∂Qv /∂v
j+1
i

, uk+1
i = uk

i − Qk,k+1
u

∂Qu/∂u
j+1
i

. (3)

Здесь Qk
v получается из выражения для Qv в формуле (1) заменой v

j+1
i , u

j+1
i на vk

i ,

uk
i для всех i . После определения vk+1

i для всех i , Qk,k+1
u определяем из выражения

для Qu в формуле (2) заменой v
j+1
i , u

j+1
i на vk+1

i , uk
i для всех i .

Для погрешностей δuk
i = uk

i −u
j+1
i , δvk

i = vk
i −v

j+1
i , найдя эффективные произ-

водные от невязок ∂Qv /∂v
j+1
i = 1, ∂Qu/∂u

j+1
i = 1+2γ2αβ(1−ωu0), получим соотно-

шение

δuk+1
i =

γ2αβ(δuk
i+1 +δuk

i−1 −2ωu0δuk
i )

1+2γ2αβ(1−ωu0)
. (4)

Из (4) виден смысл искусственно введенного ωu0. Если считать его отношением
среднеарифметической величины поправок δu в i −1-й и i +1-й ячейках, к поправ-
ке в i -й ячейке, то правая часть (4) обратится в ноль и формула (3) сразу даст точное
значение u

j+1
i . В работе показано, что итерационная схема сходится при любых γ,

но при больших γ, скорость сходимости маленькая. Для задачи о распространении
акустических волн, конечно-разностные уравнения описывают реальный процесс
при небольших числах Куранта. Если распространение акустических колебаний не
требуется определять, итерационные схемы, позволяющие считать с большим γ, —
предпочтительны. Автору удалось создать такие работоспособные итерационные
схемы для решения трёхмерных уравнений Навье-Стокса. Но теоретического ис-
следования сходимости этих итерационных схем автором, пока не проводилось.

Литература

[1] Araslanov Sh. F. Artificial relations between quantities at nearest nodes or cells and the
Newton iteration procedure for the modified pressure correction method // Computer
Assisted Mechanics and Engineering Sciences. –2004. – V. 11. – № 2–3. – P. 167–
195.

[2] Самарский А. А., Попов Ю. П. Разностные схемы газовой динамики. – М.: Наука,
1975. – 352 c.



АВТОРСКИЙ УКАЗАТЕЛЬ

A
Abed S.A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Abyzov A.N. . . . . . . . . . . . . . . . . . . . . . . . . . 58
Al-Anni M. K. . . . . . . . . . . . . . . . . . . . . . . . . 38
Alpin T. Yu. . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Aminova A. V. . . . . . . . . . . . . . . . . . . . . . . . 40
Artamonov V.A. . . . . . . . . . . . . . . . . . . . . . .42
Arzumanian V. A. . . . . . . . . . . . . . . . . . . . . 41

B
Balashov M.V. . . . . . . . . . . . . . . . . . . . . . . . .42

C
Chirkunov Yu. A. . . . . . . . . . . . . . . . . . . . . . 43
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