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MATHEMATICAL ANALYSIS OF THE GENERALIZED NATURAL
MODES OF AN IHHOMOGENEOUS OPTICAL FIBER∗

E. M. KARTCHEVSKI† , A. I. NOSICH‡ , AND G. W. HANSON§

Abstract. The eigenvalue problem for generalized natural modes of an inhomogeneous optical
fiber without a sharp boundary is formulated as a problem for the set of time-harmonic Maxwell
equations with the Reichardt condition at infinity in the cross-sectional plane. The generalized
eigenvalues (including, as subsets, the well-known guided and leaky modes) of this problem are
the complex propagation constants on a logarithmic Riemann surface. A theorem on spectrum
localization is proved, and then the original problem is reduced to a nonlinear spectral problem with
a compact integral operator. It is proved that the set of all eigenvalues of the original problem can
only be a set of isolated points on the Riemann surface, and it is also proved that each eigenvalue
depends continuously on the frequency and refraction index and can appear and disappear only at
the boundary of the Riemann surface.
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1. Introduction. Optical fibers are dielectric waveguides (DWs), i.e., regular
dielectric rods, having various cross sectional shapes, and where generally the re-
fractive index of the dielectric may vary in the waveguide’s cross section. Although
existing technologies often result in a refractive index that is anisotropic, frequently
it is possible to assume that the fiber is isotropic, which is the case investigated in
this work. The study of the source-free electromagnetic fields, called natural modes,
that can propagate on DWs necessitates that longitudinally the rod extend to in-
finity. Since often DWs are not shielded, the medium surrounding the waveguide
transversely forms an unbounded domain, typically taken to be free space. This fact
plays an extremely important role in the mathematical analysis of natural waveguide
modes, and brings into consideration a variety of possible formulations. Each differ-
ent formulation can be cast as an eigenvalue problem for the set of time-harmonic
Maxwell equations, but they differ in the form of the condition imposed at infinity
in the cross-sectional plane, and hence in the functional class of the natural-mode
field. As we discuss below, this also restricts the localization of the eigenvalues in the
complex plane of the eigenparameter.

Historically, the first DWs to be studied were step-index waveguides having cir-
cular cross section; interior to the waveguide, the refractive index was either homo-
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geneous or coaxial-layered. In these cases, by using separation of variables, modal
eigenvalue problems are easily reduced to families of transcendental dispersion equa-
tions associated with the azimuthal indices (see, e.g., [1], [2]). All questions concerning
discreteness and existence of the natural-mode spectrum are settled “automatically”
due to general results from the theory of complex variables and the analytic properties
of cylindrical functions with integer indices and complex arguments.

For these circular cross section DWs the first class of natural modes to be stud-
ied were purely guided modes, which have real-valued wavenumbers. The fields of
the guided modes are confined near to the waveguide, decaying exponentially trans-
versely away from the waveguide, so that they belong to the space L2 in the whole
cross-sectional plane. Corresponding eigenvalue problems are self-adjoint. Later it
was discovered that the guided modes of a circular DW can turn into (i.e., be analyt-
ically continued as) so-called leaky-wave modes, existing on the “improper” sheet of a
square-root Riemann surface, with the wavenumbers migrating off the real axis of the
“proper” sheet onto the “improper” sheet as some parameters of the structure vary
[3]. It was noticed that leaky modes can be studied as solutions of a more general
eigenvalue problem, without cross-sectional field confinement, due to some relaxed,
although never explicitly formulated, condition at infinity.

Although leaky waves exist on an “improper” Riemann sheet, they have consid-
erable physical importance in wave excitation and fiber discontinuity problems. In
particular, it is known that the electromagnetic fields existing on a dielectric wave-
guide can be represented as a discrete sum of bound modes (which are the mentioned
guided modes generated by the eigenvalues of the propagation constant on the real
axis of the “proper” sheet) and a continuous sum (i.e., integral) of so-called radiation
modes (whose physical sense still causes discussions) [1], [2], [4]. It has been shown
that, although leaky waves are not themselves a part of a “proper” spectral field repre-
sentation, in many cases the continuum of the radiation modes may be approximated
by a discrete sum of leaky modes [5], representing the near field of a source-excited
fiber. Often the leaky-wave sum can be reduced to a single term, providing a concise
analytical form for the near-zone radiation field. Furthermore, various features in
the far-field radiation pattern of a real, finite-length, source-driven fiber can be in-
terpreted in terms of leaky-wave excitation. In addition to source-driven waveguides,
leaky modes on longitudinally invariant fibers are important in the analysis of radi-
ation and mode-conversion effects associated with waveguide discontinuities such as
fiber splices [6], radiation from waveguide bends [7], and radiation from anisotropic
fibers [8], [9]. Some properties of leaky modes on dielectric waveguides, and, in par-
ticular, dielectric fibers, are presented in [2], [3], [5], [6], [7], [8], [9], [10], [11], [12].

In addition to leaky modes, it was discovered that on the “proper” sheet, but
off its real axis, one can also find other generalized eigenvalues (modal wavenum-
bers) [13] known as complex modes. Analogous results were obtained numerically for
gradient-index DWs of arbitrary cross section [14]. These complex modes are often
important in near-field fiber discontinuity problems and mode-matching analysis. It
is important to note that all of these known types of natural modes can transform (be
continued) one into another, following variation of some geometrical or material pa-
rameter or frequency. Due to the presence of the two-dimensional unbounded domain
and the resulting Green’s functions represented as Hankel functions, it is easy to see
that the dispersion equations contain logarithmic as well as square-root–type branch
points.
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If the cross section is not circular, the study of the natural modes encounters
both methodological and numerical problems. In [15] an elliptic DW was studied
by using expansions in terms of Mathieu functions. However, in that work as well
as in other studies of waveguides having complicated cross sections, or of multirod
waveguides, the modal problems are reduced not to transcendental equations but to
infinite matrix equations or integral equations (IEs). Hence, it is necessary to base the
analysis on the theory of operator-functions depending on parameters. Once again,
by restricting the desired field behavior in the cross-sectional plane, one arrives at
different formulations of the eigenvalue problem in terms of the transverse condition
at infinity; eigenvalue localization and the function class of the natural mode field are
tied up with this condition.

In recent years, research on the natural modes of arbitrarily shaped DWs has
been focused on the development of efficient and reliable computational methods. For
instance, in [16] the eigenvalue problem for the natural modes of arbitrary DWs was
studied by splitting the differential operator into self-adjoint and perturbation parts
and using a discretization in terms of the eigenfunctions of the self-adjoint operator.
This enabled the authors to develop a very efficient numerical technique, although its
convergence was not proven.

In the papers on numerical methods for DWs, the mathematical grounding of the
methods was frequently neglected; however, useful insight into the encountered diffi-
culties and modal behavior has been discussed (e.g., see [17], [18]). The most rigorous
efforts were connected with IE formulations. Within this class the domain IE method
has the attractive advantage of being applicable to cross-sectionally inhomogeneous
(and, in fact, anisotropic) DWs [19], [20]. A problem with domain IEs is that they
are strongly singular, which previously prevented their use in a mathematical study
of the spectrum of the eigenvalues, with the exception of [21] for the purely guided
modes of an inhomogeneous DW. For real-valued propagation constants it was proven
in [21] that the operator of the domain IE is semi-Fredholm.

A rigorous mathematical study of an arbitrary-shaped DW was performed in [22]
within the guided (proper) mode formulation. This enabled the authors to make
extensive use of the theory of unbounded self-adjoint operators. For example, by
using the min-max principle, they proved the existence of guided modes, the number
of which is finite and depends on frequency. However, generalized natural modes
having complex valued propagation constants cannot be studied by this approach.

The above considerations give a new thrust to the idea of elaborating a general-
ized formulation of the modal eigenproblem in order to bring together all the possible
natural-mode solutions. All of the known natural-mode solutions (i.e., guided modes,
leaky modes, complex modes) satisfy the Reichardt condition [23] at infinity. The
wavenumbers may be generally considered on the appropriate logarithmic Riemann
surface. The Reichardt condition in this problem is connected with the fact that
the wavenumber may be complex. For real wavenumbers on the principal (“proper”)
sheet of this Riemann surface, one can reduce the Reichardt condition to either the
Sommerfeld radiation condition or to the condition of exponential decay. The Re-
ichardt condition may be considered as a generalization of the Sommerfeld radiation
condition and can be applied for complex wavenumbers. This condition may also be
considered as the continuation of the Sommerfeld radiation condition from a part of
the real axis of the complex parameter (wavenumber) to the appropriate logarithmic
Riemann surface.



2036 E. M. KARTCHEVSKI, A. I. NOSICH, AND G. W. HANSON

During recent years the Reichardt condition has been widely used for statements
of various wave propagation problems [24], [25], [26]. By using the Reichardt condi-
tion, the problems on generalized modes of microstrip and slot lines on a cylindrical
substrate were investigated in [27], [28], [29]. Tensor Green’s functions of generic open
waveguides with compact cross sections were analyzed in [30] by using Fourier trans-
forms and IE techniques in the transform domain. It was shown that the complex-
valued poles of analytic continuations of the Green’s functions satisfy a certain eigen-
value problem. Their residues can be interpreted as the generalized natural modes. In
this case, the eigenvalue problem should be formulated with the Reichardt condition
at infinity. Reducing Maxwell’s equations to an IE and converting the latter to a
Fredholm second kind equation enabled the proof of some important properties of the
spectrum of the generalized modes. Furthermore, in [31], [32] a similar formulation
was applied to study generalized guided modes in DWs, and a numerical algorithm
was developed based on a Galerkin discretization in terms of a trigonometric basis.

In this paper we extend the approach of [30], [31], [32] to the analysis of general-
ized natural modes of arbitrary-cross-section DWs having inhomogeneous (although
continuous) refractive index. Here, we use the model of DW without a sharp bound-
ary, as was proposed in [33]. Such an approach enables one to reduce the original
problem to a nonlinear spectral problem with a compact integral operator, and was
originally introduced in [34] and used in [35]. We present a unified and rigorous theory
of generalized natural modes in terms of the Reichardt condition at infinity.

The rest of this paper is organized as follows. Physical assumptions, basic equa-
tions, and notation are presented in section 2. In section 3 we formulate the modal
eigenvalue problem as a problem for the set of time-harmonic Maxwell equations
with the Reichardt condition at infinity in the cross-sectional plane. The eigenvalues
of this problem are the complex propagation constants of the natural modes, and
we introduce a classification of modal eigenvalues in terms of their location on the
logarithmic Riemann surface. In section 4 we prove a theorem on localization of
eigenvalues, where it is established that there exists a domain free of eigenvalues on
this surface. In section 5 we investigate the eigenvalues as functions of frequency and
refractive index, and we reduce the original problem to a nonlinear spectral problem
with a compact integral operator. Using general results from the spectral theory of
operator-valued functions [36], we prove that the set of all eigenvalues of the original
problem can only be a set of isolated points on the logarithmic Riemann surface, and
also we prove that each eigenvalue depends continuously on frequency and refrac-
tive index, and can appear and disappear only at the boundary of the logarithmic
Riemann surface.

2. Basic relations. We consider the generalized natural modes of the regu-
lar DW shown in Figure 1. Let the three-dimensional space {(x1, x2, x3) : −∞ <
x1, x2, x3 < ∞} be occupied by an isotropic source-free medium, and let the refrac-
tive index be prescribed as a positive real-valued function n = n(x1, x2) independent
of the longitudinal coordinate x3 and equal to a constant n∞ outside a cylinder. The
axis of the cylinder is parallel to the x3-axis, and its cross section is a bounded do-
main Ω with a Lipschitz boundary on the plane R

2 = {(x1, x2) : −∞ < x1, x2 < ∞}.
Denote by Ω∞ the unbounded domain Ω∞ = R

2 \Ω, and denote by n+ the maximum
of the function n in the domain Ω, where n+ > n∞. Let the function n belong to the
space of real-valued twice continuously differentiable functions in R

2.
The modal problem can be formulated as a vector eigenvalue problem for the

set of harmonic Maxwell equations, assuming that electric and magnetic field vectors



GENERALIZED NATURAL MODES OF AN OPTICAL FIBER 2037

 x
2

 x
1

 x
3

Ω

n=n(x)

n=n
∞Ω∞

Fig. 1. Geometry of a dielectric waveguide.

have the form

E(x, x3, t) = Re (E(x) exp (iβx3 − iωt)) ,(1)

H(x, x3, t) = Re (H(x) exp (iβx3 − iωt)) .(2)

Here x = (x1, x2), ω > 0 is the radian frequency, β is the complex-valued modal
wavenumber (or propagation constant), and E and H are complex amplitudes of E
and H. For the sake of clarity, we note that, unlike in [22], we consider the propagation
constant β as an unknown complex parameter and ω > 0 as a given parameter. Such
a choice seems to be commonly adopted in the fiber optics and microwave research
communities due to the easy control of frequency.

For the fields of the form (1), (2), the set of Maxwell equations becomes

RotβE = iωμ0H, x ∈ R
2,(3)

RotβH = −iωε0n
2E, x ∈ R

2.(4)

Here ε0, μ0 are the free-space dielectric and magnetic constants, respectively, and

RotβE =

⎡
⎣ ∂E3/∂x2 − iβE2

iβE1 − ∂E3/∂x1

∂E2/∂x1 − ∂E1/∂x2

⎤
⎦ .(5)

By C2(R2) denote the space of twice continuously differentiable in R
2 complex-valued

functions. We shall be seeking nonzero solutions [E,H] of set (3), (4) in the space
(C2(R2))6.

Let F be a three-dimensional vector-function,

F =

⎡
⎣ F1

F2

F3

⎤
⎦ ∈

(
C2(R2)

)3
,
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and let u ∈ C2(R2) be a scalar function. By definition, set

DivβF =
∂F1

∂x1
+

∂F2

∂x2
+ iβF3,(6)

Δu =
∂2u

∂x2
1

+
∂2u

∂x2
2

,(7)

Gradβu =

⎡
⎣ ∂u/∂x1

∂u/∂x2

iβu

⎤
⎦ , gradu =

⎡
⎣ ∂u/∂x1

∂u/∂x2

0

⎤
⎦ ,(8)

grad2u =

[
∂u/∂x1

∂u/∂x2

]
, F =

[
F1

F2

]
.(9)

By direct calculation it is easy to obtain the following equations:

Divβ (Gradβu) = Δu− β2u,(10)

Divβ (RotβF) = 0,(11)

Divβ (uF) = uDivβF+ (F, gradu) ,(12)

Rotβ (Gradβu) = 0,(13)

Rotβ (RotβF) = −ΔF+β2F + Gradβ (DivβF) ,(14)

where

(F,L) =

3∑
i=1

FiLi.(15)

Lemma 2.1. If [E,H] is a solution of the set (2.3), (2.4), then for x ∈ R
2

Rotβ (RotβE) = k2n2E,(16)

Rotβ
(
n−2RotβH

)
= k2H,(17)

Divβ

(
n2E

)
= 0,(18)

Divβ (H) = 0,(19)

where k2 = ε0μ0ω
2.

Proof. Applying the Rotβ operator to both sides of (3) and (4), we obtain (16),
(17). Applying the Divβ operator to both sides of (3) and (4) and using (11), we
obtain (18), (19).

Lemma 2.2. If [E,H] is a solution of the set (2.3), (2.4), then

Divβ

((
n2 − n2

∞
)
E
)

= n2
∞(E, n−2gradn2), x ∈ R

2.(20)

Proof. Using (12) leads to

Divβ

((
n2 − n2

∞
)
E
)

=
(
n2 − n2

∞
)
DivβE +

(
E, grad

(
n2 − n2

∞
))

, x ∈ R
2.(21)

Taking into account (18) and (12), we arrive at

−DivβE = (E, n−2gradn2), x ∈ R
2.(22)

Combining (21) and (22), we obtain (20).
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Lemma 2.3. If [E,H] is a solution of the set (2.3), (2.4), then

[
Δ +

(
k2n2

∞ − β2
)] [ E

H

]
= 0, x ∈ Ω∞.(23)

Proof. The function n is equal to a constant n∞ in the domain Ω∞. Therefore
we obtain (23) from (16)–(19) and (14).

3. Reichardt condition. Because the domain Ω∞ is unbounded, to have the
problem formulation complete we have to specify the behavior of E and H at infinity.
This can be done in various ways; for the problem under consideration the most
general condition is the Reichardt condition [23], as discussed below. Denote by ΩR

a circle ΩR =
{
x ∈ R

2 : |x| ≤ R
}
, and by ΓR the boundary of ΩR.

Definition 3.1. Let R0 be a large positive constant such that Ω ⊂ ΩR0 . We say
that functions E and H satisfy the Reichardt condition if the functions E and H can
be represented for all x ∈ R

2 \ ΩR0
as

[
E
H

]
=

∞∑
l=−∞

[
Al

Bl

]
H

(1)
l (χr) exp (ilϕ) ,(24)

where H
(1)
l is the Hankel function of the first kind and index l (see, e.g., [37]), (r, ϕ)

are the polar coordinates of the point x, and χ =
√
k2n2

∞ − β2. The series in (3.1)
should converge uniformly and absolutely.

Definition 3.2. By Λ denote the Riemann surface of the function lnχ(β). A
nonzero vector [E,H] ∈ (C2(R2))6 is referred to as a generalized eigenvector (or
eigenmode) of the problem (2.3), (2.4), and (3.1) corresponding to an eigenvalue β ∈ Λ
if the relations of problem (2.3), (2.4), and (3.1) are valid.

In order to discuss the Reichardt condition in more detail, we need to analyze the
Riemann surface Λ and consider the different types of modes that are possible.

3.1. Riemann surface Λ. The Hankel functions H
(1)
l (χ(β)r) are many-valued

functions of the variable β. If we want to consider these functions as holomorphic
functions, it is seen that β should be considered on the set Λ, which is the Riemann
surface of the function lnχ(β). This is due to the fact that Hankel functions can be
represented as

H
(1)
l (χr) = c

(1)
l (χr) ln (χr) + R

(1)
l (χr) ,(25)

where c
(1)
l (χr) and R

(1)
l (χr) are holomorphic single-valued functions (see, e.g., [37]).

The Riemann surface Λ is infinitely sheeted, with each sheet having two branch points,
β = ±kn∞. More precisely, due to the branching of χ(β) itself, we consider an infinite
number of logarithmic branches Λm, m = 0,±1, . . . , each consisting of two square-

root sheets of the complex variable β: Λ
(1)
m and Λ

(2)
m . By Λ

(1)
0 denote the principal

(“proper”) sheet of Λ, which is specified by the conditions

−π/2 < argχ(β) <
3π

2
, Im (χ(β)) ≥ 0, β ∈ Λ

(1)
0 .(26)

The “improper” sheet Λ
(2)
0 is specified by the conditions

−π2 < argχ(β) <
3π

2
, Im (χ(β)) < 0, β ∈ Λ

(2)
0 .(27)
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Denote also the whole real axis of Λ
(1)
0 as R

(1)
0 , and that of Λ

(2)
0 as R

(2)
0 . All the other

pairs of sheets Λ
(1),(2)
m�=0 differ from Λ

(1),(2)
0 by a shift in argχ(β) equal to 2πm, and

satisfy the conditions

−π/2 + 2πm < argχ(β) <
3π

2
+ 2πm, Im (χ(β)) ≥ 0, β ∈ Λ(1)

m ,

−π/2 + 2πm < argχ(β) <
3π

2
+ 2πm, Im (χ(β)) < 0, β ∈ Λ(2)

m .

(28)

Hence, on Λ
(1)
0 there is only a pair of branch-cuts dividing it from Λ

(2)
0 ; they run

along the real axis at |β| < kn∞ and along the imaginary axis. On Λ
(2)
0 , additionally,

there is a pair of branch-cuts dividing it from Λ
(2)
±1; they run along the real axis at

|β| > kn∞.

3.2. Purely guided, complex, and leaky-wave modes. Denote a set of

points on the real axis R
(1)
0 of the sheet Λ

(1)
0 by G, that is, the union of two intervals:

G = {β ∈ R
(1)
0 : kn∞ < |β| < kn+}.(29)

By C
(1)
0 denote the set

C
(1)
0 = {β ∈ Λ

(1)
0 : Reβ �= 0} \R(1)

0 .(30)

Propagation constants β of purely guided modes, complex modes, and leaky-wave

modes belong to sets G ⊂ Λ
(1)
0 , C

(1)
0 ⊂ Λ

(1)
0 , and Λ

(2)
0 \R(2)

0 , respectively.
If −π/2 < argχ < 3π/2, then the large-argument asymptotic forms of the Hankel

functions of the first kind are known (see, e.g., [37]) to be

H
(1)
l (χr) =

√
2

πχr
exp

[
i

(
χr − lπ

2
− π

4

)][
1 + O

(
1

χr

)]
, r → ∞.(31)

Hence, if −π/2 < argχ < 3π/2, Im(χ) �= 0, and a function [E,H] satisfies the Re-
ichardt condition, then this function satisfies the following condition at infinity:

[
E
H

]
= exp (iχr)O

(
1√
r

)
, r → ∞.(32)

It is easy to see that for purely guided and complex modes, Im(χ) > 0. Therefore cor-
responding eigenmodes [E,H] decay at infinity as exp (−Im(χ)r)r−1/2. Eigenvectors
[E,H] of leaky-wave modes grow at infinity as exp (−Im(χ)r)r−1/2 because Im(χ) < 0
for them.

3.3. Radiation modes. By D denote the set

D = {β ∈ Λ
(1)
0 : Reβ = 0}

⋃
{β ∈ R

(1)
0 : |β| < kn∞}.(33)

The continuous spectrum of radiation modes belongs to domain D, and each radiation
mode can be expressed as (see [1])

[
E
H

]
=

∞∑
l=−∞

[
Al

Bl

]
H

(1)
l (χr) exp (ilϕ) +

∞∑
l=−∞

[
Cl

Dl

]
H

(2)
l (χr) exp (ilϕ) ,(34)
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where x ∈ R
2 \ ΩR0

and H
(2)
l is the Hankel function of the second kind and index l

(see, e.g., [37]).
If −π/2 < argχ < 3π/2, then the large-argument asymptotic forms of the Hankel

functions of the second kind are known (see, e.g., [37]) to be

H
(2)
l (χr) =

√
2

πχr
exp

[
−i

(
χr − lπ

2
− π

4

)][
1 + O

(
1

χr

)]
, r → ∞.(35)

It is easy to see that for radiation modes Im(χ) = 0, and that the radiation modes
satisfy the following condition at infinity:

[
E
H

]
= O

(
1√
r

)
, r → ∞.(36)

The Reichardt condition (24) for all functions which satisfy (23) and all β ∈ D is
equivalent to the Sommerfeld condition

(
∂

∂r
− iχ

)[
E
H

]
= o

(
1√
r

)
, r → ∞,(37)

a fact which was proven in [38]. Therefore, radiation modes do not satisfy the Re-
ichardt condition (24). In section 4 we will prove that the set D is free of the eigen-
values of problem (3), (4), and (24). In section 5, using the Reichardt condition (24),
we will reduce problem (3), (4), and (24) to a problem with a purely point spectrum.
Therefore, in this work we will not investigate the continuous spectrum of radiation
modes.

3.4. Mode notation. The eigenvectors corresponding to the eigenvalues β ∈
R

(1)
0 such that |β| < kn∞ and satisfying the Sommerfeld condition (37) do not exist

in a “passive” DW (i.e., when Imn2 = 0), which we investigate in this paper. However,
if the waveguide is “active,” i.e., if Imn2 < 0, then such modes, radiating to r → ∞
(i.e., satisfying the Sommerfeld condition (37)) and propagating along x3 without
attenuation, may exist. In contrast, the eigenvectors corresponding to the eigenvalues

β ∈ G ⊂ R
(1)
0 satisfy the condition of exponential decay at infinity. We suggest

calling all natural modes generated by the real-axis eigenvalues eigenmodes, and, to
distinguish between them, calling the first ones radiating eigenmodes and the second
guided-wave eigenmodes. Note, however, that our radiating eigenmodes should not
be confused with the “radiation modes” discussed in the previous section. Note that
the condition (24) leads to a non–self-adjoint problem in general, which becomes
self-adjoint if β ∈ G, i.e., for the guided-wave eigenmodes.

If β ∈ Λ
(1),(2)
0 but off R

(1)
0 , then the corresponding modes will be called quasi

eigenmodes: they consist of the exponentially decaying “proper” complex quasi eigen-

modes if β ∈ C
(1)
0 , the exponentially growing leaky-wave quasi eigenmodes if β ∈

Λ
(2)
0 \R(2)

0 , and the exponentially growing “anti-guided” quasi eigenmodes if β ∈ R
(2)
0

such that |β| > kn∞.

For all m �= 0, l = 0,±1,±2, . . . , and β ∈
⋃

m�=0 (Λ
(1)
m

⋃
Λ

(2)
m ) we have

H
(1)
l (χ exp(i2πm)r) = α

(m)
l H

(1)
l (χr) + γ

(m)
l H

(2)
l (χr) , α

(m)
l , γ

(m)
l �= 0.(38)

All of the modes whose wavenumbers are located on the higher-order pairs of sheets

Λ
(1),(2)
m�=0 will be collectively called pseudoeigenmodes because, according to (31), (35),
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and (38), they are composed of a sum of incoming and outgoing cylindrical waves.
Another justification of this terminology is that all of the possible eigenmodes in a
“passive” DW are solutions of a self-adjoint problem, whereas quasi eigenmodes and
pseudoeigenmodes satisfy non–self-adjoint problems.

The eigenvalues β on Λ possess a symmetry which is a consequence of equivalency
between positive and negative directions along the longitudinal axis x3 and time t
(see [33]). Namely, if β is an eigenvalue and [E,H] is a corresponding generalized
eigenvector, then −β is also an eigenvalue, with the generalized eigenvector given by
[−E,H]. Further, because Imω = 0 and Imn = 0, the complex-conjugate numbers
±β are eigenvalues as well, with the eigenvectors given by

[
∓E,−H

]
. All these facts

can be easily verified by direct substitution into (3), (4), and (24). We shall call the
above-mentioned modes forward, backward, conjugate, and backward-conjugate modes,
respectively.

4. Localization of the eigenvalues.

Theorem 4.1. The sets B = {β ∈ R
(1)
0 : |β| ≥ kn+} and D are free of the

eigenvalues of problem (2.3), (2.4), and (3.1).
Proof. Suppose that conditions (3), (4), and (24) are satisfied for some [E,H] ∈

(C2(R2))6 and β ∈ B. Multiplying both sides of (17) by H, integrating over R
2, and

using (31), we obtain

k2

∫
R2

|H|2dx =

∫
R2

(
Rotβ

(
1

n2
RotβH

)
,H

)
dx(39)

=

∫
R2

(
1

n2
RotβH,RotβH

)
dx

≥ 1

n2
+

∫
R2

(
RotβH,RotβH

)
dx

=
1

n2
+

∫
R2

(
Rotβ (RotβH) ,H

)
dx.

Combining this with (19) and (14), we obtain

k2

∫
R2

|H|2dx ≥ 1

n2
+

∫
R2

(
−ΔH + β2H,H

)
dx(40)

=
1

n2
+

∫
R2

|gradH|2dx +
β2

n2
+

∫
R2

|H|2dx.

Therefore, we have

(
β2 − k2n2

+

) ∫
R2

|H|2dx +

∫
R2

|gradH|2dx ≤ 0.(41)

Hence, if β ∈ B and |β| > kn+, then H = 0 for x ∈ R
2, and

E =
−1

(iωε0n2)
RotβH = 0(42)

for x ∈ R
2. If β ∈ B and |β| = kn+, then the function H is equivalent to a constant

in R
2, but if H satisfies (24), then it must vanish at infinity for all β ∈ B. Therefore,
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if β ∈ B and |β| = kn+, then H = 0 for x ∈ R
2, and E = 0 for x ∈ R

2. Therefore the
vector [E,H] is not an eigenvector of problem (3), (4), and (24) if β ∈ B.

Now suppose that conditions (3), (4), and (24) are satisfied for some [E,H] ∈
(C2(R2))6 and β ∈ D. Multiplying both sides of (16) by E, integrating over ΩR

where R ≥ R0, and using (14) and (18), we obtain

k2

∫
ΩR

n2 |E|2dx =

∫
ΩR

(
Rotβ (RotβE) ,E

)
dx(43)

=

∫
ΩR

(
−ΔE + β2E + Gradβ (DivβE) ,E

)
dx

=

∫
ΩR

|gradE|2dx−
∫

ΓR

(
∂E

∂ |x| ,E
)
dx + β2

∫
ΩR

|E|2dx

−
∫

ΩR

|DivβE|2 dx.

For all β ∈ D the number β2 is real, and therefore we have

Im

∫
ΓR

(
∂E

∂ |x| ,E
)
dx = 0, R ≥ R0.(44)

If we combine this with (24), we obtain

2πχR

∞∑
l=−∞

Im
[
H

(2)
l (χR)H

(1)′

l (χR)
]
|Al|2 = 0, R ≥ R0.(45)

We also have

Im
[
H

(2)
l (χR)H

(1)′

l (χR)
]

=
2

πχR
, l = 0,±1,±2, . . . ,(46)

which leads to Al = 0 for all l and any R ≥ R0. Hence E = 0 for r ≥ R0. Under the
assumption of the smoothness of the function n, we have E = 0 for x ∈ ΩR0 (see [39,
p. 190]) and

H =
1

(iωμ0)
RotβE = 0(47)

for x ∈ R
2. Therefore the vector [E,H] is not an eigenvector of problem (3), (4), and

(24) if β ∈ D. The proof of the theorem is complete.

5. Discreteness and dependence of the eigenvalues on parameters. Now
we shall prove that the set of all eigenvalues of problem (3), (4), and (24) can be only
a set of isolated points on Λ. We shall also investigate the behavior of eigenvalues β
of the problem (3), (4), and (24) as functions of parameters n∞ ∈ R+ and ω ∈ R+,
where R+ is the set of all positive numbers, R+ = {x > 0}. We will use general results
of the theory of operator-valued functions [36]. The results in [36] were obtained for
operators of the form I+ B(β), where I is the identity operator and the operator B(β)
is compact for all β. Therefore we shall reduce the problem (3), (4), and (24) to a
nonlinear spectral problem with a compact integral operator.
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Lemma 5.1. Suppose that [E,H] is an eigenvector of the problem (2.3), (2.4), and
(3.1) corresponding to an eigenvalue β ∈ Λ. Then

E(x) = (B(β)E) (x), x ∈ R
2,(48)

where

(B(β)E) (x) = k2

∫
Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy(49)

+ Gradβ

∫
Ω

(E, n−2gradn2)(y)Φ(β;x, y)dy,

Φ (β;x, y) =
i

4
H

(1)
0 (χ(β) |x− y|) .(50)

Proof. For all β ∈ Λ and x ∈ R
2 we have

E(x) =
(
k2n2

∞ + GradβDivβ

) 1

n2
∞

∫
Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy.(51)

This result is well known for β ∈ G (see, e.g., [40]). The desired assertion for all
β ∈ Λ is obtained by applying the method of Green functions to the vector Helmholtz
equation for the electric field with the use of the relation

∫
ΓR

(
∂E(y)

∂|y| Φ(β;x, y) − ∂Φ(β;x, y)

∂|y| E(y)dy

)
= 0, R ≥ R0,(52)

which is valid for any β ∈ Λ and an arbitrary function E satisfying the Reichardt
condition (24). The validity of relation (52) was proved in [38], [23].

By the supposition of the lemma, E ∈ (C2(R2))3. The function n is twice contin-
uously differentiable in R

2 too. Therefore, the following divergence relation is valid:

Divβ

∫
Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy(53)

=

∫
Ω

Divβ

[(
n2(y) − n2

∞
)
E(y)

]
Φ(β;x, y)dy, x ∈ R

2.

Taking into account (53) and (20), we obtain the assertion of the lemma.
For all β ∈ Λ the operator B(β) determined by (49) will be considered as an

operator in the space of complex-valued functions [L2(Ω)]3. By definition, set

A(β) = I − B(β),

where I is the identity operator in [L2(Ω)]3. The kernel of the integral operator B(β) is
weakly singular for all β ∈ Λ, and the domain Ω has a Lipschitz boundary. Therefore,
the operator B(β) is compact for all β ∈ Λ (see, e.g., [41]).

Definition 5.2. A nonzero vector F ∈ [L2 (Ω)]3 is called an eigenvector of an
operator-valued function A(β) corresponding to an eigenvalue β ∈ Λ if the relation

A(β)F = 0(54)

is valid. The set of all β ∈ Λ for which the operator A(β) does not have the bounded
inverse operator in [L2(Ω)]3 is called the spectrum of problem (5.7)
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Next we shall prove a theorem on the spectral equivalence of the problem (3),
(4), and (24) and the problem (54), but before doing this we consider the following.

Definition 5.3. A nonzero vector u ∈ C2(R2) is called a generalized eigenvector
of the problem

[
Δ +

(
k2n2 − β2

)]
u = 0, x ∈ R

2,(55)

u =

∞∑
l=−∞

alH
(1)
l (χr) exp (ilϕ) for all r ≥ R0(56)

(where the series is supposed to converge uniformly and absolutely), corresponding to
an eigenvalue β ∈ Λ if the relations (5.8) and (5.9) are valid.

Lemma 5.4. The set of all eigenvalues of problem (5.8) and (5.9) can only be a set

of isolated points on Λ. The sheet Λ
(1)
0 , except for the set G, is free of the eigenvalues

of the problem (5.8) and (5.9).
The proof is found in [42]. Note that the solutions of problem (55) and (56)

represent the solutions of the weak-guidance approximation of the original problem
(3), (4), and (24).

Theorem 5.5. Suppose that [E,H] ∈ (C2(R2))6 is an eigenvector of the problem
(2.3), (2.4), and (3.1) corresponding to an eigenvalue β0 ∈ Λ. Then F = E ∈ [L2(Ω)]3

is an eigenvector of the operator-valued function A(β) corresponding to the same
eigenvalue β0. Suppose that F ∈ [L2(Ω)]3 is an eigenvector of the operator-valued
function A(β) corresponding to an eigenvalue β0 ∈ Λ, and also suppose that the
same number β0 is not an eigenvalue of the problem (5.8) and (5.9). Let E =
B(β0)F and H = (iωμ0)

−1Rotβ0
E for x ∈ R

2. Then [E,H] ∈ (C2(R2))6, and [E,H]
is an eigenvector of the problem (2.3), (2.4), and (3.1) corresponding to the same
eigenvalue β0.

Proof. From Lemma 5.1 we obtain the first assertion of the theorem. Now we shall
prove the second assertion of the theorem. Suppose that F ∈ [L2(Ω)]3 is an eigenvector
of the operator-valued function A(β) corresponding to an eigenvalue β ∈ Λ. Assume
E = B(β)F for x ∈ R

2. The kernel of the integral operator B(β) is weakly singular for
any β ∈ Λ. By virtue of the well-known property of the integral operator with weakly
singular kernel on the domain with a Lipschitz boundary (see, e.g., [41]), we have
E ∈ [C(Ω)]3. The function n belongs to the space of twice continuously differentiable
functions in R

2. By virtue of the well-known properties of the area potential (see,

e.g., [41]), we have E ∈ [C
2
(R2)]3.

Applying the operator Divβ to both sides of (48), and using (10) and (53), we
obtain

DivβE(x) = k2

∫
Ω

Divβ

[(
n2(y) − n2

∞
)
E(y)

]
Φ(β;x, y)dy(57)

+
(
Δ − β2

) ∫
Ω

(E, n−2gradn2)(y)Φ(β;x, y)dy

for all x ∈ R2. If we combine this with Poisson’s formula

(
Δ + k2n2

∞−β2
) ∫

Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy = −

(
n2(x) − n2

∞
)
E(x),(58)
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we get

DivβE(x) = k2

∫
Ω

Divβ

[(
n2(y) − n2

∞
)
E(y)

]
Φ(β;x, y)dy(59)

− k2n2
∞

∫
Ω

(E, n−2gradn2)(y)Φ(β;x, y)dy

− (E, n−2gradn2)(x)

for all x ∈ R2. Using (12), we have

Divβ

[(
n2 − n2

∞
)
E
]

= Divβ

(
n2E

)
− n2

∞DivβE,(60)

(E, n−2gradn2) = n−2Divβ

(
n2E

)
− DivβE.(61)

If we combine this with (59), we see that the function u = n−2Divβ

(
n2E

)
satisfies

u =

∫
Ω

k2
(
n2(y) − n2

∞
)
Φ(β;x, y)u(y)dy, x ∈ R

2.

If the number β is not an eigenvalue of the problem (55) and (56), then this equation
has only the trivial solution (see [42]). Therefore, we have

Divβ

(
n2E

)
= 0, x ∈ R

2.(62)

Using this, (48), and (61), for x ∈ R
2, we obtain

E(x) = k2

∫
Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy(63)

− Gradβ

∫
Ω

Φ(β;x, y)DivβE(y)dy.

Assume H = (iωμ0)
−1RotβE, x ∈ R

2; i.e., [E,H] satisfies (3). Combining (63) and
(13), we have

H(x) = −iωε0Rotβ

∫
Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy, x ∈ R

2.(64)

Therefore, if E ∈ [C2(R2)]3, then H ∈ [C2(R2)]3.
Now we shall prove that [E,H] satisfies (4). Multiplying both sides of (63) by

iωε0n
2
∞, applying the operator Rotβ to both sides of (64), and combining the results,

we obtain

RotβH + iωε0n
2
∞E = − iωε0RotβRotβ

∫
Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy(65)

+ iωε0n
2
∞k2

∫
Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy

− iωε0n
2
∞Gradβ

∫
Ω

Φ(β;x, y)DivβE(y)dy

for all x ∈ R
2. If we combine this with (14) and (53), we obtain

RotβH + iωε0n
2
∞E = iωε0

[
Δ + (k2n2

∞ − β2)
] ∫

Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy

− iωε0Gradβ

∫
Ω

Divβ

[(
n2(y) − n2

∞
)
E(y)

]
Φ(β;x, y)dy

− iωε0n
2
∞Gradβ

∫
Ω

Φ(β;x, y)DivβE(y)dy
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for all x ∈ R
2. Using this, (62), and (58), we have

RotβH + iωε0n
2
∞E = −iωε0

(
n2 − n2

∞
)
E, x ∈ R

2.(66)

Therefore [E,H] satisfies (4).
Using the Bessel function addition theorem (see, e.g., [37]), we can readily prove

that the number β and the vector [E,H] satisfy condition (24). The proof of the
theorem is complete.

Theorem 5.6. The set of all eigenvalues of the problem (2.3), (2.4), and (3.1)
can be only a set of isolated points on Λ. Each eigenvalue β of the problem (2.3),
(2.4), and (3.1) depends continuously on (ω, n∞) ∈ R

2
+ and can appear and disappear

only at the boundary of Λ, i.e., at β = ±kn∞ and at infinity on Λ.
Proof. For any (x, y) ∈ Ω2 and any (ω, n∞) ∈ R

2
+ the kernel of the operator A(β)

is analytic in β ∈ Λ. Hence, the operator-valued function A(β) is holomorphic in β ∈ Λ
for any (ω, n∞) ∈ R

2
+. The operator-valued function A(β;ω, n∞) is jointly continuous

in (β;ω, n∞) ∈ Λ × R
2
+. For all (β;ω, n∞) ∈ Λ × R

2
+ the operator B(β;ω, n∞) is

compact. Therefore, using Theorems 4.1 and 5.5 and Lemma 5.4, we see that the
operator A(β;ω, n∞) has a bounded inverse operator in [L2(Ω)]3 for all β ∈ B

⋃
D

and (ω, n∞) ∈ R
2
+. Hence, for each (ω, n∞) ∈ R

2
+ the spectrum of problem (54)

can be only a set of isolated points on Λ, which are the eigenvalues of the operator-
valued function A(β); each eigenvalue β of the operator-valued function A(β) depends
continuously on (ω, n∞) ∈ R

2
+ and can appear and disappear only at the boundary

of Λ, i.e., at β = ±kn∞ and at infinity on Λ (see [36]). Using Theorem 5.5, we obtain
the assertion of the current theorem, which is now complete.
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