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Abstract

We present a brief survey of results on the Riemann boundary value
problem for non-rectifiable curves. The solution of the Riemann prob-
lem for piecewise smooth curves and arcs was one of well-known achieve-
ments of the complex analysis in the first half of the twentieth century.
But for non-rectifiable contours the problem was solved only during
the latter three decades. In the present paper we consider this solu-
tion and certain related questions such as various generalizations of
the Cauchy integral over non-rectifiable curves. We describe the tech-
nique of investigations, recent results, and open problems.
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1 Introduction.

The Riemann boundary value problem is a classical problem of complex
analysis. It has various applications in mechanics of solid media, the theory
of elasticity, and other fields.

The main results on this problem for piecewise smooth curves and arcs are
presented in well-known monographs of F.D.Gakhov [1] and N.I. Muskhel-
ishvili [2]. These books contain historical review of the problem, its applica-
tions and extensive bibliography, which frees the author from the necessity
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to consider these subjects in detail. But we have to touch the basic points
of these researches.

Let Γ be a simple closed curve on the complex plane C dividing it into
domains D+ and D− ∋ ∞. It is required to find a holomorphic in C \ Γ
function Φ(z) satisfying the equality

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ Γ. (1)

Here functions G(t) and g(t) are defined on Γ, and Φ+(t) and Φ−(t) are
limits of Φ(z) for z tending to a point t ∈ Γ from domains D+ and D−,
correspondingly. This formulation assumes that the limits exist. Special
cases of the Riemann problem are the jump problem

Φ+(t)− Φ−(t) = g(t), t ∈ Γ, (2)

and the homogeneous Riemann problem

Φ+(t) = G(t)Φ−(t), t ∈ Γ. (3)

The classical solution technique for all these problems is based on the prop-
erties of the Cauchy integral

Φ(z) =
1

2πi

∫
Γ

g(t)dt

t− z
, z ̸∈ Γ. (4)

Let g satisfy the Hölder condition

sup

{
|g(t′)− g(t′′)|

|t′ − t′′|ν
: t′, t′′ ∈ Γ, t′ ̸= t′′

}
:= hν(g,Γ) < ∞ (5)

with exponent ν ∈ (0, 1]. We denote by Hν(Γ) the set of all defined on Γ
functions satisfying the Hölder condition (5). If the contour Γ is piecewise
smooth and g ∈ Hν(Γ), ν ∈ (0, 1], then (see, for instance, [1, 2]) function
(4) is holomorphic in C \ Γ, has the limits from the left and from the right
Φ+(t) and Φ−(t), correspondingly, and both these functions satisfy the Hölder
condition with exponent ν for ν ∈ (0, 1) and with any exponent smaller than
one for ν = 1. In addition, these limits satisfy formula (2) (it is one of
the so called Sokhotskii-Plemelj formulas). Hence, the Cauchy integral with
density g ∈ Hν(Γ) gives a solution of the jump problem (2) for any ν ∈ (0, 1].
Problems (3) and (1) are reducible to the jump problem. Thus, the whole
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theory of the Riemann boundary value problem for piecewise smooth curves is
reduced to the application of the cited above result on the boundary behavior
of the Cauchy integral.

The boundary behavior of the Cauchy integral over non-smooth rectifiable
curves was a subject of investigations for several decades. It was described
in 1979 by E.M.Dyn’kin [8, 9] and T. Salimov [10] simultaneously. They
proved that the Cauchy integral (4) is continuous in closures of domains D+

and D− if f ∈ Hν(Γ) for ν > 1
2
. The boundary values Φ±(t) satisfy under

the latter restriction the Hölder condition with any exponent smaller than
2ν − 1. These results are sharp in the following sense:

(i) for any ν ∈ (0, 1
2
) there exist a rectifiable curve and a function f ∈

Hν(Γ) such that the Cauchy integral (4) loses its continuity at a point t ∈ Γ;
(ii) for any ν ∈ (1

2
, 1] there exist a rectifiable curve and a function f ∈

Hν(Γ) such that the boundary values of the Cauchy integral (4) do not satisfy
the Hölder condition with exponent 2ν − 1 or larger.

Consequently, the jump problem (2) on a non-smooth rectifiable curve Γ
with g ∈ Hν(Γ) has a solution for ν > 1

2
, and for ν ≤ 1

2
it may be unsolvable.

A reader can find a brief bibliography on behavior properties of Cauchy
integrals with continuous densities over non-smooth rectifiable curves in the
paper [9].

We discern a mismatch between the formulation of the Riemann problem
and the classical technique for its solution. Obviously, the boundary condi-
tion (1) makes sense for an arbitrary simple curve, but integral (4) is defined
only for rectifiable curves. This contradiction was overcame in the early 80’s
in the papers [3, 4, 5], where a solution of the problem was built without
the use of integration over Γ. But recently the authors of works [6, 7] have
constructed certain objects (namely, certain distributions with supports on
non-rectifiable curves and their Cauchy transforms) which can be considered
as extensions of notions of the curvilinear integral and the Cauchy integral
on non-rectifiable curves. In the present paper we describe the history of
these studies and cite recent results concerning this subject.

In Section 2 we present a method for solving of the Riemann problem
on non-rectifiable curves proposed in [3, 4, 5]. As was mentioned above,
this method does not use integration over Γ. In Section 3 we consider results
concerning integration over non-rectifiable curves including the distributional
approach to these questions. The last Section 4 contains a list of open prob-
lems.
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2 The regularization of quasi-solutions.

Problems (1), (2) and (5) were solved first for non-rectifiable curves and
arcs in the following way (see [3, 4, 5]). We build a quasi-solution, i.e., a
differentiable in C \ Γ function φ satisfying one of these boundary relations
and certain additional restrictions, and then regularize it, i.e., turn it by
means of special integral-differential operators into a holomorphic in C \ Γ
function Φ(z) satisfying the corresponding boundary relation. Let us describe
this method in detail.

2.1 The jump problem on a closed non-rectifiable curve.

The first solution of problem (2) was obtained by the author of [3, 4, 5]. It is
based on the following idea. We assume that the jump g(t) has a differentiable
extension u(z) into the domain D+, i. e., the function u(z) is defined in D+,
has in D+ partial derivatives of the first order integrable in D+ to a power
p > 2, and u|Γ = g. Consider the function

Ψ(z) :=
1

2πi

∫∫
D+

∂u

∂ζ

dζdζ

ζ − z
(6)

The integral operator

Tf :=
1

2πi

∫∫
C

f(ζ)dζdζ

ζ − z
(7)

is well known (see, for instance, [11]). In particular, if f is integrable to a
power p > 2 and has a compact support, then Tf satisfies the Hölder condi-
tion with exponent 1− 2

p
in the whole complex plane, and ∂Tf

∂z
= f(z), z ∈

C. Hence, the difference u(z)χ+(z)−Ψ(z) is a solution of the jump problem
(2); here χ+(z) is the characteristic function of the domain D+.

We obtain an analogous result by means of differentiable extension of g(t)
into D−; this extension must have a compact support.

Thus, the solvability of the jump problem is equivalent to the differen-
tiable extendability of the jump into one of domains D± with partial deriva-
tives integrable to a power p > 2.

We apply the Whitney extension operator E0 (see [12], Ch.1, [13], Ch.2)
for the set Γ. If g ∈ Hν(Γ), then the function u := E0g satisfies the Hölder
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condition with the same exponent ν in the whole complex plane, u|Γ = g,
and in C \ Γ the function u(z) has partial derivatives satisfying the estimate∣∣∣∣∂n+mE0g(z)

∂xn∂ym

∣∣∣∣ ≤ hν(g,Γ)

distn+m−ν(z,Γ)
, z = x+ iy. (8)

In particular, for ν = 1 the first derivatives are bounded, and we obtain the
following result on the jump problem for non-rectifiable curves.

Theorem 1 (see [3, 4]). Let Γ be a simple closed curve of zero area and
g ∈ H1(Γ). Then the function

Φ(z) := χ+(z)E0g(z)−
1

2πi

∫∫
D+

∂E0g
∂ζ

dζdζ

ζ − z
(9)

is a solution of the jump problem (2). Its boundary values Φ±(t) satisfy the
Hölder condition on Γ with any exponent smaller than 1.

It remains to find the exponent of integrability of ∂u
∂z

for ν < 1. In
the works [3, 4, 5] it was estimated in terms of the so called upper metric
dimension. This characteristic of sets in a metric space was introduced first
by A.N. Kolmogorov and V.M. Tikhomirov [14]. Let S be a compact subset
of a metric space X. We consider all coverings of S by balls of diameter
ε > 0 and denote by N(ε;S) the least number of balls in this covering. Then
the upper metric dimension of S is

dmS := lim sup
ε→0

logN(ε;S)

− log ε
.

In the fractal theory this characteristic is called the Minkowski dimension or
the box dimension (see [15]).

If X = C, then the latter definition is equivalent to the following one. Let
Qn be a partition of C into non-overlapping dyadic squares with sides 2−n.
We denote by mn(S) the number of all squares from Qn having non-empty
intersections with S. Then

dmS := lim sup
n→∞

log2mn(S)

n
. (10)

In the case X = C we have dmS ≤ 2. If S is a rectifiable curve, then
dmS = 1. The upper metric dimension of any continuum on the complex
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plane is greater than or equal to 1. For dmS < 2 the set S has zero area.
Note also that for any set S the upper metric dimension dmS cannot be
lesser than its Hausdorff dimension dmH S. In the papers [4, 5] the author
constructs curves and arcs of the prescribed upper metric dimension.

If a set S ⊂ C is compact, then its complement has the so called Whit-
ney partition (see, for instance, [12]). It consists of non-overlapping dyadic
squares Q such that

C−1 diamQ ≤ dist (Q,S) ≤ C diamQ. (11)

Here and in what follows, C stands for various positive constants. This
inequality implies that the number wn(Γ) of squares with the side 2−n in the
Whitney partition of C \ Γ satisfies the estimate wn(Γ) ≤ Cmn(Γ).

Inequalities (8) and (11) imply that the integral of the function
∣∣∣∂E0g

∂ζ

∣∣∣p
over D+ does not exceed Chν(g,Γ)

+∞∑
n=1

mn(Γ)2
−(2−(1−ν)p)n. By the definition

of the upper metric dimension we have mn ≤ 2dn for arbitrarily fixed d >
dmΓ and sufficiently large n, i.e., the series converges for

p <
2− dmΓ

1− ν
. (12)

The right-hand side of the latter bound exceeds 2 for

ν >
1

2
dmΓ. (13)

Thus, it is valid

Theorem 2 (see [3, 4]). Let Γ be a simple closed curve, dmΓ < 2, and
g ∈ Hν(Γ), ν < 1. If inequality (13) is fulfilled, then function (9) is a
solution of the jump problem (2). Its boundary values Φ±(t) satisfy the Hölder
condition on Γ with any exponent µ satisfying the inequality

µ <
2ν − dmΓ

2− dmΓ
. (14)

This result is sharp in the following sense.

Theorem 3 (see [3, 4]). For any values ν and d such that 0 < ν ≤ d/2 < 1
there exist a simple closed curve and defined on this curve function g(t) such
that dmΓ = d, g ∈ Hν(Γ), and the jump problem (2) has no solution.
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We understand equality (9) as regularization formula for the quasi-solution.
The quasi-solution is the function ϕ(z) := χ+(z)E0g(z). It is continuous and
differentiable in C \ Γ, has the jump g(t) on Γ, and its support is compact.
Relation (9) can be rewritten in the form

Φ = (I − T∂)ϕ,

where I is the identity operator, and T is the integral operator (7). Thus,
the regularizing operator I − T∂ turns the quasi-solution ϕ into the solution
Φ. This operator is a projector of the space of continuous in D+ and D−

functions with integrable Sobolev derivatives onto its subspace consisting of
holomorphic in C \ Γ functions.

Another quasi-solution of the jump problem is the product−ω(z)χ−(z)E0g(z),
where χ−(z) is the characteristic function of domain D−, and the smooth
function ω(z) with a compact support equals 1 in a domain containing Γ. Its
regularization by the same operator leads to the same solution.

2.2 The uniqueness of the solution.

There is an important difference between the jump problems for rectifiable
and non-rectifiable curves. If a curve Γ is rectifiable, then any continuous
in a domain ∆ ⊃ Γ and holomorphic in ∆ \ Γ function is holomorphic in ∆
(the Painleve theorem). Consequently, a solution of the jump problem (2)
is unique up to an additive constant. But if the Hausdorff dimension of a
non-rectifiable curve Γ exceeds 1, then one can find a non-trivial function
which is holomorphic in C \ Γ and continuous in C (see, for instance, [16]).
Hence, the difference of two solutions of the jump problem on such a curve
may be non-constant.

On the other hand, as was shown by E.P.Dolzhenko [16], if a holomorphic
in ∆ \ Γ function satisfies in a domain ∆ ⊃ Γ the Hölder condition with
exponent exceeding dmH Γ−1, then it is holomorphic in ∆. This result allows
us to define classes of uniqueness for the jump problem. We denote by Hµ(Γ)
the class of all holomorphic in C \ Γ functions Φ(z) with boundary values
Φ+ and Φ− belonging to Hµ(Γ). Then restrictions Φ|D+ and Φ|D− satisfy the
Hölder condition with exponent µ in the domain D+ and in any finite part
of D−, correspondingly (see [18]). Hence, a solution of the jump problem in
the class Hµ(Γ) is unique up to an additive constant for µ > dmH Γ− 1. By
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virtue of theorems 1 and 2 the problem is solvable in this class if either

dmH Γ− 1 < µ <
2ν − dmΓ

2− dmΓ
, (15)

or ν = 1, dmH Γ < 2, dmH Γ− 1 < µ < 1.

2.3 The Riemann boundary value problem on a closed
non-rectifiable curve.

We consider first the homogeneous problem (3). As usually (see [1, 2]), we
assume that the coefficient G(t) does not vanish and belongs to Hν(Γ). Let
κ := 1

2π
[argG]Γ, where [argG]Γ stands for the increment of argG(t) at a

single circuit of Γ in the positive direction. The value κ is integer. Then
we fix a point z0 ∈ D+ and represent G as G(t) = (t − z0)

κ exp f(t), where
f ∈ Hν(Γ). The function

Υ(z) := χ+(z)E0f(z)−
1

2πi

∫∫
D+

∂E0f
∂ζ

dζdζ

ζ − z

is a solution of the jump problem with the jump f(t) satisfying assumptions
of theorems 1 or 2. Let X(z) be equal to expΥ(z) for z ∈ D+ and X(z) =
(z − z0)

−κ expΥ(z) for z ∈ D− (in [1, 2] an analogous construction is called
canonical function). Then X+(t) = G(t)X−(t), t ∈ Γ, and X ∈ Hµ(Γ), where
µ is any value satisfying (14) under assumptions of theorem 2, and any value
smaller than 1 under assumptions of theorem 1. If Φ(z) is a solution of the
problem (3) in the classHµ(Γ), then the ratio Φ/X is holomorphic in C under
conditions of the previous subsection. Thus, this ratio identically vanishes
for negative κ, and it is polynomial of degree not greater than κ for κ ≥ 0.

Now we consider problem (1) with the same coefficient G and g ∈ Hν(Γ).
It has at least two obvious quasi-solutions: ϕ1(z) := χ+(z)E0g(z) and ϕ2(z) :=
−χ−(z)ω(z)E0(g/G)(z), where ω(z) is the same smooth function as above
(see the end of Subsection 1.1). The operator I −XTX−1∂ regularizes both
these quasi-solutions, and the function

Φ0 := (I −XTX−1∂)ϕ

is holomorphic in C \ Γ and satisfies the boundary condition (1). Here ϕ
is one of functions ϕ1,2. The function Φ0 is regular at the infinity point for

8

Борис
Highlight



κ ≥ 0. Otherwise this point may be a pole. We have∫∫
C

∂ϕ

∂ζ

dζdζ

X(ζ)(ζ − z)
= −

∞∑
n=0

1

zn+1

∫∫
C

∂ϕ

∂ζ

ζndζdζ

X(ζ)

for sufficiently large |z|. Thus, Φ0 is regular at the infinity point for κ < 0 if∫∫
C

∂ϕ

∂ζ

ζndζdζ

X(ζ)
= 0, n = 0, 1, 2, . . . ,−κ − 2. (16)

As a result, we obtain

Theorem 4 (see [3, 4]). Assume that Γ is a simple closed curve, G, g ∈
Hν(Γ), G(t) does not vanish on Γ, and we solve problem (1) in the class
Hµ(Γ). Let exponents ν and µ satisfy one of two conditions:

(a) ν = 1 and 1 > µ > dmH Γ− 1;
(b) ν ∈ (0, 1) and restrictions (13) and (14) are fulfilled.
Then the following propositions are valid:
(i) for κ ≥ 0 the problem has a general solution Φ = Φ0 +XP , where P

is an arbitrary algebraic polynomial of degree no more than κ;
(ii) for κ = −1 the problem has the unique solution Φ0;
(iii) for κ < −1 the problem is solvable if and only if conditions (16) are

fulfilled; in the latter case Φ0 is its unique solution.

In order words, under assumptions of theorem 4 the solvability of the Rie-
mann boundary value problem for a non-rectifiable closed curve can be de-
scribed in the same terms as for piecewise smooth curves (see [1, 2]).

The stability of solutions was studied by Liu Hua [17].

2.4 Non-rectifiable arcs.

Let Γ be a simple arc beginning at a point a1 and ending at a point a2.
In this case we denote by Φ+(t) and Φ−(t) the limit values of Φ(z) at a
point t ∈ Γ \ {a1, a2} from the left and from the right, correspondingly, and
consider boundary conditions (1), (2), and (5) on this arc excluding points a1
and a2, where these equalities make no sense. Thus, the Riemann boundary
value problem and its special cases for a simple arc turn into the following
boundary value problems:

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ Γ \ {a1, a2}, (17)
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Φ+(t)− Φ−(t) = g(t), t ∈ Γ \ {a1, a2}, (18)

Φ+(t) = G(t)Φ−(t), t ∈ Γ \ {a1, a2}. (19)

We have to add a certain restriction on the behavior of the desired function
at the points a1 and a2. The customary restrictions (see [1, 2]) are either
boundedness of Φ or its so-called integrability, i.e., validity of the bound

|Φ(z)| ≤ C|z − aj|−γ, j = 1, 2, γ = γ(Φ) ∈ (0, 1). (20)

Let us construct a quasi-solution for the jump problem (18). We consider a
single-valued holomorphic branch of the logarithmic function

kΓ(z) :=
1

2πi
ln

z − a2
z − a1

, (21)

defined in C \Γ by the condition kΓ(∞) = 0. It has the unit jump on the arc
Γ, and, consequently, the product ϕ(z) = ω(z)kΓ(z)E0g(z) is a quasi-solution.
As above, ω is a smooth function with a compact support such that ω|Γ = 1.
The function ϕ has a jump g on Γ, but orders of its singularities at points
a1 and a2 may be high. As a result, we obtain additional restrictions. For
instance, if kΓ(z) is square integrable near points aj, j = 1, 2, and condition
(13) is fulfilled, then the function Φ(z) = (I − T∂)ϕ(z) satisfies condition
(20) by virtue of well-known properties of the operator T . We also have to
modify the definition of the uniqueness class Hµ. If Γ is an arc, then the
class Hµ(Γ) consists of all holomorphic in C \ Γ functions Φ(z) such that
limit values Φ+(t) and Φ−(t) exist for any t ∈ Γ \ {a1, a2} and satisfy the

Hölder condition with exponent µ on the set Γ \
2∪

j=1

{z : |z − aj| < ϵ} for any

ϵ > 0.

Theorem 5 (cf. [3, 5]). Let Γ be a simple arc of zero area, and let the
function kΓ be square integrable near the ends of Γ, and g ∈ Hν(Γ). If ν = 1
or ν > 1

2
dmΓ, then the function

Φ(z) := ω(z)kΓ(z)E0g(z)−
1

2πi

∫∫
C

∂ωE0g
∂ζ

kΓ(ζ)dζdζ

ζ − z
(22)

is a solution of the jump problem (18) in the class (20). It is a unique (up to
additive constant) solution of the problem in the class Hµ(Γ) if either ν = 1
and 1 > µ > dmH Γ− 1 or 1 > ν > 1

2
dmΓ and µ satisfies (15).
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Below we solve problems (19) and (17) under restriction

kΓ(z) = O(ln |z − aj|−1), z → aj, j = 1, 2. (23)

Let G ∈ Hν(Γ) and G(t) ̸= 0 for t ∈ Γ. Then f(t) := lnG(t) ∈ Hν(Γ),
and under assumptions of the latter theorem and restriction (23) the function

Υ(z) := ω(z)kΓ(z)E0f(z)−
1

2πi

∫∫
C

∂ωE0f
∂ζ

kΓ(ζ)dζdζ

ζ − z

satisfies estimates Υ(z) = f(aj)kΓ(z) + O(1) at points a1,2. We put f(t) =
u(t) + iv(t). Here u(t) = ln |G(t)| and v(t) is a fixed single-valued branch of
argG(t). Then ReΥ(z) = (−1)j(2π)−1(u(aj) arg(z−aj)+ v(aj) ln |z−aj|)+
O(1) at aj, j = 1, 2, and the function

X(z) := (z − a1)
−κ1(z − a2)

−κ2 expΥ(z)

satisfies bound (20) for

κj = 1 +

]
(−1)jv(aj)

2π
+ lim inf

z→aj

(−1)ju(aj) arg(z − aj)

2π ln |z − aj|

[
, j = 1, 2,

where ]x[:= sup{n ∈ Z : n < x}, and arg(z − aj) is a single-valued branch of
the argument defined by means of a cut along Γ. Consequently, the general
solution of problem (19), (20) in the class Hµ(Γ) for κ := κ1 + κ2 ≥ 0 is
Φ(z) = X(z)P (z), where P is an arbitrary algebraic polynomial of degree no
more than κ. For κ < 0 the problem has no non-trivial solutions.

Now let us consider problem (17). Here we are faced with two new ob-
stacles. The first one is related to the construction of quasi-solutions. For
instance, we can build a quasi-solution ϕ by putting it continuous on Γ. The
equality ϕ+(t) = ϕ−(t) implies ϕ(t) = g(t)/(1−G(t)), t ∈ Γ, i.e., the function
ϕ(z) = ω(z)E0( g

1−G
)(z) is a quasi-solution of problem (17) under the addi-

tional restriction G(t) ̸= 1, t ∈ Γ. But this restriction is not necessary (see
[19]). The second obstacle concerns the regularizing operator I −XTX−1∂.
Even under restriction (23) orders of singularities of the function X−1 at the
points a1,2 can be high. To exclude this possibility, we assume the existence
of finite limits

lim
z→aj

arg(z − aj)

ln |z − aj|
, j = 1, 2,
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for the branch of arg(z − aj) defined by means of a cut including the arc Γ.
Under this assumption we obtain a full analog of theorem 4.

Note that the index κ for the problem on a non-rectifiable arc depends
not only on argG, but also on the geometry of the arc, too. This fact is also
valid for non-smooth rectifiable arcs (see [20]).

2.5 A semi-continuous version of the problem.

In this subsection we seek for solutions of the Riemann boundary value prob-
lem on a non-rectifiable curve with discontinuities at several points of the
curve. This version of the Riemann problem for a piecewise-smooth curve is
called semi-continuous (see [1, 2]).

Let us consider a closed simple curve Γ and a finite setE = {a1, a2, . . . , am} ⊂
Γ. We seek for a holomorphic in C \ Γ function Φ(z), which has boundary
values Φ+(t) and Φ−(t) from D+ and D−, correspondingly, at any point
t ∈ Γ \ E such that

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ Γ \ E (24)

and
|Φ(z)| ≤ C|z − a|−γ, a ∈ E, γ = γ(Φ) ∈ (0, 1). (25)

Coefficients G and g also allow singularities at points of the set E. Here we
restrict ourselves by situation where G has no discontinuity, and g has simple
singularities of the power type. It was investigated first in [29].

Let w(t) :=
∏
a∈E

|t − a|p(a), 0 < p(a) < 1. We put Hν(Γ, w) := {f : wf ∈

Hν(Γ)} and assume that g ∈ Hν(Γ, w). Then ϕ(z) := χ+(z)w−1(z)E0(wg)(z)
is a quasi-solution for the Riemann boundary value problem (24) and for the
corresponding jump problem. As a result, we obtain analogs of all results of
items 2.1 and 2.3.

2.6 Certain refinements of characteristics of contours.

J. Harrison and A. Norton [21] introduced the notion of the d−summability.
Then R. Abreu Blaya, J. Bory Reyes, and J. Marie Vilaire [22] proved that
this notion is applicable for the proof of the solvability of the jump problem.

A compact set S is called d−summable if∫
0

N(ε;S)εd−1dε < ∞.
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As above, N(ε;S) stands for the least number of disks of diameter ε covering
S. If a curve Γ is d−summable then dmΓ ≤ d, and if dmΓ < d, then Γ
is d−summable (see [21]). As is proved in [22], the jump problem (2) with
g ∈ Hν(Γ) is solvable if Γ is d−summable and ν > d/2. Later R. Abreu
Blaya, J. Bory Reyes and T. Moreno Garcia [23] established that the latter
condition is sharp in the same sense as condition (13).

Another refinement is connected with the replacement of the upper met-
ric dimension by certain characteristic of partitions of the set C \ Γ. We use
this dimension only for characterizing of the integrability over C \ Γ or its
parts. Seemingly, the first characterization of this kind was introduced by
J. Harrison and A. Norton [21]. They defined the so-called d−mass. Let
Q = {Q1, Q2, . . . } be a partition of the domain D+ into non-overlapping
squares. If a(Qj) stands for the length of the side of the square Qj, then
the d−mass of the partition is the sum Md(Q) =

∑
Qj∈Q

ad(Qj) (it may be

infinite). The d−mass of the domain D+ is the greatest lower bound for
d−masses of all square partitions of D+. If D+ has a partition of a finite
d−mass, then the Whitney partition of D+ also has a finite d−mass (see the
Peter Jones lemma in [24]). In other words, if the d−mass of D+ is finite,

then the series
∞∑
n=0

2−ndwn converges, and the jump problem has a solution for

ν > d/2. In this connection, in [25, 26, 27] the author introduced other met-
ric characteristics of non-rectifiable curves, which were based on partitions of
D+ and D− into domains with rectifiable boundaries. If B is a domain with a
rectifiable boundary, then we denote by λ(B) the length of its boundary, and
w(B) is the greatest diameter of disks lying inside it. Let B = {B1, B2, . . . }
be a partition of D+ into non-overlapping domains with rectifiable bound-
aries. We put M∗

d(B) :=
∑

Bj∈B
λ(Bj)w

d−1(Bj) and M∗
d(D

+) := inf{M∗
d(B)},

where the least upper bound is taken for all rectifiable partitions. Finally,
dma+ Γ := inf{d : M∗

d(D
+) < ∞}. The value dma− Γ is defined anal-

ogously, and the approximation dimension dmaΓ equals the lesser of val-
ues dma+ Γ and dma− Γ. The refined metric dimension dmrΓ is defined in
an analogous way, but the rectifiable partitions are replaced here with rec-
tifiable chains, i.e., with sequences of domains with rectifiable boundaries
B = {B1, B2, . . . , Bn, . . . } such that the symbols ∪ and \ can be placed be-
tween members of the sequence B so that the limit result of these operations
is D+ or D−. Theorem 2 keeps validity if we replace dmΓ in condition (13)
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with one of these dimensions. Additionally, both these dimensions do not
exceed dmΓ, and they are strictly less than dmΓ for certain curves. Hence,
the replacement of dmΓ with dmaΓ or dmrΓ improves theorem 2. But we
do not know the exact values of dmaΓ or dmrΓ for any non-trivial curve
Γ. In 2013 D.B. Kats [30] introduced a new characteristic of non-rectifiable
curves which also sharpens condition (13) and can be calculated for some
non-rectifiable curves.

2.7 Other classes of functions.

A similar technique is applicable for solving boundary value problems on non-
rectifiable boundaries and for the investigation of related questions for Clif-
ford analysis, multidimensional complex analysis, theories of hyper-analytical
and β−analytical functions, and for other generalizations of the theory of
holomorphic functions (see [6, 22, 31, 32, 33, 34, 35, 36, 37] et al).

3 Integration over non-rectifiable curves.

In the preceding section we solved the Riemann boundary value problem on
non-rectifiable curves without application of curvilinear integrals. But the
representation of its solutions in terms of integrals is of interest. Moreover,
in what follows we will see that the jump problem and the problem of gen-
eralization of curvilinear integrals for non-rectifiable curves are connected.
We consider here certain versions of integration over non-rectifiable curves,
which are suitable for representations of solutions.

In addition, integrals over non-rectifiable fractal curves and surfaces are
of interest for the theory of elasticity (see, for instance, [38]).

3.1 The Cauchy-Stieltjes integral.

At first glance, the curvilinear integral
∫
Γ
f(z)dz makes no sense for non-

rectifiable Γ. But it is not so. Let z = z(t) : [0, 1] → Γ be an one-to-
one mapping of the segment [0, 1] onto the curve Γ. Then

∫
Γ
f(z)dz =∫ 1

0
f(z(t))dz(t), and the last term in this equality can be understood as the

Stieltjes integral. The best known condition for the existence of this integral
includes the boundedness of the variation of function z(t), which implies the
rectifiability of Γ. But the Stieltjes integral

∫
f(t)dg(t) exists not only for

14



functions of bounded variations, but for wider classes, namely, for functions
of bounded Φ−variation (see, for instance, [39]). In this connection B.A.
Kats ([40, 41, 42]) has introduced the class of Φ−rectifiable curves. Let Φ(x)
be a given increasing function defined for x ≥ 0, Φ(0) = 0. A curve Γ is
called Φ−rectifiable, if

∞∑
j=1

Φ(|tj − tj−1|) < C

for any sequence {t0, t1, . . . , tn} of points of the curve γ enumerated in order
of the positive direction of Γ, and the positive constant C is independent
of the sequence. If Φ(x) = xq, q > 1, then the curve is called q−rectifiable.
The class of q−rectifiable curves contains non-rectifiable ones, for instance,
it contains the Von Koch snowflake for appropriate q. The author studied
the Cauchy-Stieltjes integral

CSΓf(z) =
1

2πi

∫
Γ

f(ξ)d ln(ξ − z), ξ ∈ Γ, z ̸∈ Γ,

and has proved the following theorems.

Theorem 6 Let Γ be a closed q-rectifiable curve, f ∈ Hν(Γ), ν > q − 1
and ν > dmΓ

2
. Then the Cauchy-Stieltjies integral CSΓf(z) exists and has

continuous limit values on Γ satisfying the relation

CS+
Γ f(t)− CS−

Γ f(t) = f(t).

Theorem 7 If a curve Γ is Φ-rectifiable for a convex function Φ(x) and
f ∈ H1(Γ), then the Cauchy-Stieltjes integral exists and has continuous limit
values satisfying the same boundary value condition under the restriction

∞∑
n=1

ϕ2(
1

n
) < ∞,

where ϕ is the inverse function for Φ.

Obviously, these results are applicable for solving the Riemann boundary
value problem on non-rectifiable curve. We obtain integral representations
for its solutions in terms of the Stieltjes integrals.
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3.2 Approximative integral.

Let a function u(z) be continuous in the closure of a finite domain D+

bounded by a rectifiable curve Γ. If u has integrable in D+ derivatives of the
first order, then by virtue of the Green formula we have∫

Γ

u(ζ)dζ = −
∫∫
D+

∂u

∂ζ
dζdζ. (26)

If Γ is non-rectifiable, then we understand the right-hand side of equality
(26) as the definition of the left-hand one, i.e., a defined on the closed non-
rectifiable curve Γ continuous function f(t) is integrable over this curve if it
has an extension u(z) into the domain D+ with integrable derivatives, and
the integral

∫
Γ

f(t)dt equals the right-hand side of equality (26). Seemingly,

this approach was formulated first in the note [43]. Then it was investigated
in the papers [44, 24, 45, 28], etc.

The first question arising here is the independence of the integral on the
choice of extension. The following result is proved in various formulations in
all above mentioned papers: if f ∈ Hν(Γ) and ν > dmΓ− 1, then f has an
extension u(z) ∈ Hν(D+) with integrable derivatives in D+. If u1 and u2 are
two differentiable extensions of f into D+ such that u1,2(z) ∈ Hν(D+), then∫∫

D+

∂u1

∂ζ
dζdζ =

∫∫
D+

∂u2

∂ζ
dζdζ.

In other words, the value of this integral is independent of the choice of the
extension within the class Hν .

The same integral can be defined in another way. Let {Γ1,Γ2, . . . ,Γn, . . . }
be a sequence of simple closed polygonal lines bounding polygonal domains
D+

n , n = 1, 2, . . . } such that D+
1 ⊂ D+

2 ⊂ · · · ⊂ D+
n ⊂ · · · ⊂ D+ and

+∞∪
n=1

D+
n = D+. Then for f ∈ Hν(Γ) and ν > dmΓ− 1 we have

lim
n→+∞

∫
Γn

u(t)dt = − lim
n→+∞

∫∫
D+

n

∂u

∂ζ
dζdζ = −

∫∫
D+

∂u

∂ζ
dζdζ,

i.e., the integral under consideration is the limit of integrals of expansion of
the integrand over polygonal lines approximating Γ. In this connection, we
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call it approximative integral. The idea of the approximation by polygonal
constructions was essentially developed by J. Harrison [28].

The approximative integral is applicable for the representation of solu-
tions of the Riemann boundary value problem on non-rectifiable curves. In
particular, the right-hand side of (9) equals the approximative Cauchy inte-

gral 1
2πi

∫
Γ

g(t)dt
t−z

.

3.3 The distributional approach.

This approach was proposed recently by the author (see, for instance, [6] and
[7]). Let us present its scheme.

We identify any function F (ζ) on the complex plane with the distribution

F : C∞
0 (C) ∋ ω 7→

∫∫
C

F (ζ)ω(ζ)dζdζ,

if the latter integral makes a sense. Let F be holomorphic in C\Γ. Then the
support of its distributional derivative ∂F is compact, because it is a subset
of the curve Γ. Let us assume that F has limit values from both sides at any
point of Γ. If Γ is rectifiable, then the derivative ∂F is representable in the
form

⟨∂F, ω⟩ =
∫
Γ

(F+(ζ)− F−(ζ))ω(ζ)dζ, ω ∈ C∞(C).

For non-rectifiable Γ we consider this distribution as a generalized integration
over Γ with the weight F+(ζ)−F−(ζ). The integration with the unit weight
corresponds to functions F with unit jump on Γ. For instance, to this end
we can use the characteristic function χ+(z) of domain D+ which equals 1
in D+ and 0 in D− for a closed curve Γ, or kΓ(z) for an arc Γ.

Then we consider a functional Banach space X containing restrictions of
functions ω ∈ C∞(C) onto a neighborhood of Γ. Let X∗ be the closure of the
set of these restrictions in X. We assume that X∗C∞(C) = X∗, i.e., fω ∈ X∗

for any ω ∈ C∞(C), f ∈ X∗.
If for any ω ∈ C∞(C)

|⟨∂F, ω⟩| ≤ C∥ω∥X, (27)

where ∥ · ∥X is the norm of X and C is a positive constant, then ∂F is
continuable up to a functional on X∗ and generates a family of distributions

⟨f∂F, ω⟩ := ∂F (fω), (28)
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where f is an arbitrarily fixed function from X∗. Here we keep the notation
∂F for the above mentioned functional. We consider these distributions
as integrations over Γ with weights f(ζ)(F+(ζ) − F−(ζ)). This scheme of
integration is dual to the approximative integral from the previous subsection:
here we replace the approximation of a curve with the approximation of
integrand.

This scheme is realized for the Hölder spaces as X. As usually, a norm in
the Hölder space Hν(B) on a compact set B ⊂ C equals ∥f∥ν := hν(f,B) +
sup{|f(z)| : z ∈ B} (see (5)).

Theorem 8 (see [7]). Let Ω be a finite domain such that Γ ⊂ Ω, and 1 ≥
ν > dmΓ− 1. If a holomorphic in C \ Γ function F is integrable to a power
p over Ω for any p ≥ 1, then inequality (27) is valid for X = Hν(Ω).

Thus, for ν > dmΓ − 1 the distribution ∂F is extendable up to continuous
functional on Hν(Ω), which allows us to define distribution (28) for every
f ∈ Hν(Ω). As is shown in [6], if f, g ∈ Hν(Ω) and f |Γ = g|Γ, then f∂F =
g∂F . Hence, the distribution f∂F is defined, in fact, for any f ∈ Hν(Γ).

In order to apply these distributions for solving the Riemann boundary
value problem, we study their Cauchy transforms. If ϕ is a distribution with
a compact support S on the complex plane, then its Cauchy transform is

Cauϕ :=
1

2πi

⟨
ϕ,

1

ζ − z

⟩
,

where z ̸∈ S, and ϕ is applied to the Cauchy kernel 1
2πi(ζ−z)

as to a function of
variable ζ. In particular, the Cauchy integral with density f over a rectifiable
curve Γ is the Cauchy transform of the distribution

C∞(C) ∋ ω 7→
∫
Γ

f(t)ω(t)dt.

Theorem 9 (see [7]). Let F (z) be a holomorphic in C \ Γ and continuous
in D+ and D− function, and F (∞) = 0. If g ∈ Hν(Γ) and ν > 1

2
dmΓ, then

the function Φ(z) := Cau g∂F (z) is holomorphic in C \ Γ, continuous in D+

and D−, Φ(∞) = 0, and

Φ+(t)− Φ−(t) = g(t)(F+(t)− F−(t)), t ∈ Γ.
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Clearly, this result allows us to solve all versions of the Riemann boundary
value problem on non-rectifiable curves in terms of the Cauchy transforms.
Let us note the following proposition.

Corollary 1 Let J(Γ) be the set of all continuous functions g such that the

jump problem on the curve Γ with a jump g has a solution. If ν >
1

2
dmΓ ,

then fg ∈ J(Γ) for any g ∈ J(Γ) and f ∈ Hν(Γ), i.e., J(Γ)Hν(Γ) = J(Γ).

The latter two theorems and the corollary can be sharpened by the replace-
ment of the upper metric dimension dmΓ with either the approximation
dimension dmaΓ or the refined metric dimension dmrΓ.

Let us note that the Cauchy transform Cauϕ is the convolution of ϕ and
the fundamental solution of the ∂−equation. Consequently, the jump prob-
lem and the problem of integration over non-rectifiable curve are equivalent
in a certain sense.

4 Open questions

4.1. In 1958 V.P.Havin [46] obtained the following result. Let µ be an
essential measure on a bounded, closed and connected set Γ in the complex
plane. A positive measure is called essential on Γ if any its null set E ⊂ Γ
satisfies the condition Γ \ E = Γ. Then any holomorphic in C \Γ function is
representable as

Φ(z) = const+
∞∑
k=0

∫
Γ

Yk(t)dt

(t− z)k+1
,

where
∫
Γ

|Yk(t)|2dµ < +∞ for any k, and lim
k→+∞

(∫
Γ

|Yk(t)|2dµ
)1/k

= 0.

V.P. Havin also obtained a criterion for the finiteness of the sum in this
representation.

If Γ is a rectifiable curve, µ is its length, and Φ(z) is a solution of the
jump problem for Γ, then the Havin representation for Φ contains only one
term. It is of interest to find this representation for a solution Φ of the jump
problem (2) for a given essential measure µ.

4.2 The latter two theorems imply that for g ∈ Hν(Γ),
1
2
dmΓ > ν >

dmΓ − 1, the Cauchy transform Φ(z) = Cau g∂χ+(z) exists, but it can be
discontinuous on Γ. The problem is to describe its boundary behavior.
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4.3 The author assumes that if Γ is a self-similar non-rectifiable curve,
f ∈ Hν(Γ), and 1 > ν > dmΓ− 1, then the Cauchy transform Cau g∂χ+(z)
is continuous in D+ and in D−, and its boundary values on Γ from the left
and from the right satisfy the Hölder condition with any exponent µ < ν.

This assumption means that the self-similarity of a non-rectifiable curve
improves the boundary properties of the Cauchy transform in almost the
same degree as the smoothness of a rectifiable curve improves the boundary
behavior of the Cauchy integral.

4.4 We can identify the boundary values Φ+(t) and Φ−(t) of a holomor-
phic in C \Γ function Φ with distributions ∂(χ+Φ) and −∂(χ−Φ), where χ+

and χ− are characteristic functions of D+ and D−. In this connection, it is
of interest to study the distributional Riemann problem

∂(χ+Φ) +G∂(χ−Φ) = g,

where G and g are given distributions such that the product G∂(χ−Φ) is
defined.

A distributional version of the Riemann boundary value problem was
investigated earlier (see, for instance, [47]), but only for the real axis and its
segments.

4.5 There exists a lot of open questions concerning the Riemann boundary
value problem on non-rectifiable arcs. Here we formulate one of them. Let
an arc Γ satisfy restriction (23), and

ϑj := lim sup
z→aj

Re kΓ(z)

ln |z − aj|
− lim inf

z→aj

Re kΓ(z)

ln |z − aj|
.

Assume that lnG(t) is a restriction on Γ of a function, which has partial
derivative of order [ϑj]+1 at point aj, and Pj is its Taylor polynomial at this
point, j = 1, 2. The problem is to describe the solvability of problems (19)
and (17) in terms of these polynomials.
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