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Abstract. Features of the crystallization kinetics define directly the
rate characteristics: the crystal nucleation rate, the crystal growth rate
and the so-called kinetic rate factor known also as the attachment rate
(of particles to the surface of a crystalline nucleus). We show that the
kinetic rate factor as function of the reduced temperature follows a uni-
fied scaling power law. This scenario is confirmed by our simulation
results for model atomistic systems (crystallizing volumetric liquids
and liquid thin film) and by available experimental data for crystalliz-
ing polymers. We find that the exponent of this unified scaling law is
associated with a measure of the glass-forming ability of a system. The
results of the present study extend the idea of a unified description of
the rate characteristics of the crystal nucleation and growth kinetics
by means of the scaling relations.

1 Introduction

Crystallization is a typical first-order phase transition, the time scale of which is
determined by such the rate characteristics as the nucleation rate Js, the growth rate
vs and the kinetic rate factor g+ referred also to as the attachment rate [1–6]. Among
these rate characteristics, the kinetic rate factor is of special interest for a number
of reasons. First of all, this quantity is the main input parameter for many theories
of nucleation and growth, including the Becker-Döring gain-loss theory, within the
framework of which a theoretical description of nucleation and growth processes
was first implemented [7–10]. Secondly, the kinetic rate factor g+ accounts for the
attachment of particles to a nucleus of an emerging (crystalline) phase [1]. Therefore,
evaluation of g+ can be necessary to determine the nucleus shape for the peculiar case
of anisotropic nucleus growth [11]. As an example, one can mention the studies of
the ice crystal growth given in references [12–14]. According to the basic definition,
the rate factor g+ is scalar quantity and it does not account for the geometry of
the growing surface. Its values are dependent on type of the considered system,
on the thermodynamic state (e.g., supercooling level), on the nucleus size and the
crystal growth mode. However, by analogy with the self-diffusion coefficient, for the
crystal growth at any thermodynamic state, one can define just the most probable
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value of g+. This point is discussed in detail in reference [15]. Finally, there are
still no experimental methods for direct measurements of the rate factor g+. One of
the used ways to evaluate this term empirically is to identify the quantity g+ with
the experimentally measured diffusion coefficient, the viscosity coefficient and other
relevant kinetic parameters. It is expected that reliable temperature dependence of
the attachment rate g+(T ) can be obtained from the experimental data for the surface
diffusion Ds(T ) within the following approximation:

g+(T ) = C Ds(T ), (1)

where the coefficient C has a dimension of (length)−2 and is associated with the
diffusion length. Relation (1) is capable to provide only a qualitative estimate of the
attachment rate g+(T ). Moreover, this relation is valid when the particle diffusion is
not driven by external fields [16] and when the most probable attachment rate for
the thermodynamic state is considered.

It this work, we compute the rate factor g+(T ) for the three model atomistic
crystallizing systems – the volumetric binary Lennard-Jones liquid (bulk-bLJ), the
volumetric Dzugutov liquid (bulk-Dz) and the model liquid thin film (film-Dz). Note
that the quantity g+(T ) for the considered systems is determined directly from the
nucleus growth trajectories computed on the basis of the molecular dynamics sim-
ulation results; and, therefore, not any approximations were applied to determine
g+(T ). We compare our results with the experimental data and examine the idea of
unified scaling laws for the rate characteristics of the crystallization kinetics [17].

2 Kinetic rate factor vs. temperature

Let us consider a liquid, which is supercooled to some thermodynamic state with a
temperature T ; and T < Tm, where Tm is the melting temperature. For a crystalline
nucleus emerging and growing in this system, the kinetic rate factor g+ will depend
on the nucleus size n [6]. We shall restrict our consideration of the quantity g+ to
the case of the nucleus of the critical size nc and we shall evaluate the rate factor g+

nc

of the particle attachment to the surface of the nc-sized nucleus [18].
Further, let us assume that the set of the growth trajectories n(t) of a growing

nucleus are determined for the time window t ∈ [τc − τw; τc + τw], which defines
the vicinity of the waiting time τc for a critically sized nucleus; τw is the half-width
of the time window. The growth trajectories can be computed, for example, from
molecular dynamics simulation results for the system. Then, the rate factor g+

nc
can be

determined on the basis of the known set of the growth trajectories n(t) as follows [15]:

g+
nc

=
1
2

〈
[n(t)− nc]2

〉
t

∣∣∣∣∣
t∈[τc−τw;τc+τw]

. (2)

Here, the angle brackets 〈...〉 denote an averaging over set of the growth trajectories.
We compute g+

nc
for our systems on the basis of the molecular dynamics simulation

results and we take the parameter τw = 10 τ to use equation (2); here, τ = σ
√
m/ε is

the time unit, m is a particle mass, σ is a particle diameter and ε is the unit energy [8].
Details of the molecular dynamics simulations are given in references [8,18].

Figure 1a shows the quantity g+
nc

as function of the temperature T computed for
the crystallizing model liquids: the bulk-bLJ, the bulk-Dz and the film-Dz. As seen,
the function g+

nc
(T ) increases with the temperature for all the simulated systems. This

scenario agrees qualitatively with available experimental data for the surface diffusion
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Fig. 1. (a) Rate factor g+
nc

as function of the temperature T for the simulated systems: the
bulk-Dz [8], the bulk-bLJ [19], the film-Dz [18]. Here, the quantities g+

nc
and T are given in

units of τ−1 and ε/kB , where kB is the Boltzmann constant. (b) Experimental data for the
surface diffusion coefficient Ds for different crystallizing polymers [17].

coefficient Ds(T ) [17] evaluated for crystallizing griseofulvin (GSF), ortho-terphenyl
(OTP), polystyrene oligomers (PS1110) and (PS1700), tris-naphthyl benzene (TNB)
(see Fig. 1b). Both the quantities g+

nc
(T ) and Ds(T ) are measured in various physical

units. Namely, the rate g+
nc

(T ) is measured in units of (time)−1, whereas the coeffi-
cient Ds(T ) has a dimension of (length)2/(time). Nevertheless, taking into account
relation (1) and results of Figure 1, one can reasonably assume that the rate factor
as well as the surface diffusion coefficient can obey a common unified scaling law.

Crystallization of supercooled liquids and glasses proceeds at the temperatures
from the range 0 < T ≤ Tm. For an isobar, this temperature range contains three
critical temperatures: the zeroth temperature T0 = 0 K; the glass transition temper-
ature Tg, and the melting temperature Tm. As discussed in detail before in references
[19–21], it is not possible to take into account unified regularities of the crystallization
characteristics as dependent on the temperature, if we use the absolute temperature
scale T or the reduced temperature scales T/Tg and T/Tm.

On the other hand, it was introduced in reference [19] the reduced temperature
scale T̃ , according to which the zeroth temperature T0, the glass transition tem-
perature Tg and the melting temperature Tm for any system will take the fixed
values [8,19]: T̃0 = 0; T̃g = 0.5; T̃m = 1. If values of the temperatures Tm and Tg are
known for a concrete system, then the reduced temperature scale T̃ for this system
is defined by relation (see also Fig. 2):

T̃ =


0.5−

(
Tg
Tm

)2

1− Tg
Tm


(
T

Tg

)
+


Tg
Tm
− 0.5

Tm
Tg
− 1

( T

Tg

)2

. (3)

Following references [8,19], we now take scaling relation for the rate factor as the
next function of the reduced temperature:

g+
nc

(T̃ )

g
(g)
nc

=

(
T̃

T̃g

)χ
. (4)
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Absolute temperature scale

Reduced temperature scale

Fig. 2. Schematic plot of the correspondence between the absolute temperature scale T and
the reduced temperature scale T̃ . The quantities T0, Tg and Tm are the zeroth temperature,
the glass transition temperature and the melting temperature, respectively. Note that the
glass transition temperature Tg depends on the cooling rate ϑ for the absolute temperature
scale, and Tg(ϑ2) > Tg(ϑ2) at ϑ2 > ϑ1. The glass transition temperature takes the fixed

value T̃g = 0.5 for the T̃ -scale.

Here, g(g)
nc is the rate factor at the glass transition temperature Tg; the exponent χ

is the positive adjustable parameter, which can be associated with a measure of the
glass forming ability of a system (see discussion in Ref. [19]). The smaller value of
the parameter χ, for a longer time a system is capable to keep a glassy state. It is
necessary to note that if approximation (1) is fulfilled, then we have

g+
nc

(T̃ )

g
(g)
nc

=
Ds(T̃ )

D
(g)
s

,

and, therefore, the same relation (4) holds for the surface diffusion coefficient Ds(T̃ )
scaled to its value D(g)

s at the glass transition temperature. To compare data for the
rate factor for the various systems, it is convenient to present these data in double
logarithmic scale, for which relation (4) should take the next form:

1
χ

log

[
g+
nc

(T̃ )

g
(g)
nc

]
= log

[
T̃

T̃g

]
. (5)

Simple linear dependence will be in the scaling plot given by relation (5), whereas
the slope of this linear dependence is regulated by the exponent χ.

In Figure 3, we show the data for the rate factor scaled according to equation (5).
As seen, all the data collapse into the unified linear dependence. We find that for sim-
ulated atomistic systems the exponent is χ < 1, whereas for the considered molecular
glasses the exponent takes values within the range from χ ' 14 (for OTP) to χ ' 45
(for PS oligomers) (see Tab. 1). Remarkably, value of the exponent χ depends on
type of the system and there is a correlation between the exponent and the Angell’s
fragility index m [23]. The larger the value of the exponent χ, the larger the value of
the index m (see Tab. 1). For example, for OTP, the exponent χ ' 14 corresponds to
the fragility index m = 81 [24], whereas the exponent χ takes value 45 for the more
fragile polystyrene oligomers (PS1110) and (PS1700) whose the index fragility m is
'140 [25].
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Fig. 3. Scaled plot of the data for the rate factor for the various systems (the same with
Fig. 1). The solid line indicates simple linear dependence resulted from equation (5) with
χ = 1.

Table 1. Parameters of the considered systems required to perform the scaling (5): glass

transition temperature Tg; melting temperature Tm; exponent χ; rate factor g
(g)
nc and index

of fragility m.

System Tg Tm χ g
(g)
nc m

Bulk-Dz 0.65 ε/kB 1.51 ε/kB 0.58± 0.06 15.2 τ−1 –
Film-Dz 0.78 ε/kB 1.72 ε/kB 0.34± 0.03 24.7 τ−1 –
Bulk-bLJ 0.92 ε/kB 1.65 ε/kB 0.31± 0.04 16.5 τ−1 –
GSF 361 K 493 K 21± 3 – 84.6 [22]
OTP 246 K 331 K 14± 2 – 81 [24]
PS1110 307 K 513 K 45± 4 – '140 [25]
PS1700 320 K 533 K 45± 4 – '140 [25]
TNB 347 K 467 K 20± 3 – 84 [24]

3 Concluding remarks

There are features of crystallization that are common to all systems, regardless of
their specific type. Namely, the viscosity and the chemical potential difference demon-
strate an increase, whilst particle dynamics slows down with an increase in supercool-
ing level. Further, application of the classical nucleation theory is not restricted to
specific systems; the basic equation of the KJMA-theory for crystallization has a uni-
versal character. So, some features of the crystallization kinetics will be manifested
in a common manner for all the systems. The kinetic rate factor of crystal nucleation
and crystal growth is associated directly with the particle mobility, and expectations
about some unified scenario with this quantity for all the systems would be quite
reasonable. The difference for systems of different types (metals, polymers, network-
systems etc.) will be manifested in the magnitude of the change for the considered
quantity (the kinetic rate factor) on the same scaled temperature range.

In this work, on the basis of the molecular dynamics simulations we evaluated
the temperature dependence of the kinetic rate factor for various model crystallizing
liquids and compared these results with the experimental data. We found that the
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rate factor g+
nc

and the surface diffusion Ds as functions of the reduced temperature
T̃ follow a unified power-law dependence, where the exponent χ can be associated
with the measure of the glass-forming ability of systems. These results support the
idea of unified scaling laws for the rate characteristics of the crystallization kinetics.

This work is supported by the Russian Science Foundation (project No. 19-12-00022).
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