
Lecture 5. Fluids

General Fluid Properties

Fluids are the generic name given to two states of matter, liquids and gases characterized by a
lack of long range order and a high degree of mobility at the molecular scale.

A large number of atoms or molecules are confined within in a “box”, where they bounce
around off of each other and the walls. They exert a force on the walls equal and opposite
the force the walls exert on them as the collisions more or less elastically reverse the
particles’ momenta perpendicular to the walls.
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General Fluid Properties

Many particles all of mass m are constantly moving in
random, constantly changing directions (as the particles
collide with each other and the walls) with an average
kinetic energy related to the temperature of the fluid.
Some of the particles (which might be atoms such as
helium or neon or molecules such as H2 or O2) happen to
be close to the walls of the container and moving in the
right direction to bounce (elastically) off of those walls.

When they do, their momentum perpendicular to those walls is reversed. Since many, many of
these collisions occur each second, there is a nearly continuous momentum transfer between
the walls and the gas and the gas and the walls. This transfer, per unit time, becomes the
average force exerted by the walls on the gas and the gas on the walls

Eventually, we will transform this simple picture into the Kinetic Theory of Gases and use it
to derive the venerable Ideal Gas Law

𝑃𝑃𝑉𝑉 = 𝑁𝑁𝑘𝑘𝑏𝑏𝑇𝑇
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Pressure
To describe the forces that confine and act on the fluids in terms of pressure, defined to be the force
per unit area with which a fluid pushes on a confining wall or the confining wall pushes on the fluid:

𝑃𝑃 =
𝐹𝐹
𝐴𝐴

Pressure gets its own SI units, which clearly must be Newtons per square meter. We give these units
their own name, Pascals:

1 Pascal =
Newton
meter2

A Pascal is a tiny unit of pressure – a Newton isn’t very big, recall (one kilogram weighs roughly ten
Newtons) so a Pascal is the weight of a quarter pound spread out over a square meter.

A more convenient measure of pressure in our everyday world is a form of the unit called a bar:

1bar = 105 Pa = 100 kPa
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Pressure
The average air pressure at sea level is very nearly 1 bar.

The symbol atm stands for one standard atmosphere. The connection between atmospheres, bars, and
pascals is:

1 standard atmosphere = 101.325 kPa = 1013.25 mbar

The extra significant digits therefore refer only to a fairly arbitrary value (in pascals) historically
related to the original definition of a standard atmosphere in terms of “millimeters of mercury” or torr :

1 standard atmosphere = 760.00 mmHg = 760.00 torr

In this class we will use the simple rule 1 bar ≈ 1 atm

Note well: in the field of medicine blood pressures are given in mm of mercury (or torr) by long
standing tradition (largely because for at least a century blood pressure was measured with a mercury-
based sphygmomanometer). These can be converted into atmospheres by dividing by 760,
remembering that one is measuring the difference between these pressures and the standard atmosphere
(so the actual blood pressure is always greater than one atmosphere).
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Density
Even a very tiny volume of fluid has many, many atoms or molecules in it.

We can work to create a vacuum – a volume that has relatively few molecules in it per unit volume, but
it is almost impossible to make that number zero – even the hard vacuum of outer space has on average
one molecule per cubic meter or thereabouts. We live at the bottom of a gravity well that confines our
atmosphere – the air that we breathe – so that it forms a relatively thick soup that we move through and
breathe with order of Avogadro’s Number (6 × 1023) molecules per liter – hundreds of billions of
billions per cubic centimeter.

At this point we cannot possibly track the motion and interactions of all of the individual molecules, so
we coarse grain and average.

The properties of oxygen molecules and helium molecules might well be very different, so the
molecular count alone may not be the most useful quantity. Since we are interested in how forces might
act on these small volumes, we need to know their mass, and thus we define the density of a fluid to be:

𝜌𝜌 =
𝑑𝑑𝑚𝑚
𝑑𝑑𝑉𝑉



Lecture 5. Fluids

Compressibility

A major difference between fluids and solids, and liquids and gases within the fluids, is the
compressibility of these materials. Compressibility describes how a material responds to
changes in pressure.

This can be expressed as a simple linear relationship:

∆𝑃𝑃 = −𝐵𝐵
∆𝑉𝑉
𝑉𝑉

Pressure up, volume down and vice versa. The constant of proportionality B is called the
bulk modulus of the material.

Note well that we haven’t really specified yet whether the “material” is solid, liquid or gas.
All three of them have densities, all three of them have bulk moduli. Where they differ is in
the qualitative properties of their compressibility.
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Compressibility

• Solids are typically relatively incompressible (large B), although there are certainly exceptions.
They have long range order – all of the molecules are packed and tightly bonded together in
structures and there is usually very little free volume.

• Liquids are also relatively incompressible (large B). They differ from solids in that they lack long
range order. All of the molecules are constantly moving around and any small “structures” that
appear due to local interaction are short-lived. The molecules of a liquid are close enough together
that there is often significant physical and chemical interaction, giving rise to surface tension and
wetting properties – especially in water, which is an amazing fluid!

• Gases are in contrast quite compressible (small B). One can usually squeeze gases smoothly into
smaller and smaller volumes, until they reach the point where the molecules are basically all
touching and the gas converts to a liquid! Gases per se (especially hot gases) usually remain
“weakly interacting” right up to where they become a liquid, although the correct (non-ideal)
equation of state for a real gas often displays features that are the results of moderate interaction,
depending on the pressure and temperature.
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Compressibility

Water is, as noted, a remarkable liquid. H2O is a
polar molecules with a permanent dipole moment,
so water molecules are very strongly interacting,
both with each other and with other materials. It
organizes itself quickly into a state of relative order
that is very incompressible.

The bulk modulus of water is 2.2 × 109 Pa, which means that even deep in the ocean where
pressures can be measured in the tens of millions of Pascals (or hundreds of atmospheres)
the density of water only varies by a few percent from that on the surface. Its density varies
much more rapidly with temperature than with pressure.

We will idealize water by considering it to be perfectly incompressible in this course, which
is close enough to true for nearly any mundane application of hydraulics that you are most
unlikely to ever observe an exception that matters.
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Viscosity and fluid flow

Fluids, whether liquid or gas, have some internal “stickiness” that resists the relative motion
of one part of the fluid compared to another, a kind of internal “friction” that tries to
equilibrate an entire body of fluid to move together. They also interact with the walls of any
container in which they are confined.

The viscosity of a fluid (symbol μ) is a measure of this internal friction or stickiness. Thin
fluids have a low viscosity and flow easily with minimum resistance; thick sticky fluids
have a high viscosity and resist flow.

Fluid, when flowing through (say) a cylindrical pipe tends to organize itself in one of two
very different ways – a state of laminar flow where the fluid at the very edge of the flowing
volume is at rest where it is in contact with the pipe and the speed concentrically and
symmetrically increases to a maximum in the center of the pipe, and turbulent flow where
the fluid tumbles and rolls and forms eddies as it flows through the pipe. Turbulence and
flow and viscosity are properties that will be discussed in more detail below.
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Static Fluids. Pressure and Confinement of Static Fluids

In figure we see a box of a fluid that is confined
within the box by the rigid walls of the box.

We will imagine that this particular box is in “free
space” far from any gravitational attractor and is
therefore at rest with no external forces acting on it.
We know from our intuition based on things like cups
of coffee that no matter how this fluid is initially
stirred up and moving within the container, after a
very long time the fluid will damp down any initial
motion by interacting with the walls of the container
and arrive at static equilibrium.



Lecture 5. Fluids

Static Fluids. Pressure and Confinement of Static Fluids

Fluid rotation is more complex than the rotation of a static object because a fluid can be
internally rotating even if all of the fluid in the outermost layer is in contact with a contain
and is stationary. It can also be turbulent – there can be lots of internal eddies and swirls of
motion, including some that can exist at very small length scales and persist for fair amounts
of time.

We will idealize all of this – when we discuss static properties of fluids we will assume that
all of this sort of internal motion has disappeared.

A fluid in static equilibrium has the property that every single
tiny chunk of volume in the fluid has to independently be in
force equilibrium – the total force acting on the differential
volume chunk must be zero.

In addition the net torques acting on all of these differential
subvolumes must be zero, and the fluid must be at rest, neither
translating nor rotating.
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Static Fluids. Pressure and Confinement of Static Fluids

Suppose (as shown) the cross-sectional area of the left and right walls are ΔA originally.
Consider now what we expect if we double the size of the box and at the same time add
enough additional fluid for the fluid density to remain the same, making the side walls have
the area 2 Δ A. With twice the area (and twice the volume and twice as much fluid), we have
twice as many molecular collisions per unit time on the doubled wall areas (with the same
average impulse per collision). The average force exerted by the doubled wall areas therefore
also doubles.

We can now make a few very simple observations about the
forces exerted by the walls of the container on the fluid within.
First of all the mass of the fluid in the box above is clearly:

∆𝑀𝑀 = 𝜌𝜌∆𝑉𝑉

We drew a symmetric box to make it easy to see that the
magnitudes of the forces exerted by opposing walls are equal
Fleft = Fright (for example). Similarly the forces exerted by the top
and bottom surfaces, and the front and back surfaces, must
cancel.
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Static Fluids. Pressure and Confinement of Static Fluids

An important property of fluids is that one part of a fluid can move independent of another
so the fluid in at least some layer with a finite thickness near the wall would therefore
experience a net force and would accelerate. But this violates our assumption of static
equilibrium, so a fluid in static equilibrium exerts no tangential force on the walls of a
confining container and vice versa.
We therefore conclude that the direction of the force exerted by a confining surface with an
area ΔA on the fluid that is in contact with it is: �⃗�𝐹 = 𝑃𝑃∆𝐴𝐴�𝑠𝑠. Where �𝑠𝑠 is an inward-directed
unit vector perpendicular to (normal to) the surface.

From this simple argument we can conclude that the average
force exerted by any wall is proportional to the area of the wall.
This force is therefore most naturally expressible in terms of
pressure:

𝐹𝐹left = 𝑃𝑃left∆𝐴𝐴 = 𝑃𝑃right∆𝐴𝐴 = 𝐹𝐹right
which implies that the pressure at the left and right confining
walls is the same:

𝑃𝑃left = 𝑃𝑃right = 𝑃𝑃
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Pressure and Confinement of Static Fluids in Gravity

The principle change brought about by setting our box of fluid down on the ground in a
gravitational field is that an additional external force comes into play: The weight of the
fluid. A static fluid, confined in some way in a gravitational field, must support the weight
of its many component parts internally, and of course the box itself must support the
weight of the entire mass ΔM of the fluid.

As hopefully you can see if you carefully read the previous section. The only force
available to provide the necessary internal support or confinement force is the variation of
pressure within the fluid. We would like to know how the pressure varies as we move up
or down in a static fluid so that it supports its own weight.

If we consider a tiny (eventually differentially small) chunk of fluid in force equilibrium,
gravity will pull it down and the only thing that can push it up is a pressure difference
between the top and the bottom of the chunk.
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Pressure and Confinement of Static Fluids in Gravity

A fluid in static equilibrium confined to a sealed rectilinear box in a near-Earth
gravitational field �⃗�𝑚. Note well the small chunk of fluid with dimensions Δx, Δy, Δz in the
middle of the fluid. Also note that the coordinate system selected has z increasing from the
top of the box down, so that z can be thought of as the depth of the fluid.
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Pressure and Confinement of Static Fluids in Gravity

In figure a (portion of) a fluid confined to a box is illustrated. The box could be a completely
sealed one with rigid walls on all sides, or it could be something like a cup or bucket that is
open on the top but where the fluid is still confined there by e.g. atmospheric pressure.

Let us consider a small (eventually infinitesimal) chunk of fluid somewhere in the middle of
the container. As shown, it has physical dimensions Δx, Δy, Δz; its upper surface is a distance
z below the origin (where z increases down and hence can represent “depth”) and its lower
surface is at depth z + Δz. The areas of the top and bottom surfaces of this small chunk are
e.g. ΔAtb = ΔxΔy, the areas of the sides are ΔxΔz and ΔyΔz respectively, and the volume of
this small chunk is ΔV = Δx ΔyΔz.

This small chunk is itself in static equilibrium – therefore the forces between any pair of its
horizontal sides (in the x or y direction) must cancel. As before (for the box in space) Fl = Fr
in magnitude (and opposite in their y-direction) and similarly for the force on the front and
back faces in the x-direction, which will always be true if the pressure does not vary
horizontally with variations in x or y. In the z-direction, however, force equilibrium requires
that:

𝐹𝐹𝑡𝑡 + ∆𝑚𝑚𝑚𝑚 − 𝐹𝐹𝑏𝑏 = 0
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Pressure and Confinement of Static Fluids in Gravity

The only possible source of Ft and Fb are the pressure in the fluid itself which will vary with
the depth z: Ft = P(z)ΔAtb and Fb = P(z +Δz)ΔAtb. Also, the mass of fluid in the (small) box is
Δm = ρΔV (using our ritual incantation “the mass of the chunks is...”). We can thus write:

𝑃𝑃 𝑧𝑧 ∆𝑥𝑥∆𝑦𝑦 + 𝜌𝜌 ∆𝑥𝑥∆𝑦𝑦∆𝑧𝑧 𝑚𝑚 − 𝑃𝑃 𝑧𝑧 + ∆𝑧𝑧 ∆𝑥𝑥∆𝑦𝑦 = 0

∆𝑃𝑃
∆𝑧𝑧

=
𝑃𝑃 𝑧𝑧 + ∆𝑧𝑧 − 𝑃𝑃(𝑧𝑧)

∆𝑧𝑧
= 𝜌𝜌𝑚𝑚

Finally, we take the limit Δz → 0 and identify the definition of the derivative to get:

𝑑𝑑𝑃𝑃
𝑑𝑑𝑧𝑧

= 𝜌𝜌𝑚𝑚

Identical arguments but without any horizontal external force followed by Δx → 0 and
Δy → 0 lead to:

𝑑𝑑𝑃𝑃
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑃𝑃
𝑑𝑑𝑦𝑦

= 0

as well – P does not vary with x or y as already noted
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Pressure and Confinement of Static Fluids in Gravity

𝑑𝑑𝑃𝑃
𝑑𝑑𝑧𝑧

= 𝜌𝜌𝑚𝑚

In order to find P(z) from this differential expression (which applies, recall, to any confined
fluid in static equilibrium in a gravitational field) we have to integrate it. This integral is
very simple if the fluid is incompressible because in that case ρ is a constant. The integral
isn’t that difficult if ρ is not a constant as implied by the equation we wrote above for the
bulk compressibility.

We will therefore first do incompressible fluids, then compressible ones.
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Variation of Pressure in Incompressible Fluids

In the case of incompressible fluids, ρ is a constant and does not vary with pressure and/or
depth. Therefore we can easily multiple dP/dz = ρg above by dz on both sides and integrate
to find P:

𝑑𝑑𝑃𝑃 = 𝜌𝜌𝑚𝑚 𝑑𝑑𝑧𝑧

�𝑑𝑑𝑃𝑃 = �𝜌𝜌𝑚𝑚 𝑑𝑑𝑧𝑧

𝑃𝑃 𝑧𝑧 = 𝜌𝜌𝑚𝑚𝑧𝑧 + 𝑃𝑃0
where P0 is the constant of integration for both integrals, and practically speaking is the
pressure in the fluid at zero depth (wherever that might be in the coordinate system chosen).
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Barometers

Mercury barometers were originally invented
by Evangelista Torricelli a natural philosopher
who acted as Galileo’s secretary for the last
three months of Galileo’s life under house
arrest.

Torricelli demonstrated that a shorter glass tube filled with mercury, when inverted into
a dish of mercury, would fall back into a column with a height of roughly 0.76 meters
with a vacuum on top, and soon thereafter discovered that the height of the column
fluctuated with the pressure of the outside air pressing down on the mercury in the dish,
correctly concluding that water would behave exactly the same way.
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Barometers

A simple mercury barometer is shown in figure. It consists of a tube
that is completely filled with mercury. Mercury has a specific gravity
of 13.534 at a typical room temperature, hence a density of
13534 kg/m3). The filled tube is then inverted into a small reservoir of
mercury. The mercury falls (pulled down by gravity) out of the tube,
leaving behind a vacuum at the top. We can easily compute the
expected height of the mercury column if P0 is the pressure on the
exposed surface of the mercury in the reservoir. In that case:

𝑃𝑃 = 𝑃𝑃0 + 𝜌𝜌𝑚𝑚𝑧𝑧

as usual for an incompressible fluid. Applying this formula to both the
top and the bottom, 𝑃𝑃(0) = 𝑃𝑃0 and

𝑃𝑃(𝐻𝐻) = 𝑃𝑃0 − 𝜌𝜌𝑚𝑚𝐻𝐻

𝑃𝑃0 = 𝜌𝜌𝑚𝑚𝐻𝐻
and one can easily convert the measured height H of mercury above
the top surface of mercury in the reservoir into P0, the air pressure on
the top of the reservoir.
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Barometers

At one standard atmosphere, we can easily determine what a mercury barometer at room
temperature will read (the height H of its column of mercury above the level of mercury in
the reservoir):

𝑃𝑃0 = 13534
kg
m3 × 9.80665

m
sec3

× 𝐻𝐻 = 101325 Pa

Dividing we find the value of H expected at one standard atmosphere:

𝐻𝐻atm = 0.76000 = 760.00 millimeters

𝑃𝑃(𝐻𝐻) = 𝑃𝑃0 − 𝜌𝜌𝑚𝑚𝐻𝐻

𝑃𝑃0 = 𝜌𝜌𝑚𝑚𝐻𝐻
and one can easily convert the measured height H of mercury above the top surface of
mercury in the reservoir into P0, the air pressure on the top of the reservoir.
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Variation of Oceanic Pressure with Depth

The pressure on the surface of the ocean is, approximately, by definition, one atmosphere.
Water is a highly incompressible fluid with ρw = 1000 kilograms per cubic meter. g ≈ 10
meters/second2. Thus:

𝑃𝑃 𝑧𝑧 = 𝑃𝑃0 + 𝜌𝜌𝑑𝑑𝑚𝑚𝑧𝑧 = 105 + 104𝑧𝑧 Pa
or    𝑃𝑃 𝑧𝑧 = 1.0 + 0.1𝑧𝑧 bar = 1000 + 100𝑧𝑧 mbar

Every ten meters of depth (either way) increases water pressure by (approximately) one
atmosphere!

http://www.calctool.org/CALC/other/games/depth_press
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Variation of Atmospheric Pressure with Height

Using z to describe depth is moderately inconvenient, so let
us define the height h above sea level to be −z. In that case
P0 is 1 Atmosphere. The molar mass of dry air is M = 0.029
kilograms per mole. R = 8.31 Joules/(mole-K°). Hence a bit
of multiplication at T = 300°:

𝑀𝑀 𝑚𝑚
𝜋𝜋𝑇𝑇

=
0.029 × 10
8.31 × 300

= 1.12 × 10−4 meters−1

𝑃𝑃 ℎ = 105exp −0.00012 ℎ Pa
= 1000 exp(−0.00012 ℎ) mbar

This equation predicts that air pressure should drop to 1/e
of its sea-level value of 1000 mbar at a height of around
8000 meters, the height of the so-called death zone. We can
compare the actual (average) pressure at 8000 meters, 356
mbar, to 1000 × e−1 = 368 mbar.

http://adventure.howstuffworks.com/outdoor-
activities/climbing/altitude-sickness1.htm
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Pascal’s Principle and Hydraulics
We note that (from the above) the general form of P of a fluid confined to a sealed container
has the most general form:

𝑃𝑃 𝑧𝑧 = 𝑃𝑃0 + �
0

𝑧𝑧

𝜌𝜌𝑚𝑚𝑑𝑑𝑧𝑧

where P0 is the constant of integration or value of the pressure at the reference depth z = 0.
This has an important consequence that forms the basis of hydraulics.
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Pascal’s Principle and Hydraulics

Suppose, that we have an
incompressible fluid e.g. water
confined within a sealed container by
e.g. a piston that can be pushed or
pulled on to increase or decrease the
confinement pressure on the surface of
the piston.
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Pascal’s Principle and Hydraulics

We can push down (or pull back) on the
piston with any total downward force F
that we like that leaves the system in
equilibrium. Since the piston itself is in
static equilibrium, the force we push
with must be opposed by the pressure in
the fluid, which exerts an equal and
opposite upwards force:

𝐹𝐹 = 𝐹𝐹𝑙𝑙 = 𝑃𝑃0𝐴𝐴
where A is the cross sectional area of
the piston and where we’ve put the
cylinder face at z = 0, which we are
obviously free to do.
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Pascal’s Principle and Hydraulics

The pressure at a depth z in the
container is then

𝑃𝑃 𝑧𝑧 = 𝑃𝑃0 + 𝜌𝜌𝑚𝑚𝑧𝑧
where A is the cross sectional area of
the piston and where we’ve put the
cylinder face at z = 0, which we are
obviously free to do.
where ρ = ρw if the cylinder is indeed
filled with water, but the cylinder could
equally well be filled with hydraulic
fluid
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Pascal’s Principle and Hydraulics

We recall that the pressure changes only
when we change our depth. Moving
laterally does not change the pressure,
because e.g. dP/dx = dP/dy = 0. We can
always find a path consisting of vertical
and lateral displacements from z = 0 to
any other point in the container – two
such points at the same depth z are
shown in figure, along with a
vertical/horizontal path connecting
them. Clearly these two points must
have the same pressure P(z)!
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Pascal’s Principle and Hydraulics

Now consider the following. Suppose we
start with pressure P0 (so that the pressure
at these two points is P(z), but then
change F to make the pressure P′0 and the
pressure at the two points P′(z). Then:

𝑃𝑃 𝑧𝑧 = 𝑃𝑃0 + 𝜌𝜌𝑚𝑚𝑧𝑧
𝑃𝑃′ 𝑧𝑧 = 𝑃𝑃′0 + 𝜌𝜌𝑚𝑚𝑧𝑧

∆𝑃𝑃 𝑧𝑧 = 𝑃𝑃′ 𝑧𝑧 − 𝑃𝑃 𝑧𝑧 = 𝑃𝑃′0 − 𝑃𝑃0 = ∆𝑃𝑃0
That is, the pressure change at depth z
does not depend on z at any point in the
fluid! It depends only on the change in the
pressure exerted by the piston!
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Pascal’s Principle and Hydraulics

This result is known as Pascal’s Principle and it holds (more or less) for any
compressible fluid, not just incompressible ones, but in the case of compressible fluids
the piston will move up or down or in or out and the density of the fluid will change and
hence the treatment of the integral will be too complicated to cope with. Pascal’s
Principle is more commonly given in English words as:

Any change in the pressure exerted at a given point on a confined fluid is transmitted,
undiminished, throughout the fluid.

Pascal’s principle is the basis of hydraulics. Hydraulics are a kind of fluid-based simple
machine that can be used to greatly amplify an applied force.
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A Hydraulic Lift

Figure illustrates the way we can multiply forces
using Pascal’s Principle.

Two pistons seal off a pair of cylinders connected
by a closed tube that contains an incompressible
fluid. The two pistons are deliberately given the
same height (which might as well be z = 0), then,
in the figure, although we could easily deal with
the variation of pressure associated with them
being at different heights since we know P(z) = P0
+ρgz.

The two pistons have cross sectional areas A1 and
A2 respectively, and support a small mass m on the
left and large mass M on the right in static
equilibrium.
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A Hydraulic Lift

For them to be in equilibrium, clearly:
𝐹𝐹1 − 𝑚𝑚𝑚𝑚 = 0
𝐹𝐹2 − 𝑀𝑀𝑚𝑚 = 0

We also/therefore have:
𝐹𝐹1 = 𝑃𝑃0𝐴𝐴1 = 𝑚𝑚𝑚𝑚
𝐹𝐹2 = 𝑃𝑃0𝐴𝐴2 = 𝑀𝑀𝑚𝑚

Thus
𝐹𝐹1
𝐴𝐴1

= 𝑃𝑃0 =
𝐹𝐹2
𝐴𝐴2

or (substituting and cancelling g):

𝑀𝑀 =
𝐴𝐴2
𝐴𝐴1

𝑚𝑚

A small mass on a small-area piston can easily balance a much larger mass on an equally
larger area piston!
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A Hydraulic Lift

𝑀𝑀 =
𝐴𝐴2
𝐴𝐴1

𝑚𝑚

If we try to lift (say) a car with a hydraulic lift, we have to move the same volume
ΔV = AΔz from under the small piston (as it descends) to under the large one (as it
ascends). If the small one goes down a distance z1 and the large one goes up a distance z2,
then:

𝑧𝑧1
𝑧𝑧2

=
𝐴𝐴2
𝐴𝐴1

The work done by the two cylinders thus precisely balances:

𝑊𝑊2 = 𝐹𝐹2𝑧𝑧2 = 𝐹𝐹1
𝐴𝐴2
𝐴𝐴1

𝑧𝑧2 = 𝐹𝐹1
𝐴𝐴2
𝐴𝐴1

𝑧𝑧1
𝐴𝐴1
𝐴𝐴2

= 𝐹𝐹1𝑧𝑧1 = 𝑊𝑊1

The hydraulic arrangement thus transforms pushing a small force through a large distance
into a large force moved through a small distance so that the work done on piston 1
matches the work done by piston 2.
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Archimedes’ Principle

A solid chunk of “stuff” of mass m and the dimensions shown is immersed in a fluid of
density ρ at a depth z. The vertical pressure difference in the fluid (that arises as the fluid
itself becomes static static) exerts a vertical force on the cube.
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Archimedes’ Principle

The net upward force exerted by the fluid is called the buoyant force Fb and is equal to:
𝐹𝐹𝑏𝑏 = 𝑃𝑃 𝑧𝑧 + ∆𝑧𝑧 ∆𝑥𝑥∆𝑦𝑦 − 𝑃𝑃 𝑧𝑧 ∆𝑥𝑥∆𝑦𝑦 =

= 𝑃𝑃0 + 𝜌𝜌𝑚𝑚 𝑧𝑧 + ∆𝑧𝑧 − 𝑃𝑃0 + 𝜌𝜌𝑚𝑚𝑧𝑧 ∆𝑥𝑥∆𝑦𝑦 =

= 𝜌𝜌𝑚𝑚∆𝑧𝑧∆𝑥𝑥∆𝑦𝑦 =
= 𝜌𝜌𝑚𝑚∆𝑉𝑉

where ΔV is the volume of the small block.
The buoyant force is thus the weight of the fluid displaced by this single tiny block. This is
all we need to show that the same thing is true for an arbitrary immersed shape of object.
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Archimedes’ Principle

In figure, an arbitrary blob-shape is immersed in a fluid
of density ρ. Imagine that we’ve taken a french-fry
cutter and cuts the whole blob into nice rectangular
segments, one of which (of length h and cross-sectional
area ΔA) is shown. We can trim or average the end caps
so that they are all perfectly horizontal by making all of
the rectangles arbitrarily small (in fact, differentially
small in a moment). In that case the vertical force
exerted by the fluid on just the two lightly shaded
surfaces shown would be:

𝐹𝐹𝑑𝑑 = 𝑃𝑃 𝑧𝑧 ∆𝐴𝐴
𝐹𝐹𝑢𝑢 = 𝑃𝑃 𝑧𝑧 + ℎ ∆𝐴𝐴

where we assume the upper surface is at depth z. Since P(z +h) = P(z)+ρgh, we can find the
net upward buoyant force exerted on this little cross-section by subtracting the first from the
second:

∆𝐹𝐹𝑏𝑏 = 𝐹𝐹𝑢𝑢 − 𝐹𝐹𝑑𝑑 = 𝜌𝜌𝑚𝑚ℎ∆𝐴𝐴 = 𝜌𝜌𝑚𝑚∆𝑉𝑉 where the volume of this piece is ΔV = h Δ A.
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Archimedes’ Principle

∆𝐹𝐹𝑏𝑏 = 𝐹𝐹𝑢𝑢 − 𝐹𝐹𝑑𝑑 = 𝜌𝜌𝑚𝑚ℎ∆𝐴𝐴 = 𝜌𝜌𝑚𝑚∆𝑉𝑉 where the volume of this piece is ΔV = h Δ A.
We can now let ΔA → dA, so that ΔV → dV , and write

𝐹𝐹𝑏𝑏 = �𝐹𝐹𝑏𝑏 = �
𝑉𝑉 of blob

𝜌𝜌𝑚𝑚𝑑𝑑𝑉𝑉 = 𝜌𝜌𝑚𝑚𝑉𝑉 = 𝑚𝑚𝑓𝑓𝑚𝑚

where mf = ρV is the mass of the fluid displaced, so that mf g is its weight.
That is:
The total buoyant force on the immersed object is the weight of the fluid displaced by the
object.
This statement – in the English or algebraic statement as you prefer – is known as
Archimedes’ Principle,
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