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Elektrochemiczny metali w odniesieniu do kawitacji w szczelinie

elektrody

AneKTpoxumMmUuueckasa 06paboTka METAANOB C YYETOM KaBUTALUU B MEXINEKTPOA-

HOM NPOMEXYTKe

Electrochemical machining of metals with cavitation in the electrode gap
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W pracy rozpatruje problem dwuwymiarowy obrobki
elektrochemicznej (ECM) metali. Podczas
przetwarzania, w poblizu punktéow naroznych
powierzchni katody do anody, w niektérych trybach sa
utworzone falistych czesci granicy, ktora ogélnie rzecz
biorac, nie nalezy umieszcza¢ w ciaglym strumieniu
elektrolitu w szczelinie elektrodowej (IEP). W niniejszej
pracy, analityczne rozwiazanie problemu ECHO katody
z punktu naroznego przy uzyciu  modelu
matematycznego na podstawie analogii z problemem
idealnego plynu przeplywa z wolnymi granic. Problem
ten jest rozwigzywany przez obecno$¢ w poblizu
punktéw naroznych wneki o skonczonej dlugosci. Bierze
si¢ tu pod uwage wplyw hydrodynamicznego przepltywu
na charakterystyke pola elektrycznego. Wyniki obliczen
granicy anody, potwierdzajacy pojawienie si¢ na jej
czesci fali, ktorego ksztalt zalezy od parametrow
przeplywu.

SEOWA KLUCZOWE: potencjal, elektrochemii, anoda,
katoda, gesto$¢ pradu, elektrolitow, metalu.

Two-dimensional problems of electrochemical machining
(ECM) metals is studied. The matter is that during
processing in some modes we can see on the anode surface
near the corner points of the cathode an image-wavy
sections of the border, which, generally speaking, should
not appear in a continuous flow of electrolyte in
interelectrod gap (IEG). In this paper, an analytical
solution of the problem ECM by cathode with a corner
point is obtained by using mathematical model, based on
the analogy with a flow of the ideal fluid with free
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boundary sections. Then the same problem is solved in the
presence of a finite length cavity at the neighborhood of
the corner point taking into account the influence of
hydrodynamics on the electric field. The submitted results
of the calculation of the anode boundary confirm the
occurrence of wavy sections of the border, the shape of
which depends on the flow parameters.

KEYWORDS: potential, electrochemistry, anode, cathode,
current density, electrolyte, metal.

Solution of some two dimensional problems of ECM by
polygonal cathode, including cases with the presence of
insulation are presented in [1,2,3].

We consider the two-dimensional problem of
electrochemical shaping as it is shown in Fig. 1. Fig. 1, in
the plane z=x+iy, shows the right half part of the
electrode gap: AG is the line of symmetry, ABDE is the
cathode boundary, GFS is anode boundary, ES is
electrically insulated section of the IEG, A and E are the
point at infinity. The origin is chosen at the point B . The
cathode feed rate \7K is orthogonal to x axis directed
along the edges BD. The width of the IEG in the
neighborhood of A, E, equal H, and H. respectively.
The condition of stationary electrochemical shaping must

be satisfied at the anode border. It is necessary to
determine the shape of the anode surface.
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Fig. 1. Area IEG

We assume that the metal removal rate on the anode
per unit mass is determined by Faraday's law V,, = j.77¢,
where n=n(j,) is current efficiency, j, is current
density, ¢ is electrochemical equivalent of the metal,

cathode surface moves with constant velocity \7K and
linear velocity of points on the surface of the anode is

V, =V, -cosd 1)

where @ is the angle between the anode velocity vector
and the outward unit vector normal to the surface of the
anode. In this case, the general scheme of the process
does not change with time, and the process can be
regarded as steady or stationary [4,5]. Steady current

density distribution j, on the stationary anode border is
defined as

= Ve
&

Nia cosé,
where p is density of the anode material and on anode
boundary the next relation is true[1,6]

. V,
n=%f@wmwmm )

We introduce in IEG a Cartesian coordinate system
Ox)y,. We assume, neglecting the near-electrode

phenomena, that there is the potential y, of the electric
field in IEG, satisfying the Laplace equation (3)

Ay, =0 €)

and on the electrodes the conditions of constant potential
wia =U,, Wy =U, are satisfied. By (3), there exists a

harmonically conjugate function ¢, , and we can enter the

complex potential of the electrostatic field
W (X,Y,) =@ (X, Y,) + iy, (XuY,), which is an analytic

function in the region z, = x, +iy; .

The existance of the complex potential makes it
possible to consider our problem as a two-dimensional
problem of the fictitious flow of ideal fluid with a given
section of the boundary (cathode) and an unknown
portion of the border (the anode), on which a certain
condition, in our case it is the condition (2), is specified.
Streamlines in this fictitious flow correspond to the

electric field lines, on which y, = const [7].
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We introduce the characteristic values of current
density j,=pV /e, length H=«(u,-u)/j, (x
electrical conductivity of the medium) and move on to the
dimensionless variables

x=-2, y=21 z=x+iy, W=(p+il//:u.
H u, — Uy

Then, in view of (2), the function y at interelectrode

space satisfies the Laplace equation and the boundary
conditions on the surface of the electrodes

aﬂ:’_—’*:a(ﬁbocoséh

=1, =0,
Ya Vi an i

Where a,, b, are constants, reflected dependence of
current efficiency on current density.

To solve the problem, we introduce an auxiliary
complex variable u=¢&+in, varying in the area

D,={u=¢+in0<E<r/2,0<n<ad/a), =il (Fig.
2), and we will look for a function z(u), conformally
maping the area D, on the flow domain with the points

correspondence indicated in Fig. 1, 2, also in the area
D, points B, D, S are corresponding to the points

B(b+z7/4), D(d +7/4), S(x/2+is).
F 3
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Fig. 2. Area D,

To construct function z(u), it is enough to find the

derivative dW (u)/du of the complex potential of the
fictitious flow and Zhukovsky function [7]

2u)= '"(\;0_\7\/2} r(u)+io(u) , 4)

wherein r(u):ln@/o/\/), V is the fictitious flow velocity
magnitude, @ is velocity vector inclination angle to the x
axis, V, =g, + b, is the speed at the point G .

For the complex potential of the fictitious flow
W(@u)=¢+iy we have the following boundary
conditions:

y(u)=0, U=§+TT;

pu)=1 u=¢ u:%+in, 0<n<s;
(D(U):O, U:iﬂ;

biala
o(u) = @,, u:£+i77, S<r]<ﬂ.
2 4
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The variation area of complex potential W is a rec-
tangle DW:{(p+iy/, 0<p<g, OSy/Sl} (Fig. 3).
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Fig. 3. Area D,

To determine the derivative dwW/du of the complex
potential we conformally map area D, on the upper half-
plane D, with the points correspondence, indicated in
Fig. 3, 4, by conversion

w(u):sn(ZK[z—u—l}kj:_i 9 (2u) , )
T 2 k %(2u)

where sn(u) is Jacobi function, 4(u) (i :ﬂ) is theta
functions for the periods z and 7zr, K =m92(0)/2,
k = 92(0)/9(0) [8].
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Fig. 4. Area D,

With help of the Schwarz-Christoffel formula [9], we
find the derivative of the function that maps the area D,

at the area of function W (u):

aw _ M
do  f(w+D(0-o)e® -Vk?)

|7 do N
M =i )
U V(0 +D(@- 7)o -1k ]

where y=aw(r/2+is). Taking into account (5), we

obtain:
1 -1
W _N /“’(“)’1 CN=if 2= 1in| .
du o(u)-y wVo—r
For the Zhukovsky function y(u)=r(u)+if(u) we
have the following boundary conditions

6(u) =0, u:iq;u=§+%,b<§<d;
6(u) =0, u:%+in,0<n<s;

VA T T
Ou)=-=, u=&+—, 0<é<b, d -
(W=7, U=£+7, 0<E<h d<s<?

T
ou)=-z, u :§+7'

On the anode border GFS the condition satisfied:

Vo
f‘g’)—"{m}

Zhukovsky function y(u) we search in the form
;((u): Zou)+1(u), where the function
Zo(U)=r,(u) +i6,(u) satisfies the boundary conditions:

6,(u)=0, u:in;u:§+%,b<§<d;
G,(u) =0, u=%+i77,0<77<s;

Ho(u):—%, u:§+%, 0<&<b, d<§<%;

__ _ R
GU)=-7, u §+4,

r,(u)=0, u=_¢.

and has in D, the same features as x(u), the function
f(u) is analytic in D, and continuous in ISU [10]. We
constructe y,(u) by singular points method [7]:

(8- /8%, - /)
%)= '”(&(u /89, —m/4>]+

1 (Sl(u —b-7r/4)9u+b- m’/4)J
+=1In -
2 | $(u-b+rr/4)3(u+b+xr/4)

- lm( d(u—d - /89 (u+d - 71'[/4)] .

2\ $u-d+a/d)9(u+d+xr/4)

+In(lslz(u ~if)9,(u —if)J .

S(u+if)gu+if)) 2

Comparing the boundary conditions for the functions
z(u) and z,(u), we obtain the boundary conditions for

the unknown function f(u) = A(u) +iu(u) :

u(u)=0, u=in u:%+i77; (6)

24(u) =0, u=§+%; (7)

Au) =In Vo . u=¢. (8)
a, + b, cos(g,(u) + u(u))

To construct the unknown function f(u) we map the
area D, on the semicircle [10] with help of the function

t= e2i(u—;zr/4) (g)
Taking into account the boundary conditions (6), (7),

we may continue the function f(u) analytically to the ring
and write it in the form of a Laurent series:

fu)= Ye,t"u)= e et =r, (10)

where c, is real coefficients.

On the basis of the boundary condition (7), we find
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C,=C_,, Cp= —Zicn ch(zlzn/2),
n=1

and by (10) obtain:

f(u)=c, + Zicn cos(2n(u - 7z/4)). (11)

n=1

Condition (8), in view of the representation of the
function f(u) (11), has the form

Co + Zi ¢, cos@2né)ch(zlzn/2) = 12)

=InV, —In(a, + b, cos(g, (u) + u(u)))

Multiplying equation (12) for cos(2n&) and then
integrating it by ¢ within 0, z/2, we obtain an infinite
system of equations for the coefficients c, :

) /2
c, = G !In(a0 +D, cOs(6, (£) + u(&)))cos@néEE

n=1cw.

Dimensionless coordinates of the points of IEG
borders we define by (4) according to the formula

zu) 1 TdW(u)
He  VoHe du

e”du .
0

Finally it is necessary to determine the mathematical
parameters z, b, d. This can be done by setting

H,/H: and anode sizes: L =Re(z(z/2)-2(0))/H. ,
h = —Im(z(7z/2) - 2(0))/He .

Fig. 5 and Fig. 6 shows the results of calculation of the
anode form for a,=0.1, b,=0.9, H,/H. =05, and
various L and h. One can see there that anode
boundaries are monotonic in vicinity of cathode corner
point B .

0

Fig. 5.
L=5,1)h=05,2)h=1,3)h=15,4)h=2
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Fig. 6.
h=1,1)L=4,2)L=5,3)L=6

To explain the emerging practice of non-monotonic
sites on the anode surface near the cathode critical point,
we consider the problem with taking into account the
effect of cavitation on the flow characteristics in the IEG.

When the stationary machining of a workpiece at the
close vicinity of cathode corner point (B in Fig. 1), the
flow velocity increases sharply, and there are conditions
to form cavities filled with air bubbles. (Fig. 7). In these
areas, the electrical conductivity is broken and they play
the role of insulator. This leads to the formation of
irregularities on the surface to be treated.

Fig. 7 display in the plane z =x+iy the right half of
the IEG: AG is the line of symmetry, ABDE is the
boundary of the cathode, GF is anode boundary, EF is
electrically insulated section of IEG, A, E are points at
infinity. The width of IEG in the neighborhood of A, E,
equal toH, n H., velocity of electrolyte flow is V, n V,
correspondingly. The electrolyte flow in IEG direct from
point A to point E . At the point B there is separation of
the flow from the cathode surface to form a cavity, closes
at a fictitious plate CS, perpendicular to the face of the
cathode BD [6]. The boundary of the cavity BC and the
plate CS are Insulated sections IEG. The flow velocity at
the boundary of the cavity BC is constant and equal V, .
The origin is at the point B . The feed rate of the cathode
\7K orthogonal to x-axis directed along the edge BD . On

the anode border the condition of stationary
electrochemical shaping must be satisfied. It is required
to determine the shape of the anode surface and the
cavity.

A
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Fig. 7. Area IEG

The potential of the electric field in IEG satisfies the
Laplace equation and the boundary conditions on the
surface of the electrodes

wy=1, v, =0, W :J_—A:a0+bocose.

on g




MECHANIK NR 12/2014

On the electrically insulated areas IEG
wlAG =0, (olscs =@ ("lEF =0

The area D,, of variation for the complex potential of
the electrostatic field W (u) =@ +iy for this problem is
shown in Fig. 8. At the point B in the planeW (u) we
have a split, corresponding to the cavity border boundary
(¢ = ¢, ), whose position is unknown in advance.

tw
; G F
P
%HC &
A BS D E @
Fig. 8. Area D,

Let in the plane of the auxiliary complex variable
u=<¢+ir flow area D, corresponds to the area

D,={u=¢+in 0<£<7/2, 0<n<sd/a} (Fig. 9) and
the function z(u) conformally maps the domain D, to the
domain D, with the points correspondence indicated in
Fig. 7, 9, and in the area D, — A(ia), E(z/2+ie),
D(z/2+id), S(z/2+is), P(p+zt/4)-,,,,..

Ay
a4l B £ ¢
1s
Al 1D
1E
iz
G F &

Fig. 9. Area D,
We represent function dz/du as

dz_ dz dw dW,

= (13)
du dw dw, du

where W, (u) =g, (u)+iy,(u) is the complex potential of
the electrolyte flow.

To construct z(u) we find the derivative dW,(u)/du of

the complex potential of the electrolyte flow and the
Zhukovsky function

%,(u)= |n(\£;’/32 J= r(u)+io(u),

9

rae — MoAyrnb CKOPOCTU TeYeHWs anekTponuta, 6 — yron
HaknoHa BekTopa ckopoctm K ocu  X. Where
r(u) =In(\/0/V), V is vector magnitude of the electrolyte

flow, @ is the angle of the velocity vector to x-axis.

Complex potential W, (u) of electrolyte flow satisfies
the boundary conditions

w,(U)=0, u=ip O<p<a u=¢
v, (u)=0, U=%+i7],0£7]<e;

) 7]
ye(u)=q, u=in, a<77§T

T .
ye(u)=q, u=_+in e<ns<— =

The variation range of function W (u) is the strip
Dwgz{(og +iy,, 0<y, gq}, g =VH; is the output of the
electrolyte.

The boundary conditions for the complex potential
W,(u) give the opportunity to construct function

W, (u)/du by the singular points method:

dw (u) N -9 (2u) »
du G (u—ia)d (u+ia)d,(u —ia)d,(u +ia)
9,(2u)

“ 9 (U—Te)d (U +ie)d (U —ie)d, (U + ie)

Constant N can be determined by the condition that
the electrolyte output is equal g =V H.. With help of

determining the residue of the function W (u) at a point
E we obtain

N = a 3(0)%,(0)9, (ia—ie)9,(ia+ie)d (ia—ie)Ik(ia+ie).
T

For Zhukovsky function y,(u)=r(u)+ié(u) we have
the following boundary conditions:

T . T .
Ou)=—=, u=ing, u==+in, 0<y<d;
(u) > n >t n

,  Uu==+in, s<77sM;
4

On the anode border GF the imaginary parts of
W(u), W,(u) are constant. With help of the

representation (13) for dz/du we can get on the
boundary GF next condition”

Vo do(d) ] |

=]
r(é) n[ao+bocosé?(§) de,(8)

what give us the ability to take into account electrolyte
flow regime and the variability of the current output.

1k

—1/k -1 1
F EDSC o

P B A G

Fig. 10. Area D,

To determine the function d(p/d(pg we map area D, to
the upper half-plane with the points correspondence,
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indicated in Fig. 9, 10 by the transformation (5). Then by
means of the Schwarz-Christoffel formula, we find the

derivatives of functions mapping the area D, to variation
area for functions W and W, :

dﬂ:M w-0o
do " J(@? ~D(@-a)w+Yk)o-B)w-7)
M =i f ®-9 dw] ,
(@ —D(0—a)o+Vk)(o-B)o-7)

de q B-a

do 7 (0-a)w-p)

where a=w(A)=w(ia), B=a(E)=a(r/2+ie),
y=S)=a(n/2+is), 6 =wP)=c(p+nr/4).

Taking into account, that IdW =0, we obtain an
Ik
equation, relating the mathematical parameters: «, g,
y,0:

]- odw
5 (@ D -a)o+ V)@= f)-7)
j do '
(@ (@ -a) o+ VK)(o- B)@-7)

By this formulas plus relation (5), we find

do(¢) __ Mz (@) -S(@(&)-a) @) -5)
dpy (&) A(B-a) J(0?(&) - D((&) + VK)(@(£) - )

We find Zhukovsky function x,(u) in the form
7o) = 2o(u) +F(u) where the function

Zo(U) =r,(u)+ig,(u) satisfies the boundary conditions

w . T .
O,(W)=——, u=in, u=—+in, O0<np<d,
b(U) > n S+ n

T V4 . T|\T
6,(u)=—, u=—+in, s<np<—:j,
b(U) > R <
6,(u) =0, u=¢; u:%+i77, d<n<s;
r,(u)=0, u:§+%.

and has in D, the same features as the y,(u), function

f(u) is analytic in D, and continuous in ISU . We construct
Zo(U) by the singular points method:

 (8,Wem)
7o) = '"( %(u)%(u)]

—lln 3, (u—id)9,(u +id)3, (u —is),(u +is)
2 u-id)%(u+id)S;(u—is)d,(u +is)

By means of comparing the boundary conditions for
the functions z,(u) u z,(u), we obtain the boundary

conditions for the unknown function f(u) = A(u) +ix(u) :

T

uu)=0, u=iny U=E+i77; (14)
Au)=0, u= §+%; (15)
Vo de(u)

Au) = In{ J— rp,(u), u=_¢& (16)

3, + b, cos x(u) dg, (u)

To construct the unknown function f(u) we map the
area D, to the semicircle with help of the function (9).

Taking into account the boundary conditions (14), (15),
the function f(u) can be analytically continued to ring
and be written in the form of a Laurent series (10),
wherec, are real coefficients.

On the basis of the boundary condition (15) we find

c,=0,c,=-—C_,
And obtain
f(u)=2i>c, sin2n(u - zz/4)) . A7)
n=1

The boundary condition (16), in view of representation
f(u) in the form (17), has the form

Zi“ ¢, cos@né)sh(zlz|n/2) =

(18)
=In VO d(ﬂ(é) _ro(‘:)v
a, + b, cos (&) do,(S)

Multiplying equation (18) for cos(2n&) and integrating
it by & within 0, z/2, we obtain an infinite system of
equations for the coefficients c, :

2
€ = ﬂ'Sh(ﬂ'lTln/Z) )

"2 1 de(&)
<] ['”[ a0 + by Cos (@) A, (8) ) °(9)|05CNENE,

n=10
We obtain next formula for dimensionless coordinates of
IEG boundaries:

zu) 1
HE VOHE

]‘._de e”“du .
5 du

To finish we have to determine the mathematical
parameters 7, a, s, d e. This can be done by setting

the speed ratioV,/N,, V:/V,, anode dimensions
L=Re(z(7/2)-z(0))/He ,  h=-Im(z(z/2) - 2(0))/H; ,
and the condition Im(z(z/2+is))=Im(z(zr/4)) which fix
the position of the cathode boundary.
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Fig. 11-13 shows the calculated shapes of anode and

cavity surfaces for the different values of parameters.
One can see there that there is wave section on the
anode surface and its shape depends on the parameters
of the electrolyte flow in the IEG even at very small
relative size of the cavity. To remove this section we need
an additional machining. One method to eliminate the
cavity is proposed in [11]

LITERATURE

1.

Kotlyar L. M., Minazetdinov N. M. Modelirovaniye protsessa
elektrokhimicheskoy obrabotki metalla dlya tekhnologicheskoy
podgotovki proizvodstva na stankakh s CHPU. Academia,
Moskva, 2005

Karimov A. KH., Klokov V. V., Filatov Ye. I. Metody raschota
elektrokhimicheskogo formoobrazovaniya. Izd-vo KGU, Kazan',
1990.

Zhitnikov V. P., Zaytsev A. N. Matematicheskoye modelirovaniye
elektrokhimicheskoy razmernoy obrabotki. UGATU, Ufa, 1996

Davydov A., Kozak U., Vysokoskorostnoye elektrokhimicheskoye
formoobrazovaniye. Nauka, Moskva, 1990.

Sedykin F., Razmernaya elektrokhimicheskaya obrabotka detaley
mashin. Mashinostroyeniye, Moskva, 1976.

Voronkova A. E., Kotlyar L. M., Minazetdinov N. M. Issledovaniye

elektrokhimicheskogo formoobrazovaniya s uchotom
gidrodinamiki kavitatsionnogo techeniya v zazore. Dinamika
sploshnykh  sred so  svobodnymi  granitsami. Izd-vo

Chuvashskogo universiteta, Cheboksary, 1996. Ps.66-77

Gurevich M., Teoriya struy ideal'noy zhidkosti. Nauka, Moskva,
1979.

Uitteker E., Vatson D., Kurs sovremennogo analiza. ch.2.,,
Fizmatgiz, Moskva 1963.

Lavrent'yev M., Shabat B., Metody teorii funktsiy kompleksnogo
peremennogo. Nauka, Moskva, 1987.

10.Kotnsp J1. M. O6 ogHOoM crny4ae CTPYMHOrO TeYeHWst ugeanbHoON

xuakoctu. MN3B. By3oB. MatemaTuka, Ne2, 1976.



