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Elektrochemiczny metali w odniesieniu do kawitacji w szczelinie 

elektrody 

Электрохимическая обработка металлов с учётом кавитации в межэлектрод-

ном промежутке 

Electrochemical machining of metals with cavitation in the electrode gap 

EVGENI FILATOV*, 
LEONID KOTLYAR**, 
ANNA VORONKOVA***, 
TADEUSZ ZABOROWSKI**** 

W pracy rozpatruje problem dwuwymiarowy obróbki 

elektrochemicznej (ECM) metali. Podczas 

przetwarzania, w pobliżu punktów narożnych 

powierzchni katody do anody, w niektórych trybach są 

utworzone falistych części granicy, która ogólnie rzecz 

biorąc, nie należy umieszczać w ciągłym strumieniu 

elektrolitu w szczelinie elektrodowej (IEP). W niniejszej 

pracy, analityczne rozwiązanie problemu ECHO katody 

z punktu narożnego przy użyciu modelu 

matematycznego na podstawie analogii z problemem 

idealnego płynu przepływa z wolnymi granic. Problem 

ten jest rozwiązywany przez obecność w pobliżu 

punktów narożnych wnęki o skończonej długości. Bierze 

się tu pod uwagę wpływ hydrodynamicznego przepływu 

na charakterystykę pola elektrycznego. Wyniki obliczeń 

granicy anody, potwierdzający pojawienie się na jej 

części fali, którego kształt zależy od parametrów 

przepływu. 

SŁOWA KLUCZOWE: potencjał, elektrochemii, anoda, 

katoda, gęstość prądu, elektrolitów, metalu. 

Two-dimensional problems of electrochemical machining 

(ECM) metals is studied. The matter is that during 

processing in some modes we can see on the anode surface 

near the corner points of the cathode an image-wavy 

sections of the border, which, generally speaking, should 

not appear in a continuous flow of electrolyte in 

interelectrod gap (IEG). In this paper, an analytical 

solution of the problem ECM by cathode with a corner 

point is obtained by using mathematical model, based on 

the analogy with a flow of the ideal fluid with free 

boundary sections. Then the same problem is solved in the 

presence of a finite length cavity at the neighborhood of 

the corner point taking into account the influence of 

hydrodynamics on the electric field. The submitted results 

of the calculation of the anode boundary confirm the 

occurrence of wavy sections of the border, the shape of 

which depends on the flow parameters. 

KEYWORDS: potential, electrochemistry, anode, cathode, 

current density, electrolyte, metal. 

Solution of some two dimensional problems of ECM by 
polygonal cathode, including cases with the presence of 
insulation are presented in [1,2,3]. 

We consider the two-dimensional problem of 

electrochemical shaping as it is shown in Fig. 1. Fig. 1, in 

the plane iyxz  , shows the right half part of the 

electrode gap: AG  is the line of symmetry, ABDE  is the 

cathode boundary, GFS   is anode boundary, ES  is 

electrically insulated section of the IEG, A  and E  are the 

point at infinity. The origin is chosen at the point B . The 

cathode feed rate KV


 is orthogonal to x  axis directed 

along the edges BD . The width of the IEG in the 

neighborhood of A , E , equal AH  and EH  respectively. 

The condition of stationary electrochemical shaping must 
be satisfied at the anode border. It is necessary to 
determine the shape of the anode surface. 
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We assume that the metal removal rate on the anode 

per unit mass is determined by Faraday's law Am jV  , 

where )( Aj   is current efficiency, Aj  is current 

density,   is electrochemical equivalent of the metal, 

cathode surface moves with constant velocity KV


 and 

linear velocity of points on the surface of the anode is 

cos KA VV     (1) 

where   is the angle between the anode velocity vector 

and the outward unit vector normal to the surface of the 
anode. In this case, the general scheme of the process 
does not change with time, and the process can be 
regarded as steady or stationary [4,5]. Steady current 

density distribution Aj  on the stationary anode border is 

defined as 





 cosK

A

V
j  , 

where   is density of the anode material and on anode 

boundary  the next relation is true[1,6] 

)cos( 00 



ba

V
j K
A     (2) 

We introduce in IEG a Cartesian coordinate system 

11yOx . We assume, neglecting the near-electrode 

phenomena, that there is the potential 1  of the electric 

field in IEG, satisfying the Laplace equation (3) 

01       (3) 

and on the electrodes the conditions of constant potential 

AA u1 , KK u1  are satisfied. By (3), there exists a 

harmonically conjugate function 1 , and we can enter the 

complex potential of the electrostatic field 

),(),(),( 11111111 yxiyxyxW   , which is an analytic 

function in the region 111 iyxz  . 

The existance of the complex potential makes it 
possible to consider our problem as a two-dimensional 
problem of the fictitious flow of ideal fluid with a given 
section of the boundary (cathode) and an unknown 
portion of the border (the anode), on which a certain 
condition, in our case it is the condition (2), is specified. 
Streamlines in this fictitious flow correspond to the 

electric field lines, on which const1   [7]. 

We introduce the characteristic values of current 

density  KVj 0 , length 0)( juuH KA    (  

electrical conductivity of the medium) and move on to the 
dimensionless variables 

H

x
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H

y
y 1 ,  iyxz  ,  

KA

K

uu

iuW
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 1 . 

Then, in view of (2), the function   at interelectrode 

space satisfies the Laplace equation and the boundary 
conditions on the surface of the electrodes 

1A ,  0K ,  
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Where 0a , 0b  are constants, reflected dependence of 

current efficiency on current density.  

To solve the problem, we introduce an auxiliary 

complex variable  iu  , varying in the area 

 40,20,   iuDu ,  i  (Fig. 

2), and we will look for a function )(uz , conformally 

maping the area uD  on the flow domain with the points 

correspondence indicated in Fig. 1, 2, also in the area 

uD  points B , D , S  are corresponding to the points 

)4( bB , )4( dD , )2( isS  . 

 

To construct function )(uz , it is enough to find the 

derivative duudW )(  of the complex potential of the 

fictitious flow and Zhukovsky function [7] 

  )()(ln 0 uiur
dW

dzV
=u  








,  (4) 

wherein  VVur 0ln)(  , V  is the fictitious flow velocity 

magnitude,   is velocity vector inclination angle to the x  

axis, 000 baV   is the speed at the point G . 

For the complex potential of the fictitious flow 

 iuW )(  we have the following boundary 

conditions: 
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Fig. 1. Area IEG 

 

Fig. 2. Area uD  
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The variation area of complex potential W  is a rec-

tangle  10,0, 0   iDW  (Fig. 3). 

 

To determine the derivative dudW  of the complex 

potential we conformally map area uD  on the upper half-

plane D  with the points correspondence, indicated in 

Fig. 3, 4, by conversion 
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where )(usn  is Jacobi function, )(ui  ( 4,1i ) is theta 

functions for the periods   and  , 2)0(2

3K , 

)0()0( 2

3

2

2 k  [8]. 

 

With help of the Schwarz-Christoffel formula [9], we 

find the derivative of the function that maps the area D  

at the area of function )(uW : 
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where )2( is  . Taking into account (5), we 

obtain: 
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For the Zhukovsky function )()()( uiuru    we 

have the following boundary conditions 
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On the anode border GFS  the condition satisfied:  
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Zhukovsky function )(u  we search in the form 

  )()(0 ufuu   , where the function 

)()()( 000 uiuru    satisfies the boundary conditions: 
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and has in uD  the same features as )(u , the function 

)(uf  is analytic in uD  and continuous in uD   [10]. We 

constructe )(0 u  by singular points method [7]: 

i
ifuifu

ifuifu

dudu

dudu

bubu

bubu

uu

uu
u

2)()(

)()(
ln

)4()4(

)4()4(
ln

2

1

)4()4(

)4()4(
ln

2

1

)4()4(

)4()4(
ln)(

32

32

11

11

11

11

34

21
0
































































































 

Comparing the boundary conditions for the functions 

 u  and )(0 u , we obtain the boundary conditions for 

the unknown function )()()( uiuuf   : 
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To construct the unknown function )(uf  we map the 

area uD  on the semicircle [10] with help of the function  

 42  uiet    (9) 

Taking into account the boundary conditions (6), (7), 

we may continue the function )(uf  analytically to the ring 

and write it in the form of a Laurent series: 

 










n
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n ecutcuf 42)()(  ,  (10) 

where nc  is real coefficients.  

On the basis of the boundary condition (7), we find 

 

Fig. 3. Area WD  

 

Fig. 4. Area D  
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nn cc  ,  





1

0 )2ch(2
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and by (10) obtain:  

  





1

0 42cos2)(
n

n unccuf  .  (11) 

Condition (8), in view of the representation of the 

function )(uf  (11), has the form 

  )()(coslnln

)2ch()2cos(2
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Multiplying equation (12) for )2cos( n  and then 

integrating it by   within 2,0  , we obtain an infinite 

system of equations for the coefficients nc : 
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Dimensionless coordinates of the points of IEG 
borders we define by (4) according to the formula 
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Finally it is necessary to determine the mathematical 

parameters  , b , d . This can be done by setting 

EA HH  and anode sizes:   EHzzL )0()2(Re   , 

  EHzzh )0()2(Im   . 

Fig. 5 and Fig. 6 shows the results of calculation of the 

anode form for 1.00 a , 9.00 b , 5.0EA HH , and 

various L  and h . One can see there that anode 
boundaries are monotonic in vicinity of cathode corner 

point B . 

 

 

To explain the emerging practice of non-monotonic 
sites on the anode surface near the cathode critical point, 
we consider the problem with taking into account the 
effect of cavitation on the flow characteristics in the IEG. 

When the stationary machining of a workpiece at the 

close vicinity of cathode corner point ( B in Fig. 1), the 
flow velocity increases sharply, and there are conditions 
to form cavities filled with air bubbles. (Fig. 7). In these 
areas, the electrical conductivity is broken and they play 
the role of insulator. This leads to the formation of 
irregularities on the surface to be treated. 

Fig. 7 display in the plane iyxz   the right half of 

the IEG: AG  is the line of symmetry, ABDE  is the 

boundary of the cathode, GF  is anode boundary, EF  is 

electrically insulated section of IEG, A , E  are points at 

infinity. The width of IEG in the neighborhood of A , E , 

equal to AH  и EH , velocity of electrolyte flow is AV  и EV  

correspondingly. The electrolyte flow in IEG direct from 

point A  to point E . At the point B  there is separation of 
the flow from the cathode surface to form a cavity, closes 

at a fictitious plate CS , perpendicular to the face of the 

cathode BD   [6]. The boundary of the cavity BC  and the 

plate CS  are Insulated sections IEG. The flow velocity at 

the boundary of the cavity BC  is constant and equal 0V . 

The origin is at the point B . The feed rate of the cathode 

KV


 orthogonal to x-axis directed along the edge BD . On 

the anode border the condition of stationary 
electrochemical shaping must be satisfied. It is required 
to determine the shape of the anode surface and the 
cavity. 

 

The potential of the electric field in IEG satisfies the 
Laplace equation and the boundary conditions on the 
surface of the electrodes 

1A ,  0K ,  
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Fig. 7. Area IEG 

 
Fig. 6.  

1h , 1) 4L , 2) 5L , 3) 6L  

 

Fig. 5. 

5L , 1) 5.0h , 2) 1h , 3) 5.1h , 4) 2h  
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On the electrically insulated areas IEG  

0
AG

 ,  0 
BCS

,  1 
EF

. 

The area WD  of variation for the complex potential of 

the electrostatic field  iuW )(  for this problem is 

shown in Fig. 8. At the point B  in the plane )(uW  we 

have a split, corresponding to the cavity border boundary 

( 0  ), whose position is unknown in advance. 

 

Let in the plane of the auxiliary complex variable 

 iu   flow area zD  corresponds to the area 

 40,20,   iuDu  (Fig. 9) and 

the function z(u)  conformally maps the domain uD  to the 

domain zD  with the points correspondence indicated in 

Fig. 7, 9, and in the area uD  – )(iaA , )2( ieE  , 

)2( idD  , )2( isS  , )4( pP -,,,,.. 

 

We represent function dudz  as  

du

dW

dW

dW

dW

dz

du

dz g

g

 ,   (13) 

where )()()( uiuuW ggg    is the complex potential of 

the electrolyte flow. 

To construct )(uz  we find the derivative  duudWg )(  of 

the complex potential of the electrolyte flow and the 
Zhukovsky function  

  )()(ln 0 uiur
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dzV
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где  – модуль скорости течения электролита,   – угол 

наклона вектора скорости к оси x . Where 

 VVur 0ln)(  , V  is vector magnitude of the electrolyte 

flow,   is the angle of the velocity vector to x-axis. 

Complex potential )(uWg  of electrolyte flow satisfies 

the boundary conditions  
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The variation range of function )(uWg  is the strip 

 qiD gggWg
  0, , EEHVq   is the output of the 

electrolyte. 

The boundary conditions for the complex potential 

)(uWg  give the opportunity to construct function 

duuWg )(  by the singular points method: 
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Constant N  can be determined by the condition that 

the electrolyte output is equal EEHVq  . With help of 

determining the residue of the function )(uWg  at a point 

E  we obtain 
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For Zhukovsky function )()()( uiurug    we have 

the following boundary conditions: 
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On the anode border GF  the imaginary parts of 

)(uW , )(uWg  are constant. With help of the 

representation (13) for dudz  we can get on the 

boundary GF  next condition^ 
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 what give us the ability to take into account electrolyte 
flow regime and the variability of the current output. 

 

To determine the function gdd   we map area uD  to 

the upper half-plane with the points correspondence, 

 
Fig. 10. Area D  

 
Fig. 9. Area uD   

 
Fig. 8. Area WD  
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indicated in Fig. 9, 10 by the transformation (5). Then by 
means of the Schwarz-Christoffel formula, we find the 

derivatives of functions mapping the area D  to variation 

area for functions W  and gW : 

))()(1)()(1( 2 
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where )()( iaA   , )2()( ieE   , 

)2()( isS   , )4()(   pP . 

Taking into account, that 0
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equation, relating the mathematical parameters:  ,  , 
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By this formulas plus relation (5), we find 
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We find Zhukovsky function )(ug  in the form 

  )()(0 ufuug    where the function 

)()()( 000 uiuru    satisfies the boundary conditions 
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and has in uD  the same features as the )(ug , function 

)(uf  is analytic in uD  and continuous in uD . We construct 

)(0 u  by the singular points method: 
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By means of comparing the boundary conditions for 

the functions  ug  и )(0 u , we obtain the boundary 

conditions for the unknown function )()()( uiuuf   : 
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To construct the unknown function )(uf  we map the 

area uD  to the semicircle with help of the  function (9). 

Taking into account the boundary conditions (14), (15), 

the function )(uf  can be analytically continued to ring 

and be written in the form of a Laurent series (10), 

where nc   are real coefficients. 

On the basis of the boundary condition (15) we find  

00 c , nn cc   

And obtain 
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The boundary condition (16), in view of representation 

)(uf  in the form (17), has the form  
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Multiplying equation (18) for )2cos( n  and integrating 

it by   within 2,0  , we obtain an infinite system of 

equations for the coefficients nc : 
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 We obtain next formula for dimensionless coordinates of 
IEG boundaries: 
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To finish we have to determine the mathematical 

parameters  , a , s , d  e . This can be done by setting 

the speed ratio 0VVA , AE VV , anode dimensions 

  EHzzL )0()2(Re   ,   EHzzh )0()2(Im   , 

and the condition    )4(Im)2(Im  zisz   which fix 

the position of the cathode boundary. 
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Fig. 11-13 shows the calculated shapes of anode and 
cavity surfaces for the different values of parameters. 
One can see there that there is wave section on the 
anode surface and its shape depends on the parameters 
of the electrolyte flow in the IEG even at very small 
relative size of the cavity. To remove this section we need 
an additional machining. One method to eliminate the 
cavity is proposed in [11] 

 

 

 

 

LITERATURE 

1. Kotlyar L. M., Minazetdinov N. M. Modelirovaniye protsessa 
elektrokhimicheskoy obrabotki metalla dlya tekhnologicheskoy 
podgotovki proizvodstva na stankakh s CHPU. Academia, 
Moskva, 2005 

2. Karimov A. KH., Klokov V. V., Filatov Ye. I. Metody raschota 
elektrokhimicheskogo formoobrazovaniya. Izd-vo KGU, Kazan', 
1990. 

3. Zhitnikov V. P., Zaytsev A. N. Matematicheskoye modelirovaniye 
elektrokhimicheskoy razmernoy obrabotki. UGATU, Ufa, 1996 

4. Davydov A., Kozak U., Vysokoskorostnoye elektrokhimicheskoye 
formoobrazovaniye. Nauka, Moskva, 1990. 

5. Sedykin F., Razmernaya elektrokhimicheskaya obrabotka detaley 
mashin. Mashinostroyeniye, Moskva, 1976. 

6. Voronkova A. E., Kotlyar L. M., Minazetdinov N. M. Issledovaniye 
elektrokhimicheskogo formoobrazovaniya s uchotom 
gidrodinamiki kavitatsionnogo techeniya v zazore. Dinamika 
sploshnykh sred so svobodnymi granitsami. Izd-vo 
Chuvashskogo universiteta, Cheboksary, 1996. Ps.66-77 

7. Gurevich M., Teoriya struy ideal'noy zhidkosti. Nauka, Moskva, 
1979. 

8. Uitteker E., Vatson D., Kurs sovremennogo analiza. ch.2., 
Fizmatgiz, Moskva 1963. 

9. Lavrent'yev M., Shabat B., Metody teorii funktsiy kompleksnogo 
peremennogo. Nauka, Moskva, 1987.  

10. Котляр Л. М. Об одном случае струйного течения идеальной 
жидкости. Изв. вузов. Математика, №2, 1976. 


