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ABSTRACT  

Currently, the problem of illegal mining is still acute. Such illegal use of natural resources harms the environment and 

leads to irrational use of mineral resources. Modern methods with the use of remote sensing technologies will effectively 

detect such law violations. In the current study, a method for automatically detection of non-metallic mineral extraction 

sites based on remote sensing data analysis has been developed. The study uses Sentinel-2 satellite images with spatial 

resolution 10 m and 20 m and considers four types of minerals: sand, clay, carbonate rocks and sand gravel mix. The 

spectral indices help to determine the specific quantitative characteristics of the mineral resources. The result is 

probability maps with mineral resourses characteristics in each pixel. In order to determine to which of known classes 

relates the point, you need to find the covariance matrices for all classes and take the class with the smallest Mahalanobis 

distance to the point. Based on the obtained probability maps, an analysis of the applicability of the selected spectral 

indices was performed, as well as a visual assessment of the quality of interpretation. For each spectral channel and 

index, two frequency histograms were created to determine how different the channels values and spectral indices on the 

entire scene and at the reference objects. Each object found by the program was checked for it presence on the studied 

territory. The developed system is a modern, secure, non-contact method for the rational land use monitoring and natural 

resources extracted by open-pit mining study.  
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1. INTRODUCTION  

Open pit mining has a negative impact on the environment. As a result of anthropogenic impact on the environment in 

the area of the quarries, there is a noticeable deterioration of the ecological situation, for example, pollution of air, soil, 

bottom sediments, natural waters, as well as the impact on the flora and fauna1,2. However, today it is not possible to 

abandon the use of open mining. In addition to this, in Russia, there is still an acute problem of unauthorized mining, that 

is, mining without the required licenses. Therefore, it is necessary to carry out constant monitoring of the earth's surface 

in order to prevent violations of legislation in the field of mining and environmental protection. One of the operational 

and effective technologies for obtaining information about the properties and characteristics on the earth's surface is the 

remote sensing technology, which is especially important for our country due to its large area.  

The purpose of the work is to assess the possibility of automated detection of unauthorized common minerals mining 

using Sentinel-2 satellite images. The relevance of the research topic is determined by the large number of objects of 

unauthorized mining in the territory of the Russian Federation, for which it is difficult to provide environmental 

monitoring by traditional methods. The methods used in the study can help automate the system for monitoring of the 

subsoil and unauthorized production sites state in large territories (regions, federal districts). Automation reduces the 

unauthorized quarries detection time and increases the monitoring area, which is important for the natural environment 

preservation. 

1.1 Spectral indices overview 

To work with spectral information, one often resorts to creating "index" images. Based on the combination of the 

brightness values in certain channels, which are informative for the selection of the object under study, and the 

calculation of the "spectral index" in each pixel, an image is built, which often helps to highlight the object under study 

or assess its state3.  

*busmanof@kpfu.ru 

Earth Resources and Environmental Remote Sensing/GIS Applications XII,
edited by Karsten Schulz, Proc. of SPIE Vol. 11863, 118631C · © 2021 SPIE

CCC code: 0277-786X/21/$21 · doi: 10.1117/12.2600315

Proc. of SPIE Vol. 11863  118631C-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 22 Sep 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

 

 

Soil reflectivity is the result of a combination of several factors such as particle size, soil structure, water content, surface 

roughness, organic matter content, minerals based on carbonates, quartz and iron oxide4. Each type of soil has a spectral 

characteristic according to the absorption of certain wavelengths of the electromagnetic spectrum5,6. Many soil types 

spectral indices have been developed from indices for detecting bare soils. The difficulty is that, for example, in 

agricultural areas it can be a natural state ("bare" soil), artificial (for example, construction) or crop rotation7. 

Piyoosh et al. provide an overview of the available indices for bare soils8. Many of them are specially created for 

mapping bare soil and settlements, since their spectral characteristics are quite similar. Vegetation indices also help 

deciphering soil types; combinations of NDVI and various indices for "bare" soils and buildings are often used9,10,11,12,13. 

The Normalized Difference Vegetation Index (NDVI) quantifies the presence of vegetation on the Earth's surface. It is 

the most common index for quantifying land cover problems14.  

The B8/B2 (R82) ratio of infrared to blue is a good indicator of the location of sand dune formation, helping to clearly 

differentiate sand from other materials. It was shown that the generated composite false color image, where the NIR/Blue 

ratio was used in the synthesis as red, NIR as green and Blue as blue, gave better recognition of active sand formations 

compared to the synthesis in natural colors. By classifying the image according to R82 using the quantile classification 

method, a threshold value was obtained in accordance with the distribution of sand in the desert (a value below the 

threshold meant that there was no sand on the selected surface)15. 

The Normalized Differential Sand Index (NDSI) was developed and used to monitor, map, and assess sand dune 

movement in parts of Iraq from 1988 to 2009. The index is calculated as the ratio of the measured intensities in the 

shortwave range. The calculated accuracy of the results of this study was 90.8%, which indicates the effectiveness of the 

created index, its high ability to decipher sand16. 

The Dry Bare Soil Index (DBSI) is used for decipher arid and semi-arid soils interpretation. It was created to find the 

difference between bare dry soil and buildings17. Based on a test performed on samples with bare soil pixels, a DBSI 

value of 0.26 and above was designated as bare soil, and areas with lower values - as other classes. Subtracting the NDVI 

in the DBSI index formula significantly improves the accuracy of the index and disambiguates in areas with high NDVIs 

(areas of high vegetation), which are often confused with built-up areas. The overall accuracy of the DBSI is 92%. 

Supe et al. used the DBSI index for sand deposits detection on photovoltaic solar panels18. DBSI has a relatively higher 

potential (accuracy 89.6%, Kappa 0.77) in detecting of sand deposits in coparison to other indicators considered in the 

study. The combination of inputs such as DBSI together with NDSI also results in high performance of sand detection 

with 80% accuracy. 

Two indices – Salt Minerals Index (SMI) and InfraRed Index-Short Wave InfraRed 1 (IRI_SWIR1) – are considered for 

the auxiliary decision tree classifier in order to build a land cover map for southeastern Tunisia19. The square root 

function has been used in SMI and IRI_SWIR1 to better differentiate areas with the same mineral content. 

The Crust Index (CI) is based on the normalized difference between the red and blue spectra. CI is sensitive to soil 

characteristics, therefore it is able to detect various lithological and morphological units20. 

The Simple ratio Clay Index (SRCI) is defined as the ratio of the reflectance coefficients in two bands of the short-wave 

infrared range. Bousbih et al. was found that these spectral zones are most sensitive to clay content in dry seasons21. 

The Brightness Index (BI) combines information from the red and near infrared ranges. This index indicates the change 

in the average level of reflectivity. BI is often used to display soil characteristics such as roughness, texture, salinity and 

moisture. Dry soils with a low clay content tend to be highly reflective, while dark soils have low radiometric values in 

both bands due to high clay content. BI is used to find the difference between light and dark zones of soils, which 

correspond to sandy and clay soils21. 

The Normalized Difference Built-up Index (NDBI) detects urban areas and bare soils well by a sharp increase in 

reflectivity in the range from Red to SWIR1. This index is negative for water bodies, positive for urban areas and bare 

soil, and zero for forest and agricultural land9.  

Soil Adjusted Vegetation Index (SAVI) is a conversion method that minimizes the effects of soil brightness using red 

and near infrared wavelengths. When the index is equal to zero, it is considered as a bare soil indicator22. 
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Bare Soil Index (BSI) – an index that combines 4 ranges to measure changes in soil properties23. This index is based on a 

combination of NDVI and NDBI9. The shortwave infrared and red spectral bands are used to quantify the mineral 

composition of the soil, the blue and near infrared spectral bands are used for better detection of vegetation. BSI has the 

lowest correlation with the NDVI index and the highest with DBSI24. High values of BSI and DBSI indices characterize 

bare soil, moderate values - built-up area, and low values - vegetation. BSI has been used in forest research to find the 

difference between bare soils and other land cover types7,23,25, as well as for bare soil sites mapping and monitoring13,26. 

2. MATERIALS AND METHODS 

2.1 Study area 

Common nonmetallic minerals are the raw material base for the development of hydrocarbon production facilities, road 

construction and building materials production, therefore they are an important component of the Russia resource 

potential. The minerals considered in the work (sand, sand gravel mix, clays, carbonate rocks) are included in the list of 

common minerals of the Republic of Tatarstan (Russia). 

The study considers the territory of the Republic of Tatarstan with an area of 100×100 km2. Tatarstan is located in the 

center of the European part of Russia on the East European Plain, at the confluence of the two largest rivers – the Volga 

and the Kama. The territory of the republic stretches from west to east for 400 km, from north to south for 250 km and is 

a plain in the forest and forest-steppe zone with uplands. About 18% of the territory is covered with mixed forests. 

Tatarstan is rich in water resources. The soils are very diverse – from gray forest and podzolic soils in the north and west 

to various types of chernozems in the south of the republic27. 

The choice of the territory is due to the availability of ground data, as well as one of the scenes (39UVB) of the Sentinel-

2 satellite data. We used Sentinel-2 images of the second processing level (Level-2A) on 06/21/2019 and 09/12/2019. 

Data on a number of mining sites for nonmetallic minerals were obtained as a result of field studies in 2019 and are 

presented in the form of a table indicating the type of mined raw materials, approximate coordinates, description of the 

geographical location for each quarry. 

2.2 Pre-processing 

For each of the 2 images, using the utilities of the GDAL library, all channels were brought to the best resolution (10 m) 

and saved into the one GeoTiff file. Further, for each image, 12 raster layers were calculated with the values of the 

spectral indices presented in Table 1. As a result, two composites were constructed – for 06/21/2019 and for 09/12/2019, 

consisting of 22 layers: 10 channels and 12 spectral indices.  

2.3 Training samples creation 

To apply recognition algorithms (supervised classification, supervised classification), it is necessary to have a training 

sample for each type of target objects (quarries). Based on the training sample, the recognition algorithms are tuned, 

therefore the quality of the formed sample is critical for successful recognition. 

To create training samples for 4 types of materials (sand, sand gravel mix, clays, carbonate rocks), field observations 

data of 2019 were used. On these data, a vector layer was created with reference quarry locations - 31 polygonal objects.  

Further, for the pixels corresponding to the reference locations of various types of quarries, values were obtained in 22 channels 

for each of the 2 analyzed composites. For processing, a program was written in the R language28. At the output, the program 

creates a text file for each composite containing a multidimensional sample, were lines correspond to pixels. Minerals type, 

reflection coefficients values in 10 spectral channels and 12 spectral indices values are given for each pixel (Table 1). In total, 8 

training samples were formed – for 4 types of quarries based on 2 Sentinel-2 satellite data composites. 

2.4 Mahalanobis distance classification 

To solve the main task of the work, the methods of supervised classification (classification with a teacher) were applied. 

Our task is a special case of classification, one of the main problems in images interpretation – the search for objects in 

the presence of only "positive" information, that is, only data on the locations of the target object or phenomenon. This 

problem is solved using the similarity of spectral characteristics either by empirical methods (such as the nearest 

neighbor method), or by purely parametric methods, when the brightness probability distribution in the phenomenon 

placement is known. Two supervised classification methods were used to detect mining sites using Sentinel-2 data: the 

Mahalanobis distance and the maximum entropy. 
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Table 1. Spectral indices. 

Index Index formula 
Index formula in the spectral 

channels Sentinel-2 notation 

NDVI 
  

R82 
  

NDSI 
  

DBSI 
  

SMI 

  

IRI_SWIR1 

  

CI 
  

SRCI 
  

BI   

NDBI 
  

SAVI 
  

BSI 
  

 

The Mahalanobis distance method is used when spectral features of different classes can be similar and their brightness 

ranges overlap. According to the decision rule, a pixel belongs to the reference class, the distance of Mahalanobis to the 

center of which in the feature space is minimal. In our case, with one-class classification (detection), the Mahalanobis 

distance is recalculated into the probability of a pixel belonging to a class using the chi-square distribution. 

This method was implemented using a program written in the R language. The program for a fixed type of quarry at the 

first step calculates the mean vector µ and the covariance matrix COV using the corresponding training sample. Then it 

loads the prepared composite and in each pixel calculates the Mahalanobis distance to the training set, recalculating it 

into the probability of the pixel belonging to the detected type of quarry.  

As a result, for each of the 2 composites, 4 raster files were created, in the pixels of which the values of the probability of 

the sand, sand gravel mix, clay, carbonate rocks quarry presence are recorded, respectively. 

2.5 Classification by the maximum entropy method 

The result of the maximum entropy method is not just a classifying solution, but a probability value for a given class. 

The set of weights α is found by numerical optimization using training data29,30. To apply the maximum entropy method, 

we used the MaxEnt program31. This software was developed to simulate ecological niches and the distribution of plant 

species in the study area. This machine learning algorithm predicts the presence of a species in a geographic space based 

only on the points where the species was observed, excluding the locations of its documented absence32. Based on the 

analysis of a set of georeferenced observation sites of a particular type (a list of coordinates of points where the presence 
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of a species is marked) and a set of raster layers with environmental factors (for example, temperature, precipitation, soil 

properties, etc.), the program creates, using the maximum entropy method, a model of distribution of probabilities of a 

given species presence. The program also generates a raster layer, where each terrain cell has the predicted suitability of 

conditions for the species. A high capability value in a particular grid cell indicates suitable conditions for that species. 

We are looking for locations with spectral characteristics similar to those of the "training" quarry sites. In our case, a set 

of georeferenced quarries of a specific type of minerals (locations from the corresponding training sample) and a set of 

satellite data raster layers (10 spectral channels and 12 spectral indices) are analyzed for the study area. 

3. RESULTS AND DISCUSSION 

3.1 Analysis of target objects spectral properties  

The spectral properties of the recognized objects were studied based on training samples. For this purpose, the graphs of the 

spectral curves were built. For each of the 2 images taken on different dates, the reflectance values in 10 spectral channels 

(Sentinel 2) in pixels with a fixed type of quarry were summarized using the average and displayed on graphs (Fig. 1). 

 

Figure 1. Reflectance values in 10 spectral channels of the Sentinel 2. 

The resulting graphs show the spectral features of different types of mined materials: sand, sand gravel mix, clay, 

carbonate rocks. It can be seen that for all analyzed materials, the reflectivity increases with increasing wavelength. At 

the same time, the reflection coefficients in all channels of the June image for sand and sand gravel mix are practically 

equal. In the same image, the reflectivity of carbonate rocks exceeds that of other materials over the entire spectral range. 
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In the September image, the reflectance values of clay and sand in the blue, green and red channels are nearly identical, 

as are sand gravel in the near infrared (b8) and narrow near infrared (b8A). Similar to the June image, clay has the lowest 

reflection coefficients in all channels, and carbonate rocks have the highest, almost everywhere. Comparing the two 

graphs, it can be seen that the reflectivity of all 4 types of minerals is higher in June. Differences between reflectivity are 

also more pronounced in the June graph (except for sand and sand gravel mix), while in the September graph the spectral 

curves are close and often intersect. 

The spectral indices of the analyzed object types have rather close values, especially the SAVI and SRCI indices in the 

June image and the NDSI in the September image. The most contrasting difference was shown by the R82 index. Its 

highest values have a sand gravel mix in June and sand in September. The values of the DBSI and CI indices are equally 

ranked by mineral type in both images. According to the BI values, it is noticeable that the texture, salinity and moisture 

content of the studied minerals have more similar states in the autumn period. 

Spectral plots of 4 types of minerals indicate the difficulty of recognizing them by remote sensing data, due to the 

similarity of their spectral properties, which can lead to an incorrect decision about the type of detected material. 

Moreover, it is a priori clear that the spectral properties of target objects are not specific enough. They are quite similar 

not only to each other, but also to the properties of a number of other types of surface in the study area, for example, 

open ground, some open soils (without vegetation) etc. To understand the measure of their specificity, frequency 

histograms of values in pixels of the entire territory and training samples (within the boundaries of reference polygons) 

were constructed. Histograms for the sand gravel mix are shown in Fig. 2-3. Next, the "separability" of the histograms 

was visually analyzed for each spectral channel and each index. 
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Figure 2. Frequency histograms of the spectral channels values for the entire territory (blue) and for the training sample 

(green), sand gravel mix. 
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Figure 3. Frequency histograms of the spectral indicies values for the entire territory (blue) and for training sample (green), 

sand gravel mix  

The analysis showed that for sand and sand gravel mix, both in June and September, the greatest difference from the 

background values is observed in channels b2, b3, b4, b12 (the difference is more contrast in the June image), slightly 

less in channels b5, b11. The histograms for near infrared channels b6, b7, b8, b8a do not show separability. There is no 

separability for BI, NDBI, SRCI, IRI indices or it is bad both in June and in September. BSI, DBSI, SAVI, CI and R82 

have bad indexes in September, better in June. Indices NDVI, NDSI, SMI, DBSI (June), SAVI (June, sand gravel mix) 

showed the best difference between their values in pixels of sand and sand and gravel mix from the background. 

Histograms for clay and carbonate rocks show similar specificity for both channel values and indices. The best 

separability for clay is observed in channel b4. Carbonate rocks, unlike other types, have practically the same histograms 

of values in spectral channels in summer and autumn. In addition, the separability of histograms for carbonate rocks in 

the channels of the visible spectrum zone (b2, b3, b4) is higher than for other types. 
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3.2 Analysis of the spectral indices applicability for quarries recognition 

Histograms for various types of minerals showed that there is not a single spectral index clearly separating the 

frequencies of values for the entire territory and for training samples. The frequency histograms are superimposed on 

each other, therefore, the intersection interval contains both the values of the target objects (minerals quarries), and other 

types of land cover in the study area. It may also be objects that are not included in the training sample (those that are to 

be detected), but their part is deliberately extremely small for a territory of this size. 

To assess the suitability of spectral indices for recognition purposes, a threshold classification was applied. As an 

example, the results (06.21.2019) of the DBSI spectral index (best histograms separability) evaluation for sand 

recognition are given (Fig. 4). When building maps, thresholds are set in the gradient palette based on histogram values. 

Recognition results are displayed in red. It can be seen that, in addition to the training quarries, too many false detection 

sites were identified. On the right in Figure 4, fragments are shown that demonstrate an index response on a training 

sample object (above) and one of the many false positives (below). 

 

 

Figure 4. Gradient map of the DBSI index (06/21/2019). Examples of correct (top right) and false (bottom right) quarry 

recognition. 

 

Based on the results of the analysis, it can be concluded that the spectral indices taken separately do not have the 

required sensitivity and do not provide an adequate estimate of the location of the minerals quarries. Experiments have 

shown that the simultaneous use of two or more indices gives a slightly better result. After a series of experiments in 

order to increase the detection efficiency, we decided to use a composite for quarry recognition, which includes as the 

initial spectral information - 10 image channels as well 12 spectral indices.  
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3.3 Assessing the contribution of input variables to forecasting. 

In our case, a set of georeferenced quarries of certain minerals (reference locations from the corresponding training 

sample) and a set of satellite raster layers (10 spectral channels and 12 spectral indices) are analyzed. 

Composite 10 channels and 12 spectral indices were loaded in the MaxEnt parameters section with information about the 

environment. In the "samples" section – a file with sample quarries coordinates. 

As a result, for each of the 2 composites (June 21, 2019 and September 12, 2019), probability distribution models were 

obtained for each type of quarry (a total of 8 rasters) with detailed reports containing statistical analysis of accuracy, an 

estimate of the input variables contribution to forecasting. According to MaxEnt estimates, the following spectral 

variables made the most significant contribution to forecasting for different types of quarries (Table 2). 

Table 2. Contribution of spectral variables to forecasting the types of quarries (in descending order of contribution). 

Quarry type 06/21/2019 09/12/2019 

Sand b4, CI, NDSI b4, CI, NDBI 

Sand gravel mix b4, CI, b2 b4 

Clay b4, NDVI, NDSI b4, b11, NDSI 

Carbonate rocks b4, SMI b2, b4, b3 

These results are consistent with the histograms analysis. It can be noted that the greatest contribution to recognition is 

made by the spectral data of the red spectrum range (b4). 

3.4 Recognition quality assessment. 

After obtaining the resulting rasters with the quarries probabilities, our task is to understand whether the technology 

being developed is working well. To assess the recognition quality, ground data and the recognition result are compared. 

Both reference objects of the training sample and the data of an independent (not involved in training) control sample 

can be used. Errors and indicators of recognition accuracy are calculated (commission, commission, user accuracy, 

manufacturer accuracy, etc.). That is, they quantify how well objects of a given type are detected: the percentage of 

correctly recognized, not recognized, falsely recognized, etc. 

In our case, the training sample is too small, and it was not possible to divide it into two parts - for training and for 

control. Therefore, the quantitative indicators of the recognition quality were evaluated on reference objects, including 

using cross-validation for MaxEnt. The values of errors depend on the probability threshold value for decision making: 

the probability in a pixel is below the threshold – there is no target object, above – there is an object. The higher the 

threshold value – more gaps, the less – more false positives. Fig. 5 shows the values of the ommission errors (missing 

targets, blue) and the predicted area (proportion of the study territory area, red) depending on the threshold value 

(probability, in%) for recognition by the MaxEnt method. 

Analysis of MaxEnt errors was carried out using ROC curves (Fig. 6). Since we only have find data, but no missing data, 

a fractional predicted area is used instead of a commission error. 

The closer the red line is to the upper left corner, the better the classifier predicts the reference objects. The quantitative 

interpretation of ROC is given by the AUC (area under curve) indicator. The higher the AUC, the better the classifier. 

Using only individual spectral indices results in too many false positives. The result is significantly better when using all 

spectral information (composite). 

A separate task was to detect quarries that were not included in the training sample. Since there are not so many pixels 

with a nonzero probability on the resulting rasters, a visual assessment of the recognition adequacy is possible. For this, 

an RGB image was synthesized using the Sentinel-2 channels (b4, b3, b2), and a raster of probability (for example, sand) 

was displayed in the gradient palette. The final quality assessment was carried out using detailed Google or Yandex 

satellite images. In the study area, 25 “new” quarries were found that did not belong to the training sample. Below in 

some of the results are shown (Table 3), allowing to draw a conclusion about the efficiency of the developed technology. 

Comparison of the recognition results obtained by different methods (Mahalanobis distance and the method of maximum 

entropy) did not show the advantages of a particular method. Recognition from summer (June 21, 2019) and autumn 

(September 12, 2019) images also gave comparable accuracy of the results. 
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Figure 5. Ommission errors for sand (left) and carbonate rocks (right) by remote sensing data (06/21/2019). 

 

 

 

Figure 6. ROC curves for clay and carbonate rock quarries recognition by the MaxEnt method by remote sensing data 

(06/21/2019 (left) and 09/12/2019 (right)). 
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Table 3. Quarry locations assessment 

Quarry probability 

 
0 0.5 1 

Sentinel-2 RGB composite  Google/Bing/Yandex image 

Sand 

   
Sand gravel mix 

   

Clay 

 
  

Carbonate rocks 

   

4. CONCLUSION 

Based on the results of the study, the following conclusions can be drawn: 

 Separately, spectral indices cannot effectively predict the locations of mineral quarries. Composites of multiple 

indexes must be used. 

 The red spectrum range makes the greatest contribution to recognition. Spectral channels and indices composite 

allow minimizing of false positives during recognition. 

 Satellite images seasonality (summer-autumn) does not significantly affect the accuracy of quarries detection. 
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 Despite the fact that the spectral properties of the studied types of quarries are not specific enough and are similar to 

the properties of a number of other objects in the study area, the recognition quality using the developed technology 

can be considered quite acceptable, especially taking into account the area of the studied territory and the specific 

sizes of the detected objects. 

 Information on the discovered quarries coordinates allows the interested organizations to either carry out an on-site 

or in permits register check for unauthorized development of minerals. 

The introduction of the applied methods will create a modern science-based approach to the detection of unauthorized 

common minerals extraction places by the supervisory authorities. 
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