STATES ON SYMMETRIC LOGICS: EXTENSIONS

Airat Bikchentaev* - Mirko Navara**
Dedicated to Professor Anatolij Dvurečenskij
(Communicated by Sylvia Pulmannová)

Abstract

We continue the study of symmetric logics, i.e., collections of subsets generalizing Boolean algebras and closed under the symmetric difference. We contribute to several open questions. One of them is whether there is a non-Boolean symmetric logic such that all states on it are

 \triangle-subadditive.© 2016
Mathematical Institute
Slovak Academy of Sciences

1. Motivation

Orthomodular posets and, in particular, orthomodular lattices appear as algebraic structures of events in quantum mechanics, cf. $[6,7,15,16]$. The natural requirement that the event system must allow "sufficiently many" states leads (in its stronger form) to orthomodular posets which can be represented as collections of subsets of a set generalizing σ-algebras [6]. In such collections, the set-theoretical symmetric difference can be introduced as an additional operation [13] which cannot be derived from the lattice-theoretical operations and orthocomplementation [8]. Thus we arrive at the notion of a symmetric logic.

During the study of symmetric logics, many questions remained open (cf. [1,2]). Here we answer some of them. We introduce necessary additional constructions with symmetric logics in Section 3 . In Section 4, we clarify under which conditions a symmetric logic becomes a Boolean algebra.

2. Basic notions

2.1. Concrete logics

Let Ω be a non-empty set. By 2^{Ω} we denote the set of all subsets of Ω. For $n \in \mathbb{N}$, we define $\Omega_{n}=\{1,2, \ldots, n\}$.

Let us recall [6] that a collection $\mathcal{E} \subseteq 2^{\Omega}$ of subsets of Ω is called a concrete (quantum) logic if the following conditions hold true:

[^0]
[^0]: 2010 Mathematics Subject Classification: Primary 06C15; Secondary 60A05, 60A10, 60B15, 81P10.
 Keywords: orthomodular poset, quantum logic, state, symmetric difference, Boolean algebra, set representation. The second author was supported by the Czech Technical University in Prague under project SGS12/187/OHK3/3T/13.

