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Abstract— Steady, 2-D, saturated, one-phase flow of a fluid 

(water, oil) from an injection to production well is analyzed by the 
methods of complex variables. The aquifer (formation) is 
homogenous and of a constant thickness but the vicinity of the well 
consists of two circular zones of much higher and lower 
permeability than that of the aquifer. Refraction of streamlines 
takes place on the two circular interfaces. The conjugation 
conditions (pressure and normal flux continuity) are exactly met 
and  three fields of Darcian velocity in the three zones are exactly 
written in terms of well-converging series. The flow net and 
isotachs are reconstructed by computer algebra routines.    
 

Index Terms— Pumping-injection well, skin-factor, 
heterogeneous permeability, topology of refraction,   
 

I. INTRODUCTION 
in reservoir engineering/groundwater hydrology 
formation/aquifer rock adjacent to a borehole is often 

damaged by mud liquids during  well drilling or stimulated 
by various mechanical or chemical agents during well 
completion/development/rehabilitation (fracturing, acid 
injection, jetting, etc. - aimed at increasing the permeability 
of the vicinity of the well [1],[2]). As result, an originally 
homogeneous or almost homogeneous bulk porous medium 
has a sink/source (well) surrounded by a sheath of a porous 
(or fractured) material, whose permeability is significantly 
(sometimes, orders of magnitude) higher or lower than that 
in the undamaged (pristine) pre-stimulation conditions.  
Standard engineering formulae used in assessing well 
productivity in terms of injected-abstracted volumes and 
pressure/velocity fields either consider no well sheath or 
assume a simple “skin-factor” for a sheath placed 
concentrically with the sink. Obnosov et al. [3] obtained 
explicit analytical solutions which take into account an 
eccentric heterogeneity close to the well and illustrated that 
the flow refracted in such zones becomes intricately 
complicated. Obnosov [4] obtained an explicit solution for a 
Darican flow induced by arbitrary singularities (multipoles) 
and refraction by an eccentric annulus, which models the 
well sheath. 
 In this paper we consider a production well placed 
eccentrically with its gravel pack, which is also eccentrically 
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located with respect to a formation damage, both embedded 
into a rock matrix. The corresponding zones are denoted by 
S3, S2 and S1.  Fig.1 shows a cross-section of the formation 
perpendicular to the well axis.  
 

 
Fig.1 Formation cross-section perpendicular to the well axis 

 
We assume that the well is perfect, i.e. a barefoot one is 

completely filled with a production fluid, there is no 
entrance resistance into the borehole due to smallness of 
perforations (if the well has casing), there is no pressure 
drop along the well axis and the inflow rate (per unit length)  
into the well, Q, is a constant value. The damaged zones and 
gravel pack are assumed to be perfectly circular in cross-
sections of Fig.1a and the radii of the circles are  r1 and r2, 
respectively, r1>r2. The origin O of Cartesian coordinates 
(x,y) coincides with the centre of the damage circle (Fig.1). 
Fluid flow is assumed to be one-phase, 2-D, Darcian and – 
owing to the full saturation of all three zones in Fig.1 
capillarity is ignored. Phase permeabilities (and hydraulic 
conductivities k3, k2, and k1) are constant within each zone 
but jump across the circular interfaces in Fig.1. Fluid 
injection takes place through another well placed in zone S1. 
From mass conservation the injection rate of this well is –Q, 
i.e. of the same magnitude but opposite sign compared to the 
abstraction well. Far away from the dipole in Fig.1 the  fluid  
is quiescent. 

The coordinates of the wells in Fig.1 are (xa,ya) and 
(xi,yi). Schematically, the flow direction is indicated by 
arrows in Fig.1. The objective of this paper is to analyze the 
refraction pattern which depends on r1, r2, eccentricity e1, 
(xa, ya) and (xi, yi),  Q, and hydraulic conductivities.   
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II. MATHEMATICAL MODEL AND SOLUTION 
We introduce a complex physical coordinate yixz +=  

and use overbars for denoting complex conjugations. We 
will use the terminology of groundwater hydrology [5] and 
drop obvious equivalent expressions relevant to reservoir 
engineering. 

The Darcian velocities  within all three zones 

obey the Darcy law: where are the 

horizontal and vertical components of the Velocity vector, 
and  are the gradients of hydraulic heads  

 in each zone. Here  is harmonic function and 

the complexified Darcian velocity  is an 

antiholomorphic one. Complex-conjugated with 
 
is 

the holomorphic function 
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The refraction conditions along the circles  in fig.1 
consists of the continuity of the corresponding heads hi and 
of the normal components of velocity (continuity of pressure 
and flux). 

 
The wells in Fig.1 act as a line sink and source (simple 

poles) i.e. in their vicinity the velocities  behave as 
)](2/[ 2,1EzQ −πm , where , . 31 SE ∈ 12 SE ∈

The final solution ([4]), adapted to our specific case and 
with slightly changed designations, is: 
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We wrote a code in Wolframs’ Mathematica [6] with 
summation of the four series in (1). The truncation criterion 
was selected based on the conjugation conditions of 
dimensionless velocity  on the two circles, i.e. the 
discrepancy in the normal and in the linear relation between 
the tangential components of the velocity, as the circles in 
Fig.1 are crossed, should be less than a given constant 

1/ kVi

ε  (in 
most computations we selected . This condition 
we tested at 13 angularly equidistant points on each circle. 
Depending on the problem parameters we retained 10-150 
terms in the series. 

610−=ε

III. RESULTS 
 

Fig.2a-b shows the flow net for 1=1, 2=0.1, 3=10, 
r1=1, r2=0.2, =−0.7, E1=−0.7, Q=1 and two locations of the 
injection well  E2=10 and E2=1.5. 
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Fig.2a. Flow net for for 1=1, 2=0.1, 3=10, r1=1, r2=0.2, =−0.7, 

E1=−0.7, Q=1 and E2=10 
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Fig.2b Flow net for for 1=1, 2=0.1, 3=10, r1=1, r2=0.2, =−0.7, 

E1=−0.7, Q=1 and E2=1.5 
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Fig.2c Flow net for 1=1, 2=0.1, 3=10, r1=1, E2=1.5, Q=1,  =0.2, 

E1=0.4, and r2 .7. =0

Fig.2c presents the results for 
 

1=1, 2=0.1, 3=10, r1=1, 
E2=1.5, Q=1, positive eccentricity of the gravel pack and 
sink towards the injection well with =0.2, E1=0.4, and 
relatively thin damage zone with r2=0.7. The stream lines 
and equipotential lines are reconstructed by Mathematica 
using its StreamPlot routine in solid (arrowed) and dashed 
lines, correspondingly.  

 

Fig.3a. Contour plot of isotachs for the example in Fig.2a 
 

Fig.3a illustrates the isotachs obtained by the 
ContourPlot routine and the same values of parameters as 
in Fig.2a. In light-coloured zones of Fig.3a velocities are 

high and in dark zones – low. Fig.3b presents the isotach 
contours for the same parameters, but very mild damage of 
k2=0.9. As is clear from comparisons of Fig.3a and Fig.3b, 
the formation damage induces a low-velocity zone between 
the two wells. 

 

 
Fig.3b Contour plot of isotachs for the example in Fig.3a but k2=0.9. 

 
The lines of constant velocity are important in evaluation 

of suffusion (internal erosion) induced by flow [5]. If the 
magnitudes of the velocity (hydraulic gradient) exceed a 
certain limit, then fine solid particles start to be dislodged 
and transported to the gravel pack and eventually to the 
borehole of the production well. 

There is no limitation on the position of the singularities 
on the x-axis in Fig.1. In this paper we used these loci of the 
dipole in order to compute the velocity distribution and 
travel time of marked particles along the “shortest” path 
between the wells (a segment of the x-axis). For arbitrary 
position of the wells the shortest streamline in Fig.1 is not 
known in advance.  
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