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Abstract
The paper presents the results of molecular dynamics study of the viscosity of
nickel-containing binary metal melts for a wide range of temperatures, including the region of
the equilibrium liquid phase and supercooled melt. It is shown that the temperature
dependencies of the viscosity of binary metal melts are described by the Kelton’s
quasi-universal model. Based on the analysis of the viscosity coefficient of the binary melt
composition within the framework of the Rosenfeld’s scale transformations, it has been
established that to correctly describe the viscosity of binary/multicomponent metal melts
within the framework of entropy models, it is necessary to use a more complex representation
of the excess entropy Sex than in the approximation of pair correlation entropy S2.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Viscosity is one of the most important characteristics that
determines relaxation features, thermophysical and transport
properties of a substance; has a high sensitivity to struc-
tural transformations and phase transitions, and also plays an
important role in the kinetics of chemical reactions [1]. At
the same time, the temperature dependence of the viscosity
determines the so-called glass-forming ability of the system
[2, 3]. In general, the viscosity of a liquid varies with its
temperature and composition and can be measured experi-
mentally using viscometry techniques [4], or calculated by
classical/quantum molecular dynamics simulations [5], or
obtained by means of semi-empiric or microscopic theoret-
ical models [2, 6, 7]. Indirect experimental techniques, such
as inelastic scattering of neutrons, x-rays, and Brillouin light
scattering, are characterized by significant inaccuracies in
determining the transport coefficients (diffusion, viscosity)
[8]. At the same time, the determination of viscosity using

∗ Author to whom any correspondence should be addressed.

viscometry (capillary viscometry method, torsional vibration
method, ultrasonic method, etc) is associated with significant
difficulties, due primarily to low sensitivity and imperfection
of experimental techniques [9, 10]. Another alternative in find-
ing the viscosity is the methods of classical and quantum-
mechanical ( first-principle) molecular dynamics simulations,
which are characterized by a number of serious limitations:
first—the accuracy and predictive ability of the interatomic
interaction potentials; second—presence of approximations in
the exchange–correlation potential and the limited (short) time
scales of simulations [11].

One of the key problems in classical molecular dynam-
ics simulations of metallic systems is the choice of the inter-
atomic interaction potential [12]. Thus, for example, pair
potentials incorrectly take into account the peculiarities of
metallic bonds, and therefore such potentials are rarely used
in the study of the properties of metallic systems. Further,
recently we have shown that in the case of liquid lithium
near the melting temperature, the spherical pseudopotential
provides a better agreement with experimental data on elas-
tic and inelastic x-ray scattering as compared to the known
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many-particle potentials of the embedded atom method
(EAM)-type [13]. At the same time, semi-empirical many-
atom potentials based on the EAM and its modification
(MEAM) are the most successful for describing the structural
features and dynamic properties of the polyvalent metallic
systems [14]. The limitations of an EAM-potential are well-
known: it works properly for purely metallic systems with no
directional bondings; it does not treat covalency or significant
charge transfer; and it does not handle Fermi-surface effects.

Despite the fact that first-principle molecular dynam-
ics methods can overcome all these limitations, they have
also some limitations. The most modern quantum-mechanical
molecular dynamics methods are based on the density func-
tional theory [11]. In this approach, the primary equations
are cast in terms of the electron density rather than on the
wave functions. However, although the density functional the-
ory is well-developed, it remains the case that for certain
components (particularly the exchange and correlation terms)
exact functionals are not available. So, for example, to find
the exchange–correlation energy, such approximations are
used as ‘local density approximation’, ‘generalized gradient
approximation’ and others [11].

There has been no comprehensive microscopic theory on
the viscosity of liquids so far because of their structural
complexity. Therefore, many calculations were performed to
predict the viscosity of multicomponent alloys using thermo-
dynamic viscosity models [15]. However, a molten alloy can
not be considered as an ideal mixture, and there are often
discrepancies between predictions and experiments [16–18].
On the other hand, it is also difficult to define the thermody-
namic parameters within the thermodynamic viscosity models
for multicomponent melt systems [19]. Thus, the refinement
of absolute values and the development of universal models
of viscosity is still one of the important problems of modern
thermal physics and condensed matter physics [20].

Nickel-containing binary metal melts were previously stud-
ied by experimental, theoretical and numerical methods using
methods of classical and first-principle molecular dynam-
ics simulations. In reference [21] using x-ray diffraction, the
structural features of binary Al–Cu and Al–Ni metal melts
were investigated. The experimental results of the viscosity of
binary Al–Ni and Fe–Ni metal melts are reported in references
[22–26]. A theoretical analysis of the viscosity of aluminium-
based binary alloys using semi-empirical models is presented
in references [27, 28]. By using ab initio molecular dynam-
ics simulations the transport properties and the validity of the
Stokes–Einstein relation in Al-rich liquid alloys have been
studied in reference [29].

The purpose of this study is to determine the absolute val-
ues of viscosity for aluminum–nickel and iron–nickel melts,
as well as to check the applicability of various quasi-universal
models to describe the viscosity of binary metal melts.

2. Experimental method

Binary Al–Ni alloys were prepared by melting highly pure alu-
minum and the Al100−xNix (where x = 1 at.% and 15 at.%)

alloys in a viscometer furnace in an atmosphere of high-
purity helium at a temperature of T = 1373 K and isother-
mal exposure for at least 1 hour. When smelting alloys with
nickel content from 1 to 9 at.% and with nickel content less
than 1 at.% the alloy of Al85Ni15 and Al99Ni1 was used
respectively. The ligatures were obtained by melting metals
in a resistance furnace at a residual pressure of 10−2 Pa and a
temperature of T = 1943 K for 30 min. The initial components
were highly pure aluminum (99.999 wt.% Al) and electrolytic
nickel(99.5 wt.% Ni). The nickel content in the alloys was
determined by atomic emission spectroscopy by means of a
SPECTROFlame Modula D spectrometer. The kinematic vis-
cosity of the melts was measured on an automated installation
by the torsional vibration method [30, 31]. The measurements
were carried out in a protective atmosphere of purified helium.
Cylindrical cups made of Al2O3 with an inner diameter of
17 mm and a height of 40 mm were used as crucibles. A lid
was placed in the crucible over the sample. The lids were made
from Al2O3 cups with a height of 12 mm and an outer diame-
ter 0.4–0.6 mm smaller than the inner diameter of the crucible.
The design of the crucible with a lid is given in reference [32].
The lid can move along the vertical axis of the crucible, com-
pensating for the changes of the sample volume. When per-
forming torsional vibrations, the lid moves together with the
crucible, creating an additional end surface of friction with the
melt. The crucibles and lids were preliminarily annealed in a
vacuum furnace at a residual pressure of 10−2 Pa at a tem-
perature of T = 1923 K and isothermal exposure for 1 hour.
The use of a crucible with a lid during viscosity measurements
makes it possible to exclude the influence of film effects and
wetting phenomena on the measurement results [33]. Before
measurements, all samples were remelted at a temperature of
1473 K in a viscometer oven, followed by cooling to room
temperature. Temperature dependences of the viscosity were
obtained in the modes of heating from the liquidus tempera-
ture of the alloy to 1473 K and subsequent cooling until the
beginning of crystallization of the melt. The melt was isother-
mally exposed for 15 min at each temperature before the start
of measurements. The values of the kinematic viscosity and
the error in its determination were calculated according to the
methods described in references [34, 35]. The general relative
error at measuring the viscosity did not exceed 4%, while the
error of a single experiment does not exceed 2%.

3. Details of simulation and numerical calculation

The molecular dynamics simulation of nickel-containing
metal melts Al(100−x)Nix and Fe(100−x)Nix was carried out in
an NpT-ensemble at a pressure of p = 1.0 bar for the tem-
perature range T = [1200 : 2000] K, which covers the region
of the equilibrium liquid phase and the region of the super-
cooled state (see the phase diagram in figure 1). All simulations
were performed using the LAMMPS package [37]. The sys-
tems under study consisted of N = 32 000 atoms allocated in
a cubic cell with periodic boundary conditions. Interactions
between particles were carried out using the EAM-type poten-
tials [38–40], respectively. The EAM represents the potential
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Figure 1. Phase diagrams for the aluminum–nickel Al(100−x)Nix

system (left column) and the iron–nickel Fe(100−x)Nix system (right
column) [36]. The investigated region of the phase diagram in this
study is highlighted in rose color.

energy E of the systems in the form

E =
1
2

∑
i, j

Ψi j(ri j) +
∑

i

Fi(ρi). (1)

Here, Ψi j(ri j) is the pair interaction energy between atoms i
and j separated by a distance ri j, Fi is the embedding energy
of atom i and ρi is the ‘effective’ electron density induced by all
surrounding atoms j at the location of atom i. The ‘effective’
electron density is given by

ρi =
∑
i �= j

ρ j(ri j), (2)

where ρ j(r) is the electron-density function assigned to atom
j. The pair interaction, electron-density and embedding func-
tions depend on the chemical sorts of atoms. A detailed
description and parameters of EAM-potentials for binary
metallic melts Al(100−x)Nix and Fe(100−x)Nix can be found
in references [38–40]. Binary melts were obtained by rapid
cooling of systems from a high-temperature equilibrium state
with T = 2000 K. The cooling rate of the systems was
γ = 1.0 K ps−1. The equations of motion of atoms were inte-
grated using the velocity Verlet algorithm with a time step of
1.0 fs. To bring the systems to the state of thermodynamic
equilibrium, the program performed 1.5 × 107 time steps and
2 × 108 steps to calculate the time correlation functions.

4. Results

The viscosity can be calculated from an equilibrium molecular
dynamics simulation using the Green–Kubo relation

η =
V

kBT

∫ ∞

0
〈Pxy(0)Pxy(t)〉dt, (3)

or the Einstein relation

η = lim
t→∞

V
2tkBT

〈∫ t

0
Pxy(τ )dτ

〉
, (4)

where V is the simulation box volume, kB is the Boltzmann
constant, T is the temperature, Pxy is the xy component of the

pressure tensor, and 〈. . .〉 denotes ensemble averaging [41].
These relations are only exact in the limit of infinite simula-
tion time and infinite simulation box length [42]. For equilib-
rium metal melts, the Green–Kubo and Einstein methods yield
equivalent results.

Shear viscosity η was calculated from the reverse non-
equilibrium molecular dynamics method based on linear
response theory [43, 44] which provides faster convergence
than the usual numerical methods [45]. The shear viscos-
ity connects a shear field with a flux of transverse linear
momentum:

jz(px) = −η
∂ϑx

∂z
. (5)

Here, jz(px) is the momentum flux and ∂ϑx/∂z is a gradient of
x-component of the fluid velocity with respect to z-direction.
It is also denoted as the shear rate. In this method, momentum
swaps were conducted between the middle and bottom bin of
the simulation box, and the velocity gradient generated as a
result of these momentum swaps was measured. The viscosity
was then calculated as the ratio of the total flux transferred and
the velocity gradient as followed

η = − px

2tLxLy〈∂ϑx/∂z〉 . (6)

Here, Lx and Ly are the lengths of the simulation box in the
x and y directions, respectively. The factor 2 arises because
of the periodicity of the system, and t is the duration of the
simulation. The flow in the liquid is created via the fix viscosity
command in LAMMPS. The cell is divided into 20 bins in z-
direction, and the average velocity of group of atoms in each
layer is calculated. The momentum was exchanged every 10
time-steps. The MD trajectory lengths that are used to produce
the velocity profiles are 20 ns. The first 100 ps are neglected
due to the flow establishment.

Figure 2 shows the simulation results of the concentra-
tion dependences of the shear viscosity coefficient for alu-
minum–nickel (left column) and iron–nickel (right column)
melts in comparison with the experimental data. The values of
the experimental shear viscosity η were obtained as η = ν · ρ,
where ν is the kinematic viscosity, which is measured directly
in the experiment on viscometry. The experimental values of
the density ρ for the Al(100−x)Nix and Fe(100−x)Nix systems
were taken from the references [46, 47], respectively. It can
be seen from the figure that the simulation results are in good
agreement with the results of our experiment on viscometry
for aluminum–nickel melts at all the considered temperatures
and for the entire studied range of concentration values. Exper-
imental data from reference [22] also show satisfactory agree-
ment with the results of our study, while data from reference
[23] show poor agreement. As can be seen from the graphs for
the concentration dependences of η(x) for iron–nickel melts
(see the right-hand column of figure 2), the data of different
experimental groups differ significantly. Namely, these differ-
ences amount to 1.5 and more times. As a consequence, it is
not possible to determine a general trend in the viscosity η(x)
as a function of the concentration x for the Fe(100−x)Nix melts.

In reference [48] it was shown that the temperature depen-
dence of viscosity for a number of metal melts can be described
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Figure 2. Concentration dependences of shear viscosity of
aluminum–nickel (left column) and iron–nickel (right column)
melts at different temperatures: (���)—results of molecular
dynamics simulation; (◦ ◦ ◦)—results of the experiment on
viscometry; markers (���), (♦♦♦), (���), (���),
(• • •)—experimental data taken from references [22–26],
respectively.

by a universal relationship:

η = η0 exp(E/kBT), (7)

E = E∞ + kBTA(bTr)zΘ(TA − T). (8)

Here, η0 is the pre-exponential factor, which formally
corresponds to the value of the viscosity coefficient at
T →∞; E is the height (energy) of the activation bar-
rier of the viscous process; TA is the Arrhenius tem-
perature—the temperature at which a deviation from the
Arrhenius law begins to be observed in the temperature
dependence of viscosity; Θ(x) is the Heaviside function and
T r = (TA − T)/TA is the reduced temperature. It should be
noted that there are many previously proposed expressions
for the universal viscosity model such as (i) the commonly
used Vogel–Fulcher–Tammann equation [49], (ii) the recently
proposed Mauro–Yue–Elliston–Gupta–Allan equation [50],
(iii) the relation derived within the Cohen–Grest free volume
model [51], (iv) the avoided critical point theory (KKZNT)
[52], (v) the cooperative shear model (DHTDSJ) [53], and
(vi) the parabolic kinetically constrained model (EJCG) [54].

In figure 3 shows the rescaled temperature dependences of
viscosity for aluminum–nickel (left column) and iron–nickel
(right column) melts at various concentrations of nickel atoms.
As can be seen from the figure, all temperature dependences
of η(T ) are well described by the universal viscosity model
[48]. The parameters values of the model were E∞ = 6.47TA,
b = 4.536 and z = 2.89. The procedure for determining the
Arrhenius temperature TA is presented in the inset to the figure.
Note that the Arrhenius temperature TA is associated with the
deviation in the temperature dependence of viscosity from the
Arrhenius behavior.

Let us check the quasi-universality of the viscosity of binary
melts depending on the composition within the framework of

Figure 3. Temperature dependencies of the reduced viscosity for
Al(100−x)Nix (left column) and Fe(100−x)Nix melts (right column) at
various concentrations of nickel atoms: markers represent the results
of molecular dynamics simulation; solid line—universal viscosity
curve calculated by the formula (7). Insert: Temperature dependence
of the logarithm of viscosity, showing the deviation from
Arrhenius’s law below the temperature TA.

the Rosenfeld’s scale ratio [55]:

η∗ = η
ρ−2/3

(mkBT)1/2
= B exp(−βSex), (9)

where ρ is the numerical density of the system, m is the mass of
atoms, B and β are dimensional coefficients, which for model
systems take the values 0.2 and 0.8, respectively. Here, Sex is
the excess entropy which is defined by subtracting the ideal
gas contribution Sid from the system’s entropy S at the same
density ρ and temperature T, i.e.,

Sex(ρ, T) ≡ S(ρ, T) − Sid(ρ, T). (10)

The excess entropy Sex is a negative quantity since the liquid is
more ordered than the ideal gas. The Sex in the expression (9)
was replaced by the pair correlation (configurational) entropy
S2:

S2 =− 2πρ
N∑
i, j

xix j

∫ ∞

0

× {gi j(r) ln[gi j(r)] − [gi j(r) − 1]} r2 dr, (11)

where gi j(r) are the partial components of the radial distri-
bution functions of atoms; the subscripts i and j denote the
components (types of atoms) of the binary melt. In a number
of recent works [33–35, 56] it was shown that in the case of
monatomic liquids, the two-particle contribution to the excess
entropy can be 85%–95% for a fairly wide range of densi-
ties. At the same time, for metallic melts, where contributions
from many-particle interactions prevail, it is obvious that such
an approximation can lead to noticeable deviations from the
quasi-universal behavior of the viscosity [34, 35]. The signifi-
cance of the equations obtained by Rosenfeld, in particular the
equation (9), lies in providing a possible quantitative relation-
ship between the transport characteristics (viscosity, diffusion,
and thermal conductivity) and the structural features of the
many-particle disordered system [57].
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Figure 4. Reduced viscosity η∗ as a function of configurational
entropy for binary nickel-containing metal melts: markers—the
results of molecular dynamics simulation; the dotted line is the
Rosenfeld’s scale ratio for viscosity with parameters B = 1.02 and
β = 0.65.

It should be noted that the excess-entropy scaling has
some limitations [58–60]. Liquids with anomalies like water
or silica (tetrahedrally coordinated liquids) which have, e.g.,
a diffusion constant which increases instead of decreases
upon isothermal compression or which expand upon freez-
ing, usually disobey the excess-entropy scaling in the ranges
of the phase diagram where the anomalies appear. It should
also be noted that the Rosenfeld’s and Dzugutov’s scaling
laws describe pure liquid metals equally well, as shown by Li
et al [61].

Figure 4 shows the reduced viscosity η∗ as a function of the
configurational entropy S2 for binary nickel-containing metal
melts. Markers represent the molecular dynamics results, the
dotted line—the Rosenfeld’s scale relation for the viscosity
(equation (9) with the parameters B = 1.02 and β = 0.65). As
can be seen from the figure, for aluminum–nickel melts with
a change in composition, no universal features in the behav-
ior of viscosity are observed, while in the case of iron–nickel
melts the viscosity demonstrates some general, quasi-universal
features. One of the possible explanations for this discrep-
ancy in viscosity for Al–Ni melts with a change in compo-
sition may be due to the difference in the masses of aluminum
and nickel atoms. For example, the component mass ratios for
the considered binary metallic melts are mAl/mNi ≈ 0.46 and
mFe/mNi ≈ 0.95. In addition, the chemical features of the com-
ponents under consideration are also different: iron and nickel
belong to ferromagnetic elements with magnetic moments
μ = 2.2 μB and μ = 0.64 μB, respectively. At the same time,
aluminum is a paramagnetic metal. And, as a consequence, dif-
ferences will be observed in the features of the many-particle
interaction of aluminum–nickel and iron–nickel melts.

Thus, we conclude that for a correct description of the
viscosity of binary/multicomponent metal melts within the
framework of the entropy models, it is necessary to take into
account the total excess entropy Sex, and not only its pair
contribution S2.

5. Conclusions

Large-scale molecular dynamics studies of the viscosity of alu-
minum–nickel and iron–nickel metal melts have been carried

out. It is shown that the temperature dependencies of the vis-
cosity of nickel-containing binary metal melts are described
by a universal viscosity model. Based on the analysis of the
viscosity using the Rosenfeld’s scale transformations, we con-
clude that the use of the pair correlation entropy S2 as an
approximation for the excess entropy Sex is insufficient to cor-
rectly describe the viscosity of binary/multicomponent metal
melts in the framework of entropy models.
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