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Parsimonious Models of High-order Markov Chains...

Parsimonious Models of High-order Markov Chains for
Evaluation of Cryptographic Generators

Yuriy Kharin

Invited talk

Abstract

We propose parsimonious (small-parametric) models of high-order Markov
chains that are determined by small number of parameters and used for modeling of
output sequences in cryptographic generators and their blocks. The paper presents
results on statistical identification (estimation of parameters and hypotheses testing
by the observed output sequence) for the following parsimonious models: Jacobs –
Lewis model, Raftery MTD model, Markov chain with partial connections, Markov
chain of conditional order.

Keywords: cryptograhic generator, output sequence, high-order Markov
chain, parsimonious model, statistical identification.

1 Introduction

Cryptographic generators are necessary elements for cryptographic sys-
tems of information protection [1]. Classification of cryptographic gen-
erators on their construction and implementation can be find in [9]. To
evaluate cryptographic security of generators two approach are known:
1) algebraic approach based on construction of some algebraic model for
generator [1]; 2) stochastic approach based on construction of some proba-
bilistic model for generator [15, 16, 17]. Modern cryptographic generators
have a complex structure, and algebraic approach often can be found not
applicable. In these situations stochastic approach considered in this pa-
per can be used. Following to this approach the probabilistic model for the
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output sequence of the considered generator (or its block) is constructed
and used to predict future elements of the output sequence [7].

Under stochastic approach the general model of the observed output
sequence (of the cryptographic generator or its block) is the discrete time
series (≡ discrete valued random sequence) xt = xt(ω) : N×Ω→ A defined
on the probability space (Ω, F ,P), where t ∈ N = {1, 2, . . .} is discrete
time, A = {0, 1, . . . , N − 1} is a finite set of N states, 2 ≤ N < +∞.

Following probabilistic models are known for evaluation of cryptographic
security: xt = ξt is a scheme of independent Bernoulli trials, P{ξt = 1} =
1 − P{ξt = 0} = p, A = V = {0, 1}, p ∈ [0, 1]; xt is a “noised periodic
sequence”: xt = at⊕ξt, where at is some “deterministic” periodic sequence
(e. g. a sequence generated by some LFSR or NLFSR); modification of the
above-mentioned models using the Markovian model for ξt. A review of
models is given in [16].

Modern cryptographic generators guarantee the uniform distribution
of s-gram in the output sequence for sufficiently large values of s, and
to construct a useful probabilistic model we need to exploit high-order s
dependencies in xt. An universal model for long-memory discrete time
series is the high-order Markov chain [3, 5]. Unfortunately, the number
of parameters for the s-order Markov chain D = N s(N − 1) increases
exponentially with respect to the order s, and identification of this model
is a computationally hard problem; in addition, we need to have data sets of
huge size T>D. This situation generates a topical problem of construction
and statistical analysis of small-parametric (parsimonious) models for high-
order Markov chains, i. e. the models determined by small number of
parameters. Some of these models are: the Jacobs – Lewis model [6], the
Mixture Transition Distribution model [14], the hidden Markov model [2],
the variable length Markov chain [4], Markov chain of the order s with r
partial connections [11], Markov chain of conditional order [10].

This paper is devoted to identification (estimation of parameters and
hypotheses testing) of the parsimonious models by the observed output se-
quence. The paper has the following structure. After Introduction (Section
1) we present our results on identification of some known in the literature
parsimonious models of high-order Markov chains: for the Jacobs – Lewis
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model JL(s) in Section 2 and for the Raftery MTD model in Section 3.
Section 4 and Section 5 are devoted to new parsimonious models: Markov
chain MC(s, r) of order s with r partial connections and Markov chain of
conditional order respectively.

2 Identification of the Jacobs – Lewis model JL(s)

Let us remind [5] that the homogeneous Markov chain of order s ∈ N is
determined by the generalized Markov property (t > s; i1, . . . , it ∈ A):

P{xt = it|xt−1 = it−1, . . . , x1 = i1} =

= P{xt = it|xt−1 = it−1, . . . , xt−s = it−s} = p(it−s, ..., it−1),it,
(1)

where P =
(
pi1, ..., is, is+1

)
is an (s+ 1)-dimensional matrix of one-step tran-

sition probabilities satisfying the normalization condition:∑
is+1∈A

pi1, ..., is, is+1
≡ 1, i1, . . . , is ∈ A.

Jacobs – Lewis model JL(s) is defined [6] by the following stochastic
difference equation of order s ≥ 2 with random delay:

xt = µtxt−ηt + (1− µt)ξt, t > s, (2)

where {ξt, ηt, µt} are jointly independent random variables with probabi-
lity distributions:

P{µt = 1} = 1−P{µt = 0} = ρ; P{ξt = k} = πk, k ∈ A,
∑

k∈A
πk = 1;

P{ηt = j} = λj, j ∈ {1, 2, . . . , s},
∑s

j=1
λj = 1, λs 6= 0;

(3)
initial random values x1, . . . , xk are independent with probability distri-
bution P{x1 = k} = . . . = P{xs = k} = πk, k ∈ A. Number of parameters
π = (πk), λ = (λi), ρ depends linearly on s: DJL = N + s− 1.

Probabilistic model (2), (3) of generation of randome sequence xt is illu-
strated by Fig. 1. The generator consists of three elementary generators
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Fig. 1. Generation of xt by JL(s) model

(G1 for generation of ξt, G2 for generation of ηt and G3 for generation of
binary sequence µt), a shift register and a selector that selects one of its
input signals xt−ηt, ξt depending on the value µt.

Theorem 1. The discrete time series xt determined by (2), (3) is a homo-
geneous Markov chain of the order s with the initial probability distribution
πi1, ..., is = πi1 · . . . · πis and the (s + 1)-dimensional matrix of transition
probabilities P (π, λ, ρ) =

(
pi1, ..., is+1

)
:

pi1, ..., is, is+1
= (1− ρ)πis+1

+ ρ
∑s

j=1
λjI{is+1 = is−j+1}, i1, . . . , is+1 ∈ A,

(4)
where I{B} means indicator of event B.

Proof. The generalized Markov property (1) follows from the definition
(2), (3) of the JL(s) model: xt = f (xt−1, . . . , xt−s; ξt, ηt, µt), where the
function f(·) is determined by (2). By (3) and the total probability formula
we have:

pi1, ..., is, is+1
= (1− ρ)πis+1

+ ρ
∑s

j=1
P{ηs+1 = j}×

×P{xs+1 = is+1|xs = is, . . . , x1 = i1, µs+1 = 1, ηs+1 = j} =

= (1− ρ)πis+1
+ ρ

∑s

j=1
λjI {is+1 = is−j+1} .

Initial probability distribution follows from the model assumption.

Corollary 1. Maximum likelihood estimators (MLEs) π̂, λ̂, ρ̂ for the para-
meters π, λ, ρ of the JL(s) model by the observations XT = (x1, . . . , xT )′ ∈
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AT are determined by maximization of the following loglikelihood function
l = l(π, λ, ρ):

l =
∑s

t=1
ln πxt+

∑T

t=s+1
ln
(

(1− ρ)πxt + ρ
∑s

j=1
λjI{xt = xt−j}

)
→ max

π, λ, ρ
.

(5)

In [12] consistent estimators π̃, λ̃, ρ̃ are found and used as the initial
approximation for the MLEs π̂, λ̂, ρ̂ in the iterative solution of the maxi-
mization problem (5).

Define the hypotheses H0, H1 on the values of the parameters: H0=
{π=π0, λ=λ0, ρ = ρ0}, where π0, λ0, ρ0 are some fixed hypothetical values
for parameters (e. g., if ρ0= 0, π0

k ≡ N−1 hypothesis H0 means that xt
is uniformly distributed random sequence); H1 = H̄0. Using the asymp-
totic normality property of the MLEs π̂, λ̂, ρ̂ we get [12] the generalized
probability ratio test of the asymptotic size ε ∈ (0, 1):

d = d (XT ) = I{ΛT ≥ ∆ε}, ΛT = 2

(
l
(
π̂, λ̂, ρ̂

)
− l
(
π0, λ0, ρ0

))
, (6)

where ∆ε is ε-quantile of the χ2
N+s−1-distribution.

3 Identification of the Raftery MTD (Mixture

Transition Distribution) model

Raftery MTD model [14] is defined by a special small-parametric (par-
simonious) representation of the matrix P :

pi1, ..., is+1
=
∑s

j=1
λjqij , is+1

, i1, . . . , is+1 ∈ A, (7)

where Q = (qik) is a stochastic (N × N)-matrix, i, k ∈ A, and λ =
(λ1, . . . , λs)

′ is an s-column vector such that λ1 > 0, λ2, . . . , λs ≥ 0,
λ1 + . . .+λs = 1. This model has DMTD = N(N −1)/2 + s−1 parameters.
The MTD model (7) can be generalized to obtain the MTDg model:

pi1, ..., is+1
=
∑s

j=1
λjq

(j)
ij , is+1

, i1, . . . , is+1 ∈ A, (8)
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where Q(j) =
(
q

(j)
ik

)
is the jth stochastic matrix corresponding to the time

lag s − j. The number of parameters in the MTDg model is DMTDg =
s(N(N − 1)/2 + 1)− 1.

Let us introduce the notation: the distribution Π∗ =
(
π∗i1, ..., is

)
, i1, . . . ,

is+1∈A is an s-variate stationary probability distribution of the ergodic
Markov chain; π∗=

(
π∗0, . . ., π

∗
N−1

)′
is a univariate stationary probability

distribution; δij is Kronecker symbol.

Theorem 2. Under model (8), if for some K ∈ N every element of the ma-

trix
(
Q(1)

)K
is positive, the stationary probability distribution Π∗ satisfies

the equation:

π∗i1, ..., is =
∏s−1

l=0

(
π∗is−l +

∑s

j=l+1
λj

(
q

(j)
ij−l, is−l

−
∑N−1

r=0
q

(j)
r,is−l

π∗r

))
,

i1, . . . , is+1 ∈ A.

Corollary 2. Under the model (7) the stationary bivariate marginal prob-
ability distribution of the random vector (xt−m, xt)

′ satisfies the relation
π∗ki(m)=π∗kπ

∗
i + π∗kλs−m+1 (qki−π∗i ), 1 ≤ m ≤ s, k ∈ A.

The proof of Theorem 2 and its corollary can be find in [12].
Let us construct estimators for the parameters of the MTD model by ap-

plying the property from Corollary 2. From the observed realization XT
1 =

(x1, . . . , xT )′ define the following statistics for i, k ∈ A, j = 1, . . . , s:

π̃i = (T−2s+1)−1
∑T−s+1

t=s+1
δxt, i; π̃ki(j) = (T−2s+1)−1

∑T−s+j

t=s+j
δxt−j , kδxt, i;

q̃ki =


∑s

j=1
π̃ki(j)/π̃k − (s− 1)π̃i, π̃k > 0,

1/N, otherwise;
(9)

zki(j) = π̃ki(s− j)/π̃k − π̃i; dki = q̃ki − π̃i; λ̃ =

= arg min
λ

∑
i, k∈A

∑s

j=1
(zki(j)− λjdki)2 .

Theorem 3. Under Corollary 2 conditions the statistics (9) are asymptot-
ically unbiased and consistent estimators for Q and λ as T →∞.
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Proof. It is easy to show that the definitions of consistency and asymptotic
unbiasedness are satisfied.

The estimators Q̃, λ̃ defined by (9) give a good initial approximation
for iterative maximization of the loglikelihood function, which yields the
MLEs Q̂, λ̂: l(Q, λ) =

∑T
t=s+1 ln

∑s
j=1 λjqxt−s+j−1, xt → max

Q,λ
.

Generalized probability ratio test of the asymptotic (T → ∞) size ε ∈
(0, 1) for testing hypotheses (on the values of parameters Q, λ): H0 =
{Q = Q0, λ = λ0}, H1 = H̄0 is constructed as test (6) in the previous
section for JL(s) model.

4 Identification of the MC(s, r) model

Introduce the notation: r ∈ {1, . . . , s} is the parameter called the num-
ber of partial connections; M 0

r =
(
m0

1, . . . , m
0
r

)
∈M is an arbitrary integer

r-vector with ordered components 1 = m0
1 < m0

2 < · · · < m0
r ≤ s which is

called the connection template; M is the set of cardinality K = |M | = Cr−1
s−1

which is composed of all possible connection templates with r partial con-

nections; and Q0 =
(
q0
j1, ..., js+1

)
is some (r + 1)-dimensional stochastic

matrix, j1, . . . , js+1 ∈ A.
A Markov chain of order s with r partial connections [9, 11], denoted

as MC(s, r), is defined by specifying the one-step transition probabilities:

pi1, ..., is, is+1
= q0

im0
1
, ..., im0

r
, is+1

, i1, . . . , is+1 ∈ A. (10)

The relation (10) implies that the probability of the process entering a
state is+1 at time t > s does not depend on every previous state of the
process i1, . . . , is, but is affected only by the r chosen states im0

1
, . . . , im0

r
.

Thus, instead of D = N s(N − 1) parameters, the model (10) is defined
by DMC(s, r) = N r(N − 1) + r − 1 independent parameters that determine
the matrices Q0, M 0

r . The reduction in the number of parameters can be
very significant: for instance, if N = 2, s = 32, r = 3, then we have
D ≈ 4.1 · 109, and DMC(32, 3) = 10.

Note that if s = r, M 0
r = (1, . . . s), then P = Q0, and MC(s, s) is a

Markov chain of order s. A constructive example of MC(s, r) for modeling
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of output sequences generated by cryptographic devices and their blocks
is a binary (N = 2) autoregression of order s with r nonzero coefficients, a
special case of which is a linear recursive sequence defined in the ring Z2

and generated by a degree s polynomial with r nonzero coefficients [13].
Introduce the notation: Js = (j1, . . . , js) = (Js−1, js) ∈ As is a multi-

index of order s; the function St:

AT×M→Ar, (XT ;Mr)→ (xt+m1−1, . . . , xt+mr−1) ∈ Ar

is called a selector of order r with parameters Mr ∈M and t ∈ {1, . . . , T−
s + 1}; ΠKs

= P {Xs = Ks} is the initial s-variate probability distri-
bution of the Markov chain MC(s, r); Π∗Ks

is the stationary distribu-

tion; νr+1(Jr+1; Mr) =
∑T−s

t=1 I {St (XT ; Mr+1) = Jr+1} is the frequency of
the (r + 1)-gram Jr+1 ∈ Ar+1 corresponding to the connection template
Mr+1 = (Mr, s+ 1) and satisfying the normalization condition∑

Jr+1∈Ar+1
νr+1 (Jr+1;Mr) = T − s;

an index replaced by a dot denotes summation over all values of this index:

νr+1 (Jr·; Mr) =
∑

jr+1∈A
νr+1 (Jr+1; Mr) , νr+1 (·jr+1) =

∑
Jr∈Ar

νr+1 (Jr+1; Mr) .

Theorem 4. The model MC(s, r) defined by (10) is ergodic if and only if
there exists an integer l ≥ 0 such that

min
Js, J ′s∈As

∑
Kl∈Al

s+l∏
i=1

q0
Si((Js,Kl,J ′s);M

0
r+1)

> 0.

The proof is based on transforming MC(s, r) into a special s-vector
Markov chain of order one.

Let us apply the plug-in principle to construct the information func-
tional Îr+1(Mr) from the observed realization XT . In other words let us
construct a sample-based estimator for the Shannon information on the
future symbol xt+s ∈ A contained in the r-gram St (XT , Mr).
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Theorem 5. The maximum likelihood estimators M̂r, Q̂ =
(
q̂Jr+1

)
, where

Jr+1 ∈ Ar+1, for the parameters M 0
r , Q0 can be defined as

M̂r = arg maxMr∈M Îr+1(Mr),

q̂Jr+1
(Mr) =

νr+1(Jr+1; M̂r)/νr+1(Jr·; M̂r), if νr+1(Jr·; M̂r) > 0,

1/N, if νr+1(Jr·; M̂r) = 0.

(11)

Theorem 6. If MC(s, r) defined by (10) is stationary and the connection
template M 0

r∈M satisfies the identifiability condition, then the maximum
likehood estimators M̂r, Q̂ defined by (11) are consistent for T →∞:

M̂r
P−→M 0

r , Q̂
L2−→ Q0,

and the following asymptotic expansion holds for the mean square error
of Q̂:

∆2
T = E

{
‖Q̂−Q0‖2

}
=

1

T − s
∑

Jr+1∈Ar+1

(
1− q0

Jr+1

)
q0
Jr+1

µr+1 (Jr·; M 0
r , M

0
r )

+o

(
1

T

)
,

µr+1

(
Jr+1;Mr,M

0
r

)
=
∑

Ks+1∈As+1
I {S1 (Ks+1;Mr+1) =Jr+1}Π∗Ks

pKs+1
.

(12)

Theorems 5, 6 have been proved in [9].
The estimators (11) have been used to construct a statistical test for

a null hypothesis H0 : Q0 = Q0 against the alternative H1 = H̄0, where
Q0 =

(
q0Jr+1

)
is some given stochastic matrix. The decision rule of a given

asymptotic size ε ∈ (0, 1) can be written as follows [9]:

d (XT ) = I{ρ > ∆}, ρ =
∑

Jr+1: q0Jr+1
>0
νr+1(Jr·; M̂r)

(
q̂Jr+1

− q0Jr+1

)2
/q0Jr+1

(13)
where ∆ is the (1 − ε)-quantile of the χ2 distribution with L degrees of
freedom.

Note that to estimate orders s ∈ [s−, s+], r ∈ [r−, r+] (1≤s−<s+<∞,
1≤ r−<r+<s+) we use a modification of the Bayesian Information Crite-
rion (BIC) presented in [8].
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Performance of the statistical estimators (12) and the test (13) was
evaluated by Monte-Carlo simulation experiments, where the model pa-
rameters were fixed: N = 2, s = 256, r = 6; the chosen values of Q0 and
M 0

r are omitted due to space limitation. For each simulated observation
length T , 104 simulation rounds were performed.

Figure 2 illustrates the numerical results obtained for this MC(256, 6)
model: the mean square error ∆2

T of the estimator Q̂ is plotted against the
observation length T ; the curve has been computed theoretically from the
leading term of the expansion (12), and the circles are the experimental
values computed in the simulations.
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Fig. 2. Dependence of ∆2
T on T for N = 2, s = 256, r = 6
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5 Markov chain of conditional order and its

identification

Introduce the notation: Jnm= (jm, jm+1, . . ., jn)∈An−m+1, n≥m, is the
miltiindex (subsequence of indices from a sequence j1, j2, . . .);

<Jmn >=
∑m

k=n
Nk−njk∈

{
0, 1, . . ., Nm−n+1−1

}
is the numeric representation of the multiindex Jmn ∈ Am−n+1; L ∈ {1, 2, . . . , s−
1}, K = NL−1 are some positive integers; Q(1), . . . , Q(M) are M (1 ≤M ≤
K + 1) different square stochastic matrices of the order N : Q(m)=

(
q

(m)
i, j

)
,

0≤ q(m)
i, j ≤ 1,

∑
j∈A q

(m)
i, j ≡ 1, i, j ∈ A, 1 ≤ m ≤ M ; π0

Js
1

= P {Xs
1 = Js1} is

the initial probability distribution.
The Markov chain {xt ∈ A : t ∈ N} is called the Markov chain of

conditional order (MCCO(s)), if its one-step transition probabilities have
the following parsimonious form [10]:

pJs+1
1

=
∑K

k=0
I {< Jss−L+1 >= k} q(mk)

jbk , js+1
, (14)

where 1 ≤ mk ≤ M , 1 ≤ bk ≤ s − L, 0 ≤ k ≤ K, min
0≤k≤K

bk = 1; it is

assumed that all elements of the set {1, 2, . . . , M} occur in the sequence
m0, . . . , mK . The sequence of elements Jss−L+1 is called the base memory
fragment (BMF) of the random sequence, L is the length of BMF; the
value sk = s− bk + 1 is called the conditional order. Thus the conditional
probability distribution of the state xt at time t depends not on all s
previous states, but it depends only on L+ 1 selected states

(
jbk, J

s
s−L+1

)
.

Note that if L = s − 1, s0 = s1 = · · · = sK = s, we have the fully-
connected Markov chain of the order s. If M = K+1, then each transition
matrix corresponds to only one value of BMF, otherwise there exists a
common matrix which corresponds to several values of BMF. The number
of independent parameters DMCCO(s) = 2

(
NL + 1

)
+MN(N − 1).

As in previous section we construct the MLEs
{
Q̂(i)

}
, L̂, {ŝk}, {m̂k}

by maximization the loglikelihood:
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lT
(
XT ,

{
Q(i)

}
, L, {sk} , {mk}

)
= lnπ0

Xs
1
+

+
∑

JL+1
0 ∈AL+2

∑K

k=0
I
{
< JL1 >= k

}
νsL+2, sk−L−1

(
JL+1

0

)
ln q

(mk)
j0, jL+1

→ max,

(15)
where νsl, y

(
J l1
)

=
∑n−s

t=1 I
{
xt+s−l−y+1 = j1, X

t+s
t+s−l+2 = J l2

}
, l ≥ 2, 0 ≤ y ≤

s − l + 1, is frequency of the state J l1 ∈ Al with the time gap of length y
between the elements j1 and J l2; νs+1

(
Js+1

1

)
= νss+1, 0

(
Js+1

1

)
is frequency of

(s+ 1)-gram Js+1
1 .

From (15) we get the following expressions for the MLEs (for simplicity
of expressions we give here results only for the case M = K + 1) [10]:

q̂
(k+1)
j0, jL+1

=


∑

JL
1 ∈AL

I
{
<JL1 > = k

} νsL+2, g(sk, L)

(
JL+1

0

)
νsL+1, g(sk, L)

(
JL0
) , if νsL+1, g(sk, L)

(
JL0
)
> 0,

1/N, if νsL+1, g(sk, L)

(
JL0
)

= 0;

ŝk= arg max
L+1≤y≤s

∑
JL
1 ∈AL

I
{
< JL1 >= k

}∑
j0, jL+1∈A

νsL+2, g(y, L)

(
JL+1

0

)
ln
(
q̂

(k+1)
j0, jL+1

)
.

To estimate the order s and the BMF length L we use Bayesian infor-
mation criterion:(

ŝ, L̂
)

= arg min
1≤L′≤L+,
2≤s′≤S+

BIC (s′, L′), BIC(s′, L′) =−2
∑

JL′+1
0 ∈AL′+2

∑K
k=0

I
{
<JL

′

1 > = k
}
× ×νs′L′+2, ĝ(sk, L′)

(
JL
′+1

0

)
ln q̂

(k+1)
j0, jL′+1

+ DMCCO(s) ln(n − s′),

where S+ ≥ 2, 1 ≤ L+ ≤ S+ − 1, are maximal admissible values of s and
L respectively.

Statistical decision rule for testing of hypotheses on the values of param-

eters for the MCCO(s) model is constructed [10] by MLEs
{
Q̂(k)

}
, {ŝk}

in the same way as in the previous section.
The author would like to thank Prof. A. M. Zubkov for fruitful discus-

sions and comments.
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A Graph of Minimal Distances of Bent Functions

A Graph of Minimal Distances of Bent Functions

Nikolay Kolomeec

Abstract

A notion of a graph of minimal distances of bent functions is introduced. It is
an undirected graph (V , E) where V is the set of all bent functions in 2k variables
and (f, g) ∈ E if the Hamming distance between f and g is equal to 2k (it is the
minimal possible distance between two bent functions). It is shown that its subgraph
induced by all functions affine equivalent to Maiorana—McFarland bent functions
is connected.

Keywords: Boolean functions, bent functions, the minimal distance

Introduction

In this work a graph of minimal distances of bent functions is considered.
Bent functions are Boolean functions in even number of variables that have
the maximal possible nonlinearity. They were proposed by O. Rothaus
[7]. Bent functions have a lot of applications in algebra, combinatorics,
coding theory, cryptography, see [5, 8, 9]. Here we prove that for any two
bent functions f, g that are affine equivalent to Maiorana—McFarland bent
functions there exist bent functions f0, . . . , fn (they are affine equivalent
to Maiorana—McFarland bent functions too) such that f = f0, g = fn
and the Hamming distance between fi and fi+1 is the minimal possible.
This statement is also true for any bent functions f, g in a small number
of variables (2, 4 and 6).

Let us give definitions. A Boolean function in n variables is a mapping
f : Fn

2 → F2. Denote by Fn the set of all Boolean functions in n variables.
The Hamming distance between two Boolean functions f, g in n variables
dist(f, g) is the number of x ∈ Fn

2 such that f(x) 6= g(x). Define by
〈x, y〉 = x1y1⊕x2y2⊕ . . .⊕xnyn the inner product of two vectors x, y ∈ Fn

2 .
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Restriction of a Boolean function f ∈ Fn on the set S ⊆ Fn
2 is a mapping

f |S : S → F2 where f |S(x) = f(x) for all x ∈ S. A Boolean function is
called affine if its algebraic degree is not more than 1 and quadratic if its
degree is equal to 2.

A shift s⊕D of the set D ⊆ Fn
2 , s ∈ Fn

2 , is the set {s⊕ x : x ∈ D}. A
set U ⊆ Fn

2 is an affine subspace of Fn
2 if it is a shift of a linear subspace

of Fn
2 . Dimension of an affine subspace is a dimension of a corresponding

linear subspace.
A Boolean function f ∈ Fn is affine on an affine subspace L of Fn

2 if
f |L(x) = 〈a, x〉 ⊕ c for some a ∈ Fn

2 and c ∈ F2.
Two Boolean functions f, g ∈ Fn are called affinely equivalent if there

exist an invertible n × n binary matrix A and b ∈ Fn
2 such that g(x) =

f(xA⊕b) for any x ∈ Fn
2 . Note that dist(f, g) = dist(f(xA⊕b), g(xA⊕b)).

A Bent function is a Boolean function from F2k that is at the maximal
possible distance from the set of all affine functions in 2k variables.

The following functions form Maiorana—McFarland [6] class of bent
functions M2k:

f(x, y) = 〈x, π(y)〉 ⊕ ϕ(y) where

• x, y ∈ Fk
2,

• π is a permutation on Fk
2 and

• ϕ is an arbitrary Boolean function in k variables.

Denote by M̃2k the set of all bent functions affinely equivalent to func-
tions from M2k (this class is also called completed Maiorana—McFarland

class). It is obvious that f ⊕ ` ∈ M̃2k for any f ∈ M̃2k and any affine
function ` in 2k variables.

Denote by IndD, D ⊆ Fn
2 , a Boolean function in n variables that takes

value 1 only on the set D. Denote by supp(f), f ∈ Fn, the set {x : f(x) =
1, x ∈ Fn

2}.
The minimal possible distance between two bent functions in 2k vari-

ables is equal to 2k. There is the following construction of bent functions
at the distance 2k. Let f be a bent function in 2k variables and f be
affine on a k-dimensional affine subspace L of F2k

2 . Then f ⊕ IndL is also a
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bent function. This construction was proposed by C. Carlet [1]. Any bent
function at the distance 2k from f can be constructed in this way [4].

1 A graph of minimal distances of bent functions

An undirected graph GB2k = (V,E) is called a graph of minimal dis-
tances of bent functions if

• V is the set of all bent functions in 2k variables and

• (f, g) ∈ E if and only if dist(f, g) = 2k.

Denote by GM2k a subgraph of GB2k induced by all vertices from M̃2k.
Summarize known facts in terms of GB2k and GM2k.

• The maximal degree of a vertex is equal to 2k(21+1)(22+1) . . . (2k+1),
any vertex of the maximal degree is a quadratic bent function. It is
true for both GB2k and GM2k, see [3].

• Degree of a vertex of GM2k is not less than 22k+1 − 2k, see lemma 2.

Next, in section 2 a subgraph of GB2k induced by all vertices fromM2k

will be considered. In section 3 auxiliary results concerning quadratic bent
functions will be obtained. A proof of the main result is based on properties
of quadratic Boolean functions. In section 4 a connectivity of GM2k will
be proved. It is the main result of this work.

2 Maiorana—McFarland bent functions

First of all, consider bent functions that are at the minimal distance
from a Maiorana—McFarland bent function.

Lemma 1 Let f ∈ M2k, i.e. f(x, y) = 〈x, π(y)〉 ⊕ ϕ(y). Let g(x, y) =
〈x, π′(y)〉 ⊕ ϕ′(y) where for some distinct a, b ∈ Fk

2 it holds that

π′(y) = π(y) for all y ∈ Fk
2, y 6= a, b,

π′(a) = π(b) and π′(b) = π(a);

ϕ′(y) = ϕ(y) for all y ∈ Fk
2, y 6= a, b.
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Then g ∈M2k and dist(f, g) = 2k.

Proof. Since π′ is a permutation too, g ∈ M2k. Note that f(x, y) =
g(x, y) for all x, y ∈ Fk

2, y 6= a, b. It means that it is sufficient to calculate
distance when y = a, b. Let y = a. Then f(x, a) = 〈x, π(a)〉 ⊕ ϕ(a) and
g(x, a) = 〈x, π(b)〉 ⊕ ϕ′(a). Therefore, f(x, a) 6= g(x, a) if and only if

〈x, π(a)⊕ π(b)〉 ⊕ ϕ(a)⊕ ϕ′(a) = 1.

Since π(a) 6= π(b), there are exactly 2k−1 distinct x ∈ Fk
2 on which f(x, a) 6=

g(x, a). The y = b case is the same. Thus, dist(f, g) = 2k−1 + 2k−1 = 2k. 2

So, since the set of all transpositions generates any permutation, a sub-
graph of GB2k induced by vertices from M2k is connected.

Lemma 2 Let f ∈ M̃2k. Then there are at least 22k+1− 2k bent functions
from M̃2k that are at the distance 2k from f .

Proof. Since an affine transform does not change distance between any two
Boolean functions, without loss of generality we can suppose that f ∈M2k.
According to lemma 1 there are at least 4 ·2k(2k−1)/2 = 22k+1−2k+1 bent
functions from M2k that are at the distance 2k from f .

In addition, if f(x, y) = 〈x, π(y)〉⊕ϕ(y), we can add 2k functions of the
form g(x, y) = 〈x, π(y)〉 ⊕ ϕ′(y) where dist(ϕ, ϕ′) = 1. 2

It is not difficult to prove the following lemma that helps us to determine
whether a bent function be affine equivalent to a Maiorana—McFarland
bent function.

Lemma 3 (A. Canteaut et al. [2]) Let f be a bent function in 2k

variables. Then f ∈ M̃2k if and only if there exists a k-dimensional affine
subspace L of F2k

2 such that f is affine on a⊕ L for any a ∈ F2k
2 .

3 Affinity of a quadratic Boolean function on an affine

subspace

In this section we give auxiliary results concerning affinity of a quadratic
Boolean function on an affine subspace.
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Proposition 1 Let f be a quadratic Boolean function in n variables and
f be affine on an affine subspace L of Fn

2 . Then function f is affine on
a⊕ L for any a ∈ Fn

2 .

Proof. Note that f(x ⊕ a) = f(x) ⊕ (f(x) ⊕ f(x ⊕ a)). Since degree of
derivative function f(x) ⊕ f(x ⊕ a) is less than degree of f (i.e. it is not
more than 1), f(x⊕a) is affine on L and, therefore, f is affine on a⊕L. 2

Proposition 2 Let f be a quadratic Boolean function in n variables and
f is affine on a t-dimensional affine subspace L of Fn

2 , t ≤ n/2.
Then there exist distinct affine subspaces a1⊕L, . . . , a2n−2t⊕L such that

for some w ∈ Fn
2 and c1, . . . , c2n−2t ∈ F2 it holds that

fai⊕L(x) = 〈w, x〉 ⊕ ci, i ∈ {1, . . . , 2n−2t}.

Proof. Denote by Sw the set of all shifts of L such that the function
f(x)⊕ 〈w, x〉 is a constant on it.

Note that if f |a⊕L(x) = 〈w, x〉 ⊕ c, then for any w′ ∈ w ⊕ L⊥ it holds
that f |a⊕L(x) = 〈w′, x〉 ⊕ 〈w ⊕ w′, a〉 ⊕ c. Thus, Sw = Sw⊕u for u ∈ L⊥.

According to statement 1, f is affine on each of 2n−t distinct shifts of L.
Therefore, it is true that

1

|L⊥|
∑
w∈Fn

2

|Sw| =
1

2n−t

∑
w∈Fn

2

|Sw| ≥ 2n−t,

that is why |Sw| ≥ 2n−t2n−t/2n = 2n−2t for some w ∈ Fn
2 . 2

Proposition 3 Let f be a Boolean function in n variables, L be an affine
subspace of Fn

2 , a ∈ Fn
2 and for some w ∈ Fn

2 and c1, c2 ∈ F2 it holds that

f |L(x) = 〈w, x〉 ⊕ c1,

f |a⊕L(x) = 〈w, x〉 ⊕ c2.

Then f is affine on affine subspace L ∪ (a⊕ L).

Proof. Suppose that a /∈ L, in other case the statement is trivial. It
is also clear that L ∪ (a ⊕ L) is an affine subspace. Consider function
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f ′(x) = f(x)⊕〈w, x〉⊕ c1: function f is affine on an affine subspace if and
only if f ′ is affine on it. If c1 = c2, the statement is obvious. In other way
we have f ′|L = 0 and f ′|a⊕L = 1. Without loss of generality suppose that
L is a linear subspace (we can consider affinity of function f ′(x ⊕ s) on a
linear subspace for any s ∈ L). Let v ∈ L⊥. Then f ′|L(x) = 0 = 〈v, x〉.
Moreover, if for any v it holds that 〈v, a〉 = 0, it is true a ∈ (L⊥)⊥ = L,
but a /∈ L. So, 〈v′, a〉 = 1 for some v′ ∈ L⊥. Therefore,

f ′|a⊕L(x) = 1 + 0 = 〈v′, a〉 ⊕ 〈v′, a⊕ x〉 = 〈v′, x〉

because of a⊕ x ∈ L. Thus, f ′|L∪(a⊕L)(x) = 〈v′, x〉. 2

Lemma 4 Let f be a quadratic Boolean function in 2k variables and U

be a (2k − 1)-dimensional affine subspace of F2k
2 . Then there exists a k-

dimensional affine subspace L ⊆ U such that f is affine on L.

Proof. Note that F2k
2 = U ∪ (c ∪ U) for some c ∈ F2k

2 , since U is of
dimension 2k − 1.

We will prove by induction that there exists a t-dimensional affine sub-
space L of F2k

2 , t ≤ k, such that L ⊆ U and f is affine on L.
The base of the induction t = 0 is obvious, since such affine subspace

contains only one element.
Suppose that the statement is true for t, t < k. Let’s prove that it holds

for t+1. By the assumption there exists an affine subspace L of dimension
t, such that f is affine on L and L ⊆ U . By statement 2 for some w ∈ F2k

2

there exist distinct a1 ⊕ L, . . . , a22k−2t ⊕ L such that for some w ∈ F2k
2 it

holds that f |ai⊕L(x) = 〈w, x〉 ⊕ ci, ci ∈ F2. Since t < k, we have 22k−2t ≥ 4
distinct affine subspaces.

Therefore, always there exist distinct a ⊕ L, b ⊕ L, a, b ∈ F2k
2 , among

a1 ⊕ L, . . . , a22k−2t ⊕ L such that a⊕ L, b⊕ L ⊆ U or a⊕ L, b⊕ L ⊆ c⊕ U .
Next, by statement 3 function f is affine on L′ = (a ⊕ L) ∪ (b ⊕ L) of
dimension t + 1. If L′ ⊆ U , the lemma is proved. Otherwise L′ ⊆ c ⊕ U .
By statement 1 function f is affine on c⊕ L′ and c⊕ L′ ⊆ U . 2
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4 Connectivity of GM2k

The following lemma is the main result for the connectivity proof of
GM2k.

Lemma 5 Let f be a quadratic bent function in 2k variables. Then there
is a path in GM2k between f and f(x1, . . . , x2k−1, x2k ⊕ x1 ⊕ c), c ∈ F2.

Proof. Since f is quadratic, represent it as the following:

f(x1, . . . , x2k) = f ′(x1, . . . , x2k−1)⊕ (w1x1 ⊕ . . .⊕ w2k−1x2k−1 ⊕ d)x2k,

where w1, . . . , w2k−1, d ∈ F2. Then for g(x1, . . . , x2k) = f(x1, . . . , x2k−1, x2k⊕
x1 ⊕ c) it holds that

g(x) = f(x)⊕ (w1x1 ⊕ . . .⊕ w2k−1x2k−1 ⊕ d)(x1 ⊕ c).

Consider S = supp(w1x1 ⊕ . . .⊕ w2k−1x2k−1 ⊕ d)(x1 ⊕ c). Note that S
is an affine subspace. Prove that there exists a k-dimensional affine sub-
space L of F2k

2 such that L ⊆ S and f is affine on L.
Case w1 = . . . = w2k−1 = 0 is impossible, because a bent function

f(x)⊕dxk must depend on each its variable. Therefore, there exists wt 6= 0
for some 1 ≤ t ≤ 2k − 1.

If only w1 is nonzero, then S = supp(x1⊕ c)(x1⊕ d). If c 6= d, functions
f and g are the same. Otherwise S is a linear subspace of dimension 2k−1
and by lemma 4 there exists required L.

If there exists other nonzero wt, without loss of generality suppose that
t = 2k − 1. Consider f |x2k−1=w1x1⊕...⊕w2k−2x2k−2⊕d⊕1 ⊕ x2k which is equal to

f ′(x1, . . . , x2k−2, w1x1 ⊕ . . .⊕ w2k−2x2k−2 ⊕ d⊕ 1)

as a function in 2k− 2 variables. Let U = supp(x1⊕ c). Then by lemma 4
there exists a (k − 1)-dimensional affine subspace L′ of F2k−2

2 that L′ ⊆ U
and f ′(x1, . . . , x2k−2, w1x1 ⊕ . . .⊕ w2k−2x2k−2 ⊕ d⊕ 1) is affine on L′.

Therefore, f is affine on a k-dimensional affine subspace L ⊆ F2k
2 ,

L = {(y, w1y1 ⊕ . . .⊕ w2k−2y2k−2 ⊕ d⊕ 1, z) : y ∈ L′, z ∈ F2},
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and at the same time L ⊆ S, because (w1x1⊕ . . .⊕w2k−1x2k−1⊕ d)(x1⊕ c)
does not depend on x2k, w1x1⊕ . . .⊕w2k−1x2k−1⊕d = 1 for any x ∈ L and
x1 ⊕ c = 1 due to choosing L′. Required L has been found.

To complete the proof, note that, thanks to choosing L, it holds that

S = (a1 ⊕ L) ∪ . . . ∪ (am ⊕ L) for some a1, . . . , am ∈ F2k
2 , m = 2dimS−dimL.

And since f is quadratic, it is affine on each ai ⊕ L too. Next, let

f0 = f and fi = fi−1 ⊕ Indai⊕L, 1 ≤ i ≤ m.

Then fm = g and each fi is a bent function because of a1⊕L, . . . , am⊕L
are not intersected. Moreover, each fi is affine on a ⊕ L for any a ∈ F2k

2 .
Thus, all fi ∈ M̃2k by lemma 3. 2

Theorem 1 Graph GM2k is connected for all k ≥ 1.

Proof. According to lemma 1, for any bent function f0 ∈ M2k there
are f1, . . . , fn ∈ M2k for some n with dist(fi, fi+1) = 2k and fn(x, y) =
x1y1 ⊕ x2y2 ⊕ . . .⊕ xkyk.

Therefore, for any bent function f0 ∈ M̃2k there are f1, . . . , fn ∈ M̃2k

for some n with dist(fi, fi+1) = 2k and fn is a quadratic bent function, i.e.

there is a path in GM2k between any f0 ∈ M̃2k and some quadratic bent
function.

Thus, it is enough to prove that there exists a path in GM2k between
any two quadratic bent functions.

According to Dickson’s theorem, any two quadratic bent functions are
affinely equivalent, i.e. for any two quadratic bent functions f, g in 2k
variables there exists an invertible 2k × 2k binary matrix A and b ∈ F2k

2

such that g(x) = f(xA⊕ b) for any x ∈ F2k
2 .

At the same time by lemma 5 there exists a path in GM2k between any
quadratic f and f(x1, . . . , x2k−1, x2k ⊕ x1⊕ c). On one hand, we can easily
extend lemma 5 (using permutations on variable numbers) to transforma-
tions of the form

x′l = xl for all l ∈ {1, . . . , 2k}\{i},
x′i = xi ⊕ xj ⊕ c
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for any i, j ∈ {1, . . . , 2k}, i 6= j and c ∈ F2. On the other hand, the set of
all these transformations generates any invertible affine transform xA⊕ b.
The theorem is proved. 2

Corollary 1 Graphs GB2, GB4 and GB6 are connected.

It follows from all bent functions in 2, 4 and 6 variables are affinely equiv-
alent to Maiorana—McFarland bent functions.

5 Conclusion

In general, GB2k is not connected starting with k = 7 due to existing
of isolated vertices, i.e. such bent functions for which there are no bent
functions at the distance 2k from them. Such bent functions are called
non-weakly normal, they were constructed in [2]. Connectivity of GB2k

without isolated vertices is an open question.
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Solutions Set Stability of a System of Equations in a
Case of their Random Distortions

Vladimir Mikhailov Artem Volgin

Abstract

We consider two systems of equations: a system where in the left part there are
functions of a special type and a system where in the left part there are functions
received from functions of the first system by their independent random distortion.
Conditions are derived for the probabilistic laws of distortions of functions providing
three versions of reciprocal behaviour of solution sets of these systems at the increase
in number of the equations and number of unknown variables.

Keywords: system of equations, linear function.

1 Introduction

In the cryptoanalysis of symmetric ciphers a significant role is played by
systems of the equations and methods of their solutions ([1], [3]). According
to an encryption algorithm, known bits of the plaintext and ciphertext are
tied by a system of the equations with unknown bits of a secret key. One
of methods of the solution of systems of equations is based on searching of
the ”close” easily solved systems. In [4], [5] concepts of ”close” functions
are considered. Two systems are ”close” if the values of corresponding
functions in this systems differ in a small number of variables. Ranges of
search of the ”close” systems are given in this report.

Let N, T ∈ N. Consider a system of equations

ft(x) = bt, t = 1, ..., T, (1)

where ft : {0, ..., N − 1} → {0, 1}, bt ∈ {0, 1}, and a similar system,
in a left side of which functions are obtained from functions f1, ..., fT by
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their independent distortion. In this article, for several types of random
distortions conditions are obtained supporting the following variations of an
asymptotic behaviour of a size of a common part of these systems solutions
set at a concerted increase of an equations number and dimensionality:
− conditions, under which the probability of not intercrossing of these

sets tends to one,
− conditions, under which the probability of these sets coincidence tends

to one,
− intermediate conditions, under which the number of system’s general

solutions has a non-degenerate limiting distribution (this role is played by
a binomial distribution).

By B(N), let us denote a set of all 2N functions on the set {0, ..., N−1}
and by ⊕ the addition operator modulo 2. Let us note that in the case
when functions f1, ..., fT are changed with functions f1⊕ b1, ..., fT ⊕ bT , the
system (1) reduces to a uniform system

ft(x) = 0, t = 1, ..., T, (2)

for which the main calculations are given here.

2 Main theorem

For each function f ∈ B(N), let us juxtapose sets A0(f) and A1(f) of
those argument values, when it takes values of zero and one respectively.
For an integer 0 ≤ v ≤ |A0(f)|, let us assume that

B0(f, v) = {g ∈ B(N) : |A1(g) ∩ A0(f)| = v}.

A distribution on functions set B0(f, v) will be called by us as a uniform
distribution with respect of zeros of the function f, if for each subset A ⊂
A0(f) of power |A| = v, the following equation is true:

P{A1(g) ∩ A0(f) = A} =
1

Cv
|A0(f)|

. (3)

The condition (3) means that the set A1(g) ∩ A0(f) is distributed in
such a way as if it was built by a selection with equal probability without
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return of v points of the set A0(f). In other respects, the distribution of
the set A1(g) (i.e. of a random function from B0(f, v)) is arbitrary.

From this feature, it follows, for example, that for any x ∈ A0(f), the
following equation is true:

P{x ∈ A0(g)} = 1− v

|A0(f)|
. (4)

In a similar way on the set

B1(f, u) = {g ∈ B(N) : |A0(g) ∩ A1(f)| = u}

a distribution is determined being uniform with respect of units of the
function f. For such distribution under any x ∈ A1(f)

P{x ∈ A1(g)} = 1− u

A1(f)
.

Let v1, ..., vT − be integers satisfying to relations 0 ≤ vt < |A0(ft)|,
t = 1, ..., T. At each t = 1, ..., T on the set B0(ft, vt), let us define some
probability distribution uniform with respect of zeros of the function ft.

In accordance with these distributions, let us select functions f̃1, ..., f̃T
randomly and independently.

Let us introduce denomination v = (v1, ..., vT ) and denomination S̃(v)
for solutions set of a system of random equations

f̃t(x) = 0, t = 1, ..., T. (5)

Let S − be a solutions set of the uniform system (2).
Remark 1. In statements of this paper at a proceeding to limit, changes

of all parameters and functions are allowed in limits of natural restrictions
and conditions specified in statements.

Theorem 1. Let us assume that the equations left sides of the system
(5) are obtained by independent random selection of the functions f̃1, ..., f̃T
from the sets B0(f1, v1), ..., B0(fT , vT ) respectively with aid of distributions
uniform with respect of zeros of the functions f1, ..., fT . Let |S| ≥ 1, and
N, T →∞. Then:
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1) if
T∑
t=1

vt
|A0(ft)|

− ln |S| → ∞, (6)

then P{S̃(v) ∩ S = ∅} → 1;
2) if |S| = const and

T∑
t=1

vt
|A0(ft)|

→ κ ∈ (0,∞), max
t=1,...,T

vt
|A0(ft)|

→ 0,
T∑
t=1

1

|A0(ft)|
→ 0,

(7)
Then the distribution of the random value |S̃(v) ∩ S| converges to the bi-
nomial distribution with the parameters |S| and e−κ;

3) if

|S|
T∑
t=1

vt
|A0(ft)|

→ 0, (8)

then P{S̃(v) ⊇ S} → 1.
Remark 2. If N, T → ∞ and condition |S| = O(1) is true, then

condition (6), the first part of (7) and condition (8) of the theorem 1 have
the following representation:

T∑
t=1

vt
|A0(ft)|

→ ∞,
T∑
t=1

vt
|A0(ft)|

→ κ ∈ (0,∞),
T∑
t=1

vt
|A0(ft)|

.

Remark 3. The theorem 1 statement and all the calculations used for
its proof are correct for any distributions on sets B(ft, vt), uniform with
respect of zeros of the function ft, t = 1, ..., T. For different equations of
the system, these distributions can differ. Among them, one of a special
interest for us is the following version of a random distortion of the equa-
tions of the system (1). For each function f at integers 0 ≤ u < |A1(f)|
and 0 ≤ v < |A0(f)|, let us assume that

B(f, u, v) = {g ∈ B(N) : |A0(g) ∩ A1(f)| = u, |A1(g) ∩ A0(f)| = v}.

Note that B(f, u, v) ⊂ B(f, v) and |B(f, u, v)| = Cu
|A1(f)|C

v
|A0(f)|. On the

sets B(f1, u1, v1), ..., B(fT , uT , vT ), let us define uniform probability distri-
butions, according to which randomly and independently we would select
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functions f̃1, ..., f̃T . These functions can be interpreted as the random dis-
tortions of the functions f1, ..., fT . Let S̃(u, v) to be a solution set of the
system (1) distorted in such a way. For this set, the theorem 1 takes the
following form.

Corollary 1. Let us assume that the equation’s left sides of the sys-
tem (5) are obtained by an independent equiprobable selection of the func-
tions f̃1, ..., f̃T from the sets B(f1, u1, v1), ..., B(fT , uT , vT ) respectively. Let
|S| ≥ 1, N, T →∞. Then:

1) if the condition (6) is true, then P{S̃(u, v) ∩ S = ∅} → 1;
2) if |S| = const and the conditions (7) are true, then the random value

distribution |S̃(u, v)| converges to binomial distribution with parameters |S|
e−κ;

3) if the condition (8) is true, then P{S̃(u, v) ⊇ S} → 1.
Remark 4. A uniform distribution on the set B(f, u, v) has the special

feature that it is uniform with respect to both zeros and ones of the function
f. This is why replacing of the functions ft and f̃t in the system (1) and in
the system

f̃t(x) = bt, t = 1, ..., T, (9)

with functions ft⊕ bt f̃t⊕ bt, t = 1, ..., T, leads to zeros in the right sides of
their systems just because of positions changing of distribution parameters
of the distorted system. So we obtain the following statement.

Lets denote the system (1) solutions set as Sb and the system (9) solu-
tions set as S̃b(u, v). Let’s also denote b = (b1, ..., bT ). Note designators ut
and vt on v

(1)
t and v

(0)
t respectively.

Corollary 2. Let us assume that the left sides of the system (9) ob-
tained by the way of the independent equiprobable selection of the func-
tions f̃1, ..., f̃T from the sets B(f1, v

(1)
1 , v

(0)
1 ), ..., B(fT , v

(1)
T , v

(0)
T ) respectively.

Then:
1) if

T∑
t=1

v
(bt)
t

|Abt(ft)|
− ln |Sb| → ∞,

then P{S̃b(u, v) ∩ Sb = ∅} → 1;
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2) if |Sb| = const and

T∑
t=1

v
(bt)
t

|Abt(ft)|
→ κ ∈ (0,∞), max

t=1,...,T

v
(bt)
t

|Abt(ft)|
→ 0,

T∑
t=1

1

|Abt(ft)|
→ 0,

then the distribution of the random value |S̃b(u, v) ∩ Sb| converges to the
binomial distribution with the parameters |Sb| and e−κ;

3) if

|Sb|
T∑
t=1

v
(bt)
t

|Abt(ft)|
→ 0,

then P{S̃b(u, v) ⊇ Sb} → 1.

3 Distortion by replacing of functional values with a

random value

Let us assume that on a numbers set {0, ..., N − 1} probability distri-
butions P1, ...,PT are defined and ς1, ..., ςT are independent random values
with
distributions P1, ...,PT . For each function f ∈ B(N), let’s juxtapose a
set C(f, ς), ς ∈ {0, ..., N −1}, of those functions g ∈ B(N) that differ from
the function f uniformly at values ς of argument x ∈ {0, ..., N − 1}.

On the sets C(f1, ς1), ..., C(fT , ςT ), let us define uniform probability dis-
tributions, according to which randomly and independently we shall select
functions f̃1, ..., f̃T . These functions can be interpreted as random pertur-
bances of the functions f1, ..., fT . Let’s consider a system of random equa-
tions

f̃t(x) = 0, t = 1, ..., T, (10)

with functions f1, ..., fT .. Let’s denote system (10) solutions set as S̃(P1, ...,PT ).
Theorem 2. Let us assume that the left sides of the system (10)

equations are obtained by independent and random selection of the func-
tions f̃1, ..., f̃T from the set B(N) in accordance with the distributions Pt,

CTCrypt 2015 V.G. Mihailov, A.V. Volgin 35



Solutions Set Stability of a System of Equations in a Case ...

t = 1, ..., T. Let us assume that N, T → ∞, |S| = const ≥ 1, while distri-
butions Pt are changed in such a way that

DPςt = O(EPt
ςt) is uniform on t = 1, ..., T. (11)

Then:
1) if

1

N

T∑
t=1

EPt
ςt →∞,

then P{S̃(P1, ...,PT )
⋂
S = ∅} → 1;

2) if

1

N

T∑
t=1

EPt
ςt → κ ∈ (0,∞), max

t=1,...,T

EPt
ςt

N
→ 0,

T∑
t=1

1

|A0(ft)|
→ 0,

then the distribution of the random value |S̃(P1, ...,PT ) ∩ S| converges to
the binomial distribution with the parameters |S| and e−κ;

3) if

1

N

T∑
t=1

EPt
ςt → 0,

then P{S̃(P1, ...,PT ) ⊇ S} → 1.
Remark 5. The condition (11) of the theorem 2 can be weakened if

instead of it we add the following in the condition of the point 1):

max
t=1,...,T

DPt
ςt

N
< m1, m1 = const > 0

as well as the following in the condition of the point 2):

T max
t=1,...,T

DPt
ςt

N
< m2, m2 = const > 0.

Let’s formulate a number of derived relations from the theorem 2 for
three different kinds of distortion of the functions f1, ..., fT :
− In the first case to each function ft ∈ B(N) the set C1(ft, dt), t =

1, ..., T, is juxtaposed with those functions g ∈ B(N), that differ from ft
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exactly at dt values of the argument x ∈ {0, ..., N − 1}. It is supposed that
on the sets C1(f1, d1), ..., C1(fT , dT ), uniform probability distributions are
defined.
− In the second case to each function ft ∈ B(N) the set C2(ft, dt),

t = 1, ..., T, is juxtaposed with those functions g ∈ B(N), that differ from
ft not more than under dt values of the argument x ∈ {0, ..., N − 1}. It
is supposed that on the sets C2(f1, d1), ..., C2(fT , dT ), uniform probability
distributions are defined.
− In the third case to each function ft ∈ B(N) the set C3(ft, dt),

t = 1, ..., T, is juxtaposed with those functions g ∈ B(N), that differ
from ft at every value of the argument x ∈ {0, ..., N − 1} with a prob-
ability pt, t = 1, ..., T, which depends on equations number. Along with it,
the distortions are entered independently. It is supposed that on the sets
C3(f1, d1), ..., C3(fT , dT ), uniform probability distributions are defined.

For the first two kinds of distortions, the derived relations from the
theorem 2 are formulated in the same way. Let’s denote the system (10)
solutions sets as S̃1(d1, ..., dT ) in the first case and as S̃2(d1, ..., dT ) in the
second case.

Corollary 3. Let us assume that the left sides of the system (10)
equations are obtained by a way of an independent random selection of
functions f̃1, ..., f̃T from the sets C1(f1, d1), ..., C1(fT , dT ) or from the sets
C2(f1, d1), ..., C2(fT , dT ). Also let N, T →∞, |S| = const ≥ 1. Then:

1) if

1

N

T∑
t=1

dt →∞,

then P{S̃1(d1, ..., dT )
⋂
S = ∅} → 1 and P{S̃2(d1, ..., dT )

⋂
S = ∅} → 1;

2) if

1

N

T∑
t=1

dt → κ ∈ (0,∞), max
t=1,...,T

dt
N
→ 0,

T∑
t=1

1

|A0(ft)|
→ 0,

then the distributions of the random values |S̃1(d1, ..., dT )∩S| and |S̃2(d1, ..., dT )
∩S| converges to the binomial distribution with the parameters |S| e−κ;
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3) if

1

N

T∑
t=1

dt → 0,

then P{S̃1(d1, ..., dT ) ⊇ S} → 1 and P{S̃2(d1, ..., dT ) ⊇ S} → 1.
Let’s denote the system (10) solutions set as S̃3(p) under distortions of

the third case.
Corollary 4. Let us assume that the left sides of the system (10)

equations are obtained by a way of an independent random selection of
functions f̃1, ..., f̃T from the sets C3(f1, d1), ..., C3(fT , dT ). Let N, T → ∞,
|S| = const ≥ 1. Then:

1) if
p(1) + ...+ p(T )→∞,

then P{S̃3(p)
⋂
S = ∅} → 1;

2) if

p(1) + ...+ p(T )→ κ ∈ (0,∞), max
t=1,...,T

p(T )→ 0,
T∑
t=1

1

|A0(ft)|
→ 0,

then the distribution of the random value |S̃3(p) ∩ S| converges to the bi-
nomial distribution with the parameters |S| e−κ;

3) if
p(1) + ...+ p(T )→ 0,

then P{S̃3(p) ⊇ S} → 1.

4 Conclusion

Let’s consider the following problem connected with the above prob-
lem. Let us assume that it is necessary to solve an equations system. If
as a result of a ”just small distortion” of the left sides of the equations,
this system is transformed into an easily solvable system, the task reduces
down to finding and solving of a nearest easily solvable system. These
problems are quite similar to problems arising in case of linear analogs
use ([2], [3]).
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As those easily solvable systems, systems of linear Boolean equations
and triangular systems can serve. The most convenient case for the pur-
poses of illustration is one referred to Boolean non-linear equations; and
as an easily solvable system, a system of linear equations acts.

We remind once more that in our case, only very good analogs are items
of interest. That is why their search (given that such analog exists) is much
easier than in the classical case. It is enough by chance or in any other
way from a functions table to select n + 1 different couples ”argument
value − function value.” By these couples, a linear function is defined
unequivocally. If a table of an original function and one of a being-sought
linear analog differ just insignificantly, then almost for sure it will be the
needed linear function. That is why a solution algorithm for a system with
such Boolean functions is absolutely clear.

1. For each function from a left side of a system, its linear analog is
found in the specified way.

2. The built system of the linear equations is solved.
3. Checking is needed that all these solutions comply with the original

non-linear system.
Note that basically an original non-linear system can have other solu-

tions.
The theorems given above and derived relations obtained from them,

specify deviation scopes from analogs, in frame of which this procedure
makes sense.
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5 Appendix

5.1 Proof of the theorem 1

Due to the function f̃t distribution uniformity with respect to zeros of
the function ft, as well as due to the equation (3), we have

P{f̃t(x) = 0} = 1− vt
|A0(ft)|

for any x ∈ S, t = 1, ..., T. (12)

Let’s prove the statement 1). From the condition of distortions inde-
pendency of separate system functions (1) and (4), it follows that

P{x ∈ S} =
T∏
t=1

P{f̃t(x) = 0} =
T∏
t=1

(
1− vt
|A0(ft)|

)
for any x ∈ S, (13)

and it means that

E|S ∩ S̃(v)| =
∑
x∈S

P{x ∈ S̃(v)} = |S|
T∏
t=1

(
1− vt
|A0(ft)|

)
. (14)

Now from (6) and (14), it follows that

E|S ∩ S̃(v)| ≤ |S| exp

{
−

T∑
t=1

vt
|A0(ft)|

}
→ 0.

Consequently, P{S̃(v) ∩ S = ∅} → 1.
Let’s prove the statement 3). From (12), the equations follow:

P{f̃t(x) = 1} =
vt

|A0(f)|
for any;x ∈ S, t = 1, ..., T, (15)

and from (15) we obtain that

P{x /∈ S̃(v)} ≤
T∑
t=1

P{f̃t(x) = 1} =
T∑
t=1

vt
|A0(ft)|

for any x ∈ S.

Hence,

E|S \ S̃(v)| ≤
∑
x∈S

P{x /∈ S̃(v)} ≤ |S|
T∑
t=1

vt
|A0(ft)|

. (16)
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According to condition (8), the expression in the right side (17) tends to
zero. So P{S̃(v) ⊇ S} → 1.

For proving of the statement 2), we’ll need the following result.

Lemma 1. Let |S| = const, 0 ≤ vt < |A0(ft)|, P =
∏T

t=1

(
1− vt

|A0(ft)|

)
.

Then it will be found such absolute constant value C <∞ that

max
r

∣∣∣P{|S̃(v) ∩ S| = r} − Cr
|S|P

r(1− P )|S|−r
∣∣∣ ≤ C

T∑
t=1

1

|A0(f)| − vt
.

Let’s prove the statement 2). From the conditions (7), it follows that

T∑
t=1

1

|A0(ft)| − vt
→ 0.

It means that according to lemma 1, the distribution of elements number
of the set S̃(v) ∩ S approximates to the binomial distribution Bi(|S|, P ).
In its turn, from the condition (7) of the theorem, it follows that P → e−κ.

This is why the distribution Bi(|S|, P ) approximates to the Bi(|S|, e−κ).
The same is true also for the elements distribution of the set |S̃(v ∩ S)|.
The theorem 1 is proved.

5.2 Proof of the lemma 1

Let Jx to be an indicator of an event x ∈ S̃(v), 1 ≤ m < |S| and

k1, ..., km ∈ S =
T⋂
t=1

A0(ft), ki 6= kj (i 6= j).

Then with due consideration of the formula

(|A0(ft)| −m)vt
(|A0(ft)|)vt

=
(|A0(ft)| − vt)m

(|A0(ft)|)m
,

we obtain

EJk1...Jkm =
T∏
t=1

(|A0(ft)| −m)vt
(|A0(ft)|)vt

=
T∏
t=1

(|A0(ft)| − vt)m
(|A0(ft)|)m

. (17)
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At m = 1 this formula coincides with (13).
As

(|A0(ft)| − vt)m
(|A0(ft)|)m

≤ (|A0(ft)| − vt)m

(|A0(ft)|)m
,

then

EJk1...Jkm ≤ EJk1...EJkm = (EJk1)
m =

(
1− vt
|A0(ft)|

)m
. (18)

From the inequalities

(A)m ≥ Am − C2
mA

m−1, (A)m ≤ Am,

true for natural numbers A > m ≥ 2, we obtain that

(|A0(ft)| − vt)m

(|A0(ft)|)m
− (|A0(ft)| − vt)m

(|A0(ft)|)m

=
(|A0(ft)| − vt)m(|A0(ft)|)m − (|A0(ft)| − vt)m(|A0(ft)|)m

(|A0(ft)|)m(|A0(ft)|)m

≤ (|A0(ft)| − vt)m − (|A0(ft)| − vt)m
(|A0(ft)|)m

≤ C2
m

(|A0(ft)| − vt)m−1

(|A0(ft)| − vt)m
. (19)

From (17) and (19), we obtain

EJk1...Jkm ≥
T∏
t=1

((
1− vt
|A0(ft)|

)m
− C2

m

(|A0(ft)| − vt)m−1

(|A0(ft)|)m

)
. (20)

To the right side of (20), let’s apply the inequality

(a1 − x1)...(aT − xT ) ≥ a1...aT

(
1−

T∑
t=1

xt
at

)
at 0 ≤ xt < at; and if to take

at =

(
1− vt
|A0(ft)|

)m
, xt = C2

m

(|A0(ft)| − vt)m−1

(|A0(ft)|)m
,
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we’ll obtain the inequality

EJk1...Jkm ≥ (1− bk1,...,km)EJk1...EJkm

= (1− bk1,...,km)

(
1− vt
|A0(ft)|

)m
,

where

bk1,...,km = C2
m

T∑
t=1

(|A0(ft)| − vt)m−1

(|A0(ft)|)m

(
1− vt
|A0(ft)|

)−m

≤ C2
m max

1≤t≤T

|A0(ft)|m

(|A0(ft)|)m

T∑
t=1

1

|A0(ft)| − vt
. (21)

A probability of any outcome of a vector (J1, ..., Jr) is expressed with a
finite linear combination of values EJk1...Jkm , m = 1, ..., r. This is why from
(18) and (21), it follows that the maximum probability of differences of
distributions outcomes of the vector (J1, ..., Jr) and the vector (V1, ..., Vr)
from independent random values distributed with probabilities

P{Vk = 1} = 1−P{Vk = 0} = EJk = P, k = 1, ..., r,

tends to zero as O
(∑T

t=1
1

|A0(ft)|−vt

)
. So Lemma 1 is proved.
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Mathematical Problems of the First International
Student’s Olympiad in Cryptography NSUCRYPTO

Sergey Agievich Anastasia Gorodilova Nikolay Kolomeec
Svetla Nikova Bart Preneel Vincent Rijmen

George Shushuev Natalia Tokareva Valeriya Vitkup

Invited talk

Abstract

Mathematical problems of the first international student’s Olympiad in cryp-
tography NSUCRYPTO’2014 are considered. We discuss solutions of the problems
related to cipher constructing such as studying of differential characteristics of S-
boxes, S-box masking, determining of relations between cyclic rotation and additions
modulo 2 and 2n, constructing of special linear subspaces in Fn

2 ; problems about
the number of solutions of the equation F (x) + F (x + a) = b over the finite field
F2n and APN functions. Some unsolved problems in symmetric cryptography are
discussed.

Keywords: cryptography, cipher, S-box, APN function, AES, Olympiad.

1 Introduction

The First Siberian Student’s Olympiad in Cryptography with Interna-
tional participation — NSUCRYPTO’2014 was held on November 2014.
There exist several school competitions in cryptography and information
security, but this one is the first cryptographic Olympiad for students and
professionals. The aim of the Olympiad was to involve students and young
researchers in solving of curious and hard scientific problems of the mod-
ern cryptography. From the very beginning the concept was not to stop
on the training olympic tasks but include unsolved research problems at
intersection of mathematics and cryptography.
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In this abstract we would like to discuss several mathematical problems
of the Olympiad and their solutions. We consider problems related to
cipher constructing such as studying of differential characteristics of S-
boxes, S-box masking, determining of relations between cyclic rotation and
additions modulo 2 and 2n, constructing of special linear subspaces in Fn2 .
Problems about the number of solutions of the equation F (x)+F (x+a) = b
over the finite field F2n and APN functions are discussed. Some unsolved
problems are proposed such as the problem about the special watermarking
cipher.

Organizers of the Olympiad are Novosibirsk State University, Sobolev
Institute of Mathematics (Novosibirsk), Tomsk State University, Belaru-
sian State University and University of Leuven (KU Leuven, Belgium).
Programm committee was formed by G. Agibalov, S. Agievich, N. Kolo-
meec, S. Nikova, I. Pankratova, B. Preneel, V. Rijmen and N. Tokareva.
Local organizing committee from Novosibirsk consisted of A. Gorodilova,
N. Kolomeec, G. Shushuev, V. Vitkup, D. Pokrasenko and S. Filiyzin.
N. Tokareva was the general chair of the Olympiad.

More than 450 participants from 12 countries were registered on the
website of the Olympiad, www.nsucrypto.nsu.ru. There were two inde-
pendent Internet rounds. The First round (duration 4 hours 30 minutes)
was individual and consisted of two sections: school and student’s. Theo-
retical tasks in mathematics of cryptography were offered to participants.
The second, team, round (duration 1 week) was devoted to hard research
and programming problems of cryptography. Results of the Olympiad can
be found on the official website. Here we concentrate our attention only
on mathematical problems and solutions.

2 Problem “Linear subspaces”

Recall several definitions and notions. Each element x ∈ Fk2 is a binary
vector of length k, i. e. x = (x1, . . . , xk), where x1, . . . , xk ∈ F2. For two
vectors x and y of length k their sum is x ⊕ y = (x1 ⊕ y1, . . . , xk ⊕ yk),
where ⊕ stands for XOR operation. Let 0 be the zero element of the vector
space, i. e. vector with all-zero coordinates. A nonempty subset L ⊆ Fk2 is

CTCrypt 2015 S. Agievich et al. 46



Mathematical Problems of the first International Student’s Olympiad ...

called a linear subspace if for any x, y ∈ L it holds x⊕ y ∈ L. It is easy to
see that zero vector belongs to every linear subspace. A linear subspace L
of Fk2 has dimension n if it contains exactly 2n elements.

Problem. For constructing a new secret sharing scheme Mary has to solve
the following task on binary vectors. Let n be an integer number, n > 2.
Let F2n

2 be a 2n-dimensional vector space over F2, where F2 = {0, 1} is a
prime field of characteristic 2. Do there exist subsets L1, . . . , L2n+1 of F2n

2

such that the following conditions hold

• Li is a linear subspace of dimension n for every i ∈ {1, . . . , 2n + 1};

• Li ∩ Lj = {0} for all i, j ∈ {1, . . . , 2n + 1}, i 6= j;

• L1 ∪ . . . ∪ L2n+1 = F2n
2 ?

If “yes”, show how to construct these subspaces for an arbitrary integer n.

Solution. Consider F2n
2 as 2-dimensional vector space over F2n, where F2n

is the Galois field of order 2n. Denote this vectorial space as V .
Define the following family of sets:

Lα = {(x, αx) | x ∈ F2n}, where α ∈ F2n; L2n+1 = {(0, y) | y ∈ F2n}.

It is obvious that every such a set is a linear subspace in V and contains
exactly 2n elements. Let us show that an arbitrary element (x, y) ∈ V is
covered by the union of these subspaces. If x = 0 it is covered by L2n+1.
Otherwise, (x, y) = (x, (y/x)x) belongs to the subspace Ly/x. Note that
every two subspaces have only one common element 0, since cardinality of
V is exactly 22n = (2n + 1)(2n − 1) + 1. Thus, the answer for the task is
“yes” and the system is constructed.

3 Problem “Number of solutions”

Problem. Let F256 be the finite field of characteristic 2 with 256 ele-
ments. Consider the function F : F256 → F256 such that F (x) = x254.
Since x255 = 1 for all nonzero x ∈ F256, we have F (x) = x−1 for all nonzero
elements of F256. Further, we have F (0) = 0.

CTCrypt 2015 S. Agievich et al. 47



Mathematical Problems of the first International Student’s Olympiad ...

Alice is going to use the function F as an S-box (that maps 8 bits to 8
bits) in a new block cipher. But before she wants to find answers to the
questions below. Please, help to Alice!

• How many solutions may the equation F (x + a) = F (x) + b have for
all different pairs of nonzero parameters a and b, where a, b ∈ F256?

• How many solutions does the equation F (x + a) = F (x) + b have for
the function F (x) = x2n−2 over the finite field F2n for an arbitrary n?

Solution. Consider a general case, i. e. F : F2n → F2n, F (x) = x2n−2

(and F (x) = x for n = 1). We should determine how many solutions the
equation F (x + a) = F (x) + b may have for all different pairs of nonzero
parameters a and b, where a, b ∈ F2n. Since characteristic of F2n is 2,
operations “−” and “+” coincide.

First of all, note that for n = 1 there exists only one pair (a, b) = (1, 1),
in this case there are 2 solutions of the equation. In what follows let n > 1.

Note that the function Fa(x) = F (x) + F (x + a) has some symmetry:
Fa(x) = Fa(x+ a), it means that 2 divides the number of solutions and at
least for 2n−1 distinct b ∈ F2n it holds Fa(x) 6= b for all x ∈ F2n.

Therefore, for all n > 1 there exist b 6= 0 and a 6= 0, such that the
equation has no solutions. That is why the number of solutions of the
equation F (x+ a) = F (x) + b can be 0. Consider other possibilities.

Simplify the given equality: suppose that x 6= 0 and x 6= a. Note also
that y2n−1 = 1 for all y ∈ F∗2n. Then

(x+ a)2n−2 + x2n−2 = b, | · x(x+ a)

x(x+ a)(x+ a)2n−2 + x(x+ a)x2n−2 = bx(x+ a),

bx2 + abx+ a = 0, | · a−2b−1

x2/a2 + x/a+ (ab)−1 = 0.

Note that the number of solutions of x2/a2 + x/a + (ab)−1 = 0 depends
only on ab and x = 0, x = a are not its solutions. Rewrite this equality as

z2 + z + (ab)−1 = 0,

where z = x/a. Then we have two cases:
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• x = 0 and x = a are solutions of F (x) +F (x+ a) = b. Then it should
be a = b−1, i. e. ab = 1. We already have 2 solutions. Next, solve the
equality z2 + z + 1 = 0. Note that the number of its solutions plus 1
equals to the number of solutions of z3 + 1 = 0. Below we determine
this last number. Let α be a primitive element of F2n.

• If n is even, then α3 is not primitive as far as 2n − 1 = 22k − 1 =
4k − 1 = 0 (mod 3), i. e. we have more than one solution for
z3 + 1 = 0. It means that z2 + z + 1 = 0 has solutions, moreover,
exactly two, since z and z + 1 are both solutions. Therefore, the
equation F (x) + F (x+ a) = b has exactly 4 solutions.

• If n is odd, α3 is a primitive element, since 2n − 1 = 2 · 22k − 1 =
2 · 4k − 1 = 1 (mod 3), i. e. z3 + 1 has exactly one solution. It
means that z2 + z + 1 = 0 has no solutions. So, the equation
F (x) + F (x+ a) = b has exactly 2 solutions.

• x = 0 and x = a are not the solutions of F (x) + F (x + a) = b.
Therefore, ab /∈ F2. Note that equation z2 + z = z(z + 1) = (ab)−1

have 0 or 2 solutions. Since (ab)−1 can be an arbitrary element from
F2n\F2, at least for 2n−1−2 distinct ab there are exactly two solutions:
so, if n > 2, it can be 2 solutions in this case. If n = 2, then z2+z ∈ F2,
i. e. for ab /∈ F2 there is no solution.

The answer is the following. For n = 1 there are always 2 solutions; for
n = 2 there can be 0 or 4 solutions; for odd n (n > 1) there can be 0 or 2
solutions; for even n (n > 2) there can be 0, 2 or 4 solutions.

4 Problem “A special parameter”

A special parameter that we consider here is called the differential branch
number of a transformation, see for example book [2]. In differential crypt-
analysis of block ciphers this parameter is used to measure the diffusion
strength of a cipher. Some properties of it are discussed in the problem.

Problem. Let n, m be positive integer numbers. Let a = (a1, . . . , am) be
a vector, where ai are elements of the finite field F2n. Denote by wt(a) the
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number of nonzero coordinates ai, i = 1, . . . ,m, and call this number the
weight of a. We say that a, b ∈ Fm2n represent states. The sum of two states
a, b is defined as a+ b = (a1 + b1, . . . , an + bn).

Thus, the special parameter P of a function ϕ : Fm2n → Fm2n is given by

P (ϕ) = min
a, b, such that a6=b

{wt(a+ b) + wt(ϕ(a) + ϕ(b))}.

• Rewrite (simplify) the definition of P (ϕ) when the function ϕ is linear
(recall that a function ` is linear if for any x, y it holds `(x + y) =
`(x) + `(y)).

• Rewrite the definition of P (ϕ) in terms of linear codes, when the
linear transformation ϕ is given by a m×m matrix M over F2n, i. e.
ϕ(x) = M · x.

• Let ϕ be an arbitrary function. Find a tight upper bound for P (ϕ) as
a function of m.

• Can you give an example of the function ϕ with the maximal possible
value of P?

Solution. Suppose ϕ : Fm2n → Fm2n and a, b ∈ Fm2n.
• Since ϕ is linear, i. e. ϕ(x + y) = ϕ(x) + ϕ(y) for all x, y ∈ Fm2n, and

the condition a 6= b is equivalent to a+ b 6= 0, we can rewrite the definition
of P (ϕ) in the following way, where by c we denote a+ b:

P (ϕ) = min
c6=0
{wt(c) + wt(ϕ(c))}.

• Let us consider vectors (x, ϕ(x)) = (x,M · x) of length 2m, where
x ∈ Fm2n. Then the set C = {(x,M · x) | x ∈ Fm2n} is a linear code.
Since we have wt(a + b) + wt(ϕ(a) + ϕ(b)) = wt((a + b, ϕ(a) + ϕ(b))) =
dist((a, ϕ(a)), (b, ϕ(b))), where dist(x, y) means the Hamming distance be-
tween vectors x and y, the parameter P (ϕ) is equal to the minimal distance
between distinct codewords of the code C.
• Since a 6= b, the minimal value of wt(a + b) is equal to 1. Also the

maximal possible value wt(ϕ(a) + ϕ(b)) is m by the definition. Thus, the
maximal possible value of P (ϕ) is not more than m+ 1.
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• One can construct an example of such a transformation using a Max-
imal Distance Separable code with parameters [2m,m,m+ 1], for example
Reed — Solomon code.

5 Problem “S-box masking”

Problem. To provide the security of a block cipher to the side channel
attacks, some ideas on masking of elements of the cipher are exploited.
Here we discuss masking of S-boxes. Alice takes a bijective function S (S-
box) that maps n bits to n bits. Bob claims that for every such a function
S there exist two bijective S-boxes, say S ′ and S ′′, mapping n bits to n

bits, such that it holds S(x) = S ′(x) ⊕ S ′′(x) for all x ∈ Fn2 . Hence, Alice
is able to mask an arbitrary bijective S-box by “dividing it into parts” for
realization. But Alice wants to see the proof of this fact. Please help to
Bob in giving the arguments.

Solution. We would like to give a solution proposed by Qu L. et al. in
the first variant of the paper [4]. Let us represent an arbitrary bijective
function S : Fn2 → Fn2 as S ′(x) ⊕ S ′′(x), where S ′, S ′′ : Fn2 → Fn2 are
bijective too. As for “Linear subspaces” problem, consider Fn2 as F2n. Let
α ∈ F2n and α 6= 0, 1. If n > 1 such an element α does exist. It is clear
that S(x) = αS(x) + (α + 1)S(x). Note that αS(x) and (α + 1)S(x) are
bijective since each of them is a composition of two bijective mappings.
So, for n > 1 the required representation exists. If n = 1 there are only
two bijective function S(x) = x and S(x) = x⊕ 1; their sum is a constant
and hence there is no the required representation in this case.

6 Problem “Add-Rotate-Xor”

Problem. Let Fn2 be the vector space of dimension n over F2 = {0, 1}.
A vector x ∈ Fn2 has the form x = (x1, x2, . . . , xn), where xi ∈ F2. This
vector can be interpreted as the integer x1 ·2n−1+x2 ·2n−2+. . .+xn−1 ·2+xn.

Alice can implement by hardware the following functions from Fn2 to Fn2
for all vectors a, b ∈ Fn2 and all integers r, 0 < r < n:
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1) fa(x) = x� a — addition of vectors x and a as integers modulo 2n;

2) gr(x) = x≪ r — cyclic rotation of a vector x to the left by r positions
for a fixed positive integer r;

3) hb(x) = x⊕ b — coordinate-wise sum of vectors x and b modulo 2.

• Bob asks Alice to construct two devices that compute the functions
S1 and S2 from F2

2 to F2
2 given by their truth tables:

x (00) (01) (10) (11)

S1(x) (01) (00) (10) (11)

S2(x) (01) (11) (00) (01)

Can Alice do it? If “yes”, show how it can be done; if “no”, give an
explanation.

• Generalizing the problem above: can we construct any function from
Fn2 to Fn2 using only a finite number of compositions of functions fa,
gr and hb? And what about any permutation over Fn2? Consider at
least the cases n = 2, 3, 4.

• Is it possible to compute every function hb using only fa and gr?

Solution. The complicated algebraic solution of this problem was given by
T. Zieschang in 1997, see [5]. Here we introduce a simple solution proposed
by the participants of the Olympiad.

• S1(x) = g1(f1(g1(f2(x))). It is obvious that all fa, gr and hb are bijec-
tive, therefore, any its composition is bijective too. S2 is not bijective,
so, it can not be represented as a composition of them.

• Only permutations on F2n can be constructed in this way. It is well
known that compositions of function f1 (a cycle of length 2n) and
transpositions of adjacent elements in the cycle give us all permuta-
tions on F2n. The following construction gives a certain transposition
τ : τ(x) = g1(f2n−1(gn−1(f2(x)))). Indeed, gn−1(y) = 2n−1yn + by/2c;
and if x < 2n − 2, then f2(x) = x+ 2, so,

gn−1(f2(x)) = gn−1(x+ 2) = 2n−1(x+ 2)n + b(x+ 2)/2c =

2n−1xn + bx/2c+ 1.
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Next, f2n−1 eliminates “+1” and g1 cyclically rotates (xn, x1, . . . , xn−1)
to the left by one position. Also τ(2n − 2) = 2n − 1: f2(2

n − 2) = 0,
gn−1(0) = 0, f2n−1(0) = 2n − 1, g1(2

n − 1) = 2n − 1.

• Yes. The third item is obvious, since we can construct any permuta-
tion on F2n using the mentioned functions.

7 Problem “Watermarking cipher” (unsolved)

Here we present an unsolved problem that remains so till now. It was
stated by Gennadiy Agibalov and Irina Pankratova.

The most deep analysis of this problem was proposed by R. Zhang
and A. Luykx (winners of the second round of NSUCRYPTO in category
“professional”), but nobody has introduced a concrete solution. May be
you can do it?

Problem. Let X, Y and K be the sets of plaintexts, ciphertexts and keys
respectively, where X = Y = {0, 1}n and K = {0, 1}m for some integer n
and m. Recall that two functions E : X×K → Y and D : Y ×K → X are
called an encryption algorithm and a decryption algorithm respectively if
for any x ∈ X, k ∈ K it holds D(E(x, k), k) = x. Together E and D form
a cipher. Let us call a cipher watermarking if for any key k ∈ K and any
subset I ⊆ {1, 2, . . . , n} there exists a key kI such that for any x ∈ X it
holds D(E(x, k), kI) = x′, where x′ is obtained from x by changing all bits
with coordinates from I. So, the problem is to construct a watermarking
cipher. Please think about easy usage of it by users.

A simple example of such a cipher. Let m = n and encryption and decryption algorithms

be the following: E(x, k) = x ⊕ k and D(y, k) = y ⊕ k. For any set I and any key k we can

easily get the key kI that is obtained from k by changing all bits with coordinates from I. The

main disadvantage of such a cipher that every key should be used only once. How can we

use a watermarking cipher? Suppose you own some digital products (for example, videos),

which you want to sell. Let x represent a binary code of a product. For each customer of x you

choose the unique set I of coordinates and send to him the encrypted with the key k copy y and

the correspondent key kI . Then after receiving y and kI the customer decrypts y and gets x′.

The difference between the original x and x′ is not significant; thus the customer does not know
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about it. If someone illegally spreads on the Internet bought by him product, you can easily

understand who do it because you choose the unique set I for each customer!

8 Problem “APN permutation” (unsolved)

This is another unsolved problem of the Olympiad; it is the well known
long standing problem of cryptography. Some ideas on it were proposed by
the team of G. Beloshapko, A. Taranenko and E. Fomenko (winners of the
second round of NSUCRYPTO in category “students”). One participant
has proposed an online service for distributed search of APN permutations,
see [6]. But till now this problem is unsolved.

Problem. Suppose we have a mapping F from Fn2 to itself (recall that Fn2
is the vector space of all binary vectors of length n). This mapping is called
a vectorial Boolean function in n variables. Such functions are used, for
example, as S-boxes in block ciphers and should have special cryptographic
properties. In this problem we consider the following two properties and
the problem of combining them.

• A function F in n variables is a permutation if for all distinct vectors
x, y ∈ Fn2 it has distinct images, i. e. F (x) 6= F (y).

• A function F in n variables is called Almost Perfect Nonlinear (APN)
if for any nonzero vector a ∈ Fn2 and any vector b ∈ Fn2 an equation
F (x)⊕F (x⊕a) = b has at most 2 solutions. Here ⊕ is the coordinate-
wise sum of vectors modulo 2.

Find an APN permutation in 8 variables or prove that it does not exist.
History of the problem. The question “Does there exist an APN permutation in even number
of variables?” has been studied for more that 20 years. If the number of variables is odd, APN
permutations exist as it was proved by K. Nyberg in 1994, see [3]. It is known that for 2 and 4
variables the answer is “No”. But for 6 variables K. Browning, J. F. Dillon, M. McQuistan, and
A. J. Wolfe have found such a function in 2009, see [1]. You can see it bellow:

G = ( 0 54 48 13 15 18 53 35 25 63 45 52 3 20 41 33
59 36 2 34 10 8 57 37 60 19 42 14 50 26 58 24
39 27 21 17 16 29 1 62 47 40 51 56 7 43 44 38
31 11 4 28 61 46 5 49 9 6 23 32 30 12 55 22 ).
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This function is presented as the list of its values, i. e. G(0) = 0, G(4) = 15, G(16) = 59 and

so on. For brevity we use integers instead of binary vectors. A binary vector x = (x1, . . . , xn)

corresponds to an integer kx = x1 · 2n−1 + x2 · 2n−2 + . . .+ xn−1 · 2 + xn.

9 Problem “Super S-box” (unsolved)

The next unsolved problem is directly related to AES construction.
J. Daemen and V. Rijmen, the designers of AES (Rijndael), have intro-
duced the Super-Sbox representation of two rounds of AES in order to
study differential properties, see [2]. The function G from the problem can
be considered as a simplified Super-Sbox model of two rounds of AES. To
study resistance of AES to differential cryptanalysis, we welcome you to
start with differential characteristics of the function G.

Problem. Let F256 be the finite field of 256 elements and α be a primitive
element (i. e. for any nonzero x ∈ F256 there exists i ∈ N such that x = αi).
Let F4

256 be the vector space of dimension 4 over F256. An arbitrary function
from F4

256 to F4
256 can be considered as the set of 4 coordinate functions from

F4
256 to F256. Define the following auxiliary functions F4,M : F4

256 → F4
256:

F4(x1, x2, x3, x4) = (x254
1 , x254

2 , x254
3 , x254

4 );

M(x1, x2, x3, x4) = (x1, x2, x3, x4)×


α + 1 1 1 α

α α + 1 1 1
1 α α + 1 1
1 1 α α + 1

 .
Consider the function G : F4

256 → F4
256 that is a combination of F4 and M :

G(x1, x2, x3, x4) = F4(M(F4(x1, x2, x3, x4))). Find the number of solutions
of the equation G(x+a) = G(x) + b, where parameters a and b run trough
all nonzero vectors from F4

256.
Notes to solution. The problem is still unsolved. Only one team of G. Beloshapko, A. Tara-

nenko and E. Fomenko from Novosibirsk State University has sent a solution with an analysis of

the problem for smaller field. They considered F16 and found the exact number of pairs a, b for

each number of solutions. It seems that any even number between 0 and 44 can be the number
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of solutions. They proposed a hypothesis that for F256 it is true the same result: it may be any

even number of solutions bounded by some number.

10 Conclusion

We thank Novosibirsk State University for the financial support of the
Olympiad and invite you to take part in the next NSUCRYPTO that starts
on November 15, 2015. Your ideas on the mentioned unsolved problems
are also very welcome and can be sent to olymp@nsucrypto.ru.

We are very grateful to Gennadiy Agibalov and Irina Pankratova for
their valuable contribution to this paper. A. Gorodilova, N. Kolomeec,
G. Shuhuev, N. Tokareva and V. Vitkup would like to thank RFBR (grant
15-31-20635).
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Some Remarks On Elliptic Curve Discrete Logarithm
Problem

Alexey Nesterenko

Let p > 3 be a prime and E be an elliptic curve, defined over field Fp in
short Weierstrass form

E : v2 ≡ u3 + Au+B (mod p),

where 4A3 + 27B2 6≡ 0 (mod p). Let we have a point P ∈ E with prime
order q, which forms a subgroup G = 〈P 〉 ∈ E .

For every point Q ∈ G we can define an elliptic curve discrete logarithm
problem (ECDLP). In this problem we need to find an integer x ∈ F∗q, such
that

Q = [x]P = P + · · ·+ P︸ ︷︷ ︸
x

. (1)

For solving this problem, see [1], we can use Pollard’s Rho and Lambda
methods or parallel algorithm, introduced by van Oorschot and Wiener,
see [2, 4]. The running time of these algorithms is O(

√
q) and doesn’t

depend on x.
In this paper we present a new algorithm, based on ideas of Pollard, van

Oorschot and Wiener, which has a running time, depending on x.
The main result is follows. If we know an multiplicative order of x in

F∗q, i.e. if we know r, such

r|q − 1 and xr ≡ 1 (mod q), (2)

then we can find x with O(
√
r log q) running time.
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1 Backgound

Let g be a primitive root modulo q and r|q − 1. Define

a ≡ g
q−1
r (mod q),

where ak 6≡ 1 (mod q) for any k|r, k > 1.
It’s well know, that for every x with order r, there exists an integer n,

0 < n < r, such that x ≡ an (mod q). Hence, we can write

Q = [x]P = [an]P (3)

and now, we need to find n.
Define h = d

√
re and write n = n1h−n0, where 0 ≤ n0 < h, 0 < n1 ≤ h.

Hence, we can write (3) as follows

[(ah)n1]P = [an0]Q,

and using ”baby steps, giant steps”, see [5], find values of n0 and n1.
Since the evaluation of [aξ]P has running time O(log q) for every ξ ∈ F∗q

and values of n0, n1 is not greater than
√
r, we have running time of ”baby

steps, giant steps” algorithm is O(
√
r log q).

2 The algorithm

Since ”baby steps, giant steps” algorithm uses a lot of memory, in prac-
tical evaluation we can use a modification of Pollard’s Lambda method,
see [4, 6]. This modification directly finds a solution of (1).

Let s = dlog2 re, and choose a random numbers ξ0, . . . , ξs−1 such that
0 < ξi < r, i = 0, . . . , s − 1. Define a map f : E → E . For any point
R = (xR, yR) ∈ E let

f(R) = [ζi]R, where i ≡ xR (mod s), ζi ≡ aξi (mod q). (4)

On the first step, we construct a sequence of points

Rk+1 = f(Rk), Rk ∈ E , R0 = P, k = 0, 1, . . . . (5)
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For every point we have

Rk+1 = [ζk]Rk = [ζkζk−1]Rk−1 = · · · = [µk+1]P,

where µk+1 ≡
∏k

j=0 ζj (mod q) and ζj defined by (4).
Starting with k0, we can keep all points Rk0+1, . . ., Rk0+b for some natural

number b, with corresponding values µk0+1, . . . , µk0+b. This set S of keeping
points is a trap-set with cardinality |S| = b. The exact values of k0, b can
be found in [6].

On the last step of algorithm, we shall construct a sequence of points
U0, U1, . . ., starting from a random point U0 = [aξ]Q, where ξ is a random
integer, 0 < ξ < r. Our sequence consists of points

Uk+1 = f(Uk), Uk ∈ E , k = 0, 1, . . . , (6)

and every point Uk in this sequence can be represented as

Uk+1 = [ζk]Uk = [ζkζk−1]Uk−1 = · · · = [νk+1]Q,

where νk+1 ≡ aξ
∏k

j=0 ζj (mod q),
For every point Uk, k = 1, 2, . . ., we can check a condition Uk ∈ S, where

S is a trap-set. If condition holds, then we found some index j such

[µj]P = Rj = Uk = [νk]Q, (7)

hence, µj ≡ νkx (mod q) and

x ≡ µjν
−1
k (mod q). (8)

is a solution of (1). If our condition does’nt hold for all U1, . . . , Uh, we need
to chose another value of ξ and repeat this step another one.

It’s easy to see, that algorithm runs succesfully only if a set of points

[a]P, [a2]P, . . . , [ar−1]P, [ar]P = P

contains the point Q. This is equivalent to condition (2).

CTCrypt 2015 A. Yu. Nesterenko 59



Some Remarks On Elliptic Curve Discrete Logarithm Problem

3 Parallel version of the algorithm

Our algorithm can be easily modificated for parallel computations. Con-
sider a parallel paradigm of evaluation. Let we have a 2w threads with
common memory and every thread can produce evaluation independently.

We fix an integer b and divide all set of threads on two groups, say P
and Q, with same cardinality w and common set of trap-points, SP and
SQ correspondingly.

Every thread of first group P can produce evaluation as follows: choose
a random point R0 = [ζ0]P , where ζ0 ≡ aξ (mod q) and ξ is a random
integer, 0 < ξ < r, and construct a sequence

Rk = f(Rk−1), Rk = (xR,k, yR,k) ∈ E , k = 1, 2, . . . ,

where map f defined by (4). As before, for every point we have

Rk = [µk]P, µk ≡
k∏
j=0

ζk (mod q).

For every point Rk thread checks the condition xR,k ≡ 0 (mod b). If con-
dition holds, thread searches the point Rk in SQ set of trap-points. If he
doesn’t find this point in SQ, then he adds this point to SP set.

In a similar way, every thread in a second group Q evaluates a sequence

Uk = [νk]Q, Uk = (xU,k, yU,k), νk ≡
k∏
j=0

ηk (mod q),

wich started from a random point U0 = [aξ]Q with random integer 0 < ξ <
r.

For every point Uk thread checks the condition xU,k ≡ 0 (mod b). If
condition holds, thread searches this point in SP set of trap-points. If he
doesn’t find the point Uk in SP , then he adds this point to SQ set.

In this manner, we can evaluate a w sequences of points, which started
from point P ∈ E and w sequences, which started from point Q ∈ E . All
trap-points in SP and SQ sets satisfy the condition x ≡ 0 (mod b), where
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x is a x-coordinate of point. When the thread finds a trap-point, then
immediately we have an equality (7) and can find a solution, using (8).

As an example, we can demonstrate a results of practical realization of
our parallel algorithm. Consider the elliptic curve E defined by equation

v2 ≡ u3 − 2u+ 83161154912977162385779023371676872267 (mod p),

where p = 170144519623114011343322490539658030031 is prime and holds
dlog2 pe = 128. This curve has on order 2q, where q is prime and

q = 85072259811557005664489355982895124223,
q − 1 = 2 · 3 · 139 · 643 · 12281 · 51593 · 53887 · 4646248420547414411.

We need to find an integer x ∈ F∗q, such Q = [x]P , where

P = (127079991335379663215392766670928701845,

146478651337885753760004547813245055780),

Q = (135768511924514909185266977775889591902,

104833826712192434308111206165615249692),

|〈P 〉| = q and Q ∈ 〈P 〉. Additionally, we know, that multiplicative order of
x in F∗q are equal to r = 34143537841471 = 12281 ·51593 ·53887, dlog2 re =
46.

Firstly, we find a generator a ∈ F∗q, which has order r

a = 69038627934287400758544579548029658020

and construct a 46 values ζ1, . . . , ζ46 ∈ F∗q, where ζi ≡ aξi (mod q) is a ran-
dom integers for all i = 1, . . . , 46 and 0 < ξi < r. For decreasing complex-
ity of evaluation, we choose a random integers ξi with bounded hamming
weight of values ζi, say w(ζi) < 40, where hamming weight defined by

w(ζi) =
127∑
j=0

ci,j, ζ =
127∑
j=0

ci,j2
j, ci,j ∈ {0, 1}, i = 1, . . . , 46.

This simple trick gives us a 25% of speed up.
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After this, our personal computer (AMD processor with 8 cores, 2.5Hz)
calculated a 8 sequences for b = 1024. When we find a two points Rj, Uk
satisfying an equalify (7)

Rj = [1785741636823453981528591882827425715]P =

[3922469994082601799559937328263430847]Q = Uk,

for some values of indexes j and k, we immediately calculate

x = 11199326890025042093039962745239277210.

The time of all calculations is 224 seconds, the cardinality of SP was 2270
and cardinality of SQ was 2356.

4 Conclusion

In this paper we present an algorithm, which is not useful for real cryp-
tosystems, because we don’t know in practice a multiplicative order of x.
From the other side, we know the value of q. Hence, we can find all factors
of q − 1 and for every factor r check, if x has an order r or if it hasn’t.

If x is a primitive root modulo q, then we have a maximal complexity of
our algorithm O(

√
q log2 q), which is a bit more than complexity of Pollard

and van Oorschot-Wiener methods.
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Approximate Common Divisor Problem and
Continued Fractions

Kirill Zhukov

Abstract

In this paper we describe two algorithms for computing common divisors of
two integers, one of them given inaccurate. We generalize known method based
on the continued fraction technique. In some cases new algorithms overcome the
strongest algorithm based on Coppersmith’s method: a less accurate approximation
is recurred for computing a divisor.

Keywords: approximate common divisors, continued fractions, Diophan-
tine approximation

1 Introduction

Let us describe a partially approximate common divisor problem (PACDP).
Consider two integers N1 and N2. Let A be a nontrivial common divisor
of N1 and N2−∆ for some small integer ∆. The goal is to find A provided
that it is big.

The PACDP was introduced in 2001 by N. Howgrave-Graham [3] who
used the continued fraction techniques and Coppersmith’s method.

An algorithm of S. Sarkar and S. Maitra [4] for solving the PACDP is
known to be the strongest. Based on Coppersmith’s method this algorithm
finds a common divisor in time which is polynomial of n = max{[lnN1], [lnN2]}
provided that lA > lN1

A
+ l∆ −

l2B1

lN1
, where lA, lN1

A
, lN1

and l∆ are the binary

lengths of A, N1

A , N1 and ∆ respectively. In this paper we describe two algo-
rithms for computing common divisor, their time complexity is polynomial
of n and c provided that lA ≥ lN1

A
+ l∆ + 2− log2 c.
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2 Definitions and notations

Let us sketch the main definitions from [1] related to continued fractions.
An expression of the form

a0 +
1

a1 + 1
a2+...

, (1)

where a0 is integer, and ai is positive integer for i = 1, 2, . . ., is called an
infinite continued fraction.

As a shorthand for expression (1), a continued fraction is often expressed
as 〈a0, a1, a2, . . .〉. For i = 0, 1, . . . we define the i-th convergent of continued
fraction (1) to be a finite continued fraction

Pi
Qi

= 〈a0, a1, a2, . . . , ai〉 (2)

For i = 2, 3, . . . there are recurrent formulas for numerator and denom-
inators of convergents:

Pi = Pi−1ai + Pi−2,

Qi = Qi−1ai +Qi−2,
(3)

with start condition:

P0 = a0, Q0 = 1, P1 = a0a1 + 1, Q1 = a1. (4)

One can easily show using the method of mathematic induction that for
i = 0, 1, 2, . . . the following equality holds

Pi+1Qi − PiQi+1 = (−1)i. (5)

Any real number α has a continued fraction representation α = 〈a0, a1, a2, . . .〉.
If α = P

Q is a rational than the continued fraction expansion of α has a
finite number of elements: α = 〈a0, a1, a2, . . . , ar〉, r ∈ N ∪ {0}. In that
case we can compute elements of the continued fraction with Euclidean
algorithm for P and Q.
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Convergents of α are good rational approximations. For any i = 0, 1, 2, . . .
the following estimates hold

1

Qi(Qi +Qi+1)
<

∣∣∣∣α− Pi
Qi

∣∣∣∣ < 1

QiQi+1
(6)

On the other hand Legendre’s theorem states that if a rational is a
good approximation to some real number, than that rational equals some
convergent of this real number.

Theorem 1 ([1], Theorem 245). Let α be a real number, a and b be nonzero
coprime integers (b > 0), such that

∣∣α− a
b

∣∣ < 1
2b2 . Then a

b is a convergent
of α.

This result has the following generalization.

Theorem 2 ([2], Theorem 1). Let α be a real number, a and b be nonzero
coprime integers (b > 0), such that

∣∣α− a
b

∣∣ < c
b2 , where c is a real positive

number. Then there exists a pair of adjacent convergents Pk

Qk
and Pk+1

Qk+1
of

α, such that the equality

a

b
=
uPk+1 ± vPk
uQk+1 ± vQk

holds for some nonnegative integers u and v, uv < 2c.

3 Continued fraction methods for the PACDP

Suppose that the integers N1 and N2−∆ have a nontrivial common divi-
sor A for some integer ∆. Then the integers N1 and N2 have representations
N1 = AB1 N2 = AB2 + ∆. Howgrave-Graham [3] showed how to find a
divisor A using the continued fraction techniques under some bounds on
B1 and ∆. The method is based on a special case of the following lemma.

Lemma 1. Let A, B1, B2 be natural numbers and ∆ be an integer. Let
N1 = AB1 and N2 = AB2 + ∆. Suppose that the inequality

A >

√
N1 |∆|
c

, (7)
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holds for some positive real number c. Then:∣∣∣∣N2

N1
− B2

B1

∣∣∣∣ < c

B2
1

. (8)

Algorithm 1 (PACDP)

Require: N1 and N2 — natural numbers; c — a method’s real parameter
Ensure: S ⊂ N×Z — a set of all pairs (A,∆) such that N1 = AB1, N2 = AB2 + ∆ and

A >
√

N1|∆|
c

1: S ← ∅
2: Compute all the convergents P0

Q0
, . . . , Pr

Qr
of N2

N1
using Euclidean algorithm and formu-

las (3), (4)
3: for all k = 0, 1, . . . , r − 1 do
4: for all j = 0, 1 v = 1, 2, . . . , [2c], u = 0, 1, . . . , [2c

v
] do

5: if uQk+1 + (−1)jvQk|N1 then
6: B1 ← uQk+1 + (−1)jvQk, B2 ← uPk+1 + (−1)jvPk, A← N1

B1
, ∆← N2 − AB2

7: S ← S ∪ {(A,∆)}
8: print S

The algorithm is correct under Lemma 1 and Theorem 2.

Proposition 1. Let S be the set from Algorithm 1. Suppose that |S| =
O(nln lnn), where n = max{[lnN1], [lnN2]}. Then the complexity of Algo-
rithm 1 is O(cn2 ln c lnn ln lnn) binary operations.

Consider a special case of Algorithm 1 with fixed c = 1
2 . Then the

number of iterations of loop 4–7 equals 1. All the candidates B1 and B2

are of the form Qk and Pk respectively. Hence all the pairs {(A,∆)} are
distinct and we could rewrite step 7 as S ← S t {(A,∆)}. In particular,
it follows that |S| = O(n) provided that c = 1

2 .
The method described above with c = 1

2 was introduced in [3].
We shall show how to modify Algorithm 1 to reduce complexity n =

= max{[lnN1], [lnN2]} times under additional restriction.
While using Theorem 2 we should guess u and v for all the pairs of

adjacent convergents. In the paper [2] A. Dujella introduce an idea, that
allows to guess u and v only for a few pairs of convergents in a particular
task. We generalize this idea with the following theorem.
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Theorem 3. Let α be a rational number, a and b be nonzero coprime
integers (b > 0), such that

0 <
∣∣∣α− a

b

∣∣∣ < d ≤ c

b2
, (9)

where d and c are fixed positive real numbers. Let P0

Q0
, . . . , Pr

Qr
= α be the

convergents of α and r ≥ 3.

Suppose that 0 ≤ k ≤ r−3 is the largest integer satisfying
(
α− a

b

)k
> 0

and
∣∣∣α− Pk

Qk

∣∣∣ ≥ d. Then:

a

b
=
uPk+1 − vPk
uQk+1 − vQk

or
a

b
=
uPk+2 + vPk+1

uQk+2 + vQk+1
or

a

b
=
uPk+3 − vPk+2

uQk+3 − vQk+2
,

for some nonnegative integers u and v, uv < 2c.

It should be mentioned, that the interval from 0 to r−3 may not contain
a number k from the condition of Theorem 3.

Lemma 2. Let A, B1, B2 be natural numbers and ∆ be an integer. Let
N1 = AB1 and N2 = AB2 + ∆. Suppose that inequalities

A ≥ D >

√
N1 |∆|
c

, (10)

hold for some positive real numbers c and D. Then:∣∣∣∣N2

N1
− B2

B1

∣∣∣∣ < D2c

N 2
1

≤ c

B2
1

. (11)

Lemma 1 is a special case of Lemma 2.
Suppose that we claim to find a divisor A above fixed known bound D

in the PACDP with input N1 and N2. Then we could use the following
algorithm.
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Algorithm 2 (PACDP)

Require: N1 and N2 — natural numbers; c,D — a method’s real parameter
Ensure: T ⊂ N × Z — a set of pairs (A,∆), such that N1 = AB1, N2 = AB2 + ∆ and

A ≥ D >
√

N1|∆|
c

and A > 1

1: T ← ∅
2: Compute all the convergents P0

Q0
, . . . , Pr

Qr
of N2

N1
using Euclidean algorithm and formu-

las (3), (4)
3: k1 ← −1, k2 ← −1
4: if r ≥ 3 then
5: for all k = 0, . . . , r − 3 do

6: if
∣∣∣N2

N1
− Pk+2

Qk+2

∣∣∣ < D2c
N2

1
≤
∣∣∣N2

N1
− Pk

Qk

∣∣∣ then

7: if k — even then
8: k1 ← k
9: if k — odd then

10: k2 ← k
11: for k = k1, k2 do
12: if k > −1 then
13: for j = 0, 1, 2 v = 1, 2, . . . , [2c], u = 0, 1, . . . , [2c

v
] do

14: if uQk+j+1 + (−1)jvQk+j|N1 then
15: B1 ← uQk+j+1 + (−1)jvQk+j, B2 ← uPk+j+1 + (−1)jvPk+j, A ← N1

B1
,

∆← N2 − AB2

16: T ← T ∪ {(A,∆)}
17: print T

The algorithm is correct under Lemma 2 and Theorem 3. Note that
there is no guarantee, that all the divisors A > 1 such that condition (10)
holds are in the set T . The interval from 0 to r−3 may not contain an even

or an odd number k such that
∣∣∣N2

N1
− Pk+2

Qk+2

∣∣∣ < D2c
N2

1
≤
∣∣∣N2

N1
− Pk

Qk

∣∣∣. In all our

practical experiments this k was always founded in the specified interval.

Proposition 2. Let T be the set from Algorithm 2. Suppose that |T | =
O(nln lnn), where n = max{[log2N1], [log2N2]}. If n = O(c ln c), then the
complexity of Algorithm 2 is O(cn ln c lnn ln lnn) binary operations.

Using m parallel cores (without common RAM) we gain speed-up for
Algorithms 1 and 2 by a factor of m. We should divide a set of all the
pairs (u, v) to guess into m equinumerous subsets.

Let us write out the applicability condition for Algorithms 1 and 2 in
terms of the binary representation lengths of the numbers A, B1 and ∆.
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Proposition 3. Let N = AB be a composite integer. Let lA, lB and l∆
be the lengths of the binary representations of A, B and ∆ respectively.
Suppose that the condition

lA ≥ lB + l∆ + 2− log2 c (12)

holds for some real c. Then:

A ≥ 2lA−1 >

√
N∆

c
. (13)

It follows from Proposition 3 that we can compute common divisor A
for the integers N1 = AB1, N2 = AB2 + ∆ using Algorithm 1, under
condition (12). Suppose that lA (the binary representation length of A) is
known in addition. Then we could use Algorithm 2 with input parameters
c and D = 2lA−1.

4 Comparison of new algorithms with S. Sarkar’s and

S. Maitra’s method

Let us compare our algorithms with the strongest algorithm for the
PACDP. Algorithm of S. Sarkar and S. Maitra based on Coppersmith’s
method compute a common divisor provided that β < 1− 3α+ α2, where
α ≈ logN1

B1, β ≈ logN1
∆ − logN1

B1. Using inequality Nβ
1 < N 1−3α+α2

1 ,
we see that S. Sarkar’s and S. Maitra’s method may be applied for the
PACDP under the condition:

lA > lB1
+ l∆ −

l2B1

lN1

, (14)

where lA, lB1
, lN1

and l∆ are the lengths of the binary representations of
A, B1, N1 and ∆ respectively.

The comparison of inequalities (12) and (14) shows that the method
based on the continued fraction techniques stronger if the following in-
equality holds:

log2 c− 3 >
l2B1

lN1

. (15)
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Our algorithms require less accurate approximation under condition (15).
For practical values of parameter c see section 5.

5 Experements

We implemented Algorithm 2 using MPIR [5] library for big numbers.
We used the Microsoft Visual C++ compiler (64-bit). We ran our program
on a single core of an Intel Core i7 processor (3.33 GHz).

In table 1 as before lA denotes the length of the binary representation
of A, l∆ denotes the length of ∆, lB denotes the lengths of B1 and B2, and
c is method’s parameter such that condition (12) holds.

Table 1: Program implementation of Algorithm 2

lA lB log2 c l∆ Time, sec

2795 277
27
30

2543
2546

1156
10250

3819 277
21
30

3561
3570

17
12804

The values from the first and the third lines of table 1 are on the edge
of applicability S. Sarkar’s and S. Maitra’s method. The values from the
second and the forth do not satisfy condition of applicability S. Sarkar’s and
S. Maitra’s method. In each case the computing of a common divisor with
our implementation took the time showed in the last column of table 1.
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A Proof of Lemma 1

Proof. Let us square the both sides of inequality (7), then divide both sides

by A. We get A > B1|∆|
c . It is clear now that:

1

A
<

c

B1 |∆|
. (16)

Let us write down ratio N2 and N1:

N2

N1
=
AB2 + ∆

AB1
=
B2

B1
+

∆

N1
. (17)

Hence the following equality holds:∣∣∣∣N2

N1
− B2

B1

∣∣∣∣ =
|∆|
AB1

. (18)

Notice, that combining (16) and (18) we obtain the state of lemma.

B Proof of Proposition 1

Proof. The complexity of step 2 (Euclidean algorithm) is estimated in
O(n2 lnn ln lnn) binary operations.

The complexity of statement 5 and producing a pair (A,∆) (step 6) are
estimated in O(n lnn ln lnn) binary operations. We can insert new pair in
the set S with O(n ln |S|) = O(n lnn ln lnn) binary operations.

Total complexity of steps 5–7 estimated in O(n lnn ln lnn) binary oper-
ations.
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Let us estimate the number of algorithm iterations for steps 5–7. The
number of iterations of loop 3–7 equals the total number of convergents
r = O(n). The number of iterations of loop 4–7 is estimated in O(c ln c).

Therefore, the algorithm iterates per steps 5–7 O(cn ln c) times. Hence,
the total complexity of the algorithm is O(cn2 ln c lnn ln lnn) binary oper-
ations.

C Proof of Theorem 3

Proof. For any i = 0, . . . , r− 1 and j = 0, 1 a determinant of the system of
linear equations {

a = xPi+1 + y(−1)jPi,

b = xQi+1 + y(−1)jQi;
(19)

equals (−1)i+j under (5). The pair (aQi−bPi)(−1)i, (bPi+1−aQi+1)(−1)i+j

is a solution of system (19).
Further proof is divided into two parts depending on relative position

of fractions Pk+2

Qk+2
and a

b .

Suppose that
∣∣∣α− Pk+2

Qk+2

∣∣∣ < ∣∣α− a
b

∣∣. Consider the triple

u = (aQk − bPk)(−1)k,

v = (bPk+1 − aQk+1)(−1)k = (aQk+1 − bPk+1)(−1)k+1,

w = (bP(k+1)+1 − aQ(k+1)+1)(−1)(k+1)+1.

Obviously the pairs (u, v) and (v, w) are solutions of system (19) for
i = k, j = 0 and for i = k + 1, j = 1 respectively. We claim that the
coefficients u and v are positive.

Suppose that the difference α − a
b is negative; then k is even and the

following inequalities hold: Pk+1

Qk+1
< Pk+2

Qk+2
< a

b < Pk

Qk
. Under b > 0 and

Qk > 0, right inequality in the chain above is equivalent to aQk− bPk < 0.
Hence u is positive and so are v and w.

Suppose the difference α− a
b is positive; then k is odd and the following

inequalities hold: Pk

Qk
< a

b <
Pk+2

Qk+2
< Pk+1

Qk+1
. In this case coefficients u, v and

w are also positive.
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The goal is to show that at least one of estimates uv < 2c and vw < 2c
holds. Let t and s be some positive real numbers determined from the

equalities
∣∣∣α− Pk

Qk

∣∣∣ = tc
b2 and

∣∣∣α− Pk+1

Qk+1

∣∣∣ = sc
b2 . Notice, that the following

estimates hold:

u = bQk

∣∣∣∣PkQk
− a

b

∣∣∣∣ < bQk

∣∣∣∣α− Pk
Qk

∣∣∣∣ =
tcQk

b
,

v = bQk+1

∣∣∣∣Pk+1

Qk+1
− a

b

∣∣∣∣ =

∣∣∣∣Pk+1

Qk+1
− α

∣∣∣∣+
∣∣∣α− a

b

∣∣∣ < (s+ 1)cQk+1

b
,

w = bQk+2

∣∣∣∣Pk+2

Qk+2
− a

b

∣∣∣∣ < ∣∣∣α− a

b

∣∣∣ < cQk+2

b
.

Let us get upper estimate for QkQk+1 Qk+1Qk+2. Firstly note that

1

QkQk+1
=

∣∣∣∣Pk+1

Qk+1
− Pk
Qk

∣∣∣∣ > ∣∣∣∣α− Pk
Qk

∣∣∣∣ =
tc

b2
.

On the analogy we get estimate

1

Qk+1Qk+2
>
sc

b2
.

Now we could see, that products of coefficients uv and vw are bounded
above:

uv <
QkQk+1t(t+ 1)c2

b2
<
t(s+ 1)c

t
= (s+ 1) c,

vw <
Qk+1Qk+2(t+ 1)c2

b2
<

(s+ 1)c

s
=

(
1 +

1

s

)
c.

Hence, if s ≤ 1, then uv < 2c, and if s > 1, then vw < 2c.

Suppose now, that
∣∣∣α− Pk+2

Qk+2

∣∣∣ ≥ ∣∣α− a
b

∣∣. Obviously the pair

u′ = (aQk+2 − bPk+2)(−1)k+2,

v′ = (bPk+3 − aQk+3)(−1)k+2,

is a solution of system (19) for i = k+2 j = 0. By analogy with reasoning
above the coefficient u′ is nonnegative and the coefficient v is positive. Let
us obtain upper estimate for the coefficients u′ and v′:

u′ = bQk+2

∣∣∣∣Pk+2

Qk+2
− a

b

∣∣∣∣ < bQk+2

∣∣∣∣Pk+2

Qk+2
− α

∣∣∣∣ < bQk+2
1

Qk+2Qk+3
=

b

Qk+3
,
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v′ = bQm+3

∣∣∣∣ab − Pk+3

Qk+3

∣∣∣∣ ≤ bQm+3

∣∣∣∣Pk+2

Qk+2
− Pk+3

Qk+3

∣∣∣∣ =
b

Qk+2
.

Let us obtain upper estimate for the value (Qk+2Qk+3)
−1:

1

Qk+2Qk+3
=

∣∣∣∣Pk+2

Qk+2
− Pk+3

Qk+3

∣∣∣∣ =

∣∣∣∣Pk+2

Qk+2
− α

∣∣∣∣+

∣∣∣∣α− Pk+3

Qk+3

∣∣∣∣ <
< 2

∣∣∣∣Pk+2

Qk+2
− α

∣∣∣∣ < 2c

b2
.

Now we can see, that the product of coefficients u′ and v′ is majorized

u′v′ <
b2

Qk+2Qk+3
< 2c.

D Proof of Lemma 2

Proof. Let us square the both sides of the right inequality from (10), then
multiply both sides by c and divide by N 2

1 . We obtain inequality

D2c

N 2
1

>
|∆|
N1

. (20)

Using the inequality A ≥ D we get

|∆|
N1

<
D2c

N 2
1

≤ A2c

N 2
1

=
c

B2
1

. (21)

Arguing as in the proof of Lemma 1, we see that∣∣∣∣N2

N1
− B2

B1

∣∣∣∣ =
|∆|
N1

. (22)

Notice, that combining (21) (22) we obtain the state of lemma.
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E Proof of proposition 2

Proof. The complexity of step 2 (Euclidean algorithm) is estimated in
O(n2 lnn ln lnn) binary operations.

The complexity of loop 4–10 (choosing the right convergent) is also
estimated in O(n2 lnn ln lnn) binary operations.

Arguing as in the proof of proposition 1 complexity of loop 11–16
(guessing u and v) is estimated in O(c ln c (n ln |T | + n lnn ln lnn)) =
= O(cn ln c lnn ln lnn) binary operations.

Using n = O(c ln c), we obtain the total complexity of the algorithm is
O(cn ln c lnn ln lnn) binary operations.

F Proof of proposition 3

Proof. The inequality A ≥ 2lA−1 is obvious. We shall prove that 2lA−1 >

>
√

N∆
c .

Under the condition of proposition it follows that

2lA ≥ 42lB2l∆

c
>

4B∆

c
.

Hence

2lA−2 >
N∆

Ac
.

Using the inequality 2lA > A we conclude that

22lA−2 > 2lA−2A >
N∆

c
.

Extracting the square root we obtain inequality (12).
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On Operad-based Cryptography

Alina Gaynullina, Sergey Tronin

Abstract

We show how to use commutative operads in public-key cryptography.

Keywords: Commutative operad, public-key cryptography

1 Introduction

In the modern mathematical cryptography we see algorithms which use
various algebraic structures. For example, groups are widely used [8]. Our
goal is to show that there is a possibility of using commutative operads [12]
in public-key cryptography. The definitions and the notations necessary
for the further can also be found in [12].

2 Commutative operads

Definition 1. A Σ-operad is a family R = {R(n) |n = 1, 2, . . .} of sets such
that at each R(n) the permutation group Σn, n = 1, 2, . . . acts on the right
and for arbitrary ordered sequences of nonnegative integers m,n1, . . . , nm,
there are defined some composition operations

R(m)×R(n1)× . . .×R(nm) −→ R(n1 + · · ·+ nm),
(ω, ω1, . . . , ωm)→ ωω1 . . . ωm.

The following properties hold:

1. (Associativity)

ω(ω1ω1,1 . . . ω1,k1) . . . (ωmωm,1 . . . ωm,km) =
= (ωω1 . . . ωm)(ω1,1 . . . ω1,k1 . . . ωm,1 . . . ωm,km)
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2. There is a distinguished element ε ∈ R(1) (the identity of the operads),
such that the identity ω(ε . . . ε) = ω and εω = ω are valid for all
ω ∈ R(m).

Also, the properties that bind the composition operation and the actions
of the group Σn must hold. These properties can be found (in a slightly
different form and in another context) in [12].

Consider two examples of operads.

Example 1.
Let X be an arbitrary set and let Map(A,B) be the set of all mappings
from A into B. Put EX = {EX(n)|n ≥ 1}, EX(n) = Map(Xn, X) and
define the composition as follows. Take ωi : Xni → X, 1 ≤ i ≤ m, and
ω : Xm → X. Then ωω1 . . . ωm : Xn1+···+nm → X. Let x̄ ∈ Xn1+···+nm.
By definition, Xn1+···+nm = Xn1 × · · · ×Xnm, then x̄ = (x̄1, . . . , x̄m), where
x̄i ∈ Xni. Then

ωω1 . . . ωm(x̄) = ω(ω1(x̄1), . . . , ωm(x̄m)).

The permutation group Σn acts as follows:

ωσ(x1, . . . , xm) = (xσ(1), . . . , xσ(m)).

Here ω ∈ EX(m), x1, . . . , xm ∈ X, and σ ∈ Σm.

Example 2.
Let G be a semigroup with the identity element 1.
Put G = {G(n)|n ≥ 1}, where G(n) = Gn. An element G(n) is a sequence
(string) x̄ = (x1, . . . , xn) of elements xi ∈ G. The action of an element
g ∈ G on a string x̄ is defined as follows: gx̄ = (gx1, . . . , gxn). The
composition in this operad is defined as follows:

G(m)×G(n1)× . . .×G(nm)→ G(n1 + · · ·+ nm) ,
(x̄, ȳ1, . . . , ȳm) 7→ x̄ ȳ1 . . . ȳm,

where x̄ = (x1, . . . , xm) ∈ G(m), ȳi = (yi,1, . . . , yi,ni) ∈ G(ni) for 1 ≤ i ≤ m,
and x̄ ȳ1 . . . ȳm = (x1ȳ1, . . . , xmȳm).
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The permutation group Σn acts on the set G(n) as follows:

(x1, . . . , xn)σ = (xσ(1), . . . , xσ(n)).

Definition 2. Suppose that R is a Σ-operad. By an algebra over R we
mean a set A that is endowed with some mappings of the form:

R(n)× An −→ A, (r, ā) 7→ rā.

Here r ∈ R(n), ā = a1 . . . an, ai ∈ A. Moreover, the following conditions
must be satisfied:

1. (rr1 . . . rm)ā1 . . . ām = r(r1ā1) . . . (rmām).

2. εa = a for all a ∈ A. Here ε ∈ R(1) is the identity of R.

3. The identity (rf)a1 . . . am = raf(1) . . . af(m) holds for every r ∈ R(m),
a1, . . . , am ∈ A, f ∈ Σm.

Definition 3. Assume that Z is a Σ−operad. We call the operad Z

commutative if the identity

λ
n︷ ︸︸ ︷

ω . . . ω = (ω

m︷ ︸︸ ︷
λ . . . λ)σn,m,

is valid for all λ ∈ Z(n) and ω ∈ Z(m). Here σn,m ∈ Σnm and

σn,m(i+ (j − 1)n) = (j + (i− 1)m),

for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

We denote by
n∑
i=1

(λ)ai the result of the composition of λ ∈ Z(n) with

a1, . . . , an ∈ A. Let Z be a commutative operad, then for all λ ∈ Z(n) and
ω ∈ Z(m) the identity:

n∑
i=1

(λ)
m∑
j=1

(ω)ai,j =
m∑
j=1

(ω)
n∑
i=1

(λ)ai,j

is valid in every Z-algebra.
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In these notations, a homomorphism between the algebras over com-

mutative operads is a map h, such that h(
n∑
i=1

(λ) ai) =
n∑
i=1

(λ) h(ai) for all

λ ∈ Z(n) and a1, . . . , an ∈ A.
The value of a commutative operad is showed by the following theorem

proved in [13].

Theorem 1. The center of a multicategory is a commutative operad.
The center of a commutative operad R coincides with R.

Consider several examples of commutative operads.

Example 3.
Consider an operad Z for which Z(0) = ∅, Z(1) is a singleton, and if n ≥ 2
then Z(n) = ∅. We may assume that Z is a FSet-operad. The definition of
a commutative operad for Z is fulfilled trivially. The category of algebras
over this operad is actually the category of all sets.

Example 4.
Generalizing Example 3 to some extent consider an operad with the unique
nonempty component Z(1), which is a commutative monoid. This operad
is also commutative, and the category of algebras over it is rationally equi-
valent to the category of left Z(1)-sets, i.e. the sets on which the left action
of the monoid Z(1) is defined.

Example 5.
Let G be a commutative monoid with the operation written multiplica-
tively. Consider an operad from example 2. It could be easily verified
that the so-constructed operad is commutative. If G is a commutative
associative ring with unity then the variety of algebras over the operad is
rationally equivalent to the category of left G-modules. In some cases, it
will be convenient to denote the above operad like the monoid itself, i.e.
by G.

Example 6.
Clearly, a suboperad of a commutative operad is also commutative. In
many cases, some important examples are given by operads defined over
a smaller verbal category than that over which the ambient commutative
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operad is defined. However, there are interesting cases when no restriction
of the verbal category appears. For example, the operad of simplices ∆,
studied in [11], is a suboperad in the FSet-operad R, where R is the field
of reals, and the corresponding operad is constructed as in Example 3. We
proved in [11] that ∆ admits a FSet-operad structure.

3 Cryptographic Protocols

Let Z be a commutative operad, A be an algebra over Z. These data
are public (not secret).

Protocol 1. Creation of a common secret key
Alice’s secret is a ω ∈ Z(n). Bob’s secret is a λ ∈ Z(m). Public elements
are ai,j ∈ A, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

1. Alice computes αj =
n∑
i=1

(ω) ai,j, 1 ≤ j ≤ m.

2. Bob computes βi =
m∑
j=1

(λ) ai,j, 1 ≤ i ≤ n.

3. Alice sends the elements αj to Bob.

4. Bob sends the elements βi to Alice.

5. Finally, Alice computes
n∑
i=1

(ω) βi, and Bob computes
m∑
j=1

(λ) αj.

By definition of a commutative operad,
n∑
i=1

(ω)
m∑
j=1

(λ) ai,j =
m∑
j=1

(λ)
n∑
i=1

(ω) ai,j.

Thus Alice and Bob share a common secret key.
The security of the protocol is based on the complexity of the task of

finding ξ ∈ Z(k) using known b1, . . . , bk ∈ A and
k∑
i=1

(ξ) bi ∈ A.

Protocol 2. Key exchange
Public data is a commutative operad Z, a number n, an element ω ∈ Z(n).

1. Alice picks a random element α ∈ Z(m) and sends to Bob the element

α
m︷ ︸︸ ︷

ω . . . ω = αωm.
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2. Bob picks a random element β ∈ Z(k) and sends to Alice the element
βωk.

3. Alice computes α(βωk)m = (αβm)ωmk.

4. Bob computes

β(αωm)k = (βαk)ωmk = ((αβm)σm,k)(ω
mk) = (αβm)(ωmk)σ′.

The security of protocol is based on the complexity of the task of finding
α using known αωm and ω.

Protocol 3. Encryption
A bit string m of length ` is being encrypted. The public data is a g ∈ Z(n)
and a hash function h that maps the elements of the operad Z to bit strings
of length `.

The secret key is x ∈ Z(m). The public key is y = xg . . . g ∈ Z(mn).
The encryption begins with a random selection of the session key

k ∈ Z(d). The first part of the ciphertext is c1 = kg . . . g ∈ Z(dn). The
second part of the ciphertext is the bit string c2 = m⊕ h(ky . . . y).

The decryption: m = c2 ⊕ h((xc1 . . . c1)σ). Here σ = σ ∗
d,m α,

α =

dm︷ ︸︸ ︷
(n, . . . , n) (see [13], p. 52). The security of this protocol is based on

the complexity of the task of finding an element of operad x according to
the known g and xg . . . g.

Protocol 4. Authentication
Alice’s secret is an element x ∈ Z(n).

1. Bob picks an element g ∈ Z(m) and sends it to Alice.

2. Alice computes y = xgn and sends y to Bob.

3. Bob picks an element k ∈ Z(`) and sends it to Alice.

4. Finally, Alice computes the z = xkngn`, z ∈ R(n`m) and sends it to
Bob.
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Verification. Bob knows g, k, y and can compute:

k y . . . y︸ ︷︷ ︸
`

= k (xgn) . . . (xgn)︸ ︷︷ ︸
`

= (k x . . . x︸ ︷︷ ︸
`

)gn` =

= ((xk . . . k)σ`,n)g
n` = ((xk . . . k)gn`)σ′.

Then Bob compares this element with the received z.
The security of protocol is based on the complexity of the task of finding

an element of operad x ∈ Z(n) using known g ∈ Z(m) and y = xgn.

4 Implementation and cryptographic security

In this section, we describe and explore the cryptographic security of Pro-
tocol 1.

Let K be an associative commutative ring or semiring, Z be a commu-
tative operad of Examples 2 and 4, where G = K, Z(n) = Kn.

Let k be a fixed positive integer. Consider an arbitrary suboperad R

of operad Z, and determine the structure of R-algebra on A = Km. We
determine mappings:

R(n)× An −→ A

ξa1 . . . an =
n∑
i=1

(ξ)ai = xk1a1 + · · ·+ xknan,

where ξ = (x1, . . . , xn) ∈ R(n), ai = (a1,i, . . . , am,i), 1 ≤ i ≤ n.

Lemma 1. A is a R-algebra.
Proof. A check of definition.

Lemma 2. Let b = (b1, . . . , bm) ∈ A. The equality ξa1 . . . an = b is
equivalent to the system of equations in the ring or semiring K:

a1,1x
k
1 + · · · + a1,nx

k
n = b1

. . . . . . . . . . . .

am,1x
k
1 + · · · + am,nx

k
n = bm

(1)

Proof. By definition.

Theorem 2. The cryptographic security of Protocol 1 depends on the
complexity of solving large systems of equations of the type (1) over the
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ring or semiring K. Moreover, only solutions (x1, . . . , xn) ∈ R(n) should
be considered.

Proof. The proof follows from Lemmas 1 and 2.

Next, consider some examples of rings and semirings.

Example 7.
Let K be a tropical semiring. Recall [7], [10] that a tropical semiring is a
semiring which has support N ∪ {+∞} and operations a ⊕ b = min{a, b}
and a⊗ b = a+ b.

The tropical semiring are already used in cryptography [6]. There are
several works where algorithms for solving systems of linear equations over
such K [2] were introduced and investigated [3], [5]. A.P. Davydov recently
proved that the Grigoriev’s algorithm is a non-polynomial time algorithm
(t = Ω(n

m
6 log(poly(n

m
6 )))) [2]. Thus, the case of the tropical semirings

looks promising.

Example 8.
Let K = Z and A = Zm. Then (1) is a system of the Diophantine equations.
The complexity of the solutions for the case of k = 1 (linear Diophantine
equations) studied in [9]. It was shown that there exists the polynomial-
time algorithm for solution of (1).
Lemma 3. ([9], p. 54) A linear diophantine equation with rational
coefficients can be solved in polynomial time.

Example 9.
Let K be a finite field and k = 1. Yu.V. Nesterenko considers [4] only the
case of the square sparse matrixes. G.V. Bard considers [1] the case of
GF (2). There is an polynomial-time algorithm in both cases ([1], Part 3
and [4], p. 96-98). However, this does not exhaust the entire range of cases
that are interesting to us .

Obviously, these three examples do not exhaust the plurality of rings
and semirings that should be explored. Our research will be continued in
subsequent publications.

Some results of this paper were announced in [14].
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Reconstruction of a Skew Non-reducible MP LRS over
Galois Ring of Characteristic 2d by its Highest Digit

Sergey Zaitsev

Abstract

Let R = GR(qd, 2d) be a Galois ring, S = GR(qnd, 2d) be a Gaolis extension of
R and L = L(RS) be the ring of all linear transformations of the module RS.

This paper studies linear recurring sequences v over the module LS of the max-
imal period (skew MP LRS), i.e. if T (v) = (qmn − 1)pd−1. The sequence of highest
digits (in some digital set) of members MP LRS is considered in cryptography as
pseudo-random sequence, wherein it is important, that appropriate generator should
have no equivalent keys (initial states). In case of n = 1 (classic MP LRS) the ab-
sence of equivalent keys is proved for some class K digital sets. In this paper we
prove this absence for arbitrary n and digital sets from K with some requirement
for law of recursion. In particular, this requirement is fulfilled for the laws, which
generate non-reducible sequences, i.e. sequences v, for which non-trivial relation
ψ(v0) = xlv0, ψ ∈ L is impossible, where v0 is the lowest digital sequence of v. Also
we present constructive algorithm for restoring the key by this sequence.

Keywords: skew linear recurrence, skew polynomial of maximal period, Teich-
muller’s digital set.

1 Introduction

Linear recurring sequences (LRS) over the finite fields and primary residue
rings and its images are widely considered in researches of synthesis and
analysis of pseudo-random generators. Large part of these works studies
properties of filtering generators over fields and digital sequences over pri-
mary residue rings [5, 7, 8, 11, 12, 13]. Some important properties of LRS
over fields and primary residue rings can be formulated over Galois ring, as
generalization (e.g. [6, 9, 14, 15, 16, 17, 18, 19, 20, 21]). Particularly, authors
of [1, 10, 13, 14, 22, 23, 24, 25, 26, 27, 28, 29, 30] considered pseudo-random
sequences, which were produced by taking image of the highest digit of LRS
over Galois ring (in some digital set).

In FSE of 1994, Preneel [4] set forth the following problem: how to design
fast and secure FSRs with the help of the word operations of modern pro-
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cessors and the techniques of parallelism. In stream ciphers such as SOBER
[31, 32], SNOW [33, 34], and Turing [35], word-oriented primitive LRS over
finite field were used, which were carefully chosen so that the Hamming
weights of the generating primitive polynomials of the component sequences
are large and have fast software implementation.

In respect of above, it is interesting to consider the highest digital sequence
(as pseudo-random sequence), which is produced by word-oriented feedback
shift register (FSR) over Galois ring. Here it is important, that an appropri-
ate generator should have no equivalent keys. In this paper the absence of
equivalent keys is proved for a large class of such FSRs and corresponding
reconstruction algorithm is provided.

Let R = GR(qd, 2d) be a Galois ring, S = GR(qnd, 2d) be a Galois
extension of the ring R of dimension n, S̄ = S/2S = GF (qn) be the
residue field of the ring S, L = L(RS) be the ring of all linear transfor-
mations of the module RS and S〈1〉 be the set of all sequences over the
ring S. Let us define the product of a sequence v ∈ S〈1〉 by a polynomial
Ψ(x) = ψmx

m + ...+ ψ1x+ ψ0 ∈ L[x] by the equalities:

Ψ(x)v = w : w(i) =
∑
j≥0

ψj(v(i+ j)), i ≥ 0. (1)

A sequence v ∈ S〈1〉 is called an (R-)skew linear recurring sequence (LRS)
over the ring S of order m, if there exists a monic polynomial Ψ(x) ∈ L[x]
of degree m, such that

Ψ(x)v = 0, (2)

i.e. if v is LRS of order m over the module LS.
In this case the polynomial Ψ(x) is called a characteristic polynomial of

LRS v. The set of all skew LRS with characteristic polynomial Ψ(x) is
denoted by LS(Ψ). In a particular case, when Ψ(x) ∈ S[x] the sequence
v is called a classic LRS. (Here and further we’ll identify S and the set
of homotheties generating by the elements of S in L.) If v = ψ(u) for
some ψ ∈ L and classic MP LRSu, then v is called a linearized one. A
characteristic polynomial of the least degree is called a minimal polynomial
and its degree is called the rank (skew complexity) of v. It’s known [2], that
the period T (v) of the a skew LRS v of order m over S is not greater than
τ2d−1 = (qmn−1)2d−1. If T (v) = τ2d−1, the sequence v is called a skew LRS
of maximal period (MP LRS).
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Let us denote by ā the image of an element a ∈ S under the natural
epimorphism S → S̄. A subset K ⊂ S is called a digital one, if 0 ∈ K and
for any a ∈ S there exists a unique element κ(a) ∈ K such that ā = κ(a).
In this case [6] each element a ∈ S has unique representation in the form

a = κ0(a) + 2κ1(a) + . . .+ 2d−1κd−1(a), κt(a) ∈ K, t ∈ 0, d− 1. (3)

We’ll call the function κt : S → K a t-th digital one (in the digital set K),
and the representation (3) a representation of an element a in the digital set
K (K-representation of a). It’s evident, under above notations the set K is
satisfied the condition K = κ0(S).

An important example of digital set is 2-adic digital set (Teichmuller)

Γ(S) = {c ∈ S : cq
n

= c}.

We’ll write the Γ(S)-representation of a ∈ S in the form

a = γ0(a) + 2γ1(a) + · · ·+ 2d−1γd−1(a), γt(a) ∈ Γ(S), t ∈ 0, d− 1, (4)

and call (4) a 2-adic digital representation of a. We’ll call the digital functions
γt : S → Γ(S), t ∈ 0, d− 1, in the same manner, respectively.

When considering a K-representation of members of a skew LRS v

v(i) = w0(i) + 2w1(i) + . . .+ 2d−1wn−1(i),

wt(i) = κt(v(i)) ∈ K, t ∈ 0, d− 1, (5)

we map the digital sequences w0, . . . , wd−1 over K to the sequence v. We’ll
write the Γ(S)-representation of v in the following form

v(i) = v0(i) + 2v1(i) + . . .+ 2d−1vn−1(i),

vt(i) = γt(v(i)) ∈ Γ(S), t ∈ 0, d− 1, (6)

For any digital set K of the ring S there exists a unique polynomial
ϕK(x) ∈ S(x) with the properties

ϕK(Γ(S)) = K, degϕK(x) ≤ qn − 1, ϕK(x) ≡ x(mod pS).

This polynomial is called an interpolation polynomial of the digital set K [6].
We consider binary decomposition of a number t ∈ N

t = t0 + 2t1 + . . .+ 2ktk, t0, t1, . . . , tk ∈ 0, 1.
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We call the number

indlxt = t0 + . . .+ tk,

a nonlinearity index of the nonzero monomial lxt, herewith ind0
∆
= −∞. The

nonlinearity index indϕ(x) of an arbitrary polynomial ϕ(x) is the maximum
of indices of nonlinearity of its monomials, by definition. We denote by K
the class of all digital sets for which indϕK(x) ≤ 1.

Let us define the following operations on the set K

a⊕ b = κ0(a+ b), a⊗ b = κ0(a · b), a, b ∈ K.

It’s proved, that (K,⊕,⊗) is a field, and K ∼= S̄. Also the set P = κ0(R)
is a subfield of K, and P ∼= R̄.

We’ll call the linear transformation ζ ∈ L(PK) a (generalized) multiplier
of reversible sequence u over K if there exists l ∈ N0 such that

xlu = ζ(u).

The minimal such l ∈ N is called a reduced period of the sequence u. We
denote by M∗(u) the set of all multipliers of the sequence u and M(u)

∆
=

M∗(u)∪{0}. In [3] it is proved, that if u is a P -skew MP LRS over the field
K, then the set M(u) is a field with operations of the ring L(PK), moreover

P < M̂(u) < K,

where M̂(u) ∼= M(u). The fact that M̂(u) = K and fact that the recur-
rence u is linearized one are equivalent [3]. In the other interesting case,
when M̂(u) = P , we’ll call the recurrence u a (maximal) non-reducible one.
Obviously, reduced period of such sequence is maximal. The recurrence v is
called a (maximal) non-reducible LRS if v0 = κ0(v) is such one.

In [2] it’s proved, that if v is MP LRS of order m over S, then there exists
MP-polynomial F (x) ∈ R[x] of degree mn, for which F (x)v = 0. We fix
some root θ of the polynomial F (x) in the Galois extension Q = R[θ].

We denote by
F≡ the relation of congruences of polynomial F (x) on R[x].

Lemma 1.1. [6, 5] If F (x) ∈ R[x] is MP-polynomial of degree mn, then for
some polynomial Φ(x) ∈ R[x]

xτ
F≡ e+ pΦ(x), deg Φ(x) < mn, (7)
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where
Φ̄(x) 6= 0, d = 2,

Φ̄(x) /∈ {0, ē}, d > 2.

The main result of this paper is

Theorem 1.2. For n ≥ 1 and digital set K ∈ K a skew MP LRS v over the
ring S is uniquely reconstructible by its highest digit if

Φ̄(θ̄) /∈ M̂(v0). (8)

In particular case if v is non-reducible Z2-skew MP LRS the relation (8) is
true.

In case of S = R = Zpd, p ≥ 2 and the sequence v is classic MP LRS, this
theorem and some generalizations are proved without the requirement (8)
[8-18]. In [1] this theorem without the requirement (8) is proved for classic
MP LRS (n = 1) over the arbitrary Galois ring of characteristic pd, p ≥ 2.

2 Reconstruction

Lemma 2.1 ([6]). For MP-polynomial F (x) ∈ R[x] of degree mn, t ∈
0, d− 1 and numbers τt = τpt there exist polynomials Φ1(x), ...,Φd(x) ∈
R[x], for which the following relations are true

xτt
F≡ e+ pt+1Φt+1(x), deg Φt+1(x) < mn, Φ̄t+1(x) 6= 0. (9)

wherein, if d > 2, then

Φ̄2(x)
F≡ Φ̄2

1(x) + Φ̄1(x), Φt+1(x)
2t≡ Φt(x), t ≥ 2 (10)

Let us introduce the notations

v(t) = Φt(x)v, w(t)
s = κs(v(t)), t ∈ 0, d− 1. (11)

We’ll call the sequence v(t) from (11) a t-th derivative sequence of the
sequence v. Note that the polynomial Φt from (13) is defined only modulo
pd−t and the sequence v(t) defined only modulo pd−t too. We’ll consider, that
the polynomial Φt(x) ∈ R[x] is selected and fixed.
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According to (13), the polynomial Φt(x) and F (x) are relatively prime,
so v(t) ∈ L∗S(F ), and (10) implies

w
(t)
0 = w

(2)
0 , t ≥ 2,

w
(t)
1 = w

(3)
1 , t ≥ 3; (12)

Lemma 2.2. For each s, t ∈ 0, d− 1 the reconstruction of the set w0, ..., ws
is equivalent to the reconstruction of the set v0, ..., vs and it’s equivalent to
the reconstruction of the set w(t)

0 , ..., w
(t)
s .

2.1 Reconstruction of the sequence w0

We define the product of an element a ∈ K by an element r̄ ∈ S̄ by the
equality

r̄a = κ0(ra).

Now K is a S̄-algebra and we can multiply any sequence over K by poly-
nomial from S̄[x] and one can consider that any periodic sequence over K is
an LRS over the field S̄.

The section of the digital sequence ws from (5) is the result of multipli-
cation of this sequence by some polynomial from S̄[x], which is more simple
sequence than ws [1].

Lemma 2.3. For s ≥ 1 the following statement takes place

(xτs−1 − ē)ws = w
(s)
0 . (13)

According to this result we can reconstruct the sequence w(d−1)
0 and ac-

cording to the lemma 2.2 this is equivalent to the reconstruction of the se-
quence w0.

Now, for d = 2, the theorem 1.2 is proved and further we consider only
d ≥ 3.

2.2 Carry function and associated sections

The carry function in the digital setK [1] is the function ∆K : K×K → K
which is defined by the equality

∆K(x, y) = κ1(x+ y)
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Lemma 2.4. The following statements take place

(xτs−2 − ē)ws = w
(s−1)
1 ⊕∆(ws−1, w

(s−1)
0 ), s ≥ 2 (14)

Lemma 2.5 ([1]). If K ∈ K, then

∆K(x, y)
2≡ (xy)h. (15)

2.3 Reconstruction of the sequence w1 in |M(v0)| variants

We remind that d ≥ 3 and so we can construct the set

I
(d−2)
0 = {i ∈ N0 : w

(d−2)
0 (i) = 0}

by the available sequence w(d−2)
0 .

Let R̃ = R/4R = Z4 and we denote by S̃, F̃ , ṽ, . . . the images S, F, v, . . .
under the natural epimorphism R→ R̃.

Lemma 2.6. There exist exactly 2[P :M(v0)] = |M(v0)| different skew LRS
ỹ ∈ LS̃(Ψ̃) such that

ỹ
(d−2)
0 = ṽ

(d−2)
0 , ỹ

(d−2)
1 (i) = ṽ

(d−2)
1 (i), i ∈ I(d−2)

0 .

The set L of all such LRS is the set of all sequences

ṽ〈ζ〉 = (ε+ 2ζ)(ṽ), ζ ∈M(v0). (16)

Now, if we have the sequence wd−1 then we can find |M(v0)| candidates for
the sequence ṽ = v(mod 4). These candidates are described by the formula
(16), wherein the genuine sequence correspond ζ = 0 ∈M(v0).

It should be noted that each candidate ṽ〈ζ〉 for ṽ is point to unique can-
didate w̃〈ζ〉1 for w1 and

w
〈ζ〉
1 = w1 ⊕ ϕK(ζ(w0)) = w1 ⊕ ζ̂(w0), ζ̂ = ϕK(ζ).

Analogously, the following relations take place

w
〈ζ〉(k)
1 = w

(k)
1 ⊕ ζ̂(w

(k)
0 ), k = 1, 2, . . . (17)
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2.4 Restoring 2-adic digital sequences v2, . . . , vd−3 by w0, w1, wd−1

If d = 3, then d − 1 = 2 and the problem is solved, so here we consider
d ≥ 4. One can assume that the sequences w0, w1, wd−1, w

(t)
0 , w

(t)
1 , t ∈ 0, d− 1

are available. From (14) and (12) for s ≥ 3 we can say that

∆K(ws−1, w
(2)
0 ) = (xτs−2 − ē)ws 	 w(s−1)

1 ,

and with the equality (15), squaring this relation, we obtain for s ≥ 3

ws−1w
(2)
0 =

(
(xτs−2 − ē)ws 	 w(s−1)

1

)2

. (18)

Now, there exists the set of numbers J = {j0 < j1 < . . . <

jm−1} ⊂ {0, 1, . . . , τd−1} such that coordinates of the vector w(2)
0 [J ] =

(w
(2)
0 (j0), . . . , w

(2)
0 (jm−1)) are reversible in the field K and the sequence v

can be uniquely restored from v(j0), . . . , v(jm−1).
To restore the vector v[J ] we use the decomposition (5)

v[J ] = w0[J ] + 2w1[J ] + · · ·+ 2d−1wd−1[J ].

Note, that we know sequences w0, w1, wd−1, so we can construct the vectors
wd−2[J ], . . . , w2[J ] successively.

Let I(2)
∗ = {i ∈ N0 : w

(2)
0 6= 0}. Using the operations in the field (K,⊕,⊗)

and the relation (18), for s ∈ {d− 1, . . . , 2} we can obtain the equalities

ws−1(i) = w
(2)
0 (i)−1

(
ws(i+ τs−2)	 ws(i)	 w(s−1)

1 (i)
)2

, i ∈ I(2)
∗ . (19)

Note, that
J + lτ0 ⊂ I(2)

∗ , l ∈ N0.

It’s evident, the equalities (19) let us restore wd−2[J ], wd−2[J +
τ0], . . . , wd−2[J + τd−4]; . . . ;w3[J ], w3[J + τ1];w2[J ] successively, by the sec-
tions wd−1[J ], wd−1[J+τ0], . . . , wd−1[J+τd−3] = wd−1[J+2d−4τ1] of available
sequence wd−1.

Here, one can obtain the section v[J ] and LRS v. So, we can reconstruct
the sequence v and its 2-adic digital sequences by its highest digital sequence
wd−1 in |M(v0)| variants.

So for successful reconstruction v by w0, w1, wd−1 we need O(m2d) ele-
ments of the sequence wd−1 and O(dm2d) operations of the field K.
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2.5 Rejection false candidates w〈ζ〉1 by the sequence wd−1

Here we consider d ≥ 3. Using the results of the section 2.4, if we have
the sequences wd−1, w0, then we can restore the sequences w〈ζ〉d−2, . . . , w

〈ζ〉
2

successively by each candidate

w
〈ζ〉
1 = w1 ⊕ ζ̂(w0), ζ̂ ∈M(w0),

using last as genuine. So we obtain the sequence

v〈ζ〉 = w0 + 2w
〈ζ〉
1 + · · ·+ 2d−2w

〈ζ〉
d−2 + 2d−1wd−1.

If considering candidate w〈ζ〉1 is genuine, that v〈ζ〉 = v ∈ LS(Ψ). To prove
theorem 1.2 we have to prove the following statement.

Proposition 2.7. If v〈ζ〉 ∈ LS(Ψ), then ζ = 0 or there exists η ∈ M∗(v0),
such that η(v0) = v

(1)
0 .

Further we assume

w
〈ζ〉
0 = w0, w

〈ζ〉
d−1 = wd−1.

It should be noted, that if q = 2, then n = 1, i.e. v is a classic MP LRS
over S = R = Z2d, and theorem 1.2 is proved in [10] without the requirement
(8). So we consider only q > 2.

To prove this lemma we should prove the following three lemmas succes-
sively.

Lemma 2.8. Under the conditions of theorem 2.7

v
(2)
0

(
ζ
(
v

(1)
0

)2

⊕ ζ (v0(i)) v
(1)
0

)
= 0. (20)

Lemma 2.9. Let a, b, c, d ∈ LΓ(S)(γ0(Ψ)), then the following equivalence
takes place

d(a2 ⊕ bc) = 0⇔ a2 = bc. (21)

From (20) and (21) we can obtain that

ζ
(
v

(1)
0

)2

= ζ(v0)v
(1)
0 . (22)

Since the sequences ζ(v
(1)
0 ), ζ(v0), v

(1)
0 are skew MP LRS over the field K

of order m, the we can say that in the left part of (22) there are exactly
qm−1 − 1 zeros on the period, and this mean in right too. This implies that
in the sequences ζ(v0) и v(1)

0 zeros are in the same places.
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Lemma 2.10. Let a, b ∈ LΓ(S)(γ0(Ψ)) и a(i) = 0⇔ b(i) = 0, i ∈ 0, τ0 − 1,
then there exists η ∈M∗(a) such that

b = η(a).

So if ζ 6= 0 that there exists η ∈M∗(v0), for which

η(v0) = v
(1)
0 . (23)

Now, the statement of the theorem 1.2 is followed from proposition 2.7
and [3].

2.6 Complexity

To summarize this section we denote, that for the successful reconstruction
of a LRS v by its highest digit wd−1 we need to reconstruct all |M(v0)| can-
didates v〈ζ〉 applying the algorithm from paragraph 2.4, and for each of these
candidates we need to check, whether one is a MP LRS with characteristic
polynomial Ψ(x). So, before checking, we need O(m2d) elements of the high-
est digit of v and O(md2d) · |M(v)| ≤ O(md2nd) operations of the field K.
In the special case, if v0 is non-reducible Z2d-skew LRS, then |M(v)| = 2
and we need O(md2d) operations. From experiments we can conclude, that
for verification whether the sequence v〈ζ〉 is correct, we need a section of
wd−1, which length is significantly less than the full period. This length (in
practice) is estimated by O(m).

We need to point out, that above algorithm doesn’t pretend to be the
most effective, it is just a proving method of the theorem 1.2.

3 Conclusions

The class of word-oriented pseudorandom generators, for which we can prove
the absence of equivalent keys, is described. In future research, it would be
interesting to consider some generalizations of this class and to try to prove
absence of equivalent keys for ones, for example to consider Galois rings of
arbitrary characteristic (p ≥ 3) or to try to revoke the additional contribution
(8).
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The First Digit Sequence of Skew Linear Recurrence
of Maximal Period over Galois Ring

Mikhail Goltvanitsa

Abstract

A rank of the first digit sequence of a skew linear recurrence of maximal period
is determined under natural restrictions on the digit set.

1 Introduction. Main results

In what follows, R = GR(qd, pd), where q = pr, is a Galois ring, S =
GR(qnd, pd) is a Galois extension of dimension n of R [1]. It is known that
the group Aut(S/R) of automorphisms of S over R is a cyclic group of order
n [2]. Let σ be a generator of this group and Š = Sσ〈σ〉 be a skew group ring
of the group 〈σ〉 over the ring S, i.e. the set of formal sums ψ =

∑n−1
i=0 siσ

i,
s0, ..., sn−1 ∈ S, with natural addition and multiplication, which is defined
using distributive property by the identity ∀s ∈ S : σs = σ(s)σ.

Each element ψ ∈ Š defines an endomorphism of the module RS such
that ψ(s) =

∑n−1
i=0 siσ

i(s) for every s ∈ S. So we have the isomorphisms
Š ∼= End(RS) ∼= Rn,n, where Rn,n is a ring of n × n matrices over R. The
equality ψ · s = ψ(s) defines on S a structure of the left Š-module.

The set S〈1〉 of all sequences over S is a left module over the ring of
polynomials Š[x], where a product of the sequence v ∈ S〈1〉 and the polynomial
A(x) =

∑
i≥0 aix

i ∈ Š[x] is defined by the equality

A(x)v = w ∈ S<1> : w(j) =
∑
i≥0

ai(v(i+ j)), j ≥ 0.

Following [3], we say that a sequence v ∈ S〈1〉 is a skew linear recurrent
sequence (LRS) of order m > 0 over the ring S if it is an LRS of order
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m over the module ŠS [1, 4], i.e. Ψ(x)v = 0 for some monic polynomial
Ψ(x) = xm − ψm−1x

m−1 − ...− ψ0 ∈ Š[x] of degree m, called characteristic
polynomial of LRS v. In other words, the sequence v satisfies the law of
recursion

∀i ∈ N0 : v(i+m) = ψm−1(v(i+m− 1)) + ...+ ψ0(v(i)).

Denote by LS(Ψ) the set of all LRS v over S with characteristic polynomial
Ψ. If Ψ(x) ∈ S[x], then we say that the sequences from LS(Ψ) are classic
LRS.

Proposition 1. ([3]) For any skew LRS v of order m over S there exists a
monic polynomial F (x) ∈ R[x] of degree mn with the property v ∈ LS(F ).
Moreover, T (F ) ≤ τ = (qnm − 1)pd−1.

If T (v) = τ we say that v is a skew LRS of maximal period (MP LRS).
Studying of skew MP LRS over Galois rings was started in articles [3, 5],
where, in particular, the results allowing to construct large classes of such
sequences without brute force method were obtained.

A subset B ⊂ S is called digit set (of the ring S), if 0 ∈ B and for every a ∈
S there exists a unique element κB(a) ∈ B such that a = κB(a), where a is
an image of a under canonical epimorphism µ : S → S/pS. So, every element
a ∈ S has a unique decomposition a = κB0 (a) + . . .+ pd−1κBd−1(a), κBj (a) ∈
B, j ∈ 0, d− 1, where the notation 0, d− 1 stands for {0, 1, . . . , d− 1}. We
call a function κBt : S → B the t-th digit function (in the digit set B). The
set B has a structure of the field of qn elements with respect to operations
a ⊕ b = κB0 (a + b), a � b = κB0 (ab), a, b ∈ B. An important example of a
digit set is Γ(S) = {π ∈ S : πq

n

= π}, called p-adic digit set. We use the
notation γt for the t-th digit function κΓ(S)

t : S → Γ(S). For any sequence
w ∈ S〈1〉 there exists a unique tuple w0, . . . , wd−1 of its digit sequences (in
digit set B), defining from the relations w(i) = w0(i) + . . . + pd−1wd−1(i),
where wj(i) ∈ B, j ∈ 0, d− 1. Digit sequences of skew linear recurrences
were studied in article [6]. For any sequence w ∈ B〈1〉 we denote by rankBw
the rank (the degree of minimal polynomial) of the sequence w as LRS over
the field B [7].
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Let Γ(S) = {π0 = 0, . . . , πqn−1}. Further, we assume that if B is an
arbitrary digit set of S, B = {µ0, . . . , µqn−1}, then µ0 = 0 and µt = πt for
t = 1, . . . , qn − 1. The following result is valid.

Lemma 2. ([9]) There exists a unique polynomial ΛB(x) =
qn−1∑
j=1

λjx
j over

S such that Λ(πt) = µt, t ∈ 0, qn − 1. ΛB(x) = x+ pΛ∗B(x), where Λ∗B(x) =∑qn−1
j=1 λ∗jx

j ∈ S[x] is a polynomial uniquely defined modulo pd−1.

We say ΛB(x) is an interpolation polynomial of the digit set B and put
LB = {l ∈ 2, qn − 1 : λl 6≡ 0(modp2)}. Under certain restrictions on this
polynomial one can exactly determine a rank of the first digit sequence of
the skew linear recurrence of maximal period.

We define a p-ary weight of number k =
∑

s≥0 p
sνs(k), where νs(k) ∈

0, p− 1 as an arithmetic sum wp(k) =
∑

s≥0 νs(k).
Let v be a skew MP LRS of order m over S and K = GR(qnmd, pd) be

an extension of dimension m of the ring S. Denote by σ̃ the generator of the
group Aut(K/R), taking each element η ∈ K to σ̃(η) = γ0(η)q + pγ1(η)q +
. . .+ pd−1γd−1(η)q [2]. It is known [3] that the i-th term v(i) of the sequence
v has a representation

v(i) = TrKS (
n−1∑
j=0

εjσ̃
j(ϑ)i), (1.1)

for some ε0, . . . , εn−1, ϑ ∈ K, ordϑ = (qmn − 1)pd−1, where TrKS is a trace–
function from the ring K onto the ring S [10], defined by the rule TrKS (η) =∑m−1

l=0 σ̃ln(η), for all η ∈ K.
Define
W0 = {j ∈ 0, n− 1 : γ0(εj) 6= 0},W1 = {j ∈ 0, n− 1 \W0 : γ1(εj) 6= 0}.
In this article we prove the following the results, announced in0 [6].

Theorem 3. If Λ(x) = x+pΛ∗(x) is an interpolation polynomial of the digit
set B such that degΛ(x) ≤ q − 1, then for a skew MP LRS v represented
by (1.1) such that |W0| = n0, |W1| = n1 the following is true:

rankBκB1 (v) =
∑
l∈LB

r−1∏
s=0

(
mn0+νs(l)−1

νs(l)

)
+
(
mn0+p−1

p

)
+m(n0 + n1),
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in particular,
rankΓ(S)γ1(v) = m(n0 + n1) +

(
mn0+p−1

p

)
.

For comparison we reproduce here the following known result.

Theorem 4. ([9]) Let polynomial ΛB(x) be an interpolation polynomial of
the digit set B. Then the rank of the first digit sequence of the classical MP
LRS u ∈ S〈1〉 of order m is equal to

rankBκB1 (u) =
∑
l∈LB

nr−1∏
s=0

(
m+νs(l)−1

νs(l)

)
+
(
m+p−1

p

)
+m.

So taking into account Theorem 3 and Theorem 4, we obtain

Corollary 5. Under conditions of Theorem 3 if n0 = n, then the rank of
the first digit sequence of skew MP LRS v of order m over S is equal to the
rank of the first digit sequence of classical MP LRS u of order mn over S.

The author is grateful to Professor A. A. Nechaev for helpful discussions
and valuable remarks.

2 Proof of Theorem 3

It is known [2] that for every a ∈ S: γ0(a) ≡ aq
n

(modp2). Hence,

pκB1 (v) ≡ v − Λ(vq
n

) = v − vqn − pλ∗1v − p
∑
l∈L

λ∗l v
l (modp2). (2.1)

Using (1.1), we have:
v(i) = TrKS (z(i)) ≡

∑m−1
k=0 (z0(i)

qnk + pz1(i)
qnk) (modp2), where z(i) =∑n−1

j=0 εjσ
j(ϑ)i, zk(i) = γk(z(i)), k = 1, 2. Hence,

v(i)q
n ≡

(
m−1∑
k=0

z0(i)
qnk

)qn

=
m−1∑
k=0

z0(i)
qn(k+1)

+

+
∑

0≤j0,...,jm−1<qn

j0+...+jm−1=qn

qn!

j0! . . . jm−1!
z0(i)

j0+qnj1+...+qn(m−1)jm−1(mod p2).

(2.2)
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Since z0(i) ∈ Γ(K), we obtain
∑m−1

k=0 z0(i)
qn(k+1)

=
∑m−1

k=0 z0(i)
qnk .

All multinomial coefficients in the second sum of (2.2) are divisible by p,
so we can write (2.1) in the following form
pκB

1 (v)(i) ≡ pu(i)− pw(i)− pw̃(i)(mod p2), where

u(i) =
∑m−1

k=0 z1(i)
qnk − λ∗1v0(i), w̃(i) =

∑
l∈L λ

∗
l v0(i)

l,

w(i) =
∑

0≤j0,...,jm−1<qn

j0+...+jm−1=qn

qn!/p

j0! . . . jm−1!
z0(i)

j0+qnj1+...+qn(m−1)jm−1,

where v0 = γ0(v). Further proof is carried out in the form of chain of lemmas.

Lemma 6. rankΓ(K)γ0(u) = m
(
n0+p−1
n0

)
+m(n0 + n1).

Lemma 7. rankΓ(K)γ0(w) =
∑

0≤l0,...,lm−1<p
l0+...lm−1=p

∏m−1
s=0

(
ls+n0−1

ls

)
.

Lemma 8. rankΓ(K)γ0(w̃) =
∑
l∈L

r∏
s=0

(
mn0+νs(l)−1

νs(l)

)
.

Lemma 9. Minimal polynomials of the sequences γ0(u), γ0(w), γ0(w̃) are
coprime.

Lemma 10. rankΓ(K)γ0(u) + rankΓ(K)γ0(w) = m(n0 + n1) +
(
mn0+p−1

p

)
.

Proof of Lemma 6.
2 In [11, 3] it is proved that ϑ0 6= 0, ϑ1 6= 0, so we have

z(i) ≡
n−1∑
j=0

(εj0 + pεj1)(ϑ
qj

0 + pϑq
j

1 )i ≡

≡
n−1∑
j=0

εj0ϑ
qji
0 + p(

n−1∑
j=0

εj1ϑ
qji
0 + i

n−1∑
j=0

εj0(
ϑ1
ϑ0

)q
j

ϑq
ji

0 ) (mod p2),

where εjk = γk(εj). Hence,

z1(i) = γ1(
n−1∑
j=0

εj0ϑ
qji
0 )⊕ γ0(

n−1∑
j=0

εj1ϑ
qji
0 + i

n−1∑
j=0

εj0(
ϑ1

ϑ0
)q

j

ϑq
ji

0 ). (2.3)

Without loss of generality we can assume W0 = {0, 1, . . . , n0 − 1}.
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Theorem 11. ([12]) If a1, . . . , ak ∈ Γ(K), r̂ = qmn/p, then

γ1(a1 + . . .+ ak) ≡
∑

j0+...+jk=p

o≤ji<p

1

j0! . . . jk!
ar̂j11 . . . ar̂jkk (mod p) (2.4)

Using Theorem 11, we have

u(i) =
m−1∑
k=0

z1(i)
qnk − λ∗1v0(i) ≡

≡
m−1∑
k=0

∑
s0+...+sn0−1=p

o≤sk<p

1

s0! . . . sn0!
ϑ
r̂qnk(s0+...+sn0−1q

n0−1)i
0

∏
j∈W0

ε
sj r̂q

nk

j0 +

+
m−1∑
k=0

n−1∑
j=0

εq
nk

j1 ϑ
iqnk+j

0 + i
m−1∑
k=0

∑
j∈W0

εq
nk

j0 (ϑ1ϑ0 )
qnk+j

ϑiq
nk+j

0 −

− λ∗1
m−1∑
k=0

∑
j∈W0

εq
nk

j0 ϑ
iqnk+j

0 ( mod p).

(2.5)
Let

∑
k be the k-th double sum from (2.5), k ∈ 1, 4, and let y(i) =∑

2 +
∑

3 +
∑

4, ỹ =
∑

1. It can be easily seen that the minimal polynomials
of the sequences γ0(y) and γ0(ỹ) are coprime and, therefore, rankΓ(K)γ0(y +
ỹ) = rankΓ(K)γ0(y) + rankΓ(K)γ0(ỹ).

Taking into account (2.5) we obtain the decomposition of y into the sum
of binomial sequences of the first and second order [7], hence, rangΓ(S)γ0(y) =
2mn0 +mn1.

Proposition 12. [13] For every a, b ∈ N0, the equation x1 + . . .+ +xa = b
has

(
a+b−1
b

)
solutions in nonnegative integers.

Using Proposition 12, we obtain that rankΓ(K)(u) is equal to the value
m(
(
n0+p−1

p

)
− n0) + 2mn0 +mn1 = m

(
n0+p−1

p

)
+m(n0 + n1). 2

Proof of Lemma 7.
2

Lemma 13. ([14]) For every k ∈ N0 and every prime p the largest integer
i with the property pi|k! is equal to k−wp(k)

p−1 .
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Therefore, multinomial coefficients in the second sum of (2.2) are divisible
by p for every tuple (j0, . . . , jm−1) ∈ 0, qn − 1

m such that j0 + . . . jm−1 = qn

and not divisible by p2 exactly if

js =
qn

p
ls, ls ∈ 0, p− 1, s ∈ 0,m− 1. (2.6)

Let c = c(l0, . . . , lm−1) =
qn

p
(l0 + qnl1 . . .+ qn(m−1)lm−1), then

z(i)c0 ≡
∑

0≤k0,...,kn0−1≤c
k0+...+kn0−1=c

c!

k0! . . . kn0−1!
·ϑ(k0+...kn0−1q

n0−1)i
0

n0−1∏
j=0

(ε
kj
j0)(modp). (2.7)

Theorem 14. (Lukas′ [15, Theorem 4.71]) If p is prime number, N =∑I
i=0Nip

i, M =
∑I

i=0Mip
i ∈ N0, then

(
N
M

)
≡

I∏
i=0

(
Ni

Mi

)
(mod p)

By Theorem 14 we conclude that the multinomial coefficient in sum (2.7)
is not divisible by p exactly if

kj = qn

p (l0j + l1jq
n + . . .+ lm−1,jq

n(m−1)), j ∈ W0,∑
j∈W0

lsj = ls, lsj ∈ 0, p− 1, s ∈ 0,m− 1, lsj ∈ N0.
(2.8)

Taking into account (2.8) it is easy to see that elements

ϑ
k0+k1q+...+kn0−1q

n−1

0 = ϑ
qn

p

∑
j∈W0

∑m−1
s=0 lsjq

ns+j

0 (2.9)

are distinct, because for every a, b ∈ Γ(K) such that a 6= b inequality a
qn

p 6=
b

qn

p is fulfilled and all values
∑

j∈W0

∑m−1
s=0 lsjq

ns+j are distinct and less then
ordϑ0 = qmn − 1.

So, using (2.6) and (2.7) we get the decomposition of the sequence w into
binomial sequences with distinct roots. Finally, taking into account (2.8) and
Proposition 12 we obtain the desired result 2

Proof of Lemma 8.
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2 For every l ∈ L, using relation v(i)l ≡
(
m−1∑
k=0

z0(i)
qnk
)l

(modp), we get

v(i)l ≡
∑

0≤l′0,...,l′m−1≤l
l′0+...+l′m−1=l

∑
0≤k0,...,kn0−1≤c
k0+...+kn0−1=c

l!

l′0! . . . l
′
m−1!

c!

k0! . . . kn0−1!

∏
j∈W0

ε
kj
j0

· ϑ(k0+k1q+...+kn0−1q
n0−1)i

0 (modp),
(2.10)

where c = l′0+l′1q
n+. . .+l′m−1q

n(m−1). If for nonnegative integers a1, . . . , ak, b
such that a1 + . . .+ ak = b the following condition ∀t ∈ N0 νt(b) = νt(a1) +
. . .+νt(ak) is fulfilled, then we will write b = a1u. . .uak. Taking into account
Theorem 14, we get that the product of multinomial coefficients in (2.10) is
not divisible by p exactly if

l = l′0 u l′1 u . . .u l′m−1; c = k0 u k1 u . . .u kn0−1. (2.11)

Since c = l′0+l′1q
n+. . .+l′m−1q

n(m−1), combining the second equality in (2.11)
and Theorem 14, we get

∀j ∈ W0 kj =
m−1∑
s=0

l′sjq
ns,

∑
j∈W0

l′sj = l′s, (2.12)

for some l′sj ∈ N0. Let us prove that

l = l′00 u l′01 . . .u l′0,n0−1 u . . .u l′m−1,0 u . . .u l′m−1,n0−1. (2.13)

Taking into account inequality l ≤ q − 1, it suffices to prove that νb(l) =∑
j∈W0

∑m−1
s=0 νb(l

′
sj), for all b ∈ 0, r − 1. It is easily to seen that for all

a, b ∈ N0, a < m, b < rn the following condition holds νarn+b(c) = νb(l
′
a).

On the other hand, using (2.11), (2.12), we have
νarn+b(c) =

∑n0−1
j=0 νarn+b(kj) =

∑n0−1
j=0 νb(l

′
aj). So, using the first equality

in (2.11), we obtain νb(l) =
∑

j∈W0

∑m−1
s=0 νb(l

′
sj), for all a ∈ 0,m− 1, b ∈

0, rn− 1. Hence (2.13) is proved.
It is easy to see that from conditions (2.13), (2.12) condition (2.11) follows.

So conditions (2.13) and (2.11) are equivalent. Hence, the number of non-
zero terms in (2.10) is equal to the number of decompositions of l in the
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form (2.13). Using Proposition 12, we obtain that this number is equal to∏r−1
s=0

(
mn0+νs(l)−1

νs(l)

)
. Note that (2.10) is decomposition of v into the sum of

binomial sequences with roots of the form

ϑ
∑m−1

s=0

∑
j∈W0

l′sjq
ns+j

0 . (2.14)

Since l′sj ≤ l ≤ q−1 and ordϑ0 = qmn−1, we obtain that all elements (2.14)
are distinct. So, the following equality is fulfilled

rankΓ(S)γ0(v
l) =

r−1∏
s=0

(
mn0 + νs(l)− 1

νs(l)

)
.

Finally, note that for distinct l1, l2 ∈ L minimal polynomials of the sequences
γ0(v

l1) и γ0(v
l2) are coprime. 2

Proof of Lemma 9.
2 Let us prove that minimal polynomials of the sequences γ0(u) and

γ0(w) are coprime. It suffices to show that the set of roots of binomial
sequences in decomposition (2.5) does not intersect with the set of elements (2.9).
Assume the contrary, that for some k ∈ 0,m− 1, t ∈ 0, n− 1 one of the
equalities is fulfilled

ϑ
r̂qnk(b0+b1q+...bn0−1q

n0−1)
0 = ϑ

qn

p

∑
j∈W0

∑m−1
s=0 lsjq

ns+j

0 , (2.15)

ϑq
nk+t

0 = ϑ
qn

p

∑
j∈W0

∑m−1
s=0 lsjq

ns+j

0 , (2.16)

where r̂ = qmn

p , lsj satisfy condition (2.8), and
∑
j∈W0

bj = p, 0 ≤ bj < p.

Let us show that equality (2.15) is not fulfilled (For equality (2.16) the
proof is analogous). If k = 0, then condition (2.15) is equivalent to condition

ϑ
qn(m−1)(b0+b1q+...bn0−1q

n0−1)
0 = ϑ

∑n0−1
j=0

∑m−1
s=0 lsjq

ns+j

0 . (2.17)

Using (2.8), we have

∑
j∈W0

lsj = ls, lsj ∈ 0, p− 1, s ∈ 0,m− 1,
m−1∑
s=0

ls = p, 0 ≤ ls < p,
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therefore, there exist 0 ≤ s1 ≤ m − 1, 0 ≤ s2 ≤ m − 1, s1 6= s2 such that
ls1 6= 0, ls2 6= 0. Hence, there exist j1, j2 ∈ W0 such that ls1j1 6= 0, ls2j1 6= 0.
So, equation (2.17) is not fulfilled, since the exponents on ϑ0 in the left-hand
side and right-hand side in (2.17) are different and less then ordϑ0.

If 0 < k ≤ m− 1, then condition (2.15) is equivalent to condition

ϑ
qn(k−1)(b0+b1q+...bn0−1q

n0−1)
0 = ϑ

∑n0−1
j=0

∑m−1
s=0 lsjq

ns+j

0 . (2.18)

In this case the proof is analogous to the proof in the case k = 0.
Let us show that minimal polynomials of the sequences γ0(w) and γ0(w̃)

are coprime. It suffices to show that the set of elements of the form (2.9)
does not intersect with the set of elements of the form (2.14). Assume the
contrary that for some tuple lsj, where s ∈ 0,m− 1, j ∈ W0 such that∑

j∈W
∑m−1

s=0 lsj = p, 0 ≤ lsj < p and l of the form (2.13) the equality is
fulfilled

ϑ
∑

j∈W0

∑m−1
s=0 l′sjq

ns+j

0 = ϑ
qn

p

∑
j∈W0

∑m−1
s=0 lsjq

ns+j

0 . (2.19)

Denote

a ≡ p
∑
j∈W0

m−1∑
s=0

l′sjq
ns+j(mod (qmn − 1)),

b ≡ qn
∑
j∈W0

m−1∑
s=0

lsjq
ns+j(mod (qmn − 1)), 0 ≤ a, b < qmn − 1.

Equality (2.19) is equivalent to the condition a = b. Now we consider two
cases q = p and q > p. If q = p, then
wp(a) = l ≤ q − 1 = p − 1 < p,wp(b) = p. So, a 6= b and condition (2.19)
is not fulfilled. This is a contradiction. Let us consider the case q > p, i.e
r = logpq > 1. In this case there are two possible subcases. If the following
condition is fulfilled

∃s0 ∈ 0,m− 1, j0 ∈ W0 : pr−1 6 |l′s0j0 6= 0, (2.20)

then there exists t > 0 such that

r 6 |t, νt(a) 6= 0. (2.21)

CTCrypt 2015 M.A. Goltvanitsa 109



The First Digit Sequence of Skew Linear Recurrence...

It is easy to seen, that condition (2.21) does not fulfilled for b. This is a
contradiction. If condition (2.20) is not valid, i.e

∀s ∈ 0,m− 1, j ∈ W0 : pr−1|l′s0j0, (2.22)

then l′sj = pr−1hsj. Taking into account (2.13), we obtain that wp(a) =∑
j∈W0

∑m−1
s=0 hsj < p. From the other hand wp(b) = p. Hence, a 6= b. This is

a contradiction. So, minimal polynomials of the sequences γ0(w) and γ0(w̃)
are coprime. The proof of the fact that minimal polynomials of the sequences
γ0(u) and γ0(w̃) are coprime is analogous. 2

Proof of Lemma 10
Combining Lemma 6 with Lemma 7, we get
rankΓ(K)γ0(u) + rankΓ(K)γ0(v) = m

(
n0+p−1
n0

)
+m(n0 + n1)+

+
∑

0≤l0,...,lm−1<p
l0+...lm−1=p

m−1∏
s=0

(
ls+n0−1

ls

)
=

∑
0≤l0,...,lm−1≤p
l0+...lm−1=p

m−1∏
s=0

(
ls+n0−1

ls

)
+

+ m(n0 + n1).
Using Proposition 12, we have∑

0≤l0,...,lm−1≤p
l0+...lm−1=p

m−1∏
s=0

(
ls+n0−1

ls

)
=
(
mn0+p−1

p

)
.

So, Lemma 10 is proved. This completes the proof of Theorem 3.
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Second Coordinate Sequence of the MP-LRS over
Non-trivial Galois Ring of the Odd Characteristic

Vadim Tsypyshev

Abstract

We describe divisors of the minimal polynomial of the second p-adic coordinate
sequence of the maximal period linear recurrent sequence MP-LRS over non-trivial
Galois ring of odd characteristic in dependence of the initial vector of this LRS.

Also we describe polynomials divisible by that minimal polynomial in depen-
dence of the initial vector of this LRS.

As a corollary we get non-trivial upper and lower estimations for the rank of the
second coordinate sequence of such MP-LRS

We say that the Galois ring is non-trivial, if it differs from Galois field and from
quotient ring too.

These results were worked out in 2004 with participation of V.L. Kurakin as a
supervisor. The author is very grateful to V.L.Kurakin for his participation in this
work.

1 Introduction

Let R = GR(qn, pn) be a Galois ring [11, 12], q = pr, p is a prime, u
is a linear recurrent sequence of the full period over R with characteristic
Galois polynomial F (x) of degree m [7].

Let S = GR(Qn, pn), Q = qm, be a Galois extension of R, splitting ring
of the polynomial F (x), θ is a root of F (x) in the ring S. Then [6] there
exists a unique constant ξ ∈ S with the property:

u(i) = TrSR(ξθi), i ∈ N0, (1)

where TrSR(x) = ∑
σ∈Aut(S/R)

xσ is a trace function from the ring S into ring
R.
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It is known that an arbitrary element s ∈ S may be uniquely represented
in the form

s =
n−1∑
i=0

γi(s)pi, γi(s) ∈ Γ(S), i = 0, n− 1, (2)

where Γ(S) = {x ∈ S | xQ = x} is a p-adic coordinate set of the ring S
(Teichmueller’s representatives system).

The set Γ(S) with operations ⊕ : x⊕ y = (x+ y)Qn and ⊗ : x⊗ y = xy
is a Galois field GF (Q).

The field Γ(S) contains as a sub field the set Γ(R) = {x ∈ R | xq = x}
which is a p-adic coordinate set of the ring R.

Operations on elements of the Γ(R) are defined in the same way. Be-
cause of that the set Γ(R) is a field GF (q).

It is known that [11, 12] the group Aut(S/R) is a cyclic and is generated
by the Frobenius automorphism ρ which acts upon an element s ∈ S of
the form (2) according to the rule

ρ(s) =
n−1∑
i=0

γi(s)qpi. (3)

Representation analogous to the (2) takes place for elements of the ring
R.

The sequence u(i), i ∈ N0, uniquely determines n p-adic coordinate
sequences ul(i) = γl(u(i)), l = 0, n− 1, i ∈ N0, over the field (Γ(R),⊕, ·).

If we have a task to generate a pseudo random sequences relying on lin-
ear recurrence over Galois ring we may choose one or several elder coordi-
nate sequences of this linear recurrence. In this way it is interesting to have
estimations for the ranks of those coordinate sequences γl(u), l = 0, n− 1.
In [10] lower and upper estimations for the ranks of coordinate sequences
of linear recurrences of maximal period over primarily residue rings were
obtained. Besides that, there were obtained minimal polynomials of coor-
dinate sequences for some types of such linear recurrences.

Also in [10] minimal polynomials of sequences ul, l = 0, 1 over nontrivial
Galois ring were obtained.

In [3] the minimal polynomial and the rank of the first coordinate se-
quence of linear recurrence u over non-trivial Galois ring determined in
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arbitrary coordinate set were obtained.
Further in the article [9] were obtained exact values of ranks for sec-

ond coordinate sequence of faithful linear recurrent sequence over binary
residue ring with minimal Galois polynomial of degree not less then 5 in
dependence on the initial vector of this LRS.

Below we will provide polynomials over Galois field Γ(R) which respec-
tively divides and are divisible by minimal polynomial of the second coor-
dinate sequence of the linear recurrence u in p-adic coordinate set under
condition of p ≥ 5. These results provide a way to obtain upper and lower
estimations for the rank of this linear recurrence. Previously these results
in less faithful form were published in [15].

Furthermore, relying on these results in the next article we will obtain
rank estimations for elders coordinate sequences of MP LRS over nontrivial
Galois ring with specially selected numbers.

2 Main results

Let M,w ∈ N. We will denote by I(M,w) the set of strings ~ =
(j1, . . . , jM), 0 ≤ jl ≤ p− 1, l = 1,M , with property : ∑M

l=1 jl = w.
By

{
M
w

}
we will denote the cardinality of the set I(M,w). Let us note

that
{
M
w

}
is equal to the quantity of allocations of w identical balls into

M different boxes under condition that into each box there disposes not
greater then p− 1 balls. It is known that [8, C.215]:{

M

w

}
=

min{w,(M−w)/p}∑
s=0

(−1)s
w
s

M + w − ps− 1
M − 1

, (4)

if 0 ≤ w ≤M(p− 1) and {
M

w

}
= 0 (5)

in other case.
Letm is a degree of any polynomial under investigation. Further we will

denote by N = N(m) the value
{
m
p

}
. Besides that, we will concern that the

strings ~(1), . . . , ~(N) in the set I(m, p) are allocated in the lexicographical
order.
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Let R = GR(qn, pn) be a Galois ring, q = pr, p ≥ 5, r ≥ 2, F (x) is a
Galois polynomial of degree m over the ring R, the sequence u ∈ LR(F ) is
a non-zero by modulus pR and is represented by the trace-function

u(i) = TrSR(ξθi),
where S = GR(qmn, pn) is a splitting ring of the polynomial F (x), θ is a
root of F (x) in the S, the constant ξ ∈ S is unequally determined. Let,
further, Q = qm = pt, t = rm, θs = γs(θ), ξs = γs(ξ), s = 0, n− 1.

The element ∇ is introduced in this way: according to Wilson theorem
we have (p − 1)!≡

p
−1. Hence when p ≥ 3 number (p − 1)! as an element

of the ring Zpn has a p-adic representation of the form

(p− 1)!≡
p2
−1− p∇,∇ ∈ Γ(Zpn).

Let’s denote:
G(x) =

∏
~∈Ξ

(
x	 θ

∑m−1
l=0 jlp

rm+rl−1

0

)
,

Ξ =
~ ∈ I(m, p) : ∇ · γ0

 1∏m−1
l=0 jl!

 6= 	γ1

 1∏m−1
l=0 jl!

 ,
W (x) =

p∏
s=0

∏
(~λ,~ζ)∈Ωs

(
x	 θ

∑m−1
l=0 pt+rl−2(λl+pζl)

0

)
,

where

Ωs =
{
(~λ, ~ζ) : ~λ ∈ I(m, ps), ~ζ ∈ I(m, p− s),

∑⊕
~µ∈I(N,p):∑N

i=1 µi·j
(i)
l

=λl+pζl,l=0,m−1

γ0

(
1∏N

i=1 µi!(
∏m−1
l=0 j

(i)
l !)µi

)
6= 0

 , s = 0, p,

Hs(x) =
∏

~λ∈I(m,ps),
~ζ∈I(m,p−s)

(
x	 θ

∑m−1
l=0 prm+rl−2(λl+pζl)

0

)
, s = 0, p− 1,

H(x) = H1(x), Z(x) = H0(x),
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D1(x) = GCD (G(x),W (x)), D2(x) = GCD (W (x), H(x)).

Pay attention to the fact that

G(x) | Z(x).

Besides that, let’s denote by

F̃ (x) = γ0(F (x))

the polynomial obtained from F (x) by picking out zeroth p-adic digits of
every coefficient of polynomial. It is obviously that F̃ (x) ∈ F̄ (x), where
F̄ (x) is a residue class of the F (x) in the ring R[x]/pR[x].

Theorem 2.1 Let R = GR(qn, pn) be a Galois ring, q = pr, p ≥ 5, r ≥ 2,
F (x) is a Galois polynomial of degree m over the ring R, the sequence
u ∈ LR(F ) is a non-zero by modulus pR and is represented by the trace-
function

u(i) = TrSR(ξθi),
where S = GR(qmn, pn) is a splitting ring of the polynomial F (x), θ is a
root of F (x) in the S, the constant ξ ∈ S is unequally determined. Let,
further, Q = qm = pt, t = rm, θs = γs(θ), ξs = γs(ξ), s = 0, n− 1.

If F (x) is a MP-polynomial, in other words [14], θ0 is a primitive ele-
ment of the field Γ(S) = GF (Q), and θ1 6= 0, then for a minimal polynomial
of the second coordinate sequence u2 of the LRS u in the p-adic coordinate
set these dependencies hold:

F̃ (x)p+1 · G(x)
D1(X) ·

W (x)
D1(x) ·D2(x) ·H(x)p

∣∣∣∣∣∣ m2(x),

m2(x)
∣∣∣∣∣∣F̃ (x)p+1 · Z(x)ε ·H(x)p · LCM

W (x)
D2(x) ,

p−1∏
s=2

Hs(x)βs
 .
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Under the same conditions these inequalities hold:

ε ≤ p, βs ≤ p− 1, s = 2, p− 1.

Besides that in described cases there are known equal values of the pa-
rameter ε:

(a) If ξ1 6= 0, then under additional conditions

∀~ζ ∈ I(m, p)
∑
⊕

κ=0,m−1 : ζκ>0
(ξ−1

0 ξ1)p
t+rκ−1 6= 0

and

∀~ζ ∈ I(m, p)
∑
⊕

l=0,m−1 : ζl>0
γ0

(
ζl∏m−1

κ=0 ζκ!

)
(θ−1

0 θ1)
∑m−1
κ=0 ζκp

t+rκ−1−pt+rl−1 6= 0

the equality holds: ε = p, and Z(x)ε | m2(x).
(b) If ξ1 = 0, then ε = 2.
Under the same condition

Z(x)ε | m2(x).

These results were obtained in 2004. Since that time neither equal value
of the parameter degG(x) nor its upper bound are obtained.

It is clear that this parameter is not greater then{
m

p

}
,

and also depends on p.
Something the same may be declared about parameters degW (x) and

degDi(x), i = 1, 2.
The same reasoning as in proof of the Theorem 2.1 is valid in the case

of R = Zpn.
However under condition r = 1 all previous symbolization becomes in-

valid and because of that all previous rank estimations become invalid too.
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Theorem 2.2 Under conditions of the Theorem 2.1 these inequalities hold:

m(p+ 1) + p
{
m
p

} {
m
p−1

}
≤ rank u2 ≤ m(p+ 1) + p

{
m
p

} {
m
p−1

}
+

+(p− 1)
p−1∑
s=2

{
m
ps

} {
m
p−s

}
+

+p
{
m
p

}
+
{
m
p2

}
.
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On Binary Digit-position Sequences over Galois Rings,
Admitting Twofold Reduction of a Period

Sergey Kuzmin

Abstract

A class of binary digit-position sequences, obtained from a linear recurring se-
quence of maximal period (LRS MP) over Galois rings of odd characteristics, ad-
mitting an effect of twofold reduction of a period, has been found. A condition was
found, when sequences of some fixed LRS MP over Galois rings with such property,
are exhausted only by that class.

Keywords: linear recurring sequences of maximal period, binary digit-
position sequences, Galois rings, Galois fields, period of sequence.

1 Introduction

A special interest in recent years can be observed in studying p-adic
digit-position sequences over residue ring modulo pn, where p is a prime
number. This is due to the fact that these sequences possesses high linear
complexity, hence they can be used in random-number generators. A list
of papers on this topic can be seen in [1].

A lot of attention is paid to reconstruction of LRS over prime residue
rings from its images, especially when LRS MP over residue ring is mapped
into the highest order p-adic digit position sequence [2].

Less attention was paid to r-ary digit position sequences over prime
fields and residue rings where r 6= p. Such digit-position sequences were
studied by Kuzmin A.S. in paper [3]. The author has found all binary
digit position-sequences over finite prime fields, that admit the effect of
reduction of period.
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This paper, to some extent, generalizes paper [3] in conditions n ≥ 1
for Galois rings, and for not simple finite fields.

Let R = GR(pnm, pn), be a Galois ring with the characteristic polyno-
mial F (x), degF (x) = m (see, for example, [3]), notablyR = Zpn[x]/(F (x)),
u = (u(i))∞i=0 is LRS MP over this ring, with characteristic polynomial
f(x). We consider that f(x) is basic monic irreducible over the ring R and
deg f(x) = l. Let S = GR(pnml, pn) be a Galois extension of the ring R,
and let Aut(S/R) be a group of all automorphisms of the ring S, leaving the
elements of R unchanged. Let us determine a trace function TrSR : S → R
by the following equation TrSR(x) =

∑
τ∈Aut(S\R)τ(x). Let α be a root of

a polynomial f(x), in the ring S. The existence of a single element b ∈ S
such, that u(i) = TrSR(bαi), i ≥ 0, follows from [4, theorem 8].

Every element c = [
m−1∑
j=0

cjx
j]/F (x) ∈ GR(pnm, pn) can be uniquely repre-

sented by its vector of coefficients (c0, c1, ..., cm−1), where ci ∈ Zpn, i ∈
0,m− 1, by-turn coefficient ci is uniquely represented as follows ci =
d∑
s=0

ci,s2
s, ci,s ∈ {0, 1}, d = [log2p

n] + 1. Hence, every member u(i) of

some LRS MP u over Galois ring can be represented in the form

u(i) = (
d∑
s=0

u0,s(i)2
s,

d∑
s=0

u1,s(i)2
s, ...,

d∑
s=0

um−1,s(i)2
s), (1)

where d = [log2p
n] + 1.

A sequence u�,s with elements u(i)�,s = (u0,s(i), u1,s(i), ..., um−1,s(i)) i ≥
0, will be the s-th digit-position sequence of LRS MP u over Galois ring.
It generalizes digit-position sequences from [3].

In this paper we study periods of binary digit-position sequences, ob-
tained from the LRS MP over Galois rings. It is known, that the period
T (u) of the LRS MP u over ring S equals to pn−1(pml − 1) [1, p.178].

2 Main result

In the proof of the main results of this article, the the following propo-
sition is used.
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Proposition 1. [2, p. 43]. Let S = GR(pnml, pn) be an extension of degree
l of a ring R, u(i) = TrSR(bαi), i ≥ 0 be an LRS MP over R. Then the
following equation holds

u(i) + u(i+
T (u)

2
) = TrSR(bαi) + TrSR(bαi+

T (u)
2 ) = 0.

Let us state and prove some accessory statements, before proving our
main result. Let ur be an r-th digit-position sequence of LRS MP u over
Zpn.

Statement 1. For each prime p ≥ 3, in primary rings like Zp2k, k ∈ N,
for the period of a binary digit-position sequence u1, obtained from LRS
MP u according to the rule (1) for m = 1, it holds that T (u1)|T (u)

2 .

Statement 2. For each prime p ≥ 3 such that p − 1 ≡ 0(mod4), in
primary rings like Zp2k+1 , k ∈ N0, for the period of a binary digit-position
sequence u1, obtained from LRS MP u according to the rule (1) for m = 1,

it holds that T (u1)|T (u)
2 .

Statement 3. For each prime p ≥ 3 such that

p = a(s)2s+1 + 2s − 1,

a (s) ≥ 0, s ≥ 2, in primary rings like Zp2k+1, k ∈ N0 for the period of a
binary digit-position sequence us, obtained from LRS MP u according to
the rule (1) for m = 1, it holds that T (us)|T (u)

2 .

Remark 1. Note that if p = 2s−1 we consider p = a(s)2s+1+0∗2s+2s−1,
where a(s) = 0.

Remark 2. Expression ur(i) = ur(i+
T (u)

2 )⊕1, r < s, is a singular analog
of expressions from paper [2, p. 43].

Statement 4. Let binary digit-position sequences ur, r ∈ 0, d are formed
by the rule (1)for m = 1 from LRS MP u. Let there exists at least one
of each elements from Zpn\{0} on the period of u. If r is not equal to the

indexes of digit-position sequences mentioned in statements 1-3, then T (u)
2

will not be divided by T (ur).
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Now we can prove the following theorem.

Theorem 1. Let R = GR(pnm, pn), m ∈ N, be a Galois ring, p =
a(s)2s+1 + 2s − 1, a(s) ≥ 0, let u be an LRS MP over this ring with
characteristic polynomial f(x), deg f(x) = l and

z =

{
1, for n = 2k or n = 2k − 1 and p ≡ 1(mod4),
s, for n = 2k − 1 and p ≡ 3(mod4).

,

for some fixed k ∈ N. Then for the period T (u�,z) of a binary digit-position
sequence u�,z, obtained from LRS MP u according to the rule (1), the fol-
lowing expression holds

T (u�,z)|
T (u)

2
. (2)

In case when at least one component of m-dimensional vector of coef-
ficients (c0, c1, ..., cm−1), where ci ∈ Zpn, representing elements c ∈ R in
the period of sequence u, possesses all the values from Zpn\{0}, then the
sequence u�,z is unique with property (2).

In particular case, considering results of paper [5], we obtain the folowing
corollary.

Corollary 1. Let u be a LRS MP over Galois ring R = GR(pnm, pn)
with the generator polynomial f(x), deg f(x) = l. If there exists at least
one invertible element among u(0), u(1), ..., u(l− 1) and the inequality l ≥
2(nm+n−1)

m holds, then there exists a unique binary digit-position sequence,
admitting effect of reduction of period in two times, obtained from LRS MP
u.

Applying the theory of finite fields [6], we obtain the corollary.

Corollary 2. Let F = GF (pm) be an extension of the finite prime field
GF (p) of degree m, p = a(s)2s+1 + 2s − 1, a(s) ≥ 0, u be a LRS MP over
this field. Then for the period T (u�,s) of a binary digit-position sequence
u�,s, obtained from the sequence u according to rule (1), when n = 1, the

expression T (u�,s)|T (u)
2 , holds and sequence u�,s is a unique with that prop-

erty.

Remark 3. Notice that if p is a Mersenne number and n = 1, the expres-
sion T (u�,s)|T (u)

2 doesn’t hold.
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3 Conclusion

A class of binary digit-position sequences, obtained from the LRS MP
over Galois rings of odd characteristics, admitting an effect of reduction of
period in 2 times, has been found. A condition was found, when sequences
of some fixed LRS MP over Galois fields with such property, are exhausted
only by that class. Our result generalizes some results of paper [3] for
n ≥ 1, and non-prime finite fields.
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On the Concept of Quantum Hashing

Farid Ablayev Marat Ablayev

Invited talk

Abstract

We present the notion of quantum hashing which a natural generalization of clas-
sical hashing. We present the concept of a quantum hash generator and offer a design,
which allows one to build a large number of different quantum hash functions.

The construction is based on composition of a classical ε-universal hash family
and a given family of functions – quantum hash generators.

Keywords: hashing, quantum hashing, quantum hash function.

1 Introduction

Quantum cryptography describes the use of quantum mechanical effects
(in particular quantum communication and quantum computation) (a) to
perform cryptographic tasks or (b) to break cryptographic systems or to
perform cryptographic tasks.

Quantum key distribution is the well-known example for the first di-
rection of quantum cryptography. The answer of the cryptography com-
munity for the second direction is “Post-quantum cryptography”, which
refers to research on problems (usually public-key cryptosystems) that are
no more efficiently breakable using potential quantum computers. Currently
post-quantum cryptography includes several approaches, in particular, hash-
based signature schemes such as Lamport signatures and Merkle signature
schemes.

Quantum versions of signature schemes were considered by several au-
thors. Gottesman and Chuang proposed a quantum digital system [7], based
on quantum mechanics. Their results are based on quantum a fingerprinting
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technique [5] and add “quantum direction” for post-quantum cryptography.
Gavinsky and Ito [6] generalized quantum a fingerprinting technique of [5]
and viewed quantum fingerprints as cryptographic primitives.

In [1, 2] we explicitly defined a notion of quantum hashing as a generaliza-
tion of classical hashing and presented examples of quantum hash functions.
It is easy to see that quantum fingerprinting and its generalizations we men-
tioned above, are quantum hash functions. Informally speaking, we defined
a quantum hash function ψ to be a function that maps words of length k to a
quantum s-qubit states (ψ : Σk → (H2)⊗s) and has the following properties:

• Function ψ must be designed to have maximum output difference be-
tween adjacent inputs. In quantum case this means that for differ-
ent words w,w′ states ψ(w), ψ(w′) must be “almost orthogonal” (δ-
orthogonal).

• Function ψ must be physically one-way. In quantum case this means
that k � s.

Our contribution.

In this paper, we define the concept of a quantum hash generator (Def-
inition 3). Informally speaking, we call a family G of discrete functions a
quantum hash generator, if G allow to construct a quantum function ψG
which is quantum hash function. We offer a design, which allows one to
build quantum hash functions based on specific families G (Theorem 4).

Theorem 4 give possibilities to build a large amount of different quantum
hash functions.

Organization of the paper. The results of the paper mainly based on the
arXiv paper [3]. We include here only the original proofs and omit proofs
that can be find in [3].

2 Definitions and Notations

We begin by recalling some definitions of classical hash families from [11].
Given a domain X, |X| = K, and a range Y, |Y| = M , (typically with
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K ≥M), a hash function f is a map

f : X→ Y,

that hash long inputs to short outputs.
We let q to be a prime power and Fq be a finite field of order q. Let Σk

be a set of words of length k over a finite alphabet Σ. In the paper we let
X = Σk, or X = Fq, or X = (Fq)k, and Y = Fq. A hash family is a set
F = {f1, . . . , fN} of hash functions fi : X→ Y.

We recall known definition.

Definition 1 (ε universal hash family.) A family F is called an ε-universal
(ε-U (N ;K,M)) hash family if for any two distinct elements w,w′ ∈ X, when
function the f is chosen uniformly at random from F , then the probability
Prf∈F [f(w) = f(w′)] that elements w,w′ collide under f is at most ε.

The parameter ε is often referred to as the collision probability of the hash
family F .

Classical-quantum function. The notion of a quantum function was consid-
ered in [9]. In this paper we use the following variant of a quantum function.
First recall that mathematically a qubit |ψ〉 is described as |ψ〉 = α|0〉+β|1〉,
where α and β are complex numbers, satisfying |α|2 + |β|2 = 1. So, a qubit
may be presented as a unit vector in the two-dimensional Hilbert complex
space H2. Let s ≥ 1. Let (H2)⊗s be the 2s-dimensional Hilbert space, de-
scribing the states of s qubits, i.e. (H2)⊗s is made up of s copies of a single
qubit space H2

(H2)⊗s = H2 ⊗ . . .⊗H2 = H2s.

For K = |X| and integer s ≥ 1 we define a (K; s) classical-quantum
function to be a map of the elements w ∈ X to quantum states |ψ(w)〉 ∈
(H2)⊗s

ψ : X→ (H2)⊗s. (1)

We will also use the notation ψ : w 7→ |ψ(w)〉 for ψ.
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3 Quantum hashing

What we need to define for quantum hashing and what is implicitly as-
sumed in various papers (see for example [1] for more information) is a
collision resistance property. However, there is still no such notion as quan-
tum collision. The reason why we need to define it is the observation that
in quantum hashing there might be no collisions in the classical sense: as
we will see later a quantum hash function we define is one-to-one map-
ping of classical words to quantum states. But the procedure of comparing
those (different !) quantum states implies measurement, which can lead to
collision-type errors.

So, a quantum collision is a situation when a procedure that tests the
equality of quantum hashes and outputs “the hashes are the same”, while
hashes are different. This procedure can be a well-known SWAP-test (see
for example [1] for more information and citations) or REVERSE-test we
consider below. Anyway, it deals with the notion of distinguishability of
quantum states. Since non-orthogonal quantum states cannot be perfectly
distinguished, we require them to be “nearly orthogonal”.

• For δ ∈ (0, 1/2) we call a function

ψ : X→ (H2)⊗s

δ-resistant, if for any pair w,w′ of different elements,

|〈ψ(w) |ψ(w′)〉| ≤ δ.

Theorem 1 Let ψ : X→ (H2)⊗s be a δ-resistant function. Then

s ≥ log log |X| − log log
(

1 +
√

2/(1− δ)
)
− 1.

Proof. See [3] for the proof. �

The notion of δ-resistance naturally leads to the following notion of quan-
tum hash function.
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Definition 2 (Quantum hash function) Let K, s be positive integers and
K = |X|. We call a map

ψ : X→ (H2)⊗s

an δ-resistant (K; s) quantum hash function if ψ is a δ-resistant function.
We use the notation δ-R (K; s) as an abbreviation for δ-resistant (K; s)

quantum hash functions.

Quantum hashing property. One of the extra justification of the quantum
hash function definition is as follows. Let X = Σk. Let ψ : w 7→ |ψ(w)〉 be
δ-resistant.

Let us consider the procedure that we call a REVERSE-test [2] and which
proposed to check if a quantum state |ψ(w)〉 is a hash of a classical string v.

Essentially the test applies the procedure that inverts the creation of a
quantum hash, i.e. it “uncomputes” the hash to the initial state (usually
the all-zero state).

Formally, let the procedure of quantum hashing the string w be given
by unitary transformation U(w), applied to initial state |0〉, i.e. |ψ(w)〉 =
U(w)|0〉. Then the REVERSE-test, given v and |ψ(w)〉, applies U−1(v) to
the state |ψ(w)〉 and measures the resulting state. It outputs v = w iff
the measurement outcome is |0〉. Denote by Prreverse[v = w] the probability
that the REVERSE-test having quantum state |ψ(w)〉 and a word v outputs
the result that v = w.

The following property presented implicitly in [4].

Property 1 Let ψ be δ-resistant. Then for any two different words w, v ∈
Σk it is true that

Prreverse[v = w] < δ2.

Proof. v 6= w. By δ-resistance property 〈0 |U−1(v)ψ(w)〉 < δ, which bounds
the probability Prreverse[v = w] = |〈0 |U−1(v)ψ(w)〉|2 by δ2. �

Following Definition 1 one can call δ2 a collision probability of the δ-
reversible quantum hash function ψ.
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3.1 Quantum fingerprinting function is a quantum hash function.

One of the first explicit quantum hash functions was defined in [5]. Origi-
nally the authors invented a construction called “quantum fingerprinting” for
testing the equality of two words for a quantum communication model. The
cryptography aspects of quantum fingerprinting are presented in [6]. The
quantum fingerprinting technique is based on binary error-correcting codes.
Later this construction was adopted for cryptographic purposes. Here we
present the quantum fingerprinting construction from the quantum hashing
point of view.

An (n, k, d) error-correcting code is a map C : Σk → Σn such that, for
any two distinct words w,w′ ∈ Σk, the Hamming distance d(C(w), C(w′))
between code words C(w) and C(w′) is at least d. The code is binary if
Σ = {0, 1}.

The construction of a quantum hash function based on quantum fin-
gerprinting is as follows. Let k be a positive integer and n > k. Let
E : {0, 1}k → {0, 1}n be an (n, k, d) binary error-correcting code. Let
s = log n. Define the classical-quantum function ψ : {0, 1}k → (H2)⊗s,
determined by a word w as

ψ(w) =
1√
n

n∑
i=1

(−1)Ei(w)|i〉. (2)

The next property is the reformulation of the property of “quantum fin-
gerprinting” [5] in terms of quantum hashing.

Property 2 For an (n, k, d) binary error-correcting code E, for s = log n,
for δ = (1−d/n) the function ψ (2) is an δ-R (2k; s) quantum hash function.

Proof. For two different words w,w′, for i ∈ {1, . . . , n}, ai(w,w′) = Ei(w) +
Ei(w

′) (mod 2) we have

|〈ψ(w) |ψ(w′)〉| = 1

n

n∑
i=1

(−1)ai(w,w
′) =

n− d(E(w), E(w′))

n
≤ 1− d/n = δ.

�
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Observe, that the above construction of a quantum hash function needs
s = log n qubits for the δ = 1− d/n. This number of qubits is good enough
in the sense of the lower bound of Theorem 1 which gives the following lower
bound for s when n = ck.

s ≥ log (n/c)− log log
(

1 +
√

2n/d
)
− 1.

4 Quantum Hash Generator

In this section we define notion of quantum hash function which allow to
construct quantum hash functions.

Definition 3 (Quantum hash generator) Let K = |X| and let G = {g1,
. . . , gD} be a family of functions gj : X → Fq. Let ` ≥ 1 be an integer. For
g ∈ G let ψg be a classical-quantum function ψg : X → (H2)⊗` determined
by the rule

ψg : w 7→ |ψg(w)〉 =
2`∑
i=1

αi(g(w))|i〉, (3)

where the amplitudes αi(g(w)), i ∈ {1, . . . , 2`}, of the state |ψg(w)〉 are
determined by g(w).

Let d = logD, s = d + `. We define a classical-quantum function ψG :
X→ (H2)⊗s by the rule

ψG : w 7→ |ψG(w)〉 =
1√
D

D∑
j=1

|j〉
∣∣ψgj(w)

〉
. (4)

We say that the family G generates the δ-R (K; s) quantum hash function
ψG. We call G a δ-R (K; s) quantum hash generator, if ψG is a δ-R (K; s)
quantum hash function. We call G a quantum hash generator if ψG generates
a δ-R (K; s) quantum hash function for some δ, K, and s.

Below we present two examples of quantum hash generators – the binary
and non binary constructions.
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4.1 Binary Quantum Hash Generator.

First we present the construction of quantum fingerprinting function from
the section 3.1 in terms of Definition 3.

Theorem 2 For an (n, k, d) binary error-correcting code E : {0, 1}k →
{0, 1}n define a family of functions FE = {E1, . . . , En}, where Ei : {0, 1}k →
F2 is defined by the rule: Ej(w) is the j-th bit of the code word E(w). The
family FE is an δ-R (2k; s) quantum hash generator for δ = 1 − d/n and
s = log n.

Proof. For Ej ∈ FE we define ψEj : {0, 1}k → H2 as
∣∣ψEj(w)

〉
= (−1)Ej(w)|1〉

and let

|ψFE(w)〉 =
1√
n

n∑
j=1

|j〉
∣∣ψEj(w)

〉
=

1√
n

n∑
j=1

(−1)Ej(w)|j〉|1〉.

We can omit the |1〉 from the last equation and finally we get

|ψFE(w)〉 =
1√
n

n∑
j=1

(−1)Ej(w)|j〉.

The last together with the equality (2) and Property 2 proves the statement.
�

4.2 Non-binary Quantum Hash Generator.

We start by recalling some definitions, notations, and facts from [10]. For
a field Fq, the discrete Fourier transform of a set B ⊆ Fq is the function

fB(a) =
∑
b∈B

e
2πi
q ab

defined for every a ∈ Fq. let λ(B) = maxa 6=0 |fB(a)|/|B|.
For δ > 0 we define B ⊆ Fq to be δ-good if λ(B) ≤ δ. By Bδ,q we denote

δ-good subset of Fq.
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For a field Fq, let B ⊆ Fq. For every b ∈ B and w ∈ Fq, define a function
hb : Fq → Fq and a family HB by the rule

hb(w) = bw (mod q), HB = {hb : b ∈ B}.

We denote a family HB of functions by Hδ,q and call Hδ,q δ-good if B is
δ-good (B = Bδ,q).

The following facts presented in [10]

• Let δ = δ(q) be any function tending to zero as q grows to infinity.
Then there exits δ-good set Bδ,q with |Bδ,q| = (log q/δ(q))O(1).

• Several optimal (in the sense of the above lower bound) explicit con-
structions of δ-good sets Bδ,q presented by different authors which for

δ(q) =
1

(log q)O(1)
achive |Bδ,q| = (log q)O(1).

Theorem 3 Let δ > 0 and q be a prime power. Let Hδ,q be δ-good. Then
for s = log |Hδ,q| a family Hδ,q is an δ-R (q; s) quantum hash generator.

Proof. in the appendix �

5 Quantum Hashing via Classical ε-Universal Hashing

Constructions

In this section we present a construction of a quantum hash generator
based on the composition of an ε-universal hash family with a given quantum
hash generator. We begin with the definitions and notation that we use in
the rest of the paper.

Let K = |X|, M = |Y|. Let F = {f1, . . . , fN} be a family of functions,
where

fi : X→ Y.
Let q be a prime power and Fq be a field. Let H = {h1, . . . , hT} be a

family of functions, where
hj : Y→ Fq.
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For f ∈ F and h ∈ H, define composition g = f ◦ h,

g : X→ Fq,

by the rule
g(w) = (f ◦ h)(w) = h(f(w)).

Define composition G = F ◦H of two families F and H as follows.

G = {gij = fi ◦ hj : i ∈ I, j ∈ J},

where I = {1, . . . , N}, J = {1, . . . , T}.

Theorem 4 Let F = {f1, . . . , fN} be an ε-U (N ;K,M) hash family. Let
Let H = {h1, . . . hT} be a δ-R (M ; `) quantum hash generator.

Then the composition G = F ◦H is an ∆-R (K; s) quantum hash gener-
ator, where

s = logN + ` (5)

and
∆ ≤ ε+ δ. (6)

Proof. See the paper [3] for the proof. �

In [3] and in the Appendix B presented different explicit constructions of
quantum hash functions based on the above Theorem.
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Appendix A. Proof of Theorem 3.

Let Bδ,q = {b1, . . . , bT} determines δ-good family Hδ,q. We let H = Hδ,q

in the proof. For function hb ∈ H we define ψhb : Fq → H2 as

|ψhb(a)〉 = e
2πi
q hb(a)|1〉 = e

2πi
q ab|1〉

and define function ψH : Fq → (H2)⊗(s+1) by the rule

|ψH(a)〉 =
1√
T

T∑
j=1

|j〉
∣∣∣ψhbj (a)

〉
=

1√
T

T∑
j=1

e
2πi
q abj |j〉|1〉.

We consider the following projection ψH : Fq → (H2)⊗s of function ψH
(speaking informally we omit the |1〉 from the above definition of ψH)

|ψH(a)〉 =
1√
T

T∑
j=1

e
2πi
q abj |j〉.

The quantum state |ψH(a)〉 composed from s qubits. To show that
ψH is δ-R (q; s) quantum hash function we prove the δ-resistance of ψH .
Consider a pair a, a′ of different elements from Fq and their inner prod-
uct 〈ψH(a) |ψH(a′)〉. Recall that the inner product of two complex vectors
|α〉 = (α1, . . . , αT ) and |β〉 = (β1, . . . , βT ) is the sum 〈α |β〉 =

∑
j αjβ̄j where

β̄j is the complex conjugate of βj. Using the fact that the conjugate of eiφ

is e−iφ, and the fact that Bδ,q is δ-good we have that

〈ψH(a) |ψH(a′)〉 =
1

|B|
∑
b∈B

e
2πi
q (a−a′)b ≤ λ(Bδ,q) ≤ δ.

�

Notice that the construction of quantum hash function ψ, generated by
quantum hash generator Hδ,q, presented in [2] terms of real valid amplitudes.
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Appendix B.

6 Explicit Constructions of Quantum Hash Functions

Based on Classical Universal Hashing

The following statement is a corollary of Theorem 4 and a basis for explicit
constructions of quantum hash functions in this section. Let q be a prime
power and Fq be a field.

Theorem 5 Let F = {f1, . . . , fN} be an ε-U (N ;K, q) hash family, where
fi : X → Fq. Let Hδ,q be an optimal δ-R (q, O(log log q) quantum hash gen-
erator. Then family G = F ◦Hδ,q is a ∆-R (K; s) quantum hash generator,
where

s ≤ logN +O(log log q) and ∆ ≤ ε+ δ.

Proof. family Hδ,q = {h1, . . . , hT}, where hi : Fq → Fq, T = d(2/δ2) ln(2q)e,
` = 1, and s = log T + 1 ≤ log n + log log q + 2 log 1/δ + 3 is δ-R (q; s)
quantum hash generator. �

6.1 Quantum hashing based on Freivalds’ fingerprinting

For a fixed positive constant k let X = {0, 1}k. Let c > 1 be a positive
integer and let M = ck ln k. Let Y = {0, 1, . . . ,M − 1}.

For the i-th prime pi ∈ Y define a function (fingerprint) fi : X → Y by
the rule fi(w) = w (mod pi). Here we treat a word w = w0w1 . . . wk−1 also
as an integer w = w0 + w12 + · · ·+ wk−12

k−1. Consider the set

FM = {f1, . . . , fπ(M)}

of fingerprints. Here π(M) denotes the number of primes less than or equal
to M . Note that then π(M) ∼M/ lnM as M →∞. Moreover,

M

lnM
≤ π(M) ≤ 1.26

M

lnM
for M ≥ 17.

The following fact is based on a construction, “Freivalds’ fingerprinting
method”, due to Freivalds [8].
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Property 3 The set FM of fingerprints is a (1/c)-U (π(M); 2k,M) hash
family.

Proof (sketch). For any pair w, w′ of distinct words from {0, 1}k the number
N(w,w′) = |{fi ∈ FM : fi(w) = fi(w

′)}| is bounded from above by k. Thus,
if we pick a prime pi (uniformly at random) from Y then

Pr[fi(w) = fi(w
′)] ≤ k

π(M)
≤ k lnM

M
.

Picking M = ck ln k for a constant c gives Pr[fi(w) = fi(w
′)] ≤ 1

c + o(1). �

Theorem 5 and Property 3 provide the following statement.

Theorem 6 Let c > 1 be a positive integer and let M = ck ln k. Let q ∈
{M, . . . , 2M} be a prime. Let δ = 1/(log q)O(1) and let Hδ,q be an optimal
δ-R (q, O(log log q) quantum hash generator. Then family G = FM ◦Hδ,q is
a ∆-R (2k; s) quantum hash generator, where

s ≤ log ck +O(log log k) and ∆ ≤ 1

c
+ δ.

Proof. From Theorem 5 From the choice of c above we have thatM = ck ln k.
Thus

s = log |FM |+O(log log q) ≤ log π(M) + log logM ≤ log ck +O(log log k).

�

Construction of ψG. For a word w ∈ {0, 1}k we define ψG by the rule

|ψG(w)〉 =
1√
|FM |T

|FM |,T∑
l=1,j=1

e
2πi
q hj(fl(w))|lj〉.

Remark 1 Note that from Theorem 1 we have

s ≥ log k + log log (ck ln k)− log log
(

1 +
√

2/(1− δ)
)
− 1.

This lower bound shows that the quantum hash function ψG is good
enough in the sense of the number of qubits used for the construction.
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6.2 Quantum hashing and error-correcting codes

Let q be a prime power and let Fq be a field. An (n, k, d, ) error-correcting
code is called linear, if Σ = Fq, and C = {C(w) : w ∈ Fkq} is a subspace of
(Fq)n. We will denote such linear code by an [n, k, d, ]q code.

Theorem 7 Let C be an [n, k, d]q code. Then for arbitrary δ ∈ (0, 1) there
exists a ∆-R (qk; s) quantum hash generator G, where ∆ = (1 − d/n) + δ
and s ≤ log n+ log log q + 2 log 1/δ + 4.

Proof. The following fact was observed in [?, 11]. Having an [n, k, d]q code
C, we can explicitly construct a (1− d/n)-U (n; qk; q) hash family FC.

By Theorem 5 a composition G = FC◦Hδ,q is an ∆-R (qk; s) quantum hash
generator, where ∆ = (1−d/n)+δ and s ≤ log n+log log q+2 log 1/δ+4. �

6.2.1 Quantum hash function via Reed-Solomon code

As an example we present construction of quantum hash function, using
Reed-Solomon codes.

Let q be a prime power, let k ≤ n ≤ q, let Fq be a finite field. A
Reed-Solomon code (for short RS-code) is a linear code

CRS : (Fq)k → (Fq)n

having parameters [n, k, n− (k − 1)]q.

CRS(w) = (Pw(a1) . . . Pw(an)).

Using Reed-Solomon codes, we obtain the following construction of quantum
hash generator.

Theorem 8 Let q be a prime power and let 1 ≤ k ≤ n ≤ q. Then for
arbitrary δ ∈ (0, 1) there is a ∆-R (qk; s) quantum hash generator GRS,
where ∆ ≤ k−1

n + δ and s ≤ log (q log q) + 2 log 1/δ + 4.

Proof. Reed-Solomon code CRS is [n, k, n− (k− 1)]q code, where k ≤ n ≤ q.
Then according to Theorem 7 there is a family GRS, which is an ∆-R (qk; s)
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quantum hash generator with stated parameters. �

In particular, if we select n ∈ [ck, c′k] for constants c < c′, then ∆ ≤
1/c+ δ for δ ∈ (0, 1) and in according to Theorem 1 we get that

log (q log q)− log log
(

1 +
√

2/(1−∆)
)
− log c′/2 ≤ s ≤

≤ log (q log q) + 2 log 1/∆ + 4.

Thus, Reed Solomon codes provides good enough parameters for resistance
value ∆ and for a number s of qubits we need to construct quantum hash
function ψRS.

Explicit constructions of GRS and ψGRS
. Define (k − 1)/q-U (q;Fkq ; q) hash

family FRS = {fa : a ∈ A} based on CRS as follows. For a ∈ A define
fa : (Fq)k → Fq by the rule

fa(w0 . . . wk−1) =
k−1∑
i=0

wia
i.

Let Hδ,q = {h1, . . . , hT}, where hj : Fq → Fq and T = d(2/δ2) ln 2qe. For
s = log n+ log T + 1 composition GRS = FRS ◦Hδ,q, defines function

ψGRS : (Fq)k → (H2)⊗s

for a word w ∈ (Fq)k by the rule.

ψGRS(w) =

=
1√
n

n∑
i=1

|i〉⊗

(
1√
T

T∑
j=1

|j〉
(

cos
2πhj(fai(w))

q
|0〉+ sin

2πhj(fai(w))

q
|1〉
))

.
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Quantum Attacks against Iterated Block Ciphers

Marc Kaplan

Abstract

We study the amplification of security against quantum attacks provided by it-
eration of block ciphers. In the classical case, the Meet-in-the-middle attack reduces
the time required to break double iterations to only twice the time it takes to attack
a single block cipher. Here, we prove that for quantum adversaries, two iterated
ideal block ciphers are more much difficult to attack than a single one. We quantize
the Meet-in-the-middle attack and use tools from quantum complexity theory to
prove that it is optimal. We then quantize a technique against 4-encryption called
the dissection attack. Contrary to the classical case, this quantum attack has a
better time complexity than a quantum Meet-in-the-middle attack. It also shows
that the resistance against quantum attacks decreases when the number of iteration
grows.

1 Introduction

Quantum information processing has deeply changed the landscape of
classical cryptography. In particular, cryptosystems based on integer fac-
toring and discrete logarithm are known to be completely insecure against
quantum computers. This opened the field of post-quantum cryptography,
which tries to restore the security of classical cryptosystems against quan-
tum attacks. Most research is devoted to public key cryptography and the
common belief is that symmetric cryptography is not affected by quantum
computing because security can be amplified by increasing key sizes.

This belief is based on the fact that symmetric cryptosystems are usu-
ally subject to generic attacks whose quantumization allow only polyno-
mial speedups. However, attacking realistic, complex cryptosystems may
require more effort than just applying basic quantum algorithms and un-
derstanding precisely the security against quantum attacks may require
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careful analysis [Ber10]. Our work aims to show that the tools developed
to understand quantum speedups can find fruitful applications in crypto-
graphic settings. Specifically, we use quantum walk algorithms [Amb07] to
design quantum attacks and the generalized adversary method [HLŠ07] to
prove security results.

We focus here on one of the most fundamental situation in symmetric
cryptography: block cipher encryption: a plaintext is decomposed into
constant-size blocks, and each one of them is encrypted using a permutation
specified by a secret key. Block cipher encryption is widely used in practice.
It is also an important block for building other cryptographic primitives.

We work at an abstract level in the ideal-cipher model, in which the
block cipher is a collection of N random permutations of [M ], where [N ]
is the space of keys, and [M ] the space of blocks. The set of permutations
is public, and anyone can efficiently compute Fi(X) and F−1

i (X) where
Fi is the permutation specified by the secret key i and X is a block. We
consider an attacker that knows a few pairs of plaintext with corresponding
ciphertexts, all encrypted with the same key. Its goal is to recover the secret
key that was used for encryption.

Although increasing the key length is a neat theoretical answer, it may
not be possible to implement starting from a specific block cipher with fixed
parameters. The question of security amplification was raised when brute-
force attacks against the DES block cipher became realistic [DH77, MH81].
A simple attempt to increase the key size is to compose permutations with
independent keys. For double encryption, the size is doubled, but there is
a clever attack against this construction. Suppose that an attacker knows
a pair of plaintext-ciphertext (P,C). These satisfy C = Fk2(Fk1(P )), where
(k1, k2) are the keys used for encryption. Since inverse permutations can
be computed, an attacker can construct tables Fk(P ) and F−1

k′ (C) for every
possible keys k, k′. Finding a collision Fk1(P ) = F−1

k2
(C) reveals the keys

used for encryption.
This attack, known as the Meet-in-the-middle attack, shows that it only

takes twice more time to attack double iterations than it takes to attack a
single one. A naive cryptographer would expect here a quadratic improve-
ment. Of course, this is optimal up to a factor two. The Meet-in-the-middle
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attack shows that even a simple idea like security amplification by iteration
should be carefully studied. It also has practical consequences, and led to
the standardization of triple-DES rather than the insecure double-DES.

We address the question of how resistant composition is against quan-
tum adversaries. An obvious quantum attack against the double encryption
is to use a collision finding algorithm, for example Ambainis’ algorithm for
the element distinctness problem Ambainis [Amb07]. This algorithm is
optimal with respect to the number of queries to the input [AS04]. In our
case, it extracts the keys with N 2/3 quantum queries to the permutations.
However, the key extraction problem for double encryption has more struc-
ture than the element distinctness problem and there is no clear indication
that this approach is optimal in this case. The problem has a lot more
possible inputs and more queries are allowed. For this reason, there is
no obvious way of proving the optimality of Ambainis’ algorithm for key
extraction by reduction from Element Distinctness.

In Section 2, we prove using the generalized adversary method that N 2/3

queries are required to extract the keys in the case of 2-encryption (The-
orem 3). Starting from an adversary matrix for Element Distinctness, we
build an adversary matrix for the new problem (Lemma 1). The con-
sequence is that for quantum computers, contrary to the classical ones,
double encryption is harder to break than a single ideal cipher.

A surprising corollary is that classical and quantum time-space products
are very different (Corollary 1). In the classical case, the Meet-in-the-middle
attack is time-efficient for an attacker that is willing to pay with more space,
but the global time-space product is similar to the one achieved by an ex-
haustive search. Using quantum algorithms, the time-space product of the
optimal algorithm of Ambainis is worse than an exhaustive search. While
this may not be a surprise from the point of view of quantum complexity
theory (see e.g. the conclusion of [BDH+05]), this suggests that the time-
space product, a common way of evaluating classical attacks [DDKS12],
may not be the correct figure of merit to evaluate quantum attacks.

The results obtained for two iterations suggest that composition could
be a good tool to amplify the resistance against quantum attacks because it
prevents the quadratic speedups allowed by the quantization of an exhaus-
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tive search. We investigate this question further in Section 3 by looking
at the case of 4-encryption. We give a quantization of the dissection at-
tack for 4-encryption recently introduced by Dinur, Dunkelman, Keller and
Shamir [DDKS12]. In order to quantify time and space complexity of the
attack, we use the framework of quantum walks. In the classical world,
this attack is not better than the Meet-in-the-middle attack in terms of
time, but can be used to decrease the time-space product. Surprisingly, we
show that the quantum attack can also decrease the time complexity, com-
pared to a quantum Meet-in-the-middle attack (Theorem 4). Moreover,
this shows that the resistance against quantum attacks decreases when the
number of iterations goes from two to four.

While these tools appear to be very helpful to study two encryptions
and four encryptions, we are not in position to make a statement for gen-
eral multiple encryptions. Using the generalized adversary method and
quantum walks has been very fruitful for studying Merkle puzzles in a
quantum world [BHK+11], in which these techniques were used to devise
attacks and prove their optimality. We present here another important
cryptographic scenario in which these tools can be applied to derive new
results. A similarity between the two scenarios is that polynomial speedups
are very insightful. Many specifically quantum techniques are available to
study such speedups and their optimality in black-box settings. Even if
the main question about successive encryption remains open, we hope that
our work demonstrates that quantum techniques can be very interesting
for PQ cryptography, and that it will motivate further interactions between
quantum computer scientists and classical cryptographers.

2 Optimality of the quantum Meet-in-the-middle

In what follows, M and N are two integers of comparable size and [N ]
is the set of integers from 1 to N . We denote S[N ] the set of permutations
of [N ]. The space of keys is [N ] and the space of blocks [M ].

We consider problems with inputs given as oracles (or black-boxes).
Usually, we consider these inputs as functions f , and a classical query to
the input returns f(x) for some x in the domain of f . In some cases, we
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may also consider an input f as a string where fi denotes the result of
the classical query i to f . This notation is convenient in particular when
considering adversary matrices whose entries are indexed by inputs to the
problem. In the quantum setting, the only difference is that attackers can
make quantum queries to the input. A brief exposition of the underlying
model with the main theorems that we use to derive our results can be
found in Appendix A.

The Element Distinctness problem has been extensively studied in quan-
tum query complexity. In particular, Ambainis’ quantum walk based algo-
rithm [Amb07] is known to be optimal for this problem [AS04].

Definition 1. The Element Distinctness (ED) problem takes input F :
[N ] → [M ] with the promise that there exists a pair i, j ∈ [N ] such that
F (i) = F (j). The problem is to output the pair (i, j).

In this paper, we use the slightly more structured problem known as
Claw Finding [BHT98].

Definition 2. Given two one-to-one functions G : [N/2] → [M ] and H :
[N/2] → [M ], a claw is a pair x, y ∈ [N ] such that G(x) = H(y). The
Claw Finding (CF ) problem is, on input G,H to return a claw (x, y) given
that there is exactly one.

It is easy to prove that CF and ED are equivalent up to constant
factors. Given an input F for ED, an input for CF can be obtained
by randomly cutting F into two functions. The probability that the two
colliding elements are split is 1/2 and running the algorithm for CF a few
times on different random cuts is sufficient to find the collision with high
probability. Therefore, upper and lower bounds for ED apply similarly to
CF , up to constant factors.

Theorem 1. For M ≥ N , the quantum query complexity and time com-
plexity of ED and CF are Θ(N 2/3). The most time-efficient algorithm for
these problems uses memory O(N 2/3).

The goal of this section is to study the problem of extracting keys from
the double iteration of an ideal cipher. In this context, we assume that the
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quantum cryptanalyst has implemented the publicly known block cipher
on a quantum computer. He then receives the classical data consisting in
couples of plaintext (P ) and ciphertext (C), all encrypted with the same
key. Finally, he uses this data to extract the secret key with the help
of the quantum computer. We assume that there is only one key that
maps P to C. Equivalently, we can assume that the attacker knows a few
pairs (Pi, Ci), all encrypted with the same keys. This ensures that the key
mapping Pi to Ci for all i is unique with very high probability. This can
always be simulated by giving only one pair to the attacker and increasing
the size of the blocks. This introduces constant factors in the complexity
analysis, and enforces the permutations to have a product structure, but do
not induce any fundamental change to the security proof given here. Notice
that applying this trick implies that M and N are then not comparable
anymore, which is an important remark for Section 3.

Definition 3. The 2-Key Extraction (KEP,C
2 ) problem with P,C ∈ [M ]

takes input F where F = {F1, . . . , FN} is a collection of permutations
Fi ∈ S[M ] with the promise that there exists a unique couple (k1, k2) such
that Fk2(Fk1(P )) = C. The goal of the problem is to output the pair (k1, k2).

It is easy to prove that the complexity of the problem is independent of
the pair (P,C). An algorithm for a given pair (P,C) can be easily adapted
to solve the problem for another pair (P ′, C ′). Let σ be the permutation
that transposes P ′ and P and C ′ and C. It suffices to conjugate every
permutation of an input F = {F1, . . . , FN} with σ before running the
algorithm for KEP,C

2 . When it is clear from the context and unnecessary
for proofs, we drop the exponent and write only KE2.

The next theorem shows an upper bound on the complexity of KE2.
The idea is simply to reduce KE2 to CF .

Theorem 2. There exists a quantum algorithm that solves KE2 in time
O(N 2/3) using memory O(N 2/3).

Proof. Assume that F = {F1, . . . , FN} is an input of KEP,C
2 . We construct

the following input to CF : a pair of functions G1, G2 : [N ]→ [M ], defined
by G1(x) = Fx(P ) and G2(y) = F−1

y (C). Suppose that the algorithm for
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Figure 1: The 2-encryption problem consists in recovering the keys k1 and k2, given a
plaintext P and a corresponding ciphertext C

CF returns a pair (x∗, y∗). This implies that it is the unique pair such that
Fx∗(P ) = F−1

y∗ (C), leading to Fy∗(Fx∗(P )) = C. It is therefore the pair of
keys used to encrypt P . By Theorem 1, this gives an algorithm for KE2

in O(N 2/3) time.

We also prove the following lower bound on the problem.

Theorem 3. A quantum algorithm that solves KE2 needs Ω(N 2/3) quan-
tum queries to the input F = {F1, . . . , FN}, including queries to inverse
permutations, except with vanishing probabilities.

A lower bound on query complexity translates into a lower bound on
time complexity. Therefore, combining the upper and lower bounds on time
complexity with the upper bound on memory gives the following corollary.

Corollary 1. The most time-efficient attack on KE2 has time-space prod-
uct O(N 4/3).
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Notice that a simple Grover search leads to time O(N) with logarithmic
space, thus having a time-space product of N , better than the best known
algorithm for CF . The proof of Theorem 3 has to deal with two important
differences between CF and KE2:

• It is possible to query a permutation Fi on any input X ∈ [M ].

• It is possible to query inverse permutations F−1
i .

These differences imply that there is no obvious query-preserving reduc-
tion from CF to KE2. One important issue is that, since Fi is a permuta-
tion, querying Fi(X) with X 6= P gives information on Fi(P ). Intuitively,
we believe this information is so small that it may not be useful to solve
the problem. However, this becomes very problematic in the quantum set-
ting, where a single query can be made in superposition of all the inputs,
preventing strategies that consist in building the reduction on the fly, when
the queries to the input are done. To overcome this issue, we use a specific
tool from quantum query complexity known as the generalized adversary
method.

We prove a slightly stronger lower bound result by considering the deci-
sion version of KE2. In this case, the problem is to determine if there exists
keys k1, k2 such that C = Fk2(Fk1(P )). We denote this version d−KE2. Of
course, an algorithm for the search version can easily be transformed into
an algorithm for the decision version. Consequently, a lower bound on the
decision version is also a lower bound on the search problem. We compare
this algorithm with the decision version of claw finding, denoted d−CF .
The bounds given in Theorem 1 apply equivalently to the decision version
of these problems.

The proof of Theorem 3 is in two steps. In Lemma 1, we prove a lower
bound in the worst-case quantum query complexity using the generalized
adversary method. In the second step, which is the proof of Theorem 3,
we use a self-reducibility argument to prove that the probability of solving
the problem on a random input with less queries than in the worst case is
vanishing. Both proofs are given in full details in Appendix B

CTCrypt 2015 M. Kaplan 150



Quantum Attacks against Iterated Block Ciphers

Lemma 1. A quantum algorithm that solves d−KE2 needs Ω(N 2/3) quan-
tum queries to the input F = {F1, . . . , FN}, including queries to inverse
permutations.

In order to measure the gains achieved by quantum algorithms, we
use a quantity similar to the one used by Dinur, Dunkelman, Keller and
Shamir [DDKS12]. We consider logC/ logQ, where C is a classical com-
plexity measure and Q is its quantum counterpart. Intuitively, this corre-
sponds to the factor by which the effective key size is decreased when the
attack is quantized. For example the gain in time for Grover search over
classical exhaustive search is 2. The gain for the time-space product is sim-
ilar because both Grover and exhaustive search require only logarithmic
space.

The gain for the Meet-in-the-middle attack is very different. The gain
in time is 3/2, using the algorithm presented above. Since this algorithm is
optimal, it is the largest possible gain. The gain for the time-space product
of this algorithm is also 3/2. Interestingly, there exists other algorithms
for ED leading to different gains. For example, the algorithm based on
amplitude amplification (AA) of [BDH+05] leads to a gain in time of 4/3
(over the classical Meet-in-the-middle attack), and a gain in time-space
product of 8/5, better than the most time-efficient attack. The most time-
efficient algorithm is not the one leading to the most important gain in
time-space, and an attacker that is willing to pay with more time can save
on the time-space product.

3 Quantum attack against 4-encryption

We now apply tools from quantum complexity theory to study the case
of four iterated encryptions. We assume again that the attacker knows suf-
ficiently many pairs (Pi, Ci) of plaintext-ciphertext in order to ensure that,
with very high probability, there is only one quadruple of keys (k1, k2, k3, k4)
that satisfies the relations Ci = Ek4(Ek3(Ek2(Ek1(Pi)))) for all i.

The classical Meet-in-the-middle attack can be applied in this situation
by considering the pairs (k1, k2) and (k2, k3) as single keys. This requires
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Time Time-space

Exhaustive search
Classical N2 N2

Quantum N N
Gain 2 2

Collision finding based on MITM
Classical N N2

Quantum N2/3 N4/3

Gain 1.5 1.5

Collision finding based on AA
Classical N N2

Quantum N3/4 N5/4

Gain ' 1.3 ' 1.6

Table 1: Summary of attacks against 2-encryption and gains of quantization

time and memory O(N 2), and thus time-space product O(N 4). This was
the best known algorithm until the recent dissection attack [DDKS12],
which still requires time O(N 2) but memory only O(N). This significantly
improves the time-space product to O(N 3).

The basic idea of the dissection attack is to make an exhaustive search
of the intermediate value after two encryptions. The candidate values are
then checked using a Meet-in-the-middle procedure. A notable difference
with the previous case is that the complexity of the problem is now a
function of both M and N . We assumed in the beginning that M and
N were of comparable sizes. In order to keep this assumption, we cannot
assume anymore that the attacker has a single pair of data. Instead, we
assume that it has enough pairs, all encrypted with the same data, to
be sure that, with large probability, there is only one quadruple of keys
consistant with all the data. It can be shown that four pairs of plaintext
with corresponding ciphertext.

Definition 4. The 4-Key Extraction (KEP,C
4 ) problem with P = (P1, P2, P3, P4) ∈

[M ]4 and C = (C1, C2, C3, C4) ∈ [M ]4 takes input F where F = {F1, . . . , FN}
is a collection of permutations of [M ]. The goal of the problem is to output
(k1, k2, k3, k4) such that Fk4(Fk3(Fk2(Fk1(Pi)))) = Ci for all i.

The attack uses the quantum Meet-in-the-middle algorithm presented
in the previous section as a subroutine. The basic idea is to compose
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this algorithm with a Grover search of the value in the middle. Quan-
tum query complexity has the remarkable property, derived from the gen-
eralized adversary method, that for two compatible functions f and g,
Q(f(g(x1), . . . , g(xn))) = O(Q(f)Q(g)) [LMR+11]. This leads to aO(M 1/2N 2/3)
upper bound on the number of queries needed to solve the problem. How-
ever, the composition theorem that proves this upper bound holds for
quantum query complexity, whereas we are interested here in bounding
the time and space used by a quantum algorithm. For this purpose,
we give an explicit composed algorithm. This algorithm is a quantized
version of the Dissect2(4, 1) algorithm of Dinur, Dunkleman, Keller and
Shamir [DDKS12]. In the classical setting, this algorithm achieves the best
known time-space product for 4-encryption.

Theorem 4. There exists a quantum algorithm that solves KE4 in time
O(M 1/2N 2/3) and using memory O(N 2/3). The time-space product for this
attack is O(M 1/2N 4/3).

The full proof of Theorem 4 is given in Appendix C. If M = N , the
attack given by the Theorem has a time complexity O(N 7/6) and time-
space product O(N 11/6). The most important difference is that, while the
classical Dissection attack could not improve the time complexity but only
the time-space product, its quantum equivalent is able to decrease the time
as well.

In table 2, we compare three different attacks against 4-encryption: (i)
exhaustive search over the whole key-space, (ii) classical and quantum
Meet-in-the-middle attack where both the first and the second pair of keys
are treated as single keys, and (iii) the dissection attack and its quantized
version. The quantization of exhaustive search gives a very good gain,
but its time-performance is poor. Applying the Meet-in-the-middle attack
from the previous section gives both poor gains and poor performances.
The quantization of the dissection attack gives better gains than what we
observed for 2-encryption, but we have no indications that this algorithm
is optimal.
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Time Time-space

Exhaustive search
Classical N4 N4

Quantum N2 N2

Gain 2 2

MITM Attack
Classical N2 N4

Quantum N4/3 N8/3

Gain 1.5 1.5

Dissection attack
Classical N2 N3

Quantum N7/6 N11/6

Gain ' 1.7 ' 1.63

Table 2: Summary of attacks against 4-encryption and gains of quantization

4 Conclusion

We have studied security amplification by iterative block ciphers. In the
case of double iteration, the quantum Meet-in-the-middle attack is optimal
but requires much more time to break two iterated cipher than to break
a single ideal one. This indicates that double iteration resists better to
quantum attacks than to classical ones. Moreover, the most time-efficient
attack has a worse time-space tradeoff than an exhaustive search.

We have then studied the case of 4-encryption, for which we have given
a quantized version of the dissection attack. Although we don’t know
if this attack is optimal, it leads to better performances and gains than
a Meet-in-the-middle attack both in terms of time complexity and time-
space product. This is in stark contrast with the classical case in which the
dissection attack improves only the time-space product but not the time
complexity. This indicates that increasing the number of iterations may in
fact decrease the resistance against quantum attacks.

Although the general question of security amplification by iteration re-
mains opened, our work shows that the tools from quantum computing,
such as quantum walks and the generalized adversary method, are well
suited to tackle cryptographic questions.

Our work can be understood as a proof of principle that quantum com-
plexity and algorithms theory has developed powerful tools to tackle impor-
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tant questions in cryptography and post-quantum cryptography. Maybe a
better use of these tools can lead to improving and extending the results
presented here. Or maybe these tools need to be sharpened in order to
apply to specific cryptographic situations. In both cases, we hope that our
work will motivate further interactions between classical cryptographers
and quantum computer scientists. Such interactions seem crucial to es-
tablish a serious approach to post-quantum cryptography. In particular,
iterating block ciphers is not a very good procedure to amplify security
against classical adversary. We hope that the techniques presented here
will be applied to more efficient cryptographic procedures in the future.
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A Quantum query complexity

The model

In the quantum query complexity model, the goal is to compute some
function F : S → T on input x. For simplicity, we assume in this short
presentation that S ⊆ {0, 1}n. The input is given as a black-box and
accessed through queries. A classical query ` to the input x returns x`.
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In the quantum setting, the algorithm is executed on an architecture
with three quantum registers: an input register I, a query register Q and
a working register W . The state of the quantum computer when the algo-
rithm starts is |x〉I |0, 0〉Q|0〉W . There are several equivalent formalism to
model quantum queries. Without loss of generality, we consider a quantum
query as an operator

O : |x〉I |i, y〉Q 7−→ |x〉I |i, y + xi mod 2〉Q.

Considering non-boolean inputs is equivalent, up to logarithmic factors.
The quantum algorithm supposed to compute f alternates between

quantum query operations Oi and work operations that are unitaries Ui act-
ing on the query register and the working register. After t queries to the in-
put, the state of the quantum computer is UtOtUt−1 . . . O2U1O1|x〉I |0, 0〉Q|0〉W .

We assume that the working register contains log |T | qubits to encode
the value f(x). The last step of the algorithm is then to measure these
qubits and output the value that is obtained. Finally, an immediate corol-
lary of the model is that the time complexity of f is at least equal to the
query complexity of the algorithm. The generalized adversary method can
be used to prove a lower bound on query complexity, which in turn bounds
the time complexity.

Quantum walks

We first review the paradigm of quantum walks. We use this tool to
design an attack against 4-encryption. More precisely, we use it to combine
an exhaustive search with a collision finding algorithm. The framework of
quantum walks allows to easily analyze the resources used by the algorithm.

A search algorithm aims to find a marked element in a finite set U .
Classically, it can be seen as a walk on a graph whose nodes are indexed
by subsets of elements of U . Each step of the algorithm consists in walking
from one node to another. The algorithm can also maintain a data struc-
ture that is updated at each step. After each move, the algorithm checks
if the node contains a marked element. The algorithm terminates when a
marked element is found.
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Magniez, Nayak, Roland and Santha have designed a generic theorem
in order to quantize search algorithms expressed as random walks. The
cost of the resulting quantum algorithm can be written as a function of S,
U and C. These are the cost of setting up the quantum register in a state
that corresponds to the stationary distribution, moving unitarily from one
node to an adjacent node, and checking if a node is marked, respectively.

Theorem 5. [MNRS11] Let P be an ergodic and reversible Markov chain
with eigenvalue gap δ, and let ε > 0 be a lower bound on the probability
that an element chosen from the stationary distribution of P is marked,
whenever the set of marked element is non-empty. Then, there exists a
quantum algorithm which finds, with high probability, a marked element if
there is any at cost of order S + 1√

ε
( 1√

δ
U + C).

Grover’s algorithm can be seen as a trivial application of Theorem 5 (see
also [San08]). The underlying graph is the complete graph whose nodes
are indexed by elements of U , with no data structure. In our case however,
the checking procedure is very different because it implies multiple queries
to the input, and we use Theorem 5 to design our attack.

The generalized adversary method

We use the generalized adversary method to prove a lower bound on the
problem KE2. The intuition of the method is to consider pairs of inputs
leading to different outputs. Each pair is given a weight1 quantifying how
difficult it is to distinguish them. The key point of the method is then to
measure the progress made by a single quantum query to distinguish pairs
of inputs. This intuition can be formalized in several different ways. We
use the spectral version, an elegant algebraic formalization of the previous
intuition [HLŠ07].

Definition 5. Fix a function F : S → T , with S ⊆ {0, 1}n. A symmetric
matrix Γ : S × S → R is an adversary matrix for F provided Γ[x, y] = 0

1The original method uses probability distribution, the generalized method allows for negative weights
as well.
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whenever F (x) = F (y). Let ∆`[x, y] = 1 if x` 6= y` and 0 otherwise. The
adversary bound of F using Γ is

ADV±(F ; Γ) = min
`

‖Γ‖
‖Γ •∆`‖

,

where • denotes entrywise (or Hadamard) product, and ‖A‖ denotes the
spectral norm of A. The adversary bound ADV±(F ) is the maximum, over
all adversary matrices Γ for F , of ADV±(F ; Γ).

Høyer, Lee and Špalek introduced the generalized adversary method
and proved that the adversary value is a lower bound on quantum query
complexity [HLŠ07]. In our proof, we need the fact that the adversary
bound characterizes quantum query complexity, up to a constant factor.
Our proof starts by considering an adversary matrix for the problem CF

such that the adversary bound is equal to the quantum query complexity.
The fact that the generalized adversary method is tight was proven by Lee,
Mittal, Reichardt, Špalek and Szegedy.

Theorem 6. [LMR+11] Fix a function F : S → T . The bounded-error
quantum query complexity of F is characterized by the general adversary
bound:

Q(F ) = Θ(ADV±(F )).

B Proof of Theorem 3

We consider an optimal adversary matrix for d−CF and use it to build
an explicit adversary matrix for d−KE2. Details on the adversary method
can be found in the Appendix. In this proof, we need the fact that the gen-
eralized adversary method gives optimal lower bounds on quantum query
complexity. Therefore, we can choose an adversary matrix for CF such
that the adversary value given by this matrix is exactly the quantum query
complexity of the function. Let ΓCF be this adversary matrix for d−CF .
The rows and columns of ΓCF are indexed by inputs to the problem, that
is, pairs of function G1, G2.
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We now construct an adversary matrix ΓKE2
for the problem d−KEP,C

2 .
The rows and columns of ΓKE2

are indexed by collections of permutations
F = {F1, . . . FN}. Given a row u, (resp. a column v), denote u(P,C) the
row (resp. v(P,C) the column) of ΓCF corresponding to functions G1, G2

defined by G1(k) = Fk(P ) and G2(k) = F−1
k (C). The input u(P,C) for

the problem d−CF is called the projection of the input u for the problem
d−KE2. This operation is represented on figure 2. We simply define the
entries of ΓKE2

by ΓKE2
[u, v] = ΓCF [u(P,C), v(P,C)]. Our goal is now to

apply Theorem 6. In order to apply it, we need to compute the values
of ‖ ΓKE2

‖ and maxq ‖ ΓKE2
• ∆q ‖, where “•” denotes the entry-wise

product of matrices2.
This definition implies that ΓKE2

has a simple tensor product struc-
ture. Notice that for two pairs (u, v) and (u′, v′) of inputs of d−KE2

projecting onto the same pair of inputs (ũ, ṽ) of CF , we get by defini-
tion ΓKE2

[u, v] = ΓKE2
[u′, v′] = ΓCF [ũ, ṽ]. Moreover, the number of in-

puts to d−KE2 projecting onto the same of d−CF is a constant. Denot-
ing this constant D and JD×D the all-one matrix of dimension D, we get
ΓKE2

= ΓCF ⊗ JD×D. This immediately gives the relation

‖ ΓKE2
‖= D ‖ ΓCF ‖ .

The next step is to bound maxi ‖ ΓKE2
•∆i ‖ where ∆i[u, v] = 0 if

ui = vi, and 1 otherwise. A query to an input to d−KE2 is a triplet
(x, k, b) where x ∈ [M ], k ∈ [N ] and b ∈ {−1, 1} indicates if the query is
to a permutation or to its inverse. The query thus returns F b

k(x).
We show that it is sufficient to consider a special set of queries. The set

of queries I consists of queries q = (x, k, b) where x = P if b = 1 and x = C
if b = −1. We prove that if the value ‖ ΓKE2

•∆q ‖ is not maximized by a
query from I, it is possible to find another matrix with both the same norm
and the same tensor product structure such that ‖ Γ′ •∆q ‖ is maximized
by a query from I. Formally, we prove the following claim.
Claim: There exists a permutation of rows and columns of ΓKE2

leading to
a matrix Γ′ such that Γ′ = Γ′CF⊗JD×D, where Γ′CF is obtained by permuting

2This product is usually denoted ◦, we use here a different notation to avoid confusion with the
composition of permutations that is also used in this proof
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the rows and columns of ΓCF and maxq ‖ ΓKE2
•∆q ‖ = maxq∈I ‖ Γ′ •∆q ‖.

We first explain how to finish the proof assuming this claim. A query
q ∈ I projects onto a query q̃ to inputs of d−CF . Formally, for a query
q ∈ I, there exists a query q̃ to inputs of d−CF such that for any input u
of d−KE2, uq = u

(P,C)
q̃ . If q = (x, k, b) ∈ I, the query q̃ = (k, b) on u(P,C)

returns G1(k) if b = 1 and G2(k) if b = −1. By definition of u(P,C), we have

G1(k) = Fk(P ) and G2(k) = F−1
k (C) and thus, uq = u

(P,C)
q̃ . This implies

that for q ∈ I, (Γ′•∆q)[u, v] = (Γ′CF •∆q̃)[u
(P,C), v(P,C)]. The tensor product

structure ensures that Γ′ •∆q = (Γ′CF ⊗ JD×D) •∆q = (Γ′CF •∆q̃)⊗ JD×D,
and thus

max
q
‖ ΓKE2

•∆i ‖ = max
q∈I
‖ Γ′ •∆q ‖ = Dmax

q̃
‖ Γ′CF •∆q̃ ‖ .

The last equality is true because since I and queries to inputs of d−CF
have the same cardinality, they are in one-to-one correspondance. Maxi-
mizing over queries to I is therefore equivalent to maximizing over queries
to inputs to d−CF . Finally, this shows that the quantum query complexity
of KE2 is at least

min
q

‖ ΓKE2
‖

‖ ΓKE2
•∆q ‖

= min
q

‖ Γ′ ‖
‖ Γ′ •∆q ‖

= min
q̃

D ‖ Γ′CF ‖
D ‖ Γ′CF •∆q̃ ‖

= min
q̃

‖ ΓCF ‖
‖ ΓCF •∆q̃ ‖

= Ω(N 2/3).

It only remains to prove the above claim. Suppose that ‖ ΓKE2
•∆q ‖ is

maximized by a query q∗ = (x∗, k∗, b∗). The intuition of the claim is that
if q∗ /∈ I, it can still be projected onto a query to inputs of d−CF . By
mapping these to inputs of the original problems, we get the new matrix
Γ′.

Assume that b∗ = 1 and x∗ 6= P (the proof is similar with b∗ = −1). Let
σ denote the transposition (x∗ P ). For an input u = {Fi}i∈[N ], denote uσ =
{Fi ◦σ}i∈[N ] and define Γ′ as Γ′[u, v] = ΓKE2

[uσ, vσ]. The operation u 7→ uσ

corresponds to a permutations of rows and columns of ΓKE2
. Denote Πσ
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Figure 2: An input to KE2 can be represented as a table whose rows and columns are
indexed by k and X, respectively. Each line of the table is a permutation Fi. The
projecting onto an input to CF is a restriction to one column. To build a complete input
to CF , one also has to restrict the table of permutations F−1

k .

this permutation, so that Γ′ = Π†σΓKE2
Πσ. Similarly, we have Π†σ∆q∗Πσ =

∆q∗∗, where q∗∗ = (P, k∗, b∗).
Finally, we show that Γ′ = Γ′CF ⊗ JD×D for some matrix Γ′CF . The sets

{u(P,C)}u and {u(x∗,C)}u are equal and therefore, there exists a bijection τ

sending u(P,C) to u(x,C). This bijection satisfies (uσ)(P,C) = τ(u(P,C)). The
matrix Γ′CF is simply defined as Γ′CF [ũ, ṽ] = ΓCF [τ(ũ), τ(ṽ)]. This gives

Γ′[u, v] = ΓKE2
[uσ, vσ] = ΓCF [(uσ)(P,C), (vσ)(P,C)],

= ΓCF [τ(u(P,C)), τ(u(P,C))] = Γ′CF [u(P,C), v(P,C)].

This immediately leads to Γ′ = Γ′CF ⊗ JD×D, and finishes the proof of
the claim.

Proof of Theorem 3. We now show that the lower bound proved in Lemma 1
holds on random inputs, except with vanishing probability. The proof is
in three steps. In the first step, we prove that the lower bound holds for
the average number of queries made by the attack. In the second step, we
show that the lower bound also holds when considering the average error.
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Finally, we show that the lower bound hold for random inputs, except with
vanishing probability.
Step 1: Let A be an attack such that, given an input F = {F1, . . . , FN}
to KEP,C

2 , returns (k1, k2) such that Fk2(Fk1(P )) = C after q queries on
average over the inputs and is successful with probability at least 1− ε for
any input. Consider then the following attack: run A for q/ε queries. If A
stopped, then output the same value. Otherwise output a random value.
By Markov’s inequality, this new attach is successful with probability at
least 1− 2ε and therefore, by Lemma 1, q/ε ≥ Ω(N 2/3).
Step 2: Let A′ be an attack such that, given an input F = {F1, . . . , Ft}
to KEP,C

2 , returns (k1, k2) such that Fk2(Fk1(P )) = C after q queries on
average and is successful with average probability 1− ε, both over the in-
puts. Consider now the following attack: Choose N random permutations
{σ1, . . . σN}, and run the A′ on the input F ′ = {σ1 ◦ F1, . . . , σN ◦ FN}.
This is equivalent to running A′ on a random input, so that the error
made by the attack is now 1− ε for any input. From Step 1, we get again
q = Ω(N 2/3).
Step 3: Let A′′ be an attack that solves KEP,C

2 with error ε on average.
Denote Q the random variable indicating the number of queries made by
A′′ and fix q = o(N 2/3). Denote δ = Pr[Q ≤ q]. We want to prove that δ
is vanishing. Fix two constants k and k′ and consider the following attack.
Repeat k/δ times the following steps:

1. Choose N random permutation σ1, . . . , σN . Run A′′ on a random
input as explained in Step 2, and stop it after k′q queries.

2. If A′′ stopped, then output the same value and stop.

If after repeating these two steps k/δ times, no output was produced,
output random values.

The number of queries of this attack is at most kk′q/δ. Choosing k and
k′ large enough, the probability that at least one iteration of the loop is
successful can be made arbitrarily close to one, so that the error probability
of this attack is arbitrarily close to ε. We have constructed an attack that
makes O(q/δ) queries on average and is successful with average probability
1− ε. From Step 2, we get that q/δ = Ω(N 2/3), which implies δ = o(1).
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C Proof of Theorem 4

Assume that the attacker knows the pairs (Pi, Ci)i=1..4. This is sufficient
to ensure that only a single quadruple of keys is consistent with the data.
We devise a search algorithm that consists in a composition of a Grover
search with a quantum Meet-in-the-middle attack presented in Section 2.
We use the framework of quantum walks in order to compose these two
procedures. The details of the theorems that we use are given in the
Appendix.

The walk is designed on the complete graph, whose vertices are indexed
by elements from [M ] who are candidates for the value X after two encryp-
tions. Once the correct value for X is found, it suffices to make O(N 2/3)
queries to the input in order to find the keys, using some of the data
(Pi, Ci). This correct value is unique, and the goal of the quantum walk is
to find it.

Theorem 5 given in the Appendix states that the cost to find the correct
value X is upper bounded by S + 1√

ε
( 1√

δ
U + C), where

• S is the cost for setting up a quantum register in a state that corre-
sponds to the stationary of the classical random walk on the graph
distribution

• U is the cost of moving from one node to an adjacent one,

• C is the cost of checking if the value X is the correct one,

• ε is the probability of finding the correct value X, and

• δ is the eigenvalue gap for the complete graph.

In our case, the setup is to build a uniform superposition of all states
|X〉, which can be made with no query to the input, and constant time.
The update is the same procedure. The checking consists in running a
quantum Meet-in-the-middle attack several times in order to check that
the value X satisfies Ek2(Ek1(Pi)) = X and Ek4(Ek3(X)) = Ci for all i
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for some value k1, k2, k3, k4. The probability of finding the correct value is
ε = 1/M . Finally, the eigenvalue gap for the complete graph is δ = 1− 1

M−1 .

Overall, this leads to an attack that makes O(M 1/2N 2/3) queries, and takes
the same amount of time. Moreover, the checking procedure is the only
procedure using non-constant memory. The attack uses in total O(N 2/3)
memory, leading to a time-space product bounded by O(M 1/2N 4/3).

Figure 3: The attack on 4-encryption is an exhaustive search over the central value X
combined with a MITM algorithm to check the consistency with the data P,C
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Quantum Random Number Generator

Konstantin Kravtsov Sergey Kulik Igor Radchenko

Abstract

A quantum random number generator (QRNG) based on a photoeffect as a
truly-random process was proposed and realized as a stand-alone module. It uses a
deterministic post-processing algorithm to overcome physical imperfections of real
components. Our minimalist design of QRNG prevents possible loopholes and makes
it suitable for commercial production. The proposed QRNG provides a binary
output stream of 1.2 Mbit/s that successfully passes NIST statistical tests.

Keywords: random number generation, quantum random number gen-
erator, randomness extractor.

A random number generator (RNG) is a critical component of all mod-
ern key distribution systems (ether classical or quantum), with the excep-
tion of protocols where randomization is an implicit property of the key
distribution scheme by itself (Ekert-like protocols [1]). Any RNG, which
can be modeled with the classical physics laws only, suffers from its deter-
ministic description and, therefore, theoretical possibility of output stream
prediction, while a quantum random number generator (QRNG) is sup-
plied by a physical process of quantum nature, which is natively random.
At the moment, a broad number of QRNG approaches has been proposed
and implemented [2, 3, 4, 5], but still, the nomenclature of commercially
available devices remains negligible. The necessity of reliable and replicable
QRNG construction have motivated the creation of the present QRNG.

The base of our QRNG is a photoeffect process in an avalanche photo
diode stimulated by a non-coherent electromagnetic field. A light emit-
ting diode (LED) and a thin depletion layer metal-resistor-semiconductor
avalanche photodiode (APD) are mounted opposite of each other on the
same axis (fig. 1). The electrical current flowing through the LED and,
thus, the emitted light are so weak that the APD works in Geiger mode.
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t° = const

APD LED CS
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τ

TIMGEN HSH
LUT

n
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SCK

DATA

Figure 1: Block diagram of QRNG. LED – light emitting diode, APD – avalanche photo
diode, CS and VS – current and voltage sources, TEA – transimpedance amplifier, GEN
– clock generator, TIM – time interval measurement, HSH – hash function – randomness
extractor, GRP – group letters in words, LUT – look-up table, SF – binary stream forming.

Time intervals between the clicks of the detector measured with a discrete
time scale by the TIM constitute a raw sequence used for random number
generation. The temperature of the LED and APD is held constant to sta-
bilize their parameters. The LED current is controlled by a feedback loop
to maintain a constant average APD count rate of 1.2 Mcps regardless of
the spread and drift of actual setup parameters.

The time bin for interval measurements is T = 20 ns while the typical
line width of the LED is 40 nm with a center wavelength of 630 nm, which
gives a coherence time of τcoh ∼ 10−15 s � T . It moves us towards multi-
mode detection regime, where the detector cannot feel the field statistics,
so the action of light upon the APD is the same as for a classical field.
Under these assumptions, a photoionization process is essentially quantum
and therefore truly-random. The Mandel’s formula [8] in this case predicts
a Poisson statistics of the APD clicks and the exponential decay for the
time-between-clicks distribution. However, due to the limitations of real
components, the experimental distribution appears to be distorted. The
deviations observed can be fully explained by the effects of a dark-time
and an after-pulsing in a real APD [7]. The mismatch leads to the pres-
ence of non-zero correlations between the adjacent time intervals in the
sequence, which are effectively suppressed by a modulo-like hash function
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— randomness extractor:

H(τ) =


∅, τ < s,

(τ − s) mod m, τ ≥ s, (τ − s) mod (2m) < m,

m− 1− (τ − s) mod m, τ ≥ s, (τ − s) mod (2m) ≥ m,

(1)

If a time interval τ is shorter than s, it is rejected to weaken the in-
fluence of an after-pulsing effect; otherwise the interval is fed through a
non-monotonic hash function. The value of T · s should be greater than
APD dead-time and after-pulsing period; m should be much less than mean
click period 〈τ〉. The particular form of the extractor was chosen for rea-
sons of practical implementation simplicity and satisfies 3 aims:

• to map semi-infinite set of time intervals to a finite number of letters
in the output alphabet,

• to extract randomness from the initial sequence, and

• to make the distribution of letters more uniform.

The extractor (1) doesn’t equalize probabilities of letters m perfectly,
but still increases entropy to made the sequential algorithm more efficient.

We consider letter sequences to be non-correlated and stationary. To
equalize outcome probabilities we use the Elias algorithm for m ≥ 2 letters
in n ≥ 2 positions [6]. The letter sequence is cut into blocks or words
of m elements each by the GRP. The words are then divided into classes,
where the same letters appear in different orders, so all words in each class
obviously have the same probability. By n umbering words in each class
we obtain equiprobable output values. Our knowledge of the word number
and the total amount of words in a class it belongs to, allows us to convert
the sequence of words into the output binary stream.

To avoid significant real-time computations, our prototype implements
the Elias algorithm via a pre-calculated look-up table (LUT) held in a
2 MiByte FLASH ROM. The parameters s = 8, m = 4 and n = 10 have
been chosen to yield the average value of 1.0 output bit per APD click.

The output of the QRNG was tested by NIST statistical test suite [9]
with the parameter α = 0.01, upon 1000 streams of 106 bits. The results are
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Figure 2: NIST statistical test suite results. On the left: portion of sequences passing a
test, confidence interval is marked by dash lines. On the right: distribution of P −values.

presented in fig. 2. All samples of the sequence passing the tests are inside
the confidence interval, while the P − value distribution has parameters
χ2 = 7.7; PvalueT = 0.68 > 0.0001, which suggests that the generated
sequence is indistinguishable from a truly random one by the particular
tests. The broad scope of the NIST suite and clear implemented QRNG
operation principles guarantee that the generated random data are of high
quality and may be used in critical applications.
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Minimizing Collisions for Quantum Hashing

Alexander Vasiliev Mansur Ziatdinov

Abstract

We present explicit algorithms for computation of quantum hashing parameters
that minimize the probability of encountering quantum collisions.

Keywords: quantum computation, quantum hashing, hashing collisions,
genetic algorithm, simulated annealing.

1 Introduction

Hashing is a well-known technique, widely used in computer science. Fol-
lowing the ideas and properties of the cryptographic hashing [1] we have
proposed its quantum analogue in [2]. Just like in classical case it can
find applications in different communication scenarios including single-bit
quantum digital signature protocol from [3] and quantum communication
protocols (e.g. in one-way quantum communication model and simultane-
ous message passing model [4]).

The key property of both classical and quantum hashing is the colli-
sion resistance. In [2] we have analyzed the set of numeric parameters for
quantum hashing that determine its collision resistance. In this paper we
investigate the construction of that set in more detail. Although there was
a general method of obtaining good hashing parameters, it makes sense
for comparatively large inputs. That is why we construct different algo-
rithms to complement the general one. In particular, we give two heuristic
algorithm for this problem: a genetic approach and annealing simulation.

CTCrypt 2015 A. Vasiliev, M. Ziatdinov 171



Minimizing Collisions for Quantum Hashing

2 Preliminaries

In this section we recall a quantum hash function from [2].
Let q = 2n and B = {b1, b2, . . . , bd} ⊂ Zq. We define a quantum hash

function ψq,B : {0, 1}n → (H2)⊗(log d+1) as follows. For an input x ∈ {0, 1}n
we let

|ψq,B(x)〉 =
1√
d

d∑
i=1

|i〉
(

cos
2πbix

q
|0〉+ sin

2πbix

q
|1〉
)

. (1)

It follows from this definition that the quantum hash |ψq,B(x)〉 of an
n-bit string x consists of log d+ 1 qubits. We have shown that d can be of
order O(n) without loosing the quality of hashing [2].

In [2] we have discussed the notion of quantum collision. The reason why
we have defined it is the observation that in quantum hashing there might
be no collisions in the classical sense: since quantum hashes are quantum
states they can store arbitrary amount of data and can be different for
unequal messages. But the procedure of comparing those quantum states
implies measurement, which can lead to collision-type errors.

So, a quantum collision is a situation when a procedure that tests an
equality of quantum hashes outputs true, while hashes are different. This
procedure can be a well-known SWAP-test (see for example [2] for more
information and citations) or something that is adapted for specific hash
function. Anyway, it deals with the notion of distinguishability of quan-
tum states. And since non-orthogonal quantum states cannot be perfectly
distinguished, we require them to be “nearly orthogonal”.

The set B = {b1, b2, . . . , bd} of hashing parameters not only determines
the size of the hash but also gives the function ψq,B an ability to with-
stand collisions, i.e. to distinguish different hashes with bounded error
probability. We have called this property δ-resistance.

Formally, for δ ∈ (0, 1) we call a function ψ : X→ (H2)⊗s δ-resistant if
for any pair w,w′ of different inputs

|〈ψ(w) |ψ(w′)〉| ≤ δ . (2)

The value of δ for the hash function ψq,B entirely depends on q (which
is fixed here by the size of the input) and the set B, i.e. δ = δ(q, B). In
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[2] we have shown a construction for the set of polylogarithmic size (in q)
based on [5]. We have also proved the following result.

Theorem 1. For arbitrary δ ∈ (0, 1) there exists a set B = {b1, b2, . . . , bd}
of size d = d(2/δ2) ln(2q)e such that the quantum hash function ψq,B is
δ-resistant.

In other words, for arbitrary δ ∈ (0, 1) it is possible construct a δ-
resistant quantum hash function ψq,B that would produce an log d + 1 =
O(log log q) = O(log n)-qubit hash out of n-bit input.

3 Optimization problem

It can be easily seen that for the function ψq,B(x) we have

|〈ψq,B(w) |ψq,B(w′)〉| =

∣∣∣∣∣1d
d∑

i=1

cos
2πbi(w − w′)

q

∣∣∣∣∣ ,
and we want it to be less than some δ for any value of (w−w′) except for
0. Thus, the optimization problem that arouses here is the following.

For a fixed q minimize the target function

δ(q, B) = max
x 6=0

∣∣∣∣∣1d
d∑

i=1

cos
2πbix

q

∣∣∣∣∣
over all B = {b1, . . . , bd} ⊂ Zq.

The best possible solution exists for B = Zq, since δ(q,Zq) = 0. How-
ever, this would mean that the size of the hash is log q+1 = n+1, i.e. even
larger than the input, and hashing looses one of its important properties.
So, we require that d � q, and we actually solve the above optimization
problem several times for increasing d until it gives us the set B with
desired value of δ(q, B).

4 Genetic Algorithm

The idea of genetic algorithms is described e.g. in [6]. Research in this
area has started in 1954 and became widely spread in 1970s-1980s.
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When applied to our optimization problem

• a phenotype is the set B sorted in ascending order;

• a fitness function is given by δ(q, B);

• a mutation is an increment or decrement of a random element of B;

• a crossover is performed by splitting sets in two parts and exchanging
them.

To start the algorithm, we randomly generate a family of sets (a popu-
lation). Then the population is evolved as following.

First of all, the population undergoes sudden mutations: we randomly
pick several individuals and randomly “mutate” them, i.e. change the
random element of a set by one.

Then for all individuals the value of the fitness function is evaluated.
The half of all individuals with the best results give the next generation:
we pick random pairs of phenotypes, their genotypes are split in two parts
and exchanged in such a way that the values of the first parts are less or
equal to the values of the second parts.

Finally, we remove the individuals with the worst fitness until the pop-
ulation has the initial size.

The evolution process repeats the given number of iterations or until a
good enough solution is found. Thus, we need some value of δ as an input
parameter.

5 Simulated Annealing

We also developed an simulated annealing algorithm to compute the
set B. This algorithm is a heuristical search algorithm and it is described
in [7]. We used concurrent-sa library for Haskell language for general
procedure of simulated annealing.

Simulated Annealing is inspired by a physical process of melting some
substance and then lowering the temperature slowly. This process allows
the substance to get to optimal state (i.e. state with the lowest energy).
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So we generate a population of random sets and allow them to evolve
into the other (neighbour) states according to the current temperature.
This temperature slowly decreases. After sufficient time population will
have sets with low δ. To change a set we randomly change one element of
the set.

We run simulated annealing for fixed time (1 sec) with population of
1000 random sets.
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Quantum Hashing Based on Symmetric Groups

Mansur Ziatdinov

Abstract

The notion of quantum hashing formalized by F. Ablayev and A. Vasiliev in
2013. F. Ablayev and M. Ablayev in 2014 introduced the notion of quantum hash
generator which is convenient technical tool for constructing quantum hash func-
tions. M. Ziatdinov in 2014 presented group approach for constructing quantum
hash functions. All these mentioned above results present constructions of quan-
tum hash functions based on abelian groups.

This paper continue the research on quantum hashing. Our approach allows to
construct quantum hash function for any (finite) group. Also our approach allows
to construct quantum hash functions based on classical hash function from NC1.

Keywords: quantum hashing, quantum hashing on groups, symmetric groups

1 Introduction

H. Buhrman et al. [6] introduced the notion of quantum fingerprinting.
Quantum fingerprinting is based on binary error correcting codes. Later
F. Ablayev and A. Vasiliev in [3] proposed another (non binary) version
of quantum fingerprinting. F. Ablayev and A. Vasiliev [4] defined notion
of quantum hash-function and showed that quantum fingerprinting was a
specific case of quantum hashing.

In [1] construction of Buhrman et al.[6] and Ablayev-Vasiliev’s con-
struction [4] were generalized. It was shown that both approaches could
be viewed as composition of so called “quantum generator” and (classical)
universal hash function.

In [7] we proposed a group approach to fingerprinting. We showed
that instead of abelian group Zm with m > 0 [4] we could use arbitrary
abelian group. These constructions use specific so called “good” set of
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automorphisms. However, examples of such “good” sets (and, hence the
quantum hash functions) were found only for abelian groups.

In this paper we propose “good” set of automorphisms for symmetric
groups, and construct quantum hash function based on any finite group.
This approach allows us to construct quantum hash functions based on
classical functions from NC1. We also discuss the procedure of finding
“good” set of automorphisms.

2 Previous work

We start with recalling basic definitions.
We will consider functions h : {0, 1}n → G, where G is a group.
Let us choose a set of automorphismsK from group of all automorphisms

Aut(G):
ki ∈ K ⊆ Aut(G), 1 ≤ i ≤ T, |K| = T (1)

We will use notation k{g} for image of g under automorphism k.
Let us also choose a homomorphism f from group G to a group of all

unitary transformations of m qubits.

Let us recall definitions and theorems from [4] and [7]
Quantum hash function is defined as follows.

Definition 1. |Ψ(w)〉 is a quantum hash function if it maps n–bit message
w from {0, 1}n to m qubits and resulting vectors are nearly orthogonal:
∀w,w′ ∈ {0, 1}n(|〈Ψ(w)|Ψ(w′)〉| < ε) for some ε ∈ (0, 1).

We call set Kgood of elements of chosen K “good” set if for each non-unit
group element g and some starting state |ψ0〉:

∀g ∈ G, g 6= e :
1

|Kgood|2

∣∣∣∣∣∣
∑

k∈Kgood

〈ψ0|f(k{g})|ψ0〉

∣∣∣∣∣∣
2

< ε (2)

In [7] it was proved that
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Theorem 1. If (3) holds, then “good” set exists and can be constructed by
choosing d times element from K at random, and d = 2

ε ln |G|

∀g ∈ G, g 6= e :
1

|K|
∑
k∈K

〈ψ0|f(k{g})|ψ0〉 = 0, (3)

so, if (3) holds, there exists quantum hash function for arbitrary small
ε (however, “good” set size d and therefore qubit count m will grow)

We will say “quantum hash function works for group G” or simply
“quantum hash function for group G” if it has the form

|Ψh,G,K,f,m,|Ψ0〉(x)〉 =
1√
t

t−1∑
j=0

(
|j〉 ⊗ f

(
kj{h(x)}

)
|ψ0〉

)
, (4)

where h is a classic hash function mappingXn to groupG, K = {k0, . . . , kt−1}
is “good” set of automorphisms and f is homomorphism from G to space
[(H2)⊗m → (H2)⊗m].

It was also proven that

Theorem 2. If for group G “good” set of automorphisms exists, then a
quantum hash function for group G exists.

3 Quantum hash function working on symmetric group

Theorem 3. There exists a quantum hash function |Ψh,Sn,K,f,log n〉 working
on symmetric group.

Specifically, f is a standard symmetric group representation in a space
of n dimensions and K is a set of all automorphisms acting by conjugation
to cyclic shift.

Proof. Theorems 1 and 2 state that if there exists a homomorphism f , a
set K of automorphisms of G such that

1

|K|
∑
k∈K

〈ψ0|f(k{g})|ψ0〉 = 0, (5)

then Ψh,G,K,f,m is a quantum hash function.
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In our case, f is a standard symmetric group representation in a space
of n dimensions with group Sn acting by coordinates permutation.

Let K be the set of all (inner) automorphisms that has the form:

K = {gσ : σ is a cyclic shift}, gσ(τ) = στσ−1} (6)

Let |ψ0〉 be some vector c1|1〉+ c2|2〉+ . . .+ cn|n〉, such that:
n∑
i=1

ci = 0 (7)

Image of |ψ0〉 under f(gτ{σ}) for any σ and τ ∈ K is

f(gτ{σ}) = cσ(1+k)−k|1〉+ . . .+ cσ(n+k)−k|n〉, (8)

where τ is a cyclic shift to k and addition and subtraction in indices are
modulo n.

So, if we sum this for all automorphisms τ ∈ K we get:∑
gτ∈K

〈ψ0|f(gτ{σ})|ψ0〉 =
n∑
k=0

n∑
i=0

cicσ(i+k)−k =
n∑
i=0

ci

n∑
k=0

cσ(i+k)−k. (9)

We substituted f(gτ{σ})|ψ0〉 with its value from 8.
We can observe that σ(i+ k)− k runs over all integers from 1 to n. So

we can rewrite as follows:∑
gτ∈K

〈ψ0|f(gτ{σ})|ψ0〉 =
n∑
i=0

ci

n∑
j=0

cj = 0. (10)

We use equation (9) and definition (7) of ψ0.
Equation (10) is equivalent to (5), so theorems 1 and 2 can be applied,

and a quantum hash function for Sn exists.

Please note that this proof does not apply to A5 representation from
paper [2] and we cannot use their representation and approach of this
article to define quantum hash functions based on NC1 functions. In the
section 4 we use another representation.

In [7] it was shown that if we find a set K satisfying equation (2), we can
construct a “good” set with probability of 1

|G| by repeatedly (d = 2
ε ln |G|

times) randomly choosing elements from K.
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4 Applications

We can use the defined quantum hash function working on symmetric
group to construct other quantum hash functions. One way of such con-
struction is defined in [7]: we construct a hash function working on (direct)
product of groups. We present another way.

Lemma 1. Let G be a finite group, group G′ C G be its subgroup, and
|Ψh,G,K,f,m〉 be a quantum hash function working on it.

Then we can define a quantum hash function working on G′.

Proof. We can define h′ to be a restriction of h on G′.
Then |Ψh′,G′,K,f,m〉 is a quantum hash function.
Let us consider square of scalar product of quantum hash function values

on different inputs.

|〈Ψh′,G′,K,f,m(x)|Ψh′,G′,K,f,m(x)〉|2 =
∣∣〈Ψh,G,K,f,m(x)|Ψh,G,K,f,m(x)〉

∣∣2 < ε

We use that G′ CG and that h′ is a restriction of h on G′.

Of course, such way is inefficient for small finite subgroups of Sn, but it
works for non-abelian groups.

We can use our approach to construct quantum hash functions based
on classical hash functions in NC1.

Let h be a hash function that can be computed by NC1 circuit. We
can now use theorem 3 to obtain a quantum hash function based on it as
follows.

We can convert circuit to width–5 polynomial–size branching program
and represent it as permutation branching program [5]. Then we compute
quantum hash function based on h as follows. For each input symbol we
simultaneously apply required permutation in all subspaces (under different
automorphisms as described in theorem 3).
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On Implementation Method Of Large Size Linear
Transformation

Nikolay Borisenko Van Long Nguyen

Abstract

The article describes the implementation methods of a large size linear transfor-
mation over a non-prime finite field GF ((2n)m), using a modified linear feedback
shift registers (MLFSR). It discusses key features and techniques used in software
implementation of the transformation on various platforms.

Keywords: LFSR, Linear mapping, Composite field, Implementation

1 Preliminaries

A linear transformation is one of the most important elements of the cipher
that provides its diffusion properties. It is known that a linear transformation
is the slowest part of the cipher. Therefore, the effective implementation
problem of the linear transformation is of great importance.

Let Vs be a vector space of dimension s. We denote a linear transfor-
mation by L : Vs 7→ Vs. This transformation is defined by Galois (Fig.
1 – a) or Fibonacci (Fig.1 – b) linear feedback shift register (LFSR) over
a non-prime finite field GF ((2n)m) [2], where s = mxn, that is based on

a primitive polynomial f(x) = xn ⊕
n∑

i=0

aix
i and an irreducible polynomial

h(y) = ym ⊕
m−1∑
i=0

hiy
i, where ai ∈ GF (2), hi ∈ GF (2n) and h0 = 1.

Let X = (qm−1, qm−2, ..., q2, q1, q0) and Y = (q,m−1, q
,
m−2, .., q

,
2, q

,
1, q

,
0) be

initial LFSR state vector and output state vector after the first step of the
register, correspondingly, where qi, q,i ∈ GF (2n), i = 0, 1, ...,m− 1 are LFSR
cell values.
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Figure 1. LFSR: a) - Galois and b) - Fibonacci

In the case of Galois LFSR each q,i is defined by q,i = hi ·qm−1⊕qi−1 for all
i = m−1, ..., 2, 1, and q,0 = h0·qm−1. And in the case of Fibonacci LFSR each

q,i is defined by q,i = qi+1 for all i = 0, 1, ...,m−2, and q,m−1 =
m−1∑
0

hi ·qi. The

operations "·" (or "⊗") and "⊕" (or "
∑

") are multiplication and addition
in a finite field GF (2n), correspondingly.

Linear transformation of the initial data block is obtained after m steps
of the LFSR. The transformation result is a new state of the register after
mth step. Inverse linear transformation L−1 is obtained by m steps of the
LFSR that moves in the inverse direction.

Let p0, p1, ..., pd, where p0 < p1 < ... < pd, be all divisors of m. We denote
k = pi, R =

m

k
and W = nk. Here the value W depends on the platform (8,

16, 32 or 64-bit), on which the given linear transformation is implemented.
In this article we will continue to investigate the effectiveness of a linear

transformation implementation on arbitrary platforms by a method of si-
multaneous applications of internal and external polynomials of a non-prime
finite field. This method was presented by us in [3]. It proved its effectiveness
not only in software, but in hardware implementations as well. In addition,
it allows a parallel implementation on multi-core processors.

2 Modified LFSR scheme

Modified Galois and Fibonacci LFSRs (MLFSRs) are presented in figures
2 and 3, correspondingly.

The main difference of MLFSR from LFSR is in the calculating method of
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Figure 2. Galois MLFSR

Figure 3. Fibonacci MLFSR

the feedback function values. In case of Galois MLFSR the feedback function
values are determined via tabular data depending on the bits of the highest
register cell, and in case of Fibonacci MLFSR by bits of all cells.

Let vector X ′ = (QR−1, ..., Q1, Q0), where Qr = qkr+1 ‖ · · · ‖ qkr−k+1, 0 6
r 6 R−1 is the initial MLFSR state vector, and vector Y ′ = (Q′R−1, ..., Q

′
1, Q

′
0)

is the output state vector after the first step of MLFSR. The description of
one MLFSRs step is presented in table 1.

Table 3. One step of MLFSRs
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Galois Fibonacci
Q′r = f(Hr)⊕Qr−1, ∀r = R− 1, ..., 1 Q′r = Qr+1, ∀r = 0, ..., R− 2 and

and Q′0 = f(H0), where f(Hr) = Q′R−1 =
R−1∑
r=0

f(Hr), where f(Hr) =

=
W−1∑
j=0

zR−1,j ·Hr,j , and zR−1,j =
W−1∑
j=0

zr,j ·Hr,j , and zr,j ∈ GF (2) are

∈ GF (2) are bits of QR−1, bits of Qr, j = 0, 1, ...,W − 1,
j = 0, 1, ...,W − 1, r = R− 1, ..., 1, 0 r = R− 1, ..., 1, 0

Table 2. Complexity of R MLFSR steps

Parameter MLFSR
Galois Fibonacci

Check number "true-false" m · n m2 · n
k

XOR number m(mn− 1)

k

m(mn− 1)

k

Required memory (bit) m · n2 · k m · n2 · k

To generate the correct output vector of each MLFSR (Galois or Fi-
bonacci) it is necessary to define R tables Hr, r = (R − 1), ..., 0. The new
obtained state vector of MLFSR on the Rth step is the result of the linear
transformation L. The complexity of R MLFSR steps is presented in Table
2. The table values evaluation is based on the superposition principle of
linear mappings, according to which it is necessary to observe the bit influ-
ence of the corresponding LFSR (Galois or Fibonacci) cells on their output
state after k steps. Finally, to compute the table values of feedback functions
f(Hr), r = (R−1), ..., 0 we construct simple algorithms presented in Figures
4 and 5.

The principle of computing the required tables for inverse linear trans-
formation L−1 is similar. But it is necessary to use the LFSRs (Galois or
Fibonacci) scheme for inverse linear transformation L−1 to determine their
state (block 7 in Fig. 4 or block 9 in Fig. 5). Finally, the obtained MLFSR
moves in the inverse direction.

3 Experimental results

In this section the polynomials f(x) and h(y) are used as the initial poly-
nomials of linear transformation L : V128 7→ V128 over GF ((28)16):

f(x) = x8 ⊕ x7 ⊕ x6 ⊕ x⊕ 1. (1)
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h(y) = y16 ⊕ 148y15 ⊕ 32y14 ⊕ 133y13 ⊕ 16y12 ⊕ 194y11 ⊕ 192y10 ⊕ y9⊕
⊕ 251y8 ⊕ y7 ⊕ 192y6 ⊕ 194y5 ⊕ 16y4 ⊕ 133y3 ⊕ 32y2 ⊕ 148y ⊕ 1. (2)

These polynomials are applied to construct the linear transformation in
Kuznyechik algorithm based on Fibonacci LFSR [4]. But in this section we
will construct the linear transformation that is based on both types of LFSR
(Galois and Fibonacci). Consequently, we obtained two linear transforma-
tions, each having a branch number equal to 17 (this is maximum value for
the 128-bit data block using 16 8-bit S-boxes) and fixed points number, which
is equal to 1 [6].

By applying our approaches we constructed MLFSR schemes (Fig. 6
and Fig. 7) allowing implementation of L : V128 7→ V128 mapping on 8-bit
processors. In this case we choose k = p0 = 1 that is the first divisor of
m = 16, R =

m

k
and W = mn = 8.

It is not difficult to see that in implementation schemes on 8-bit processors,
table values of both types of MLFSRs (Galois and Fibonacci) are identical.
Their values are determined by the algorithms in Fig. 4, 5 and shown in
table 3.

Table 3. 16 tables of the 8-bit Galois and Fibonacci MLFSR

No H15 H14 H13 H12 H11 H10 H9 H8 H7 H6 H5 H4 H3 H2 H1 H0

7 E5 6D B2 D7 6E AD 80 DE 80 AD 6E D7 B2 6D E5 80

6 93 D7 59 8A 37 B7 40 6F 40 B7 37 8A 59 D7 93 40

5 A8 8A CD 45 FA BA 20 D6 20 BA FA 45 CD 8A A8 20

4 54 45 87 C3 7D 5D 10 6B 10 5D 7D C3 87 45 54 10

3 2A C3 A2 80 DF CF 08 D4 08 CF DF 80 A2 C3 2A 08

2 15 80 51 40 8E 86 04 6A 04 86 8E 40 51 80 15 04

1 EB 40 C9 20 47 43 02 35 02 43 47 20 C9 40 EB 02

0 94 20 85 10 C2 C0 01 FB 01 C0 C2 10 85 20 94 01

Due to the symmetry of the output polynomial h(y) and the equality
h0 = h7 = h9 = 1, one can use only 7 tables (H1, H2, H3, H4, H5, H6, H8)
instead of 16. Therefore, the amount of required memory is reduced and is
equal to 7×8 = 56 bytes. In this case we obtaine simplified MLFSR schemes
(Fig. 8 and Fig. 9).
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Similarly, in cases when k = pi = 2, 4 and 8, with the algorithm shown
in Fig.4 and 5 to determine all tables Hr, r = 0, 1, ..., R− 1, we constructed
MLFSR schemes which allow implementation of the given linear transforma-
tion on 16, 32 and 64-bit processors, correspondingly. An examples of such
implementation on 32-bit processors for Galois and Fibonacci MLFSR are
shown in Fig. 10.

Depending on the specification of Galois MLFSR we developed a method
called "Ready Linear Combinations" method (further, the RLC method).
This implementation approach is effective only for Galois MLFSR. The ad-
vantage of Galois MLFSR over Fibonacci MLFSR is that on each step, each
check operation on "true-false" for all bits of the highest byte of Galois
MLFSR state may be used for all tables of feedback function. This allows
combining 16 tables Hr, r = 0, 1, ..., R−1 after calculating all possible linear
combinations for that highest byte. The obtained implementation scheme is
shown in Fig. 11.

In this method, for each byte of memory cells 1 and 2, all variants of
linear combinations are pre-computed using 8-bit Galois MLFSR (Fig. 6)
and stored in the corresponding memory cells. And the memory cells are
structured so that the address 0x01 is the first, and the address 0xFF includes
255th row of the both matrices. The given linear transformation requires 16
shift operations of 16 byte matrix, in average 32 calls to the memory and the
same number of 64-bit words additions modulo two. It requires 4096 bytes
of memory. Performance of this method is several times higher than that of
the previous ones, but it requires memory of 4096 bytes, against 144 bytes.

We implemented the described methods in software. The results are pre-
sented in Tables 4 and 5, where "G" is a Galois MLFSR and "F" is a
Fibonacci MLFSR. Then we applied the implementations to block cipher
Kuznyechik [5]. At the same time its linear transformation was implemented
by both types of LFSR: Galois and Fibonacci. The block cipher was running
in ECB mode of operation. The obtained results are presented in table 6.
We also presented the known implementation results for Kuznetik [5] there.
The source codes are written in the C++ programming language. The codes
were compiled in Visual Studio 2010 environment for x64/Intel platform.
The measurements are performed on a single core of Intel Core i5-2500 @
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3.2GHz in Windows 8 OS. The measured speed is given both in Megabytes
per second and clock cycles per byte.

Table 4. Parameters of described methods

Cycles Required Check
XOR number

Time of 106
Platform number memory number operations
size (bit) of (byte) "true-false" (sec.)

MLFSR G F G F G F G F
8 16 56 56 128 896 1024 1024 1.03 2.35
16 8 256 256 128 1024 1016 1016 0.60 3.50
32 4 512 512 128 512 508 508 0.27 1.34
64 2 1024 1024 128 256 254 254 0.20 1.11

Table 5. Parameters of RLC method

Cycles Required
XOR number

Time of 106
Platform number memory operations
size (bit) of (byte) (sec.)

64 16 4096 32 0.058

Table 6. Encryption performance of block cipher Kuznyechik

Implementation Memory Speed Platform(bytes) MB/s cpb
64-bit Galois MLFSR 1024 10.5 305 i5-2500 @ 3.2GHz, Win 8

64-bit Fibonacci MLFSR 1024 8.25 388 i5-2500 @ 3.2GHz, Win 8
RLC method 4096 77 42 i5-2500 @ 3.2GHz, Win 8
Borodin [5] 65536 125 26 i7-2600 @ 3.4GHz, Win7

4 Conslusion

The described implementation methods using MLFSR are bit-oriented and
allow reducing the amount of required operations and memory size to store
pre-computed tables. The theoretical and experimental results show that
the linear transformation, built on the Galois LFSR has advantages over the
Fibonacci LFSR.

The RLC method has encryption speed slower than the method described
in [5], because it does not allow combining both nonlinear (S-boxes) and
linear transformations of block cipher Kuznyechik simultaneously. But the
required memory size is equal to 4096 bytes, against 65536 bytes.
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Figure 4. Algorithm for computing all R tables of Galois MLFSR
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Figure 5. Algorithm for computing all R tables of Fibonacci MLFSR

Figure 6. 8-bit Galois MLFSR
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Figure 7. 8-bit Fibonacci MLFSR

Figure 8. Simplified 8-bit Galois MLFSR

Figure 9. Simplified 8-bit Fibonacci MLFSR
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Figure 10. 32-bit MLFSR: a) - Galois and b) - Fibonacci

Figure 11. RLC method
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Unifying Development and Implementation of Secure
Network Protocols in C++

Pavel Lebedev

Abstract

In this paper we specify two main transition stages in the process of implement-
ing a secure communication protocol that are prime sources of vulnerabilities. We
describe requirements on the framework solution that would minimize their impact
and streamline the development process. A C++ library that satisfies these condi-
tions is described, which the author developed. We provide benchmarking results
for this library that shows that it is possible to significantly reduce this attack sur-
face while using domain-specific extensions to C++ to provide a natural way for
cryptographers to describe secure communication protocols and immediately obtain
optimized and scalable implementations.

Keywords: C++, coroutines, secure communication protocols

1 Introduction

Secure communication protocols are undeniably pervasive in modern net-
working. The current trend is to follow ”secure by default” model and use
cryptographic protocols on every remote connection made. TLS [1] is the
most widespread protocol to negotiate and establish a secure communi-
cation channel which makes it a common attack target. These attacks
focus on the protocol itself or its combinations with higher level protocols
(see f.e. BREACH [2]) or particular implementations (ex.: Heartbleed [3]).
TLS has been used in various applications, but no single protocol can cover
for all technical and security requirements.

This shows that the research focused on new security protocols and
improvements to the old ones is an urgent need. Such research has to go
from a formal mathematic model to an optimized implementation. In this
process we have to note two important transition phases:
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1. From mathematic model to implementation in a programming lan-
guage. The main problem in this transition is correctness of imple-
mentation. Modern cryptography requires not only high programming
skills, but also fluency in various mathematical areas that are not
common knowledge even for professional programmers. We propose
to solve this problem by bringing the constructs of the programming
language as close as possible to the mathematic description used by
cryptographers.

2. From a proof-of-concept to an optimized and production-ready imple-
mentation. For the implementation to be suitable for production use,
it must have adequate performance. First of all, this requires usage
of optimized cryptographic primitives: ciphers, message authentica-
tion codes, arbitrary precision arithmetic, etc. There are various li-
braries available to fulfill this purpose, see f.e. libgcrypt [4] and
crypto++ [5]. An ability to switch the underlying implementation
without changing the description of the protocol would give our solu-
tion additional flexibility.

Furthermore, to exploit modern highly parallel and heterogeneous
systems, implementations should be multi-threaded and use asyn-
chronous programming interfaces to perform all input and output with
network and storage devices. Efficient use of these APIs is non-trivial
and usually requires modifications to the natural program flow, in-
cluding the very definition of the protocol being implemented, that
impact readability and introduce hard to spot bugs.

The attacks we’ve mentioned are but a few that were the results of
vulnerabilities introduced during these transition phases, which we consider
the main problems in the whole development and implementation scenario.

To remove these problematic stages there is a need for a toolkit that
allows to describe a cryptographic protocol in the notation most close to
the original mathematic one. The same description should also be usable
without modifications as a kernel for a production system that supports
modern high-performance programming approaches.
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In this paper we describe a solution that satisfies these criteria based
on a C++ library that includes a set of domain-specific extensions.

2 Protocol structure

Cryptographic protocols usually include one or both of the following
phases:

• Handshake. This phase that consists of a short message exchange
that are used to determine capabilities of the participants, algorithm
parameters and whether they are acceptable to both parties. The set
of cryptographic algorithms to use can be chosen here too if this is
specified by the protocol.

• Transport mode. In this phase the negotiated transformations are
applied to the data transferred to provide secure communication as
specified by the protocol.

Various protocols make use of other ones as sub-protocols, therefore
some of them may consist of only a single phase. For example, Diffie-
Hellman key exchange only has a handshake phase — its result is a shared
secret value and the protocol itself does not define how it is to be used.
The solution we have developed allows for easy protocol composition to
make it easy to build libraries of primitives and frameworks.

In our implementation the handshake phase is written as a sequence of
actions that are either calculations or exchanges of data with a peer. This
serial description is used regardless of chosen parallel computing model.

Transport mode characteristics are specified by declaring structure of
the packet used to incapsulate data transferred over secure connection.
It is used by our implementation to construct and parse transport mode
packets containing user data from a byte stream.

3 Implementation details

To implement the required solution we have chosen to use the C++
programming language. It allows to achieve maximum implementation ef-
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ficiency and allows direct access to many well-established libraries of math-
ematic and cryptographic libraries. Its meta-programming capabilities al-
low creation of domain-specific extensions that can be used to bridge the
syntax gap between programming languages and mathematics. These facil-
ities have been significantly extended in the last C++14 standard version
and we’re making full use of them in our solution.

We have developed the following facilities to allow secure communication
protocol phases to be described in terms native to cryptographers:

1. Cryptographic primitive type system. The data types useful in cryp-
tography are: boolean, byte arrays, integers of fixed and arbitrary
precision, cryptographic algorithm keys and certificates, block ciphers,
message authentication code and digital signature algorithms, elliptic
curve and their points. High level primitives do not allow access to
their representation to support changes to the primitives used with-
out the need to change the protocol itself. We provide function and
operator overloads for most common operations on these objects that
follow mathematic instead of programming language syntax and se-
mantics where possible. This also means we favor free over member
functions to allow writing size(x) instead of x.size().

2. Tuples. To preserve the mathematical notation of function as a map-
ping we cannot use reference parameters as output. We instead pro-
vide extended tuple facilities that allow treating multiple values as
a single one, which can be used to return ”multiple values” from a
function. This facility is also used for (de)serialization as the tuple
construction function (named for brevity) can be used to concate-
nate or split raw byte sequences or serial representations of objects.
During this conversion it is possible to specify various options: explicit
type sizes, byte order, etc. to conform to other implementations and
their data formats.

3. Communication functions. In the description of handshake phase one
can use functions to send, receive, or simultaneously send and receive
data. Two versions of these functions are provided: for symmetric
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protocols with the same algorithm for both peers (send, receive,
send and receive) and asymmetric, which are also described jointly
from the point of view of both peers, as is common in mathematical
descriptions (left->right, right->left, exchange).

All these constructs use expression templates that avoid unwanted data
copies and allow additional optimizations while preserving domain-specific
syntax.

Asio [6] is used as base input/output library. It uses Proactor pattern
that allows it to support both single- and multi-threaded environments
without using separate threads for individual data streams as this approach
doesn’t scale in practice. The library is sufficiently well-known and tested
and is planned to become a part of a future C++ language standard.

To solve the main difficulty in writing asynchronous code — splitting se-
rial algorithm in multiple asynchronous callbacks — we’re using coroutines
[7] implementation from the boost.coroutine [8] library. It allows us to pre-
serve a serial description of the algorithm without losing its asynchronous
nature and performance, which is imperative to our stated goals. We’ve
extended this facility to allow storage of coroutine-local data that is not
dependent on the stack, which allows us to simplify syntax of many con-
structs by reducing the number of context-related parameters that can now
be inferred and don’t obscure the algorithm with implementation details.

An example description of the handshake phase for the protocol de-
scribed in [9] is provided below:

void run(elliptic_curve e,

point p,

integer q,

identifier ia,ib)

{

bytes na,nb,s;

integer ka,kb;

point ra,rb,qa,qb;

certificate ca,cb;

bytes request,answer;
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bytes eta,etb;

initial_vector iva,ivb;

// Shared key generation, phase 1

_(ka,ra) = kex(ec,p,q);

na = random();

send(na,ra,ca,sign(xa,_(na,ra,ia,ib)));

// Phase 1 verification

_(na,ra,ca,s) = receive();

// Certificate validation

if(not verify(ca))

abort();

// Point validation

if(not verify(ra))

abort();

// Signature validation

if(not verify(ca,s,_(na,ra,ia,ib)))

abort();

// Shared key generation, phase 2

_(kb,rb) = kex(ec,p,q);

// Phase 2 verification

nb = random();

send(nb,rb,cb,sign(xb,_(na,ra,ia,ib,nb,rb)));

_(nb,rb,cb,s) = receive();

if(!verify(cb))

abort();

if(!verify(rb))

abort();

if(!verify(cb,s,_(na,ra,ia,ib,nb,rb)))
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abort();

// Mutual authentication

qa = exp(ec,rb,ka);

k = kdf(qa,na,nb);

eta = encrypt(k,iva,request);

iva = random();

send(iva,eta,sign(xa,_(na,ra,ia,ib,nb,rb,iva,request)));

qb = exp(ec,ra,kb);

k = kdf(qb,na,nb);

_(iva,eta,s) = receive();

request = decrypt(k,iva,eta);

if(not verify(ca,s,_(na,ra,ia,ib,nb,rb,iva,request)))

abort();

ivb = random();

send(ivb,etb,sign(xb,_(na,ra,ia,ib,nb,rb,ivb,answer)));

_(ivb,etb,s) = recieve();

answer = decrypt(k,ivb,etb);

if(not verify(cb,s,_(na,ra,ia,ib,nb,rb,ivb,answer)))

abort();

}

The following example shows a declarative syntax for the common trans-
port mode packet structure:

struct test_packet : packet

{

// User data length, 64-bit unsigned integer, big endian

chunk<uint64_be> s = size(content);

// User data padded with 1 and 0s and encrypted.

chunk<bytes> b = encrypted(padded_01(content));

// Authentication code for the previous packet fields.
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chunk<bytes> mac = mac(_(s,b));

};

Other capabilities of the solution we’ve developed not shown in the ex-
amples are special sequence delimiters in transport mode packets instead
of explicit length specifications and using multiple explicitly specified cryp-
tographic primitives of the same type in a single algorithm. The system
can be easily extended to support additional functionality.

We have shown that the developed solution solves the problem of rep-
resenting mathematic protocol descriptions in a way that allows efficient
implementations to be based on it which eliminates two transition phases
we have stated are prime sources of vulnerabilities.

4 Benchmarking

Benchmarking of the system was performed in order to determine loss of
performance incurred due to implementation details of the domain-specific
language extensions.

The testing setup used is an Intel Core i7 920 based PC with 4 cores and
8 logical threads running two programs that implement client and server
sides of the communication channel respectively running over the loop-
back interface using TCP. Both programs use a pool of 4 operating system
threads to schedule asynchronous callbacks. Client application uses 64 si-
multaneous connections to the server, each running as a separate coroutine,
that sends and receives 128 blocks of 64 KB before tearing down the con-
nection and restarting. Server application spawns a separate coroutine for
each client connection and uses it to echo incoming data back. perf utility
was used to determine hot spots in the whole system.

In the first test case no security protocol was used to test behavior when
I/O is the bottleneck. Total transfer speed in the system reached 15 Gbit/s
without any special settings for a loopback interface. 96% percent of time
was spent in kernel mode networking stack of the Linux operating system,
which was running on the test machine. About a third of this time was
used for the kernel-user space data copying and back, the rest was con-
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sumed by other parts of the OS network stack. Tests programs themselves
did not contain a single data copy, so kernel is the only place where it
happened. This is unavoidable while using the standard Linux networking
API, although alternative solutions exist, for example [10]. Even in this
scenario coroutine stack switches took no more than 0.5% of the total run
time.

The second test case modeled a real secure communication scenario im-
plemented using cryptographic primitives from libgcrypt library [4]. We
used GOST 28147-89 block cipher in CFB mode and HMAC with 512-
bit GOST 34.11-2012 hash function for the transport mode. Handshake
consisted of mutual authentication by signing pseudorandom cookies with
GOST 34.10-2012 digital signatures. In this case 97% of time was spent
in cryptographic library routines and 2% in the OS kernel. The coroutine
overhead was less than 0.01% of total time. Total transfer speed in the
system approaches 250 MBit/s and reflects only the performance of cryp-
tographic primitive implementation used with no measurable overhead due
to the solution we’ve developed.

This proves that it is possible to achieve maximum performance limited
only by external factors while using a natural representation for the secure
network communication protocol while removing development stages that
lead to deficiencies of implementation used as attack vectors. Author of
this paper plans to improve upon this work by allowing GPUs to be used
transparently in high performance secure communication systems.
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A Known Plaintext Attack on a Fully Homomorphic
Cryptosystem Based on Factorization

Alina Trepacheva

Abstract

This paper presents a known plaintext attack on one recently proposed fully
homomorphic cryptosystem based on factorization problem. We demonstrate that
the cryptosystem is insecure even in the presence of only one pair of a plaintext and
a corresponding ciphertext. The complexity of a proposed attack depends polyno-
mially on a degree of polynomials representing ciphertexts and logarithmically on a
plaintexts space size. The results of computer experiments are given.

Keywords: fully homomorphic encryption, known plaintext attack, fac-
torization problem.

1 Introduction

Homomorphic cryptography is of great interest today. Homomorphic
cryptosystem (HC) allows to compute some function f(x1, ..., xt) over en-
crypted data set {c1 = E(m1), ..., ct = E(mt)} without knowledge of a
secret key sk. The owner of sk may extract the result of computation
over plaintexts f(m1, ...,mt) via decrypting ciphertext c = f(c1, ..., ct).
This property makes HCs an important tool for protecting private data
in clouds [7]. Thin clients may rely on powerful cloud servers to conduct
their computing tasks and don’t worry about compromising the security of
their data.

The most interesting problem in homomorphic cryptography is to de-
sign a fully homomorphic cryptosystem (FHC) [3] permitting to compute
arbitrary f homomorphically with low time overhead. Until 2008 cryp-
tographers were not aware whether secure FHC could be constructed. All
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suggested HCs were either not fully homomorphic or insecure [8]. Only in
2009 IBM researcher Craig Gentry developed the first FHC that is prov-
ably secure against known plaintext cryptanalysis [3]. The cryptosystem is
based on ideal lattices framework. And breaking it is equivalent to finding
the shortest vector in a lattice L. But although its overhead of homomor-
phic computation for any f depends polynomially on the cryptosystem’s
parameters, it is totally inefficient and inapplicable for practice. In sub-
sequent works this FHC was improved in different ways to obtain better
performance. The most efficient FHCs in Gentry style are described in
[4]. But in spite of considerable efforts to obtain practical FHC following
blueprint from [3], existing Gentry-like FHCs are still totally impractical.
Due to [4] encryption via latest versions of FHCs converts 4 MB of plain-
texts into 73 TB of ciphertexts. And this is not acceptable for real world
applications.

Such state-of-the-art gave birth to many attempts to build some alter-
native FHC not on the basis of Gentry’s blueprint [3]. And the bulk of
efforts in this line is concentrated on designing FHCs based on factorization
problem. This produced the simplest candidates for FHC with promising
performance, for example [15, 6, 9, 14]. All this FHCs were not proven to be
provably secure. Since the strong mathematical reductions to factorization
problem were not given, their usage in practice is questionable.

In this paper we analyse one such factorization-based FHC [15] proposed
in 2013 by Russian research group from Novosibirsk. The construction [15]
is simple and efficient. And also the authors of [15] conjecture that their
FHC is resistant to ciphertext only attack (COA) and known plaintext
attack (KPA). Nevertheless, its security properties haven’t been analysed
thoroughly anywhere. In this work we fill the gap and show that FHC
[15] is totally unsecure against KPA. Our attack is very similar to KPA
[13] on Domingo-Ferrer HC [2, 5] that has common properties with FHC
[15]. Compared with [13] we provide an accurate estimation of probability
to find a key via this KPA. The main contribution of this work is that in
order to recover a secret key for FHC [15] it’s enough to intercept only one
pair of a plaintext and a corresponding ciphertext. The running time of
KPA depends polynomially on cryptosystem parameters.
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Finally we’d like to note that cryptanalysis of FHC [15] is not only of
theoretical interest, since it was mentioned in [10] that this scheme was
used for implementation of a secure private data storage in cloud.

2 Preliminaries

2.1 Notations

A ring of integers modulo n is denoted by Zn, univariate polynomial ring
over Zn – by Zn[x], the subset of Zn[x] containing polynomials of degree d –
by Pn,d, the subset of Pn,d containing only monic polynomials – by Pn,d,mon,
the subset of Pn,d,mon containing only irreducible polynomials – by In,d. If
a ∈ Z then its residue modulo n is [a]n ∈ Zn. Notation [f(x)]n means that

all coefficients fi are reduced modulo n. x
$←− R denotes a random element

sampled according to uniform distribution over ring R, xi
$←− R, i = 1,m –

random elements sampled uniformly and independently, x
D←− R – element

sampled according D. f(x)
$←− Zn[x] means that fi

$←− Zn, i = 0, deg(f).
An adversary trying to break cryptosystem is denoted by A. For sym-

metric cryptosystem ε: P – plaintexts space, C – ciphertexts space, K –
secret keys space, sk – secret key, PD – probabilistic distribution over P ,
PP – the set of cryptosystem’s public parameters.

2.2 Resultant of polynomials

Let’s recall the notion of resultant. It’s necessary for our attack on [15].
Consider fi(x) =

∑di
j=0 fi,j · xj ∈ Zn[x], i = 1, 2. One may compose a

Sylvester matrix S ∈ Z(d1+d2)×(d1+d2)
n for f1, f2:

S =



f1,0 · · · f1,d1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 f1,0 · · · f1,d1
f2,0 · · · f2,d2 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 f2,0 · · · f2,d2

 (1)

CTCrypt 2015 A. Trepacheva 207



A Known Plaintext Attack on a Fully Homomorphic ...

The resultant of f1, f2 is R = Res(f1, f2) = [det(S)]n ∈ Zn. R = 0 iff
f1, f2 have a common root or factor modulo n (for details see [12]). Also
for further discussion we need the next proposition.

Proposition 1. Consider n = p · q ∈ Z+, p, q ∈ Z+ – primes, p 6= q and
f1(x), f2(x) ∈ Zn[x]. If f1, f2 have a common root or a factor modulo p (or
q) then [R]p = 0 (or [R]q = 0). And also R = 0 iff [R]p = 0 and [R]q = 0
hold.

We omit the proof because it could be is easily derived from the Chinese
reminder theorem and properties of congruences.

2.3 Overview of FHC proposed in [15]

Let’s briefly recall the description of a cryptosystem from [15]. The
scheme is defined by the choice of P = Zp, K = Ip,d, C = Pn,2·d, where
d ∈ Z+, p, q ∈ Z+ – prime numbers with bit length λ, p < q, p 6= q, n = p·q,
i.e n – RSA modulus. The factorization of n is a secret. The authors also
introduce special public parameter – evaluation key Ek, which is necessary
for computing over ciphertexts. Ek is a polynomial w(x) ∈ Pn,2·d+1.

Algorithm 1: KeyGen(λ, d).

Input: λ, d ∈ Z+

Output: sk and PP
1 Generate p, q, n;

2 u(x)
$←− Ip,d

3 sk := u(x);

4 s(x)
$←− Ip,d+1;

5 r(x)
$←− Pn,2·d;

6 w(x) := [s(x) · u(x) + p · r(x)]n;
7 Ek := w(x);
8 PP := {n,Ek};
9 return sk,PP ;

This cryptosystem is FHC, because any polynomial function may be
computed homomorphically. Indeed, consider m1,m2 ∈ Zp and c1(x),
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Algorithm 2: Encrypt(m, sk).

Input: plaintext m ∈ Zp, sk
Output: c(x) ∈ C

1 s(x)
$←− Ip,d;

2 r(x)
$←− Pn,2·d−1;

3 c(x) := [s(x) · u(x) + p · r(x) +m]n;
4 return c(x);

Algorithm 3: Decrypt(c(x)).

Input: c(x) ∈ C, sk
Output: plaintext m ∈ Zp

1 m← [c(x)]p mod sk;

2 return m;

c2(x) ∈ C – encryptions made for the same sk, d. In [15] the following
proposition is proved.

Proposition 2. For sk, d c+(x) = [c1(x) + c2(x)]n, c∗(x) = [(c1(x) ·
c2(x)) mod w(x)]n are correct encryptions of plaintexts [m1 + m2]p and
[m1 ·m2]p correspondingly.

In practice 1024 ≤ log(n) ≤ 4096 and then ciphertext size is S ≤ 8192·d
bits. This implies d < 125 to obtain S ≤ 106. Such setting seems to
be reasonable and in all latest FHCs [4] S ≤ 106. Larger S will make
homomorphic computations too much expensive.

Ending with the description of this FHC we’ll correct a little mistake
made in [15]. The authors of [15] state that without factorization of n
it’s not possible to decrypt c(x) using only sk = u(x). But this is false.
It is easy to verify that a division of c(x) by u(x) modulo n step by step
eliminates terms

∑
si · uj−i and final residue g(x) has coefficients gi =

p · ai ∈ Zn, ai ∈ {0, ..., q − 1} except of free coefficient, which is equal to
[p · b+m]n, b ∈ {0, ..., q− 1}. So one may find p by computing GCD(gi, n)
and then extract m.
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3 A known plaintext attack on the cryptosystem from

[15]

3.1 KPA based on resultant computation

The attack on described FHC exploits the following property of ciphertexts.

Proposition 3. Let c1(x), c2(x) ∈ Zn[x] – be encryptions of zero plaintext
produced by algorithm 2 with sk. c1(x), c2(x) has a common factor modulo
p.

Proof. ci(x) := [si(x) · u(x) + p · ri(x)]n, i = 1, 2 ⇒ [ci(x)]p := [[si(x) ·
u(x)]p, i = 1, 2. So u(x) is a common factor modulo p.

Now let A intercepted two pairs – (mi ∈ Zp, ci(x) ∈ C), i = 1, 2 pro-
duced with sk = u(x). According to proposition 3 fi(x) = [ci(x)−mi]n ∈
Zn[x] have common factor u(x) modulo p. Hence for R = res(f1, f2) ∈ Zn

equalityRp = 0 holds (see proposition 1). So ifR 6= 0, than secret modulus
p may be recovered from the following equation:

p := GCD(n,R). (2)

Remark 1. When computing (2) one works with R like with integer ∈
{0, ..., n− 1}.

So we only need to estimate the probability that for randomly inter-
cepted pairs R 6= 0 holds. Statement 1 yields R 6= 0 iff [R]q 6= 0. So we
have to estimate Pr{[R]q 6= 0}. This could be done with the following
theorem from [1].

Theorem 4. ([1]) Let (d1, ..., dm) be an ordered m-tuple of nonnegative

integers (not all zeroes) and for 1 ≤ i ≤ m let gi(x)
$←− Zq[x], i = 1,m,

where q is a prime. Then the probability that gi(x), i = 1,m are relatively
prime is 1− 1/qm.

Remark 2. Since in Zq \ {0} all elements are invertible, in theorem 4
arbitrary gi(x) may be replaced by monic gi(x) (see the proof in [1] for
details).
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Clearly, if fq,i(x) = [fi(x)]q, i = 1, 2 may be considered as uniformly
random in Zq[x] then theorem 4 implies [R]q = 1 − 1/q (≈ 1 for large q).

Hence it’s left to show that fq,i(x)
$←− Zq[x].

Proposition 5. Let q ∈ Z+, a1
$←− Zq and a2

D←− Zq, where D is some
distribution over Zq, a1, a2 – independent. Then random variable a+ =

[a1 + a2]q is s.t. a+
$←− Zq.

Proposition 6. Let q ∈ Z+ is prime, p ∈ Z+, p 6= 0, p < q, a
$←− Zq. Then

for ap = [p · a]q there is ap
$←− Zq.

Theorem 7. Let f(x) = [c(x) −m]n ∈ Zn[x], where c(x) encrypts m (by

algorithm 2). Then fq(x) = [f(x)]q
$←− Pq,2·d,mon holds.

Proof of lemmas 5, 6 and theorem 7 are in Appendix.

By theorem 7 and according to algorithm 2 there exist fq,i(x)
$←− Pq,2·d,mon[x],

i = 1, 2. So putting all things together we obtain theorem 8 compromising
the KPA-security of FHC from [15].

Theorem 8. If A intercepted (mi ∈ Zp, ci(x) ∈ C), i = 1, 2 produced with
sk, then computation of GCD(n,R) recovers p with probability 1 − 1/q,
where R = res(f1, f2) ∈ {0, ..., n− 1}, fi(x) = [ci(x)−mi]n, i = 1, 2.

After recovering p A computes fp,i(x) = [fi(x)]p = [si(x)·u(x)]p, i = 1, 2.
To determine u(x) one may calculate

GCD(fp,1(x), fp,2(x)) = GCD(s1(x), s2(x)) · u(x) ∈ Zp[x].

Due to algorithm 2 s1(x), s2(x)
$←− Ip,d, so s1(x), s2(x) are relatively prime

with probability Pr = 1 − 1/νp, where νp – the number of irreducible
polynomials in Zp[x] and Pr ≈ 1 for large p. Thus the probability to find
u(x) is 1− 1/νp.

Finally let’s estimate the probability of obtaining {p, u(x)} using de-
scribed method. According to algorithm 2 events GCD(s1(x), s2(x)) =
const and GCD(fq,1(x), fq,2(x)) = const are independent. So our attack is
successful with probability (1− 1/νp) · (1− 1/q) (≈ 1).
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Table 1: Running times of attack for different p, q, d
d Time for log(n) = 210, log(p) = 29 Time for log(n) = 211, log(p) = 210

8 132 ms 443 ms
16 521 ms 1.73 s
32 2.24 s 7.2 s
64 10.7 s 29 s
128 55 s 2.2 min
256 5.2 min 12.3 min
512 23 min 52 min

Table 2: Practical estimation of Pr for different bit length of n, 8 ≤ d ≤ 512
log(n) Pr

29 0.9998
210 1
211 1

If A has > 2 pairs he may apply this strategy several times. This
increases the probability of success. But in fact two pairs are enough since
log(p), log(q) > 500. Moreover it may be sufficient to intercept only one
pair (m, c(x)) in the presence of Ek = w(x) made for the same sk. w(x) is
encryption of zero and one may compute R = res([c(x)−m])n, w) to find
p.

The complexity of described KPA is ≈ O(d3 · log2(n)).

3.2 Experimental data

FHC from [15] and presented KPA were implemented using Qt 1.3.1 and
NTL library. For testing of the implementation the middle-range work-
station was used: AMD Phenom(tm) II P960 Quad-Core Processor 1.80
GHz, 4 GB RAM. In tables 1,2 we present KPA running times for different
p, q, d and practical estimation of probability Pr to recover p and sk = u(x).
Please note that for estimation of Pr two pairs (mi ∈ Zp, ci(x) ∈ C) were
generated randomly ≈ 105 times.
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3.3 Similarity and differences between FHC [15] and Domingo-
Ferrer’s HC

KPA on FHC [15] is similar to KPA on well-known Domingo-Ferrer HC
[5]. This is due to the fact that Domingo-Ferrer HC [5] works in such a
way that its secret key sk ∈ Zp is a root of ciphertext c(x) ∈ Zn[x] modulo
p, where n = p · q – RSA modulus. In [15] instead of a common root
ciphertexts has a common irreducible factor u(x) modulo secret p.

Let’s outline the difference. The success of resultant-based attack on
Domingo-Ferrer HC [5] heavily depends on PD, because in [11] it is shown
that polynomials [f(x)]n = [c(x) −m]n for [5] inherit PD and KPA works
provably good only for uniform PD. But if PD is s.t. Pr{m = 0} is signifi-
cant then probability of successful key recovering is small. But the situation
is different for FHC [15]. In [15] polynomials [f(x)]n are independent of
PD (see theorem 7) and so KPA works good for any PD.

4 Conclusion

We have presented a KPA on factorization based FHC [15]. The com-
plexity of the attack is polynomial in cryptosystem’s parameters and the
probability of successful key recovering is ≈ 1. To implement the attack it’s
enough to intercept two pairs of plaintext and corresponding ciphertext.
Moreover in the presence of Ek interception of only one pair is sufficient.
And this makes FHC from [15] completely KPA-insecure.

The existence of provably KPA-secure FHC based on factorization is
still an open problem. Whether it is possible to construct it in principle is
an important direction of further research.

Also in future we are planning to investigate the resistance of FHC from
[15] to COA.
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A Proofs

Proof of Proposition 5. For ∀a ∈ Zq there is a = [j + ja]q for ∀j ∈ Zq

and ja = [q − j + a]q ∈ Zq. For j1 6= j2 ja,1 6= ja,2 holds. This implies
Pr{a+ = a} =

∑q−1
j=0 PrD{j} · 1/q, where PrD{j} – probability of j due to

D. Obviously
∑q−1

j=0 PrD{j} = 1 and then Pr{a+ = a} = 1/q.

Proof of Proposition 6. Since q is prime, any j ∈ Zq may be represented as
j = [p·(p−1 ·j)]q, where [p·p−1]q = 1 and for j1 6= j2 there is [p−1 ·j1]q 6= [p−1 ·
j2]q. Then for fixed p we have Pr{ap = j} = Pr{a = [p−1 · j]q} = 1/q.

Proof of Theorem 7. There is f(x) := [s(x) · u(x) + p · r(x)]n, where s(x)
$←−

Ip,d, r(x)
$←− Pn,2·d−1. So fq(x) = [[s(x) ·u(x)]q+[p ·r(x)]q]q holds. Let’s look

at rp,q(x) = [p · r(x)]q ∈ Pq,2·d−1. Coefficients of r(x) are s.t. ri
$←− Zn, i =

0, 2 · d− 1 according to algorithm 2. This implies [ri]q
$←− Zq, i = 0, 2 · d− 1

and hence according to Proposition 6 [p · ri]q
$←− Zq, i = 0, 2 · d− 1 holds.

So using Proposition 5 one obtains fq(x) = [f(x)]q
$←− Pq,2·d,mon.
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Side Channel Cryptanalysis of Streebog

Gautham Sekar

Abstract

Streebog is the cryptographic hash function standard of the Russian Federation.
It comprises two hash functions corresponding to two digest sizes, 256 bits and 512
bits. This paper presents a side channel attack that uses processor flag information
to speed up message recovery by a factor of 2. Success is nearly guaranteed if the
flag is set; the probability is 0.668 otherwise.

Keywords: Cryptographic hash function, Streebog, side channel crypt-
analysis, carry flag, message recovery, HMAC.

1 Introduction

A hash function F takes an arbitrarily long bit string m as input and
outputs a fixed length bit string H (called hash value or digest). A cryp-
tographic hash function is meant to satisfy certain security properties, the
most important of which are the following.

• (First) preimage resistance: given H, it is computationally infea-
sible to find an m′ such that F (m′) = H.

• Second preimage resistance: given an m and F (m), it is compu-
tationally infeasible to find an m′ 6= m such that F (m′) = F (m).

• Collision resistance: it is computationally infeasible to find an m
and an m′ 6= m such that F (m) = F (m′).

The general model for cryptographic hash functions involves what is
called a compression function. The function transforms a bit string of
a fixed length into a shorter string of a fixed length. The arbitrarily long
message is partitioned into blocks after a process called padding (described
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later in the context of Streebog). The blocks are then sequentially pro-
cessed, with the compression function acting on every block until all the
blocks are processed. The final output is the hash value. The general
model is described in good detail in [9, Sect. 2.4.1].

Streebog is a set of two hash functions and a Russian cryptographic
standard (GOST R 34.10–2012) [5]. It was developed by the Center for In-
formation Protection and Special Communications of the Federal Security
Service of the Russian Federation, with participation of the Open Joint-
Stock Company “Information Technologies and Communication Systems”
(JSC “InfoTeCS”) [5], following a demand for “a hash function to meet
modern requirements for cryptographic strength” [5]. In 2012, Streebog
replaced GOST R 34.11–94 as the national standard.

The hash functions comprising Streebog have 256 bits and 512 bits as
their digest lengths. We shall call the hash functions “Streebog-256” and
“Streebog-512”, respectively. The compression function, common to both
the versions, operates on 512-bit blocks in the Miyaguchi-Preneel mode,
has 13 rounds, is based on a substitution-permutation network and uses a
linear transformation.

Streebog has been analysed in [1, 2, 3, 6, 10]: in [1, 10], the rebound
attack is used to find (semi-free-start) collisions for reduced versions of the
Streebog compression function; [2] presents integral distinguishers on up
to 7 rounds of the compression function; [3] reports preimages for 6-round
Streebog; and [6] describes second preimage attacks on the full Streebog-
512. The drawback of the attacks in [6] is that they work well only with
long messages. For instance, if the length of the message is at least 2188

bits, then 2342 compression function evaluations are required. The time
complexity can be brought down to as low as O(2266) provided that the
message is at least 2268 bits in length. For shorter messages, of bit-length
γ < 2188 (but greater than 512 bits), the number of compression function
evaluations is estimated at (log2 γ−9) ·2522−log2 γ. We present in this paper
the first side channel attack on the full Streebog. We also discuss the
implications of our attack on the security of Streebog-based keyed-hash
message authentication code (HMAC).
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Processors have registers that store information on operations performed
by their ALUs. For example, in the Intel IA-32 architecture, the status flags
of the EFLAGS register indicate the result of arithmetic instructions such
as ADD and DIV (divide) [7]. One of these flags, known as the carry flag,
is a single bit that indicates an overflow in unsigned integer arithmetic.
For instance, when two unsigned integers are added, the carry flag is set
(to 1) if a carry is generated by the addition at the most significant bit
position (we shall call this an end carry) and the flag is cleared (i.e., 0)
otherwise. This may be exploited by an attacker as in [8] where Kelsey et
al. use carry flag information to attack the block cipher RC5. In our side
channel attack too we use the state of the carry flag. Our attack recovers
a message block in about 2511 time with 99.9% success rate (number of
successful recoveries per 100 messages uniformly distributed at random) if
the carry flag is set and 66.8% otherwise. The only other attack known on
the full Streebog is due to Guo et al. [6].

The paper is organised as follows. Section 2 describes Streebog and
Sect. 3 details our meesage recovery attack. We propose countermeasures
to our attack in Sect. 4 and conclude in Sect. 5.

2 Description of Streebog

Table 1 lists the notation and conventions followed in the rest of this
paper.

Streebog is a simple design that uses only a few elementary arithmetic
operators such as XOR and modular addition, and simple functions such
as substitution, permutation and linear transformation. The hash func-
tion accepts any message M of length less than 2512 bits and returns a
digest of length 256 bits or 512 bits. The round function or compression
function has 13 iterations, the first twelve of which involve a substitution-
permutation layer. If 512 - |M |, then padding prefixes M with a bit string
pad := {0}511−(|M | mod 512)‖1. The padded message is then partitioned into
(k+1) 512-bit blocks Mk,Mk−1, . . . ,M0; i.e., pad‖M = Mk‖Mk−1‖ · · · ‖M0.
The compression function g that processes the message block Mi takes as
additional inputs the chaining value Hi (of size 512 bits) and a length
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Table 1: Notation and conventions

Symbol/notation Meaning
|W | length of W in bits

Γi(W ) ith 64-bit word of W ; i = 0 de-
notes the least significant word

W(i) ith bit of W ; i = 0 denotes the
least significant bit

‖ concatenation
⊕ exclusive OR

fg, where f and g are functions f ◦ g (composition of f and g)
LSB least significant bit
MSB most significant bit

counter Ni, and outputs Hi+1. Algorithm 1 describes the working of Stree-
bog. The IV in the algorithm is the initial value H0 (Streebog-256 and
Streebog-512 use different 512-bit IV s).

Algorithm 1 The Streebog algorithm

Require: The message M , |M | < 2512

Ensure: A 256-bit or a 512-bit digest
1: M → pad‖M →Mk‖Mk−1‖ · · · ‖M0;
2: H0 = IV ;
3: N0 = 0;
4: for i = 0 to (k − 1) do
5: Hi+1 = g(Hi,Mi, Ni);
6: Ni+1 = Ni + 512 mod 2512;
7: Σ← Σ +Mi mod 2512;
8: Hk+1 = g(Hk,Mk, Nk);
9: Nk+1 = Nk + α mod 2512 , where α = 512− |pad|;

10: Σ← Σ +Mk mod 2512;
11: Hk+2 = g(Hk+1, Nk+1, 0);
12: H = g(Hk+2,Σ, 0);
13: Output H if Streebog-512, else output H � 256;

The substitution-permutation layer includes the following components.

• Substitution function S: The input, a 512-bit string, is first parti-
tioned into bytes. Every byte is then substituted by a byte from a set
π′, which is a permutation of {0, 1, . . . , 255}, and concatenated.
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• Permutation function P : Partitions its 512-bit input into bytes, per-
mutes the bytes (i.e., shuffles their positions) and concatenates them.

• Linear transformation L: This is also a 512-bit-to-512-bit mapping.
If the input is W , then L(W ) = `(Γ7(W ))‖`(Γ6(W ))‖ · · · ‖`(Γ0(W )),
where ` is a 64-bit-to-64-bit linear transformation that outputs the
right multiplication of its input with a constant matrix A over GF (2).

• The function X[·]: If K and W are 512-bit strings, then X[K](W ) =
K ⊕W .

The compression function g is now given by:

g(Hi,Mi, Ni) = E(LPS(Hi ⊕Ni),Mi))⊕Hi ⊕Mi , (1)

where

E(LPS(Hi ⊕Ni),Mi)) = X[K13]LPSX[K12]LPSX[K11] . . . LPSX[K1](Mi) ,

(2)

and

K0 = LPS(Hi ⊕Ni) , (3)

Kj+1 = LPS(Kj ⊕ Cj) , for j = 0, 1, . . . , 12, and constants Cj. (4)

3 The Message Recovery Attack

The functions S and P do not involve modular addition or multiplication.
The function X is a simple XOR operation. The linear transformation `
works as follows. Denoting its 64-bit input by β := β(63)‖β(62)‖ · · · ‖β(0), we
have:

`(β) =
63⊕
i=0

β(63−i) � A[i] ,

where the product � is defined as follows:

β(63−i) � A[i] =

{
{0}64 β(63−i) = 0 ;

A[i] β(63−i) = 1 .
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Hence, from (1)–(4), it immediately follows that Streebog compression does
not involve any operation, such as addition modulo 2512, that can alter the
state of the carry flag. This means that only steps 6, 7, 9 and 10 of
Algorithm 1 can potentially affect the carry flag.1

Now, the maximum length of M is 2512 − 1. Given a message of this
length, the number of blocks will be d(2512−1)/512e = 2503.2 If k+1 < 2503

(to simply calculations, this can be considered a sure event as it happens
with a probability that is very close to 1 if |M | is uniformly distributed
at random over {0, 1, . . . , 2512 − 1}), then Nk = 512k, 512k < Nk+1 ≤
512(k + 1), and the carry flag will be unaffected by steps 6 and 9. This
leaves us with steps 7 and 10. Now,

Σ =

(
k−1∑
i=0

Mi

)
mod 2512 +Mk mod 2512 . (5)

= Tk−1 +Mk mod 2512 , say. (6)

Let C := [C(511)C(510) · · ·C(0)] denote the vector of carries generated
in (6) such that C(0) is the carry at the LSB position. When k ≥ 1 (this
can also be considered a sure event), we have the following attack.

Scenario 1: Suppose that the carry flag is set at the end of Algorithm 1.
If |pad| ≥ 2 ⇒ Mk(511) = 0, or |pad| = 0 and Mk(511) = 0, then Tk−1(511) =
C(511) = 1. If the attacker knows M0,M1, . . . ,Mk−2, and all but the MSB
of Mk−1, then she can recover Mk−1(511) from Tk−1(511) = 1 performing
k − 1 < 2503 − 2 additions (recall (5) and (6)).

If |pad| = 0 and Mk(511) = 1, or |pad| = 1⇒Mk(511) = 1, then there are
three possibilities: (i) Tk−1(511) = C(511) = 1, (ii) Tk−1(511) = 0 and C(511) =
1, (iii) Tk−1(511) = 1 and C(511) = 0. Assuming these cases to be equally
likely,3 the attacker can assume with 2/3 probability that Tk−1(511) = 1,

1The for-loop of Algorithm 1 is implemented differently in [5]. To obtain M0, the least
significant 512-bit word of the padded message is extracted. The leftover message replaces the
padded message and its 512 LSBs are extracted as M1. This process is repeated until all the
message blocks have been extracted. The carry flag is evidently unaffected by the process.

2Therefore, even if we go with the for-loop implementation (Algorithm 1), it will have no
bearing on the carry flag.

3Since the distribution of |Mk| is uniform, given the padding scheme employed, the distribu-
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and recover Mk−1(511).
Table 2 lists the above cases and their probabilities assuming that (i)

|Mk| is uniformly distributed at random over {0, 1, . . . , 511}, and (ii) ev-
ery message block other than Mk is uniformly distributed at random over
{0, 1, . . . , 2512 − 1}. The attack methodology is as follows. The attacker,
knowing M0,M1, . . . ,Mk−2 and Mk, makes a guess for the 511 LSBs of
Mk−1, obtains a value for the MSB of Mk−1 (assuming that Tk−1(511) = 1),
hashes Mk‖Mk−1‖ · · · ‖M0, and compares the digest with the given hash
value. If the values do not agree, the guess is incorrect and the attacker
makes another guess. The process is repeated until the hash values agree.
The sum σ of M0,M1, . . . ,Mk−2 modulo 2512 can be precomputed (cost is
k−2); σ+Mk−1 mod 2512 can be performed at each guess and, in doing so,
can be avoided while computing the digest (i.e., σ+Mk−1 mod 2512 can be
stored and reused). To minimise memory usage, the storage element can
be rewritten at the next guess. The probability of success is the probabil-
ity that Tk−1(511) = 1 holds true. From Table 2, this probability is simply
510/512 + 1/768 + 1/1024 + 1/1536 ≈ 0.999. The attack requires 2511

hash function evaluations plus a precomputation cost of k − 2 < 2503 − 3.
Memory requirements are negligible.

Table 2: Computing Pr(Tk−1(511) = 1) when the carry flag is 1; the probability q is given
the condition on |pad| and r is given the conditions on |pad| and Mk(511)

|pad| Pr. (p) Mk(511) Cond. pr. (q) Tk−1(511) Cond. pr. (r) Overall pr. (pqr)
≥ 2 510/512 0 1 1 1 510/512
1 1/512 1 1 1 2/3 1/768
0 1/512 0 1/2 1 1 1/1024
0 1/512 1 1/2 1 2/3 1/1536

Scenario 2: Suppose that the carry flag is 0 at the end of Algorithm 1.
If |pad| ≥ 2 ⇒ Mk(511) = 0, or |pad| = 0 and Mk(511) = 0, then at least

tion of Mk is not uniform. This makes it tedious to compute the distribution of the carry vector
C. Hence the assumption.
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one of Tk−1(511) and C(511) is 0. Knowing M0,M1, . . . ,Mk−2, and all but the
MSB of Mk−1, the attacker can recover Mk−1(511) assuming that Tk−1(511) =
0. The assumption is valid in two out of the three possible cases: (i)
Tk−1(511) = C(511) = 0, (ii) Tk−1(511) = 0 and C(511) = 1, (iii) Tk−1(511) = 1
and C(511) = 0. Assuming that these cases are equally likely, Pr(Tk−1(511) =
0) = 2/3.

When |pad| = 0 and Mk(511) = 1 or when |pad| = 1⇒Mk(511) = 1, then
Tk−1(511) = C(511) = 0.

Table 3 lists the above cases and their probabilities under the assump-
tion that (i) |Mk| is uniformly distributed at random over {0, 1, . . . , 511},
and (ii) every message block other than Mk is uniformly distributed at
random over {0, 1, . . . , 2512 − 1}. The attack methodology is identical to
that described under Scenario 1, except that the attacker here assumes that
Tk−1(511) = 0. The probability of success is the probability that Tk−1(511) = 0
holds true. From Table 3, this probability is 170/256 + 1/512 + 1/1536 +
1/1024 ≈ 0.668. The time complexity and memory requirements are the
same as that in Scenario 1.

Note: The probability that Tk−1 = 0 given that the carry flag is 0 and
Mk(511) = 0 is at least 1/2 since Pr(case (i) or case (ii)) = Pr(Tk−1) = 1/2
(given the assumption that the message blocks other than Mk are uniformly
distributed). Even if the conditional probability is 1/2, the success proba-
bility will be 255/512 + 1/512 + 1/2048 + 1/1024 > 1/2 (see Table 3). The
success probability calculated from Table 2 changes negligibly when 2/3 is
replaced by 1/2.

Table 3: Computing Pr(Tk−1(511) = 0) when the carry flag is 0; the probability q is given
the condition on |pad| and r is given the conditions on |pad| and Mk(511)

|pad| Pr. (p) Mk(511) Cond. pr. (q) Tk−1(511) Cond. pr. (r) Overall pr. (pqr)
≥ 2 510/512 0 1 0 2/3 170/256
1 1/512 1 1 0 1 1/512
0 1/512 0 1/2 0 2/3 1/1536
0 1/512 1 1/2 0 1 1/1024
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In summary, by simply guessing Tk−1(511) to be equal to the carry flag,
the attacker is able to recover Mk−1 with 2511 hash function evaluations and
k − 2 precomputations. The number of precomputations can be negligible
in comparison to 2511 and even the maximum number of precomputations
(2503−4) is considerably smaller than 2511. Moreover, each precomputation
is only an addition of two 512-bit integers. Consequently, the precompu-
tation cost can be ignored. The success probability is 0.668 if the carry
flag is 0 and 0.999 otherwise. Arriving at a single value for the probability
is involved given the difficulty in determining the distribution of the carry
vector C. It is easy to see that the attack works for any i ∈ {0, 1, . . . , k−2}
in place of k − 1. In the ideal case, either 2512 hash function evaluations
are required or the success probability is 1/2 for 2511 evaluations.4 Since
the compression functions of Streebog-256 and Streebog-512 are identical,
our attack applies to both the hash functions.

3.1 Implications of Our Attack

Our attack may be particularly relevant to HMACs. Proposed by Bellare
et al. [4] as a message integrity checking mechanism, a HMAC employs a
hash function h in conjunction with a secret key K and generates a MAC
value as follows:

HMAC(K,m) = h((K0 ⊕ opad)‖h((K0 ⊕ ipad)‖m)) ,

where m is the message, opad and ipad are public constants, and K0 is the
secret key or a function of K. The lengths of K0, opad and ipad equal the
length of a message block. Given the HMAC value and h((K0⊕ ipad)‖m),
in certain cases, our attack appears to speed up the recovery of K0 by a
factor of 2. This is being further investigated.

4 Countermeasures

A simple way to preclude our preimage attacks is to introduce a low-cost
arithmetic operation, after step 12 of Algorithm 1, that permanently sets

4This does not apply to Mk unless |pad| = 0. Knowing |pad| and M0,M1, . . . ,Mk−1, the
attacker can recover Mk in 2512−|pad| time. Our attack is not intended to recover Mk.
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or clears the carry flag. However, the approach fails if the attack model
assumes that the attacker can determine the status of the carry flag after
step 12.5

A faster and safer countermeasure is to implement the checksum using
XOR; i.e., replace the addition modulo 2512 in steps 7 and 10 of Algorithm 1
with XOR.

5 Conclusions

In this paper, we have presented the first known side channel attack on
Streebog. The attack speeds up message recovery by a factor of 2 with
a probability that lies in [0.668, 0.999]. The attack is conjectured to be
applicable to Streebog-based HMAC.

Our attack recovers the MSB of a message block. It is possible to
recover bits of lower significance but calculating the success probabilities
is involved and beyond the scope of this paper. We leave it as a problem
for future work. Use of other processor flags such as the parity flag is also
worth investigating.

We have also proposed countermeasures to our attacks. These evidently
also preclude the above proposed extensions to the attacks.
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On Differential Properties of a Symmetric
Cryptoalgorithm Based on Pseudo-dynamic

Substitutions

Alexey Kozhevnikov Sergey Polikarpov Konstantin Rumyantsev

Abstract

In this work we propose a structure of a block cryptoalgorithm "Collapser" on
the basis of pseudo-dynamic substitutions which application allows to combine ad-
vantages of fixed substitutions (high speed of work and efficiency of use of computing
resources) and dynamic substitutions (neutralization of statistical methods of crypt-
analysis). We provide primary assessment of differential properties of reduced version
of "Collapser" in comparison with differential properties of random substitutions of
similar dimension. The obtained results are well consistent with the principles laid
down in the structure of "Collapser" and show that after 3 rounds "Collapser" looks
as random substitution. However, the offered structure of symmetric cryptoalgo-
rithm demands additional research of cryptographic properties.

Keywords: block cryptoalgorithm; pseudo-dynamic substitution.

1 Introduction

Importance of a task of search of new approaches to synthesis of the sym-
metric cryptoalgorithms resistant to all range of cryptanalytic attacks is con-
firmed by the series of competitions on cryptographic algorithms held in re-
cent years and high activity of scientific researches in this area. Methods
of linear and differential cryptanalysis, and also their derivatives are widely
applied to an assessment of firmness of modern block cryptoalgorithms [1].
It should be noted that the basic element bringing complexity (nonlinear-
ity) in cryptographic transformation are random substitutions (replacement
blocks). The specified methods of cryptanalysis are directed on search and
exploiting of weaknesses of substitutions and are most effective at fixed sub-
stitutions as demand for their work a considerable volume of statistics [2, 3].
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In the existing block cryptoalgorithms the main approach for neutralization
of the specified attacks is an application of a significant amount of rounds
of encryption (usually more than 8), more effective operations of hashing
and selection of substitutions with the maximum characteristics: maximum
nonlinearity, minimum autocorrelated characteristics and others [4, 5, 6, 7, 8].

Naturally, the methods of synthesis of fixed substitutions are very impor-
tant, as they must simultaneously satisfy a number of cryptographic prop-
erties [1, 9, 10, 11, 12]. A typical case is when synthesized substitution is
strong performance for one characteristic, but on another - poor performance
[7, 9]. The problem is compounded by the fact that the fixed substitution
that has an ideal linear and differential characteristics, doesn’t exist [13].

Another obvious approach for the neutralization of linear and differential
cryptanalysis is an application of dynamic substitutions which can change
in the encryption process [14, 15, 16, 17, 18]. However, such approach
doesn’t guarantee automatic decrease in efficiency of linear and differential
cryptanalysis. The effect can be reached only when dynamic substitutions
achieve the statistical characteristics which are coming closer to ideal (in
the conditions of equiprobable dynamic change of tables of substitution).
Besides, the majority of researches on application of dynamic substitutions
consider only option of key-dependency of substitutions (Key-Dependent S-
box) — substitution modification depending on a value of a cryptographic
key [14, 15, 16, 17, 18]. A number of the cryptographic algorithms using this
option is known [19, 20, 21], but it doesn’t give them considerable advantages
in comparison to analogues [5, 22].

In this work a structure of block symmetric cryptoalgorithm on the basis
of pseudo-dynamic substitutions is considered (PD-sbox [23, 24]). Pseudo-
dynamic substitutions allow to combine advantages of fixed substitutions
(high speed of work and efficiency of use of computing resources) and dynamic
substitutions (neutralization of statistical methods of cryptanalysis).

The goal of the our research — an assessment of differential proper-
ties of reduced versions of the proposed structure of block cryptoalgorithm
"Collapser" in order to confirm the efficiency of the structure and application
of pseudo-dynamic substitutions of PD-sbox.
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2 Pseudo-dynamic substitutions

The structure of a pseudo-dynamic substitution (fig. 1) is based on the
fixed substitutions sbox [23]. An argument of each fixed substitution will
be parameterized by the individual value of a state Si, where i – a num-
ber of the fixed substitution (from 0 to K-1). The current value of a state
S =

{
S0, S1, S2, . . . , SK−1

}
sets one substitution from all set of possible sub-

stitutions of PD-sbox. We will call the table of substitution obtained by
a concrete value of S the equivalent (generated) substitution for PD-sbox.
Respectively, the number of various equivalent substitutions for PD-sbox is
defined by quantity of possible states of S.

It is supposed that values of a state S are not necessarily fixed and can dy-
namically change during the encryption process, and probabilistic properties
corresponds to the uniform distribution.

The general view of the expression, describing the structure of pseudo-
dynamic substitution of PD-sbox, is the following:

Y =
K−1⊕
i=0

sboxi(X ⊕ Si). (1)

where sbox – fixed substitutions; K – number of the fixed substitutions;
X – input bits; Y – output bits; S – bits of a state of a pseudo-dynamic
substitution; ⊕ – addition modulo 2.

Figure 1: The structure of pseudo-dynamic substitution.

For a pseudo-dynamic substitution PD-sbox we performed a primary anal-
ysis of differential [24] and linear properties. In case of a dynamic equiproba-
ble change of values of a state of S both differential and linear characteristics
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are close to ideal (when averaging characteristics on all generated substitu-
tions). That allows to neutralize the existing methods of linear and differ-
ential cryptanalysis. However, the relevant structure of cryptoalgorithm is
necessary for complete description of PD-sbox properties. A structure called
"Collapser" (a black hole) is proposed in this work for an assessment of dif-
ferential properties.

3 Notations and parameters of a structure of cryptoal-
gorithm "Collapser"

PD-sbox – pseudo-dynamic substitution;
Lblock – length of the block of text, bit;
Lkey – length of a secret key, bit;
nr – number of rounds of encryption;
M – number of input bits of pseudo-dynamic substitution of PD-sbox;
Nwords = Lblock/M – number of input words in the block;
K ≥ Nwords – number of the fixed substitutions as a part of PD-sbox;
Nrows = K ≥ Nwords – number of lines of a matrix of state values;
m = {m0,m1, . . . ,mNwords−1} – vector of the initial message;
a = {a0, a1, . . . , aNwords−1} – vector of values at the end of the 1st round;
b = {b0, b1, . . . , bNwords−1}– vector of values at the end of the 2nd round;
c = {c0, c1, . . . , cNwords−1} – ciphertext vector;
IV – initialization vector;
i – number of a column (corresponds to number of the word);
j – line number;
snri,j – state value;
knri,j – values of an expanded key;
xnri – input value of a pseudo-dynamic substitution of PD-sbox;
ynri – output value of a pseudo-dynamic substitution of PD-sbox;
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4 A short description of a structure of block cryptoal-
gorithm of "Collapser"

Figure 2 shows the easily scalable structure of a block cryptoalgorithm
under the general name "Collapser". It’s represented by a sequence of the
linked pseudo-dynamic substitutions of PD-sbox.

The structure is compactly presented in the form of an source code (for
example, in language C). An example of a pseudo-code of the program for
the encryption function (when nr = 3) is the following:

1 encrypt_block_deadloop (m_in [ ] , c_out [ ] , IV [ ] , key [ ] [ ] ) {
2
3 u int a [ Nwords ] , b [ Nwords ] , c [ Nwords ] , s [ Nrows ] ;
4
5 for ( j = 0 ; j < Nrows ; j++) { s [ j ] = IV [ j ] ; }
6
7 round_func (m_in , a , s , key , RAPID_MIX) ; // PROCESS ROUND 1
8 round_func ( a , b , s , key , RAPID_MIX) ; // PROCESS ROUND 2
9 round_func ( b , c , s , key , SHADOW) ; // PROCESS ROUND 3
10
11 for ( j = 0 ; j < Nrows ; j++) {c_out [ j ] = c [ j ] ; }
12 }

The minimum number of rounds of encryption is nr ≥ 3 and is predeter-
mined by the structure of cryptoalgorithm.

An example of a pseudo-code of the program for round function is the
following:

1 round_func ( in [ ] , out [ ] , s [ ] , key [ ] [ ] , TYPE) {
2
3 for ( i = 0 ; i < Nwords ; i++) {
4 y = 0 ;
5 for ( j = 0 ; j < Nrows ; j++)
6 s [ j ] ^= key [ i ] [ j ] ;
7 s [ j ] = sbox [ j ] [ s [ j ] ] ;
8 y ^= s [ j ] ;
9 }
10 out [ i ] = in [ i ] ^ y ;
11 for ( j = 0 ; j < Nrows ; j++) {
12 i f (TYPE == RAPID_MIX) s [ j ] ^= out [ i ] ;
13 i f (TYPE == SHADOW) s [ j ] ^= in [ i ] ;
14 }
15 }

CTCrypt 2015 A.A. Kozhevnikov, S.V. Polikarpov, K.E. Rumyantsev 232



On Differential Properties of a Symmetric Cryptoalgorithm ...

16 }

It is supposed that values of the key array are obtained by means of expansion
of an initial key, which is not considered within this work.

Figure 2: The structure of "Collapser".

Generally, PD-sbox is represented by 4 operations – expansions (Expand),
mixing with an expanded key (Mixkey), the block of nonlinear substitutions
(Nonlinear substitution), narrowings (Shrink). Coupling of pseudo-dynamic
substitutions of PD-sbox is carried out through the state values snri,j,that allow
to gain entropy and nonlinearity of a state consistently snri,j.

There are two options of connection PD-sbox - with intensive mixing
state values snri,j (RAPID MIX, Fig. 3) and with masking state values snri,j
(SHADOW, Fig. 4). "SHADOW" is implemented in the last round of en-
cryption for "whitening".

As for not bijectivity of block transformation this structure is applicable
only for the modes of encryption which aren’t demanding reversibility of
transformation. For example, modes of a keystream generation, calculation
of hash values or message authentication codes. It should be noted that
the proposed structure of cryptoalgorithm can be transformed to bijective
function by breaking the connection between rounds snri,j and alternation of
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Figure 3: A pseudo-dynamic substitution, "RAPID MIX" type.

Figure 4: A pseudo-dynamic substitution, "SHADOW" type.

the direction of inclusion of PD-sbox (from left to right and vice versa), but
thus the total nonlinearity of the transformation will decrease.

5 Basic principles laid down in "Collapser"

In this work justification of the proposed structure of cryptoalgorithm isn’t
considered. Separate works will be devoted to it. Briefly we will give the basic
principles laid down in "Collapser":

1. Transition from the size of the input block (Lblock) to the size of the
state (Lblock ·Nrows) (expansion).

2. Nonlinear transformation is applied to the state, which size is Lblock ·
Nrows. This allows to maximize complexity (nonlinearity) of cryptographic
transformation.

3. Obtaining output values by mapping the results of transformations
from state of size (Lblock ·Nrows) to size of output block (Lblock) (shrink-
ing).

4. Application of dynamically changeable substitutions based on PD-sbox
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for neutralization of differential and linear cryptanalysis.
5. The special structure of the cryptographic algorithm, which allows

efficient use of the pseudo-dynamic substitution PD-sbox :
5.1. The minimum number of types of operations – only additions modulo

2 (XOR) and substitutions are used.
5.2. Accumulation and transfer of entropy of a state snri,j between succes-

sively connected PD-sbox ’es within the round of encryption for maximizing
dynamics of change of substitutions.

5.3. Accumulation of nonlinearity of transformations through values of
a state snri,j between successively connected PD-sbox ’es within the round of
encryption.

5.4. Intensive (rapid) mixing state values snri,j between successively con-
nected PD-sbox ’es within the round of encryption.

5.5. Decrease in efficiency of cryptanalytic attacks due to restriction the
manipulation with input values and the further accumulation of statistics.

5.6. Masking state values snri,j due to introducing uncertainty in the tran-
sition from bigger dimension to smaller (2M ·Nrows → 2M).

5.7. Additional transfer of values of a state snri,j between rounds for maxi-
mizing uncertainty and nonlinearity of transformations.

6. Simplicity of scalability of a structure of cryptoalgorithm under various
lengths of blocks and keys.

6 Assessment of full differentials for reduced versions
of cryptoalgorithms on the basis of structure of "Col-
lapser"

In order to determine the resistance against differential cryptanalysis we
use the approach proposed in [5]and based on determination of full dif-
ferentials for reduced versions of cryptoalgorithms and correlation of the
received results with distribution of full differentials for random substitu-
tions of similar dimension. As indicators we will use the maximum value of
differential probability (DP f

max) and average maximum value of differential
probability (ADP f

max) for key dependent function f. For random substitu-
tion of degree 2Lblock in [5] a theoretical assessment for ADP f

max in the form
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ADP f
max ≤ (Lblock + 4) was proposed.

For experiment the 4 fixed bijective substitutions were created for M = 4
bits (tab. 1) in a random way.

Table 1: Fixed substitution components PD-sbox.
X 0 1 2 3 4 5 6 7 8 9 A B C D E F

sbox0(X) 5 B E F 6 A 0 8 C D 1 4 2 9 7 3
sbox1(X) 7 8 6 0 B E A C 5 4 1 9 D F 3 2
sbox2(X) E 5 4 F 8 0 6 D A 7 3 B 2 C 1 9
sbox3(X) 4 5 1 B E 3 6 2 7 0 A C 9 D F 8

Depending on the configuration in structure, PD-sbox includes from 2
to 4 fixed substitutions (Nrows = 2 . . . 4). Taking into account restriction
Nwords = Nrows, rhe length of the block Lblock = Nwords ·M was 8, 12 and 16
bits respectively. For each configuration differential properties were defined
for 100 keys. Results are shown in the columns "Collapser" of tables 2-4.

In addition, for the analysis of dynamics of change of differential charac-
teristics, as output values we took values of a state snri,j on a certain step, to
the corresponding number of substitution of PD-sbox in structure of cryp-
toalgorithm (see fig. 2). So, step = 0 corresponds to a condition of the initial
PD-sbox located in the top left corner of structure in figure 2. The number
of a step was defined as step = (nr− 1) ·Nwords + i. The received results are
given in the columns of the same title.

For comparison, the results obtained in the column "Random subst" shows
the values for 100 randomly generated bijective substitutions of the corre-
sponding dimensions.

Table 2: Values of maximum of tables of differences for a case Nwords = Nrows = 2 and
M=4 (Lblock = 8 bit)

step=2 step=3 step=4 step=5 Collapser Random subst.nr=2 nr=2 nr=3 nr=3
ADP f

max 256 50,82 12,56 11,28 11,2 11,44
DP f

max 256 64 18 14 14 16
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Table 3: Values of maximum of tables of differences for a case Nwords = Nrows = 3 and
M=4 (Lblock = 12 bit)

step=5 step=6 step=7 step=8 Collapser Random subst.nr=2 nr=3 nr=3 nr=3
ADP f

max 141,04 124,68 15,34 15,34 15,52 15,5
DP f

max 226 170 18 18 20 20

Table 4: Values of maximum of tables of differences for a case Nwords = Nrows = 4 and
M=4 (Lblock = 16 bit)

step=7 step=8 step=9 Collapser Random subst. babyAESnr=2 nr=3 nr=3
ADP f

max 81,78 19,06 19,24 18,98 19 19,326
DP f

max 192 22 24 22 22 20

7 Conclusions

The results (tables 2-4) agree with the principles laid down in structure of
"Collapser":

1. The first round (nr = 1) of encryption serves for the primary set of
uncertainty and nonlinearity of values of states snri,j. Because the substitutions
of PD-sbox are switching consistently, the greatest uncertainty is achieved
on the last step of a round.

2. On the second round (nr = 2) encryption due to input of the state value
snri,j from the first round, there are interrelations between vector elements
b = {b0, b1, . . . , bNwords−1}, that leads to the intensive growth of nonlinearity
of transformation. However, second round is not enough for achieving of
necessary nonlinearity of transformation. For example, there is a short way
(in only one substitution of PD-sbox ) between values b0 and m(Nwords−1)
through value of a state s20,j = s1Nwords,j.

3. In the third round (nr = 3) of encryption sufficient complexity of the
interrelations between all the elements of the vector of the ciphertext c =
{c0, c1, . . . , cNwords−1} is achieved . The minimum distance between values
c0 and m(Nwords−1) through values forms Nwords many steps or substitutions
of PD-sbox. High nonlinearity is confirmed by that on the junction of the
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2nd and 3rd rounds (at the beginning of the 3rd round), distribution of
differentials for values snri,j of states comes closer to distribution of random
substitutions. Regularity remains for various lengths of the block Lblock.

4. Despite existence of considerable deviations in distribution of differ-
entials for values snri,j of a state of the first steps of the 3rd round (step=3
for tables 2 and step=6 for table 3) the final differentials distribution for the
values of the ciphertext (column "Collapser") is indistinguishable from ran-
dom distribution substitutions. That confirms property of masking of values
of a state snri,j due to introduction of uncertainty upon transition from bigger
dimension to smaller (2M ·Nrows → 2M) when forming output values.

The presented results need to be considered as an initial assessment of
differential properties of the proposed structure of cryptoalgorithm of "Col-
lapser" demanding additional research.
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Abstract

In the current paper we consider cryptographic properties of a secure connection
protocol, designed for interacting with functional key carrier (or FKC). It is based
on key establishment protocol using low-entropy pre-shared secret (password). The
considered protocol is based on well-known SPAKE1 protocol modified for interact-
ing with FKC and using Russian cryptographic algorithms. In the current paper
we describe some features of protocol construction and provide security evaluation
results in a certain adversary model.

1 Introduction

The safety of using digital signature mechanisms depends entirely on keep-
ing private key secret. There exist different methods that can be used for this
purpose. For a trivial example, a private key can be stored on a user com-
puter protected by a local password, but this option has two disadvantages.
First, the user can only sign documents on that particular computer. Second,
the security of the private key depends entirely on the security of the user
computer.

One of the safest ways to store private keys is putting them on a smart
card. Smart cards lack disadvantages mentioned above. They allow user to
use his private key on other computers. Typically, the user must activate his
smart card by entering a personal identification number or a PIN-code. The
number of attempts to enter the PIN-code is limited, which makes smart
cards resistant to brute force attacks.
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There are two widely distributed types of smart cards. Cards of the first
type, which can be called passive, just store a private key. After entering the
correct PIN-code such cards transmit the private key to a target application
which uses the key to compute a digital signature. Passive smart cards have
one big disadvantage: after transferring the private key it’s security depends
entirely on security properties of the user computer. Also, such cards are vul-
nerable to a passive adversary who can sniff the traffic between the computer
and the smart card and obtain user PIN-code and key from sniffed data.

The second type is a class of active smart cards. They operate as follows:
the hash calculated from the document is sent to the smart card, whose CPU
signs the hash using the stored private key of the user and then returns the
signed hash. A passive adversary in this case can’t obtain user key from
sniffed data but he can still obtain user PIN-code. So, if an adversary steals
a smart card, he can sign arbitrary data as legal user without knowing the
key. Also, passive smart cards are vulnerable to an active adversary having
an ability to send arbitrary messages into the channel.

In the current paper we describe a smart card connection protocol that
is resistant against an active adversary ([9]). It’s central element is modi-
fied SPAKE1 protocol [1]. The important feature of this type of protocols
is an additional requirement of an active opponent inability to obtain infor-
mation that allows him password exhaustive search later without additional
interaction with participants. In the current paper we present clarifications
concerning protocol structural features, then we describe an adversary model
and give the result (and a sketch of the proof) of the security evaluation in
this model.

2 Notation

By Vn we will denote the set of n -component vectors from GF (2) . By
[n] we will denote the set {1, 2, . . . , n} .

We assume further that all elliptic curve point operations are performed
in the prime order q subgroup E of some elliptic curve point group. We will
denote the base point as P and the order of the full group as m . We will
use τ for denoting the complexity of scalar point multiplication. By 0E we
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will denote the neutral element of the group E , E∗ = E \ 0E .
F denotes the PBKDF2 function, defined in [8]. H256 is used for the

National Standard of Russian Federation GOST R 34.11-2012 hash function
(also known as ”Streebog”, [7]) with output of 256 bits. EK , ImitK and
DK are used respectively for encryption, MAC and decryption algorithms
as described in GOST 28147-89 national standard ([5]) used with secret key
K .

3 Protocol description

The protocol is supposed to be run by two parties, which we will denote
as protocol subjects. Every subject stores some secret parameter. The subject
who stores password as his secret parameter will be called the client, the
other who stores point QPW as a secret will be called the server. If A is a
protocol subject, then AID ∈ ID is his identifier (which is in fact a fixed-
length bit string). The client and the server (A and B in protocol scheme)
store two provably pseudorandom points Q and P respectively (for detailed
comments see 4.3). The client remembers his password PW ∈ V k

8 . The
server stores the following parameters: r ∈ [264−1] , salt ∈ Vl and the point
QPW = F (PW, salt, 2000)·r·Q (the last parameter is kept secret). TA, TB —
some fixed constants. The protocol scheme is given in the table 1. Comments
and clarifications on some protocol features are provided in Section 4.

The idea which the subprotocol EKEKA is based on is taken from [1]. The
additional part of protocol EKE (or EKEKC ) is made due to the necessity of
the checking that EKEKA is successfully finished. Generated common secret
can be used for further secure communication as encryption and authentica-
tion key (MAC by GOST 28147-89).

4 Structural features of the protocol

In this section we discuss structural features of the EKE protocol and
their impact on it’s properties.
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A B

AID −→
←− (r, salt)

Q′ = r ·Q
QA

PW = F (PW, salt, 2000) ·Q′
α ∈R [q − 1]

u1 = α · P −QA
PW −→

Quit if u1 /∈ E
QB = u1 +QPW

β ∈R [q − 1], R ∈R E∗, UKM ∈R [2128 − 1]
if m

q
QB = 0E, then QB = R EKEKA

KB = H256((UKM · mq · β mod q)QB)

←− u2 = β · P +QPW , UKM
Quit if UKM /∈ [2128 − 1] or u2 /∈ E

QA = u2 −QA
PW , R ∈R E∗

if m
q
QA = 0E, then QA = R

KA = H256((UKM · mq · α mod q)QA)

CA = EKA
(TA) −→

IA = ImitKA
(TA) −→

Verification: D′ = DKB
(CA)

?
=TA

Verification: ImitKB
(D′)

?
= IA

SID ∈R V 4
8 EKEKC

←− CB = EKB
(TB||SID)

←− IB = ImitKB
(TB||SID)

Verification: D′ = DKA
(CB)

?
=TB

Verification: ImitKA
(D′)

?
= IB

Table 1: Protocol EKE description

4.1 Counters of unsuccessful authentication attempts

Informally speaking, the EKE protocol is considered to be secure if the
best way to recover the session key (or some information about it) is password
guessing via interaction with network subject (further for clarity this method
will be called ”online” password guessing). The alternative to ”online” guess-
ing which is unacceptable for secure protocol is reasonably practical password
exhaustive search that does not require such an interaction (”offline” guess-
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ing).
During the ”online” guessing every unsuccessful attempt results in the

break of connection caused by checks within the protocol EKEKC . An ab-
sence of limitations on the total number of unsuccessful attempts leads to
a sufficient increase of ”online” guessing probability. That is the reason why
the EKE protocol must provide the restriction on the total number of pos-
sible unsuccessful connection attempts. This counter is decremented as the
first server request is received. If the connection is successfully established,
then this counter is set to it’s highest value (set by default — usually it’s not
greater than 10 ). In addition to the counter of consequential unsuccessful
authentication attempts it is necessary to limit the overall number of such
events. It provides the ability to prevent ”online” password guessing between
successful connections.

4.2 Processing of neutral point case

This subsection explains the reasons why the cases of key agreement when
m
q QB = 0E (or m

q QA = 0E ) are processed in a special way. In this particular
case ”special processing” means random point R generation independent of
QB value and it’s usage as QB if m

q QB = 0E .
The protocol where the specified case is not treated specially may be vul-

nerable to ”online” password guessing if usage of unsuccessful authentication
attempts counters is not strict. Let us explain this statement.

Let the counter of unsuccessful authentication attempts decrease in the
beginning of the EKEKC protocol and the case of m

q QB = 0E be not treated
specially. Then the adversary imitating the A -side sends the B -side points
u1 = X − QPW ′ with m

q X = 0E for different PW ′ and measures the time
of the B -side response. After the B -side response is received the adversary
breaks the connection. By this we mean that the B -side doesn’t decrease the
counter of unsuccessful connection attempts and the time measured gives an
adversary a criterion for identification of the correct password — for the
correct password this time will be substantially smaller because the multiple
point computation appears to be degenerate.

If the subjects process the neutral point according to the protocol descrip-
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tion but they generate R only if it is needed, then the adversary can also
distinguish the correct password from the incorrect through the supplemen-
tary actions of R generation for the case of PW = PW ′ .

The time difference in conditional test of m
q QB = 0E for the cases QB =

0E and QB 6= 0E is insignificant because according to [6] value of m
q is

extremely small.
Any of the methods described above become inapplicable if the subjects

decrease the counters of unsuccessful authentication attempts at the very
beginning.

Additionally we note that if an adversary imitates the B -side, then he
can keep UKM value under control. However he can’t make it equal to 0 to
ensure degeneracy of multiple point computation because the A -side detects
this possibility.

4.3 Pseudorandomness of points P and Q

The points P and Q must be chosen in such a way that the multiplicity
of each of them relating to any other is unknown and the complexity of
multiplicity computation must be comparable to complexity of a solution
to the discrete logarithm problem in the group of points of the used elliptic
curve. The fulfillment of this condition can be gained by choosing the specified
points according to the conception of provable pseudorandomness [4]. Thus
the choice of a point of an elliptic curve in Weierstrass form (y2 = x3+ax+b )
can be carried out in the following manner: generate random string s and
assume x = H(s) for as long as the value of the expression x3 + ax + b
stays quadratic nonresidue; set y =

√
x mod p . For example, hash function

GOST R 34.11-2012 can be used here as H .
If the multiplicity of Q relating to P is known, then the adversary imi-

tating server can get the criterion for incorrect password rejection (therefore
he can guess password ”offline”). For that end it is sufficient to interact with a
client only once. We outline the possible sequence of the adversary’s actions.
For clarity, in the description of key agreement procedure we assume that
parameters UKM and m

q are equal to 1 .
If the multiplicity of Q relating to P is known, then the multiplicity of Q′
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relating to P is also known: let Q′ = γP , let z = F (PW, salt, 2000) . Then
in response to a message u1 = αP − zγP an adversary sends a message
u2 = βP + z′γP , where β and z′ are values arbitrarily chosen by the
adversary. The next client message is a known fixed string encrypted on the
key K = H256 (α (β + z′γ − zγ)P ) , which is unknown for the adversary.
Correctness of decryption of this message is the criterion for incorrect session
key rejection and the relation

K = H256 ((β + z′γ − zγ) · (u1 + zγP )) ,

in the right part of which only z value depending on password is unknown
for the adversary, gives the opportunity to guess the password.

If the multiplicity of Q′ relating to P is unknown, then the adversary
has to determine α , because the key will be calculated using a formula
K = H256 (αβP + αr′Q′ − αrQ′) .

5 Considered models

In this section we will introduce a brief description of the considered mod-
els. A formal detailed description can be found, for example, in [1] and [3].

When considering a model we suppose there exists a network, which con-
sists of users interacting with each other using EKE protocol only. Every
subject can interact in only one protocol session in any moment. The sub-
jects that interact in the session are modelled using oracles.

5.1 Protocol EKEKA adversary model

In this section an active adversary model (that is, we consider an adversary
who controls all the communication channels between all network users and
has, besides, an ability to obtain some successfully established connection
keys) is being considered.

Let us consider an adversary who has no ability to make queries to the
oracles modelling network users, but still has an ability to make queries to
five special oracles. Four of these oracles describe his network interacting
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abilities, while the fifth one models an ideal necessary primitive — a hash
function.

We won’t go deep into details for Oexec , Osend and Oreveal oracles, but
we’ll mention that they are needed to model passive channel eavesdropping,
active channel intruding and established session key revealing respectively
(the last is possible if, for example, keys are used in unappropriate way). We
would like to describe the Otest oracle in a more detailed way, because we
formulate the threat using it. The adversary queries Otest only once and gets
from it either session key of desired user or a random bit string (it depends
on a random bit, which is set by Otest ). It’s prohibited to ask this oracle for
the session key, which was got from Oreveal . The threat is if the adversary
could guess what has been returned by Otest : the session key or a random
bit string.

ADVERSARY

Oexec Osend Oreveal Otest

(A
ID ,jB

ID )

(A
,ji,jm

)

(A
,ji)

(A
,ji)

OH

m

EKEjprotocoljsubjectsjnetwork

OA OB

Figure 1: Protocol EKEKA adversary model

Procedure 5.1. We consider the procedure, in which an adversary A has
access to Oexec , Osend , Oreveal , OH and Otest oracles and can make a
query to Otest only once. As a result, an adversary A returns either 0 or
1 . Let SUCC denote an event, when the value returned by the adversary
matches bit b , which was used by Otest oracle when working.
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By the advantage of the adversary A , who is trying to solve the distin-
guishing problem described above, we will denote

Adv(A) = |2 · Pr{SUCC} − 1|

. For the adversary, who solves some computational problem, by Adv(A)
we will denote the probability of success. It’s always clear from the context,
which specific problem is considered.

For positive integers t , qH , qsend , qexec and qreveal by

ATask(t, qH , qsend, qexec, qreveal)

we will denote the set of adversaries, operating in less than t steps, making
less than qH , qsend , qexec and qreveal queries to corresponding oracles and
solving Task problem. By AdvTask(t, qH , qsend, qexec, qreveal) we will denote

AdvTask(t, qH , qsend, qexec, qreveal) = max
A∈ATask(t,qH ,qsend,qexec,qreveal)

Adv(A).

When we consider a set of adversaries, limited not by all the parameters
(or some limitations have no sense for considered problem), the redundant
parameters are omitted. For example, AdvTask(t) is a set of adversaries,
who operate faster than t steps.

5.2 EKE protocol adversary model

EKE protocol adversary model is mostly the same as model for EKEKA

protocol, so we are going to describe only the difference.

5.2.1 Key revealing adversary model

For EKE protocol a key revealing adversary model is being considered.
Besides the abilities which the adversary, who was considered for EKEKA

analysis, has, here the adversary can make queries (K) to OA,cipher and
OB,cipher oracles, which return strings FTA

(K) and FTB
(K) respectively.

These strings are values of two random functions FTA
and FTB

. Usage of
these oracles helps to model encryption of the strings TA and TB with key
K . Instead of Otest oracle OK

test oracle is being considered, which receives
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string S as an input and session identifier and returns 1 if this string is the
indicated session key and 0 otherwise. In this case the main of the protocol
security characteristics is the probability Adv(A) that the adversary A can
get the session key.

5.3 Certain practical adversary models

This section is devoted to show the fact that the model described above
includes all common practically considered adversary models. EKE protocol
is designed for being used mostly for connection between key carrier (smart
card) and a client (computer). In this case the client stores the password,
while the card stores QPW point. Further in this section we will say ”client”
and ”card” to denote protocol participants.

Example 5.2. Adversary is a client. Attack: the adversary acts as a client
before card. It can send the card any messages and receive it’s answers.
Threat: the adversary is successfully authenticated by the card.

This example is fully covered by the oracles described in 5.1. In this
case the adversary addresses Osend oracle in order to send the card some
messages, impersonating the client. The successful authentication of the ad-
versary by the card implies establishing common secret key between them.
That means the adversary has solved a problem, which is at least as hard as
distinguishing session key from a random bit string.

Example 5.3. An adversary is a man-in-the-middle. The adversary can in-
tercept any messages the participants exchange. It can also change and hold
these messages, as well as send messages on his own choice to every pro-
tocol participant impersonating any other participant. Threat: the adversary
obtains some information about the session key.

We would like to notice that all the adversary’s opportunities of arbitrary
manipulating transmitted messages are covered by his ability to address Osend

oracle, which was described in 5.1. Thus, «man-in-the-middle» adversary
is at most as powerful as an adversary having access to Osend . The imple-
mentation of the desired threat is then at least as hard as distinguishing the
session key from a random bit string.
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Finally, we would like to mention another example.

Example 5.4. Adversary is a card. Suppose, the adversary is a subverted
card, which is used to obtain client’s password (or, at least, QPW point).

In this case, the card can interact with the client as a normal card. This
behaviour is fully covered by using the Osend oracle. If the adversary card
obtains client’s password, then it obtains all the future session keys, estab-
lished between client and the adversary card. This implies that the adversary
card can distinguish the session key from a random bit string.

It’s worth noticing that Oreveal oracle should be also considered due to a
future possible incorrect usage of the session key (for example, as a key for a
weak cryptographic algorithm).

6 The EKE protocol security

The EKE protocol security is estimated in two stages. At first the EKEKA

protocol security in relation to the threat of key distinguishing is evaluated.
Then through the usage of the obtained estimation the EKE protocol secu-
rity is evaluated in relation to the threat of key revealing.

Further all problems are formulated for subgroup E of elliptic curve point
group with |E| = q where q is prime.

6.1 The evaluation of the EKEKA protocol security

Further qexec , qsend , qH denote the number of queries to the oracles
Oexec , Osend , OH respectively that are made by the adversary AEKEKA .
D is the ”vocabulary” that contains the password.

The treatment of a simple case when the adversary actually tries to guess
the password of one of the connections leads to a lower bound of the EKEKA

protocol security.

Theorem 6.1. For qsend > 2 and some t , sufficient for performing of one
interaction by one client according to protocol, the following inequality is
valid:

AdvEKEKA(t, qsend) >
1

|D|
− 1

q
.
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The EKEKA protocol security is based on the complexity of solving com-
putational Diffie-Hellman problem (CDH): given a nonzero point P ∈ E
and points X = xP and Y = yP (x, y ∈R Zq ), find Z = xyP . Further
AdvCDH(A)denotes the probability of success for adversary A . The char-
acteristic reflecting the complexity of solving CDH problem is the value of
AdvCDH(t) = maxA∈A(t) AdvCDH(A) . For given X = xP and Y = yP we
will denote xyP as CDHP (X, Y ) . When P is clear in context it will be
denoted as CDH(X, Y ) .

Theorem 6.2. The following inequality is valid:

AdvEKEKA(t, qH , qsend, qexec, qreveal) 6

6
2qsend
|D|

+
(2qexec + qsend)

2

q
+ 2qHAdvCDH(t+ 2τqexec)+

+ 2qsend
4

√√
AdvCDH(8t+ 8qS1τ + 2Θ +O(qHτ)) +

8q4H
q
,

where C is some constant, τ is the complexity of evaluation of multiple
point in group E , qS1 is the number of queries to the oracle Osend in the
form (r, salt) , Θ is the complexity of finding two equal elements in two sets
of a size q2H .

Let us give a comment on the estimate presented in the theorem. As was
shown above, the lower bound of the advantage AdvEKEKA(t, qsend) is of the
order |D|−1 . The estimate obtained in the theorem shows that if the CDH
problem is intractable then the advantage in the problem of distinguishing
key from random string has the order |D|−1 (with limitations on the number
of unsuccessful authentications).

The basic ideas of the proof are similar to ones in [1], adapted for the case
of interacting subjects using one point Q .

6.2 The complete EKE protocol security estimate

As a final security result that is proven using the above statements we
conclude with the following theorems.
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Theorem 6.3. The following inequality holds:

AdvK,EKE(t, qexec, qsend, qreveal, qH) 6 2AdvK,EKEKA(t, qexec, qsend, qreveal, qH).

Theorem 6.4. The following inequality holds:

AdvK,EKEKA(t, qexec, qsend, qreveal, qH) 6
1

2n
+AdvEKEKA(t, qexec, qsend, qreveal, qH).
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RSA-like Cryptosystem using Dedekind Rings

Sergey Tronin Kseniya Petukhova

Abstract

The aim of this paper is to establish necessary conditions for the maximum
possible generalization of the RSA algorithm. We substitute ideals of a Dedekind
ring for integers.

Keywords: RSA, Dedekind ring, ideal, Euler’s function

1 Euler’s ϕ-function for a Dedekind rings

Let us remember that the power of a quotient ring R/A is denoted by
N(A) and is called the norm of ideal A ∈ R.

Lemma 1. Let R be a Dedekind ring, and R/P <∞ for every maximal
ideal P . Then |R/A| = N(A) <∞ for every ideal A. With that if A = P n,
then N(P n) = N(P )n.

Proof. Since P n/P n+1 ∼= R/P ([6, p. 13,(5)]), |P n/P n+1| = |R/P | =
N(P ).

Proof is performed by the induction on n. Inductive hypothesis is
|R/P n| = N(P )n. Case n = 1 comes from the hypothesis of lemma.
In case n = 2 we have A ⊂ B ⊂ R. Then there exists homomor-
phism f : R/A → R/B, and Ker(f) = B/A. f : x + A → x + B.
Since P 2 ⊂ P , f : R/P 2 → R/P is surjective, |Ker(f)| = |P/P 2| =
N(P ). Above |R/P 2| = |R/P | · |P/P 2|, hence N(P 2) = N(P )2. Sup-
pose |R/P n| = N(P )n < ∞. From P n+1 ⊂ P n we have surjective ho-
momorphism f : R/P n+1 → R/P n, and Ker(f) = P n/P n+1. Hence
|R/P n+1| ∼= |R/P n| · |P n/P n+1| = N(P )n ·N(P ) = N(P )n+1.
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From this point we will consider Dedekind rings taking into account the
following condition: |R/M | <∞ for every maximal ideal. In particular all
rings of algebraic integers satisfy this condition. Herewith assuming the
above, we can define the Euler’s function analog for ideals of ring R:

ϕ(A) = |U(R/A)|,

where U(R/A) is a group of units. This definition is correct by lemma 1.
If |R/M | <∞, where M is a maximal ideal, then ϕ-function is defined

for every ideal of a Dedekind ring R. If A = Mk1
1 ·Mk2

2 · . . . ·Mkm
m , then

ϕ(A) =
m∏
i=1

ϕ(Mki
i ).

Lemma 2. Let O is a ring, N is a maximal ideal and all elements from
N is nilpotent. Then O is a local ring.

Proof. Let u ∈ O, u 6∈ M , then Ou + M = O. Hence 1 = wu + z,
where w ∈ R, z ∈ M . Then wu = 1 − z. But since z is nilpotent, than
1 − z is invertible. Hence u is invertible and u is not element of M . This
means that O is a local.

Theorem 1.Let R be a Dedekind ring such that |R/M | = N(M) < ∞
for every maximal ideal, then ϕ(Mn) = N(M)n −N(M)n−1.

Proof. The ring R/Mn contains a maximal ideal M/Mn and every
element of M/Mn is nilpotent. Hence R/Mn is a local ring by the lemma 2.
This means that U(R/Nn) = R/Mn \M/Mn. Transferring to powers we
have ϕ(Mn) = |R/Mn| − |M/Mn|. From above |R/Mn| = N(M)n. We
still have |M/Mn| = N(M)n−1 to prove.

The proof is by induction on n.
Case n = 2. M/M2 ∼= R/M by [6, page 13,(5)].
Case n+ 1: Mn+1 ⊂Mn ⊂M and as in lemma 1 we have: there exists

homomorphism g : M/Mn+1 → M/Mn and it is surjection with kernel
Mn/Mn+1 ∼= R/M . Then we have |M/Mn+1| = |M/Mn| · |Mn/Mn+1| =
N(M)n ·N(M).

Theorem 2. (Generalized Euler’s Theorem) Let R be a ring with above
conditions, m ∈ R, A ⊂ R be an ideal. If Rm + A = R then mϕ(A) ≡ 1
(mod A).
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Proof. By the condition m+ A is in U(R/A).

Special cases of generalized Euler’s function can be found in [1] and [5].

2 The Main Result

Let R be a Dedekind ring with the following conditions:
1. For every maximal ideal M quotient-ring R/M is finite.
2. It’s possible to find a set W ⊂ R for some maximal ideals M1,M2 ∈ R

and A = M1 ·M2 such that:
2.1. Every coset R/A intersects with W and this intersection contains

only one element (i.e. W consists of different elements from co-sets R/A
that’s why we have one-by-one correspondence between W and R/A).

2.2. It’s possible to find some convenient for calculations one-by-one cor-
respondence between W and [0, T ] = {0, 1, 2, . . . , T−1, T} with sufficiently
large natural number T .

Suppose Alice wishes to enable anyone to send her secret messages,
which can only be decrypted by her. First, she picks two maximal ideals
M1 6= M2 ⊂ R. Then Alice computes A = M1 ·M2. Alice also chooses
an encrypting exponent e, which satisfies gsd(E,ϕ(A)) = 1. Now Alice’s
public key is the pair (A, e), which she can publish in a public directory.
Then Alice computes the decryption exponent d such as ed = 1 + ϕ(A)t.
Alice keeps secret her privat key, which is the triple (d,M1,M2).

Now suppose Bob wishes to encrypt a message for Alice. He first looks
up Alice’s public key and represents the message as an element m ∈ W .
The ciphertext c is then produced by raising the message to the power of
the public encryption exponent modulo the public modulus, i.e.

c = me (mod A) ∈ W.

Alice on receiving c can decrypt the ciphertext to recover the message by
exponentiating the ciphertext by the private decryption exponent, i.e.

m = cd (mod A) ∈ W.

Theorem 3. med ≡ m (mod A) for all m ∈ W .
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Proof. Case Rm + A = R. We can use Theorem 2: mϕ(A) ≡ 1
(mod A). From here mϕ(A)t ≡ 1 (mod A) and med = m · mϕ(A)t ≡ m
(mod A).

Case Rm + A 6= R, m 6= 0. Then the ideal Rm + A contains A =
M1M2 and therefore M1M2 = (Rm+A)M ′ for some ideal M ′. So we have
Rm+ A = M1 or Rm+ A = M2. Let Rm+ A = M1.

From Rm+ A = M1 we get m ∈M1, hence med ≡ m (mod M1).
Since m ∈ W , m 6= 0, m ∈ M1, then m 6∈ M2. From this we have

Rm + M2 = R, and by Theorem 2 we get mϕ(M2) ≡ 1 (mod M2). Next
we calculate

mϕ(M1)ϕ(M2) = mϕ(A) ≡ 1 (mod M2),

m ·mϕ(A)t ≡ m · 1 = m (mod M2),

m1+ϕ(A)t = med ≡ m (mod M2).

From med ≡ m (mod M1) and med ≡ m (mod M2) we get med ≡ m

(mod M1M2) by Chinese Remainder Theorem for rings.

3 Some known results and further perspectives

The RSA cryptosystem for R 6= Z was introduced earlier only for case
R = Z[i]. This was made in a series of papers: [2], [3] and so on. The
authors of these papers have argued that cryptographic security for case
R = Z[i] is greater than cryptographic security of usual RSA cryptosystem
for R = Z. At the same time the authors of paper [4] assert that this is
not the case. We agree with the last authors. Moreover:

Theorem 4. Let R be a quadratic ring of algebraic integers. Then
cryptographic security of RSA for this R does not exceed cryptographic
security of usual RSA cryptosystem.

Proof. As known from [7, § 4.5], for every ideal I ⊆ R, there exists
a, b, d ∈ Z such that the following are true:

(a) I = d(Za+ Z(−b+ δ)), and
(b) b2 − tb+ n ≡ 0 (mod a), or, equivalently, a|N(−b+ δ).
Conversely, any I ⊆ R satisfying (a) and (b) is an ideal.
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Herewith the following proposition holds ([7, p.84, proposition 4.9.10]):
Let I = Za+Z(−b+ δ) be an ideal of R. Let a = pe11 · · · · · perr be the prime
factorization of a in Z. The factorization of I into prime ideals is given by

A =
r∏

i=1

(Zpi + Z(−b+ δ))ei

Thus, the task to factorize the ideal is equivalent to the task of the
natural numbers decomposition into the product of primes.

We may talk about the cryptographic security of the RSA for the
Dedekind rings only when we define the form of ideals. In the previous
theorem it was supposed that there exists a reasonably good way, which
allows us to find a standard form for every ideal of R. So, if a question of
finding a good algorithm, which will allow us to find a standard form of
ideal in the quadratic ring can be successfully resolved, then the quadratic
ring of algebraic integers (without Z) will be unfit for being used as plat-
form for the generalized RSA algorithm.

Some results of this paper were announced in [8].
This work was partially funded by the subsidy allocated to Kazan Fed-

eral University for the state assignment in the sphere of scientific activities
(the registration number is 114 090 970 010).
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Additively Homomorphic Encryption Using Matrix
Polynomials with Approximate Perfect Security

Philipp Burtyka

Abstract

This paper proposes a new probabilistic additively homomorphic encryption
(AHE) scheme based on univariate matrix polynomials over prime fields. The cryp-
tosystem is simple and efficient. The analysis of its security properties shows that
compared to predecessors it has so-called approximate perfect security in k-bounded
KPA (known plaintext attack) model.

Keywords: Additively Homomorphic Encryption, Matrix Polynomials, Ap-
proximate Perfect Security.

1 Introduction

Additively homomorphic cryptosystem (AHC) allows to compute Enc(x+
y) using Enc(x), Enc(y) without knowledge of a secret key sk. Additively
homomorphic encryption (AHE) is of great interest today because of many
practical applications in various areas, like for example: electronic voting
[1], privacy - preserving data mining [9], private information retrieval [12],
private matching and set operations [4, 8], securing mobile agents [13].

Today a great variety of AHCs exists. The most well-known AHC is
celebrated Goldwasser-Micali’s scheme [5] based on quadratic residuosity
problem. Other AHCs based on similar problems can be founded for ex-
ample in [6]. Also there are AHCs based on elliptic curves [14], and finally
AHCs exploiting lattice framework exist, for example [11, 10].

All mentioned AHCs are asymmetric and to prove their security the au-
thors use an approach based on complexity theory. More precisely AHCs

CTCrypt 2015 Ph. B. Burtyka 262



Additively Homomorphic Encryption Using Matrix Polynomials ...

are usually shown to be semantically secure against different types of at-
tacks, if some mathematical problem is hard to solve (for example: factor-
ing big numbers, finding the shortest lattice vector, etc.). This means that
if problem is hard, any polynomial adversary can’t distinguish between
probability distributions Pr{m0|C} and Pr{m1|C}, where m0,m1 – some
plaintexts and C – any ciphertext.

But to the best of our knowledges efficient symmetric AHC with perfect
security hasn’t been proposed yet. And there is only one homomorphic
cryptosystem (HC) [7] that is proven to be approximate perfectly secure
in k-bounded KPA (known plaintext attack) model. This means that this
cryptosystem is approximate perfectly secure if adversary has at most k
pairs (plaintext, ciphertext), where k is linearly bounded in cryptosystem’s
parameters. However HC [7] is very inefficient (even if only its additive ho-
momorphism is exploited). But in the light of quantum computing progress
it’s of key importance to build efficient homomorphic cryptosystems hav-
ing perfect security even to some extent, because they may be much more
resistant to different attacks.

Our contribution. In this paper we analyze a simplified version of HC
from [2] based on matrix polynomials. In contrast to [2] HC presented here
is not multiplicatively homomorphic. It is only AHC, and so for simplicity
we call it AHMP (additively homomorphic using matrix polynomials).
Our simplification of [2] leads to possibility to prove that AHMP has
approximate perfect security in k-bounded KPA (known plaintext attack)
model. AHMP is the first AHC with such security property. Compared to
[7] for AHMP k is bounded quadratically in cryptosystem’s parameters.
Also it’s important that in AHMP all algorithms and ciphertexts sizes
depends polynomially in its parameters, wherein in [7] they are exponential.

Organization of the paper. Section 2 provides some necessary back-
ground. Section 3 describes AHMP . And Section 4 deals with security of
AHMP . Proofs of some technical lemmas can be found in Appendix.
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2 Preliminaries

2.1 Notations

Natural numbers, integers and real numbers are denoted by N, Z and
R correspondingly, a prime field of characteristic q – by Fq, the ring of
square n × n matrices with Fq entries – by Fn×nq . By lowercase letters we
denote vectors (like ~v) and by uppercase bold letters – matrices (like M).
The ith row of matrix M is Mi. Zero vector and zero matrix are ~0 and 0
correspondingly.

The probability of event X is Pr{X}, conditional probability of Y after

X – Pr{X |Y}, marginal probability of X and Y – Pr{X ,Y}. x $←− R means
that x is a random element sampled according to uniform distribution

over ring R, xi
$←− R, i = 1,m – random elements sampled uniformly and

independently, x
D←− R – an element sampled according to D.

2.2 Matrix Polynomials

Let’s look at the expression

F (X) = FdX
d + Fd−1X

d−1 + ...+ F1X + F0,

where Fi,∈ Fn×nq , i = 0, d – some constant matrices, Fd 6= 0, X ∈ Fn×nq is
a matrix variable. This is a univariate matrix polynomial in variable X of
degree d. The set of matrix polynomials forms a ring Fn×nq [X] with usual

polynomial operations +, ·. For example the sum of Fi(X) =
∑di

j=0 Fi,j ·
Xj, i = 1, 2, d1 > d2, looks like F+(X) =

∑d1
j=0(F1,j + F2,j) · Xj, where

F2,j, j = d2 + 1, d1 are set to 0 and the product – F·(X) =
∑d1+d2

j=0 F·,j ·Xj,
where F·,j =

∑
i+k=j F1,i · F2,k.

Also we’ll use the following notation Fn×nq,d [X] = {F (X) ∈ Fn×nq [X],
deg(F (X)) ≤ d}.

We say that F (X) ∈ Fn×nq [X] has a root if ∃K ∈ Fn×nq s.t. F (K) = 0.
The subset of Fn×nq,d [X] containing all F (X) having at least one root will be
denoted by Fn×nq,d,zero[X].
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2.3 Additive Homomorphic Encryption

Definition 1. Symmetric cryptosystem CS is a tuple of non-empty finite
sets (P , C,K, {eK}, {dK}), where P – plaintext set, C – ciphertext set, K
– set of secret keys, {eK} – set of encryption functions, i.e. parametrized
mappings from P to C, {dK} – set of decryption functions, i.e. parametrized
mappings from C to P. And for ∀sk ∈ K, ∀m ∈ P the following property
holds: dsk(esk(m)) = m.

Usually, cryptosystem CS has algorithms KeygenCS, EncryptCS, DecryptCS
implementing CS. Their computational complexity must be polynomial.

For security analysis one needs the probability distributions K and P

over K and P respectively. For further discussion we assume that K is
uniform and P may be any distribution s.t. for ∀m ∈ P PrP{m} > 0.

For probabilistic encryption [5] for a fixed key sk and m ∈ P there exists
a set of ciphertexts that correspond to m according to EncryptCS. We will
denote this set by Cm,sk.

Definition 2. The cryptosystem CS is AHC if for ∀m1,m2 ∈ P and ∀sk ∈
K dsk(esk(m1) opC esk(m2)) = m1 +m2 , where opC – some binary operation
over C and the compactness property is satisfied, i.e.

bitlength(esk(m1) opC esk(m2)) ≤

≤ max{bitlength(esk(m1)), bitlength(esk(m2))}.

2.4 Security definitions

For further discussion we need the notion of approximate perfect se-
curity in k-bounded KPA model. In this model adversary A trying to
break cryptosystem is allowed to have ≤ k pairs (mi, Ci) made on the
same sk for fixed k ∈ N and mi ∈ P , i = 1, k. After receiving (mi, Ci)
A intercepts some random ciphertext C ∈ C and tries to find m ∈ P en-
crypted into C on sk. CS is perfectly secure in k-bounded KPA model
iff PrP{m} = Pr{m|C,C1, ..., Ck} for ∀m ∈ P (for brevity here and be-
low we denote Pr{m|C, (m1, C1), ..., (mk, Ck)} by Pr{m|C,C1, ..., Ck}). In
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turn approximate perfect security is a little bit weaker security requirement
that can be formalized as follows.

Definition 3 ([7]). Let CS(t) = (P , C,K, {ek}, {dk}) be a cryptosystem
with a security parameter t, F = {f : Ck+1 7→ R} be the set of all functions
from Ck+1 to R and δ : F × F 7→ R be a metric (distance) on F . Let’s fix
arbitrary m ∈ P and consider Pr{m| C,C1, ..., Ck} and PrP{m} that are
in fact functions ∈ F (the later one is a constant function in C,C1, ..., Ck ∈
Ck+1). We say, that CS(t) has approximate perfect security in k-
bounded KPA model, iff for ∀ probability distributions P on P and ∀m ∈ P

lim
t→∞

δ
(
Pr{m | C,C1, ..., Ck}, P rP{m}

)
= 0 . (1)

We will use the following metric δ.

Definition 4 ([7]). Let f, g ∈ F = {f : Ck+1 7→ R}. Define a metric δ as

δ(f, g) =
1

|Ck+1|
·
∑
c∈Ck+1

(f(c)− g(c))2.

3 Additively homomorphic cryptosystem

Let q ∈ N – prime, n, d ∈ N, P = Fq, K = Fn×nq ×Fnq \{~0}×{1, ..., n}, C ⊆
Fn×nq,d [X]. The cryptosystem AHMP may be described by Algorithms 1, 2,
3. Its correctness and the presence of homomorphism are proved in lemmas
1, 2 (proofs are placed in Appendix).

Algorithm 1: Setup(n, d, q).

Input: parameters n, d, q ∈ N, q is a prime
Output: secret key sk = (K, ~k, i), where K ∈ Fn×n

q , ~k ∈ Fn
q \ {~0}

1 K
$←− Fn×n

q ;

2 ~k
$←− Fn

q \ {~0};
3 i

$←− {1, ..., n};
4 sk := (K, ~k, i) ;
5 return sk;
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Algorithm 2: Encrypt(m, sk).

Input: m ∈ P , sk = (K, ~k, i)
Output: C(X) ∈ C

1 M
$←− Fn×n

q ;

2 j := min{j ∈ {1, ..., n}, s.t.kj 6= 0};
3 Mi,j := k−1

j
· [m−

∑n
t=1,t6=j Mi,t · kt];

4 F (X)
$←− Fn×n

q,d [X];

5 C(X) := F (X)− F (K) + M ∈ C;
6 return C(X);

Algorithm 3: Decrypt(sk, c).

Input: sk = (K, ~k, i),C(X)
Output: m ∈ Fq

1 M← C(K);

2 m := Mi · ~k;
3 return m;

Lemma 1. The AHMP cryptosystem has a correct decryption.

Lemma 2. The AHMP cryptosystem is additively homomorphic, i.e. if
there are C1(X), C2(X) ∈ C encrypting m1,m2 ∈ P, then C1(X) + C2(X)
encrypts m1 +m2.

One may see that AHMP is very similar to HC from [2]. The main dif-
ference is that in [2] there is M ·~k = m ·~k and this gives both multiplicative
and additive homomorphism.

3.1 Computational complexity of AHMP

• The most complex part of Encrypt(sk,m) is computing of F (K). Its
computational cost is O(d · n3) operations in Fq. So the asymptotic
complexity of Encrypt(sk,m) is O(d · n3).

• The most complex part of Decrypt(sk, C(X)) is computing of C(K)
and so the asymptotic complexity of Decrypt(sk, C(X)) is O(d · n3).
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• C1(X), C2(X) ∈ Fn×nq,d [X] and therefore computing C1(X) + C2(X)
requires O(d · n2) operations in Fq.

4 Security Analysis

Theorem 1. The cryptosystem AHMP (n, d, q) achieves approximate per-
fect security in k-bounded KPA model for k = n2 + n.

To prove this theorem we need several additional lemmas.

Lemma 3. For AHMP C = Fn×nq,d [X].

Lemma 4. For ∀sk ∈ K Pr{sk ∈ K} = 1/(qn
2 · (qn − 1) · n).

Lemma 5. Let’s fix some arbitrary sk = (K, ~k, i) ∈ K and m ∈ P. Then

for a random ciphertext C(X), s.t. C(X)
$←− C,

Pr[Decrypt(sk, C(X)) = m] = 1/q.

Lemma 6. Let’s fix some m ∈ P and sk ∈ K, then |Cm,sk| = q(d+1)·n2−1

and for ∀C(X) ∈ Cm,sk Pr{C(X)|m, sk} = 1/q(d+1)·n2−1.

Lemmas 5, 6, 3, 4 are proved in Appendix.
Finally to prove Theorem 1 we need a probability distribution induced

by Algorithm 2 over C for randomly chosen m ∈ P and sk ∈ K. Unfor-
tunately it’s not uniform for ∀P over P . However it’s close to it, more
precisely it goes to uniform for n → ∞. But due to the lack of space
we omit the proof of this fact and for simplicity we’ll use the following
simplifying assumption to prove Theorem 1.

Assumption 1. Pr
sk

$←−K{C} = 1/|C| = 1/q(d+1)·n2 for ∀C ∈ C produced

by the encryption procedure.

Although we claim that the theorem can be proved without this simpli-
fication and it’ll be shown in the extended version of the paper.

Proof of Theorem 1. We’ll prove approximate perfect security of AHMP

(n, d, q) in k-bounded KPA model. We suppose A has some (mi, Ci), i =
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1, k, s.t. Decrypt(sk, Ci) = mi, i = 1, k for some unknown sk. And also A
has C ∈ C obtained by encrypting with sk an unknown plaintext m ∈ P
which A wish to recover. To show approximate perfect security one need
to estimate a distance between PrP{m} and Pr{m | C,C1, ..., Ck} for
∀m ∈ P .

For any m the following holds

Pr{m | C,C1, ..., Ck} =
Pr{m,C,C1, ..., Ck}
Pr{C,C1, ..., Ck}

= (2)

=
1

Pr{C,C1, ..., Ck}
·
∑
sk∈K

Pr{m,C,C1, ..., Ck | sk} · Pr{sk} . (3)

Note, that Pr{C,C1, ..., Ck} = Pr{C}·
∏k

i=1 Pr{Ci} because C,C1, ..., Ck
are independent and therefore by assumption 1

Pr{C,C1, ..., Ck} = 1/q(k+1)·(d+1)·n2.

By lemma 4 Pr{sk} = 1/(qn
2·(qn−1)·n). And clearly if Decrypt(sk, C) 6=

m or Decrypt(sk, Ci) 6= mi for some i, then Pr{m,C,C1, ..., Ck | sk} = 0.
Hence, one can sum in (3) using only keys sk ∈ A, where A = {sk ∈
K | Decrypt(sk, C) = m,Decrypt(sk, C1) = m1, ..., Decrypt(sk, Ck) = mk}.
So we obtain

Pr{m | C,C1, ..., Ck} =
q(k+1)·(d+1)·n2

qn2 · (qn − 1) · n
∑
sk∈A

Pr{m,C,C1, ..., Ck | sk}.

(4)
In the last formula for a fixed sk ∈ A m,C,C1, ..., Ck are independent

(because m is fixed). Also m and the secret key sk are independent. And
(4) may be rewritten as follows

Pr{m | C,C1, ..., Ck} =

=
(q(k+1)·(d+1)·n2)

qn2 · (qn − 1) · n
∑
sk∈A

PrP{m} · Pr{C | sk} ·
k∏
i=1

Pr{Ci |sk}.
(5)
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Because m now is fixed Pr{C | sk} = Pr{C | m, sk} = 1/q(d+1)·n2−1,
and also Pr{Ci | sk} = Pr{Ci | mi, sk} = 1/q(d+1)·n2−1, i = 1, k (we use
lemma 6). Therefore we have

Pr{m | C,C1, ..., Ck} =

=
q(k+1)·(d+1)·n2

qn2 · (qn − 1) · n
∑
sk∈A

PrP{m} ·
1

q(k+1)·((d+1)·n2−1)
=

=
qk+1

qn2 · (qn − 1) · n
· PrP{m} · |A|.

(6)

Recall that |A| = |{sk ∈ K | Decrypt(sk, C) = m,Decrypt(sk, C1) =
m1, ...,Decrypt(sk, Ck) = mk}|. So |A| is a random variable depending on
m,C,C1, ..., Ck. And below we’ll use notation |A| = γ(m, C,C1, ..., Ck).
Hence

Pr{m | C,C1, ..., Ck} =

=
qk+1

qn2 · (qn − 1) · n
· PrP{m} · γ(m,C,C1, ..., Ck) .

(7)

For some fixed sk ∈ K let’s consider random variable Ysk(m ,C,C1, ..., Ck)
which = 1 iff sk ∈ A and = 0 otherwise, for C,C1, ..., Ck sampled uniformly
at random. According to independence of C,C1, ..., Ck from each other and
due to lemma 5 Pr{Ysk = 1/qk+1}. It is clear that

γ(m,C,C1, ..., Ck) =
∑
sk∈K

Ysk

and this implies that γ(m,C,C1, ..., Ck) has the binomial distribution with
parameters |K| = qn

2 · (qn − 1) · n and 1
qk+1 , which is denoted by B(qn

2 ·
(qn−1) ·n, 1

qk+1 ). It is known, that B(qn
2 · (qn−1) ·n, 1

qk+1 ) has the expected

value E[γ] = 1
qk+1 and the variance V ar[γ] = |K| · (1 − 1/qk+1) · 1/qk+1 =

qn
2
(qn−1)
qk+1 · q

k+1−1
qk+1 .

Now we can evaluate the distance between PrP{m} and Pr{m | C,
C1, ..., Ck} for ∀m ∈ P with respect to δ from Definition 3 to show that
AHMP achieves approximate security in k-bounded KPA model.
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δ(Pr{m | C,C1, ..., Ck}, P rP{m}) =

=
1

|Ck+1|
·

∑
C,C1,...,Ck∈Ck+1

(
Pr{m | C,C1, ..., Ck} − PrP{m}

)2

=

=
1

|Ck+1|
·

∑
C,C1,...,Ck∈Ck+1

( qk+1

qn2 · (qn − 1) · n
· PrP{m}·

· γ(m,C,C1, ..., Ck)− PrP{m}
)2

=

= (PrP{m})2 · q2·(k+1)(
qn2 · (qn − 1) · n

)2 ·

(8)

·
∑

C,C1,...,Ck∈Ck+1

1

|Ck+1|

(
γ(m,C,C1, ..., Ck)−

qn
2 · (qn − 1) · n

q(k+1)

)2

︸ ︷︷ ︸
V ar[γ(m,C,C1,...,Ck)]

= (9)

= (PrP{m})2 · q2·(k+1)(
qn2 · (qn − 1) · n

)2 ·
qn

2 · (qn − 1) · n
qk+1

· q
k+1 − 1

qk+1
= (10)

= (PrP{m})2 · qk+1 − 1

qn2 · (qn − 1) · n
. (11)

Now we only need to determine k s.t. limn→∞
qk+1−1

qn2 ·(qn−1)·n = 0. It’s easy

to obtain that k should satisfy the following inequality

k ≤ n2 + n. (12)

Therefore, we have shown that for ∀m ∈ P and any randomly inter-
cepted C,C1, ..., Ck

lim
n→∞

δ(Pr{m | C,C1, ..., Ck}, P rP{m}) = 0

for k < n2 + n, 0 ≤ a, b ≤ 1.
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According to the proof of theorem 1 n may be considered as security pa-
rameter of AHMP (q, n, d) (see definition 3) that handles the approximate
perfect security property. And one may see that the degree d doesn’t influ-
ence on the last one. So from this point of view d may be set to 1 in order
to obtain lower computational complexity of AHMP . Let’s comment on
the obtained bound k ≤ n2 + n for d = 1. If pairs (mi, Ci), i = 1, k are
given, then one may compose n systems of quadratic polynomial equations
with n2 + n variables of the form [Ct(X)]j · ~y = mt, t = 1, k. Here j = 1, n,
[Ct(X)]j is j-th row of matrix Ct(X) and X, ~y – matrix and vector vari-

ables . The solution of one of this systems is a secret key K, ~k. It is a well
known result [3] that a system of t quadratic equations with s variables
over a finite field may be solved efficiently only if t > s. So this explains
the bound k ≤ n2 + n for approximate perfect security.

Remark. The discussion above shows that AHMP even for d = 1 is not
a linear cryptosystem.

In the case of d > 1 the system of equations introduced above has
monomials of a degree > 3 and therefore becomes much harder to solve. To
obtain its solution in reasonable time it may be necessary to have essentially
larger number k of pairs than for d = 1. So we suppose that for d > 1 and
k > n2 + n AHMP may be still resistance to KPA. But it will be already
a security based on a complexity theory. In a future work we are planning
to investigate this problem in details.

Finally we’d like to note that AHMP has similar security properties
in k-bounded COA (ciphertext only attack) model. Precise bounds on k
will be given in a future work. And also resistance of AHMP against
CPA (chosen plaintext attack) and CCA (chosen ciphertext attack) will be
studied.

5 Conclusion

A novel symmetric additively homomorphic cryptosystemAHMP (q, n, d)
based on matrix polynomials was presented. Its main feature is the pres-
ence of such unusual property as approximate perfect security in k-bounded

CTCrypt 2015 Ph. B. Burtyka 272



Additively Homomorphic Encryption Using Matrix Polynomials ...

KPA model, where k ≤ n2 + n. The last one means that the distance be-
tween distributions Pr{m | C, (m1, C1), ..., (mk, Ck)} and PrP{m} goes to
zero if n → ∞ for any fixed m ∈ P , k ≤ n2 + n and intercepted pairs
(mi, Ci), i = 1, k. We’d like to point out that our bound on k is bet-
ter then for approximate perfectly secure symmetric homomorphic cryp-
tosystem from [7]. And also in comparison with [7] all algorithms of our
AHMP (q, n, d) depend polynomially on its parameters q, n, d. Cipher-
texts sizes are also polynomially in q, n, d, wherein in [7] all algorithms and
ciphertexts sizes are exponential.

The only advantage of [7] in comparison with AHMP (q, n, d) is that
presented construction is not only additively homomorphic. Also it has
multiplicative homomorphism (however not efficient). So in future we are
planning to check whether the extended version of AHMP (q, n, d) pre-
sented in [2] possessing multiplicative homomorphism is approximate per-
fectly secure.

Also we’d like to stress out that of course the analysis of AHMP (q, n, d)
security while isn’t full. It requires further investigations because for any
finite q, n distributions Pr{m | C,C1, ..., Ck} and PrP{m} may be very
close, but nevertheless they are not identical. It seems necessary to corre-
late approximate perfect security property with different possible strategies
to attack the cryptosystem. And based on this analysis parameters settings
suitable for practical usage of AHMP (q, n, d) should be derived.
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A Proofs of lemmas concerning cryptosystem cor-

rectness

Proof of Lemma 4. We have K = Fn×nq ×Fnq \~0×{1, ..., n} and then |K| =
qn

2 · (qn − 1) · n. Secret key sk ∈ K is chosen uniformly at random. This
proves the statement.

Proof of Lemma 1. We need to prove that if C(X) = Encrypt(m, sk) for
any m ∈ P ,∀sk = (K, ~k, i) then there is Decrypt(sk, C(X)) = m.

According to Algorithm 2 C(X) = G(X) + M, where G(X) ∈ Fn×nq [X]
is s.t. G(K) = 0. Therefore C(K) = M holds. M is built in such a way
that Mi · ~k =

∑n
t=1,t6=jMi,t · kt +kj · k−1

j
· [m−

∑n
t=1,t6=jMi,t · kt] = m.

Proof of Lemma 2. We need to prove that if Ci(X) = Encrypt(mi, sk), i =
1, 2 for any mi ∈ P , i = 1, 2 and sk = (K, ~k, i) then Decrypt(sk, C1 +C2) =
m1 +m2 holds.
C1 + C2 = G+(X) + M+, where G+(X) = G1(X) + G2(X), M+ =

M1 +M2. Obviously G+(K) = 0 and therefore (C1 +C2)(K) = M+, where
M+,i ·~k =

∑n
t=1,t6=j[M1,i,t+M2,i,t] ·kt +kj ·k−1

j
· [m1 +m2−

∑n
t=1,t6=j[M1,i,t+

M2,i,t] · kt] = m1 +m2 holds.
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B Proof of Lemmas on Security Analysis

Proof of Lemma 3. We need to show that C = Fn×nq,d [X], i.e. that each
C(X) ∈ Fn×nq,d [X] can be a ciphertext. Any C(X) ∈ C produced by algo-
rithm 2 has a form of C(X) = G(X)+M, where G(X) may be an arbitrary
polynomial ∈ Fn×nq,d,zero[X], i.e. s.t. ∃K G(K) = 0.

Let’s look at M = {Mi,j}i=1,n,j=1,n. It’s independent on G(X) and
may be any matrix ∈ Fn×nq . Indeed, like in algorithm 2 let’s fix some
arbitrary Mi,j ∈ Fq for i = 1, n, j = 1, n and indices i, j. Element Mi,j is
recounted due to formula Mi,j := k−1

j
· [m−

∑n
t=1,t6=jMi,t · kt] for plaintext

m and secret vector ~k = (k1, ..., kn) s.t. kj 6= 0. Recall that we assume
that for any m PrP{m} > 0. And due to this assumption by varying

m ∈ Fq and ~k ∈ Fnq \ {~0} one may obtain ∀Mi,j ∈ Fq for any fixed values
Mi,j, (i, j) 6= (i, j). And this means that M may be any matrix ∈ Fn×nq .

Now we would like to note that in fact ∀F (X) ∈ Fn×nq,d [X] may be rep-
resented as the sum F (X) = G(X) + M, where G(X) ∈ Fn×nq,d,zero[X] and
M ∈ Fn×nq . Indeed, one way simply write F (X) = (F (X)−F (K)) +F (K)
for arbirary K ∈ Fn×nq and then G(X) = F (X)− F (K), M = F (K).

Putting all things together we obtain C = Fn×nq,d [X].

Proof of Lemma 5. First let’s take some C0(X) ∈ C s.t.

Decrypt(sk, C0(X)) = 0

and compose a matrix Ai,j,α = {Ai,j,α
i,j }i=1,n,j=1,n ∈ Zn×nq , s.t. Ai,j,α

i,j
= k−1

j
·α

and Ai,j,α
i,j = 0 for others (i, j), where j = min{j ∈ {1, ..., n}s.t.kj 6= 0},

α ∈ Fq – arbitrary constant. Adding Ai,j,α to C0(X)’s free coefficient gives
Cα(X) ∈ C. And it’s easy to verify that Decrypt(sk, Cα(X)) = α. This
implies that by this approach one may construct the set of ciphertexts
C = {C1(X), ..., Cq−1(X)} corresponding to the zero encryption C0(X),
where Ci(X) – encryption of plaintext i ∈ Fq on sk.

If there are encryptions of zero C1,0(X), C2,0(X) ∈ C, C1,0(X) 6= C2,0(X)
then for sets Ci = {Ci,1(X), ..., Ci,q−1}, i = 1, 2 it’s easy to see that C1∩C2 =
∅. The last one means that for a fixed sk one may split C into q subsets
C0, ..., Cq−1, where ∀C(X) ∈ Ci – encryption of i (and thus Ci ∩ Cj = ∅
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for i 6= j) and |C0| = ... = |Cq−1|. This proves that for C(X)
$←− C,

Pr{Decrypt(sk, C(X)) = m} = 1/q holds for any m ∈ Fq and fixed sk.

Proof of Lemma 6. Any C(X) ∈ C produced by algorithm 2 for a fixed
sk = (K, ~k, i) has the form of C(X) = F (X)−F (K)+M, where coefficients

Fi, i = 0, d are random independent variables s.t Fi
$←− Zn×nq . So Ci =

Fi, i = 1, d and C0 = F0 − F (K) + M. Since F0 − F (K) is constant after
sampling Fi, i = 1, d the variability of C0 is then fully determined by M
that’s independent of Fi and K. Due to the encryption algorithm for fixed
m and ~k M may be one of the qn

2−1 different possible matrix. Thus we
obtain that |Cm,sk| = qd·n

2 · qn2−1 = q(d+1)·n2−1.

Also note that

Pr{M} = (
∏

(i,j),(i,j)6=(i,j)

Pr{Mi,j})·

·Pr{Mi,j|Mi,1, ..,Mi,j−1,Mi,j+1, ..,Mi,n}.
P r{Mi,j|Mi,1, ..,Mi,j−1, Mi,j+1, ..,Mi,n} = 1 obviously holds and then

Pr{M} = (1/q)n
2−1.

Now let’s estimate the probability distribution over Cm,sk induced by
algorithm 2 for fixed m, sk. For ∀C(X) ∈ Cm,sk we have

Pr{C(X)|m, sk} = (
d∏
i=1

Pr{Ci}) · Pr{C0|C1, ..., Cd} =

(1/q)d·n
2 · Pr{C0|C1, ..., Cd}.

And
Pr{C0|C1, ..., Cd} =

=
∑

(F0−F (K),M),F0−F (K)+M=C0

Pr{F0−F (K)|F1, ..., Fd} ·Pr{M} = (1/q)n
2−1.

The last one is true because Pr{F0− F (K)|F1, ..., Fd} = 1 and clear there
is only one matrix M in the sum for constant F0 − F (K). Therefore it
implies Pr{C(X)|m, sk} = 1/q(d+1)·n2−1.
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Optimizing Memory Cost of Multi-scalar
Multiplication

Sergey Grebnev

Abstract

We present a modification of the non-adjacent form representation for multi-
scalar multiplication which allows efficient performance-memory tradeoffs. Simul-
taneously we fix a feature of the original algorithm which prevented it from using
all possible bases.

Keywords: multi-scalar multiplication, non-adjacent form, digital sig-
nature, performance evaluation

1 Introduction

Multi-scalar multiplication, i.e. computation of the form k1P + k2Q,
where P and Q are both elements of a finite group and k1, k2 are integers, is
an essential part of many cryptographic primitives. Consider, for example,
Russian national digital signature standard scheme GOST R 34.10-2012.
The scheme is built over a subgroup of points < P > of an elliptic curve
E over a prime field, where # < P >≈ 2256 or # < P >≈ 2512. The
signature verification process is defined by the equation

x(sh(M) mod q)P−(rh(M) mod q)Q) (mod q) = r,

where (r, s) is a signature, h(M) is a hashed message, and Q = dP is the
public key; the signature is valid iff the equality holds. Thus, improving
efficiency of multi-scalar multiplication is crucial for implementations of
the signature scheme.

Our previous work [2] considered several possibilities of improving per-
formance of GOST R 34.10-2012, including state-of-the-art choice of an
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elliptic curve representation and optimisation of scalar and multi-scalar
multiplication. Recent paper deals with multi-scalar multiplication exclu-
sively. We recall an algorithm by M. Kalinin which was sketched in [2],
fix its minor features and present a novel variant of joint multibase form
which allows for more flexible memory management.

2 Multi-scalar multiplication

The computation of k1P+k2Q may be performed as two successive scalar
multiplications k1P , k2Q and an addition. However, it is possible to use so-
called Shamir’s trick, that is, jointly scan binary representations of k1, k2,
performing at each step a doubling and additions of P , Q or P + Q, if the
corresponding bits are set, and save on excessive multiplications. We can
do even better, using specially optimized sparse representations to save on
additions.

A common scheme for multi-scalar multiplication may be decribed as
follows:

1. pre-compute a set of points iP, jQ;

2. build a special joint representation of the pair (k1, k2);

3. set the result to infinity, then “scan” the representation of exponents,
adding a precomputed point depending on the corresponding digit and
multiplying by the bases associated with the digit.

The most commonly used method is the joint sparse form, introduced
in [9].

The development of elliptic curves cryptosystems gave rise to extensive
study of their equivalent representations, such as Edwards curves, Hesse
curves etc., see [3, 4]. Many of these enjoy faster basic operations, e.g.
doubling and triplings. In order to use their advantages in scalar and mult-
scalar multiplications, a number of special representations was designed,
to mention joint double-base number system and joint double-base chains
[1].
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Window-based multibase representations, which were proposed in [6, 8]
for scalar multiplications, were later adapted for mult-scalar multiplications
in [5]. We proceed with their description.

A multibase non-adjacent form with window w (wmbNAF) of an in-

teger k, denoted (a1, . . . , aJ)NAFw(k) = {d(a1)
1 . . . d

(am)
m }, is a sequence

of digits di, each one associated with a base ai from a fixed finite set
A = {a1, . . . , aJ} such that:

1. any positive d has a unique representation of the form (a1, . . . , aJ)NAFw(d)
for the set of coprime bases A and window w;

2. of any w consecutive digits, at most one is non-zero;

3. di ∈ {0,±1,±2, . . . ,±b(aw1−1)/2c}\{±a1,±2a1 . . . ,±b(aw−1
1 −1)/2ca1}

, d1 > 0;

4. k = (. . . ((d1 · (a2) + d2) · (a3)) + · · · + dm−1) · (am) + dm; the latter
formula, where (ai) denotes the base associated with the i-th digit,
gives a natural algorithm for scalar multiplication.

Please note that we keep the original notations from [6, 8] hereafter, so
the term di = d(aj) should be read as “set the i-th digit to the value d and
set the associated base to aj”. The reader should not be confused by the
notation (ai), which denotes the base actually written at the i-th position
of the wmbNAF, not its index in A.

A joint multibase non-adjacent form with window w (JNAF) of a pair of
integers k1, k2 is actually a pair of wmbNAF s of length l, maybe left-padded
with zeroes for a smaller integer, calculated for k1, k2 simultaneously in such
a manner that the bases (ai) associated with each position coincide:

(a1, . . . , aJ)NAFw(k1, k2) =

(
(d

(a1)
1 , . . . , d

(al)
l )

(e
(a1)
1 , . . . , e

(al)
l )

)
, and

k1P + k2Q = (al−1)(. . . (a3)((a2)(d1P + e1Q) + d2P + e2Q) + . . .

+ dl−1P + el−1Q) + dlP + elQ;
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the latter formula gives a natural algorithm for multi-scalar multiplication.
The paper [5] presents algorithms to compute JNAF in two slightly

different ways, denoted

(a1, . . . , aJ)
−−−→
NAFw(k1, k2) (“left-to-right”)

and
(a1, . . . , aJ)

←−−−
NAFw(k1, k2) (“right-to-left”)

depending on the order in which the bases are treated. Since the paper is
not widely availiable, we provide a sketch of the algorithm.

Algorithm 1.
Input: k1, k2 ∈ N, J ≥ 1, A = {a1, a2, . . . , aJ} – an ascending set of

different prime bases, j = 1, . . . , J ,a window w ∈ N, w ≥ 2.
Output:

(a1, . . . , aJ)
−−−→
NAFw(k1, k2) =

(
(d

(a1)
1 , . . . , d

(al)
l )

(e
(a1)
1 , . . . , e

(al)
l )

)
1. i=1;
2. while k1 > 0 or k2 > 0
2.1. for j = 1 to J do (“Left-to-right” case)
OR
for j = J downto 1 do (“Right-to-left” case)
2.1.1. if ((k1 mod aj = 0) and (k2 mod aj = 0)) then

2.1.1.1 di = 0, k1 = k1/aj, di = d
(aj)
i ;

2.1.1.2 ei = 0, k2 = k2/aj, ei = e
(aj)
i ;

2.1.1.3 break;
2.1.2. else if ((k1 mod aj = 0)and (k2 mod aj 6= 0)) then
2.1.2.1 ei = k2 mods a1

w,
2.1.2.2 k2 = k2 − ei;
2.1.2.3 if (k2 mod aj = 0) then

2.1.2.3.1 di = 0, di = d
(aj)
i ;

2.1.2.3.2 ei = e
(aj)
i ;

2.1.2.3.3 k1 = k1/aj, k2 = k2/aj;
2.1.2.3.4 break;
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2.1.2.4 else k2 = k2 + ei;
2.1.3. else if ((k1 mod aj 6= 0)and(k2 mod aj = 0)) then
2.1.3.1 di = k1 mods a1

w,
2.1.3.2 k1 = k1 − di;
2.1.3.3 if (k1 mod aj = 0) then

2.1.3.3.1 ei = 0, ei = e
(aj)
i ;

2.1.3.3.2 di = d
(aj)
i ;

2.1.3.3.3 k1 = k1/aj, k2 = k2/aj;
2.1.3.3.4 break;
2.1.3.4 else k1 = k1 + di;
2.2 if j > J then
2.2.1 di = k1 mods a1

w;
2.2.2 k1 = k1 − di;
2.2.3 ei = k2 mods a1

w;
2.2.4 k2 = k2 − ei;
2.2.5 for k = 1 to J do (“Left-to-right” case)
OR
for k = J downto 1 do (“Right-to-left” case)
2.2.5.1 if ((k1 mod ak = 0)and(k2 mod ak = 0)) then

2.2.5.1.1 di = d
(ak)
i ;

2.2.5.1.2 ei = e
(ak)
i ;

2.2.5.1.3 k1 = k1/ak, k2 = k2/ak;
2.2.5.1.4 break;
2.3 i = i + 1;

3. return (a1, . . . , aJ)
−−−→
NAFw(k1, k2) =

(
(d

(a1)
1 , . . . , d

(al)
l )

(e
(a1)
1 , . . . , e

(al)
l )

)
Remark 1. Please note that description of the algorithm given in [2] was
inaccurate, since in the case of “left-to-right” computation the cycle (step
2.1) was continuously performed for j = 1, thus, all bases greater then a1

were ignored, and the output was always of the form (2)
−−−→
NAFw(k1, k2). The

version presented here fixes this feature.

Given a JNAF, we considered two algorithms for computing k1P +k2Q,
using either precomputed points iP, jQ or iP ± jQ. As shown in [5], the
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digits of (a1, . . . , aJ)
−−−→
NAFw(k1, k2)

di, ei ∈ {0,±1,±2, · · · ± ba
w
1 − 1

2
a1c} \ {±a1,±2a1, . . . , b

aw−1
1 − 1

2
c},

thus requiring either aw1 /2 or aw1 /4 precomputed points, depending on their

form, while the digits of (a1, . . . , aJ)
←−−−
NAFw(k1, k2)

di, ei ∈ {0,±1,±2, · · · ± ba
w
1

2
c} \ {±6k, k ∈ n},

requiring either b5/12aw1 c or b25/144aw1 c2 precomputed points. Obviously,
the algorithms with iP ± jQ precomputations require too much storage to
be efficient in practice. Even for the tables with iP , jQ it may be desirable
to reduce storage requirements while keeping performance characteristics.
We proceed with the description of proposed solution.

3 Joint fractional multibase non-adjacent form

In 2008, Longa and Gebotys presented fractional multibase non-adjacent
form which, given a window size w and a fixed set of digits D{±1,±3, · · ·±
(2t+1)}, produced a flexible encoding of an integer in a NAFw-form, where
all the digits are in D. We describe an adjustment of this representation
for the case of joint multibase non-adjacent form.

Suppose we have a set of J bases {2, a2, . . . , aJ} (that is a1 = 2). Next,
for d ∈ {±1,±3, · · ·±m}, where m ≥ 3, m is an odd integer, we precompute
{diP}, {diQ}. Fix a window w and let m = 2w−2 + s for an odd s ≥ 1.

Following [7], we write the recoding rule for our representation.

1. if k ≡ 0 (mod a1) or k ≡ 0 (mod a2) or · · · or k ≡ 0 (mod aJ) then
ki = 0;

2. else if 0 < r ≤ m then ki = r;

3. else if m ≤ r < (3m− 4s) then ki = r − 2w−1;

4. else if (3m− 4s) ≤ r < 2w then ki = r − 2w,
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where r = k (mod 2)w.
Now we give a complete description of the algorithm.

Algorithm 2.
Input: k1, k2 ∈ N, A = {a1, a2, . . . , aJ}, J ≥ 1 – an ascending set

of prime bases with a1 = 2, a window w ∈ N, w ≥ 2, a set of digits
D = {±1,±3, · · · ±m} such that m = 2w−2 + s, 2w−2 < m < 2w−1 for m, s
– odd positive integers.

Output: joint fractional non-adjacent form

(a1, . . . , aJ)NAFw,t(k1, k2) =

(
(d

(a1)
1 , . . . , d

(al)
l )

(e
(a1)
1 , . . . , e

(al)
l )

)
,

di, ei ∈ {±1,±3, · · · ±m}.
1. i = 0;
2. while (k1 > 0) or (k2 > 0) do
2.1. for j = 1 to J do
2.1.1. if ((k1 == 0 (mod aj))and(k2 == 0 (mod aj))) then
2.1.1.1. di = 0(aj), dj = 0(aj)

2.1.1.2. k1 = k1/aj, k2 = k2/aj
2.1.1.3. break
2.1.2. else if ((k1 == 0 (mod aj))and(k2! = 0 (mod aj))) then
2.1.2.1. r = k2 (mod 2)w

2.1.2.2. if 0 < r ≤ m then ei = r
2.1.2.3. else if m < r ≤ (3m− 4s) then ei = r − 2w−1

2.1.2.4. else if (3m− 4s) < r < 22 then ei = r − 2w

2.1.2.5. k2− = ei
2.1.2.6. if k2 ≡ 0 (mod aj) then

2.1.2.6.1. di = 0(aj), ei = e
(aj)
i

2.1.2.6.2. k1 = k1/aj, k2 = k2/aj
2.1.2.6.3. break
2.1.2.7. else k2 = k2 + ei
2.1.3. else if ((k1! = 0 (mod aj))and(k2 == 0 (mod aj))) then
2.1.3.1. r = k1 (mod 2)w

2.1.3.2. if 0 < r ≤ m then di = r
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2.1.3.3. else if m < r ≤ (3m− 4s) then di = r − 2w−1

2.1.3.4. else if (3m− 4s) < r < 22 then di = r − 2w

2.1.3.5. k1− = di
2.1.3.6. if k1 ≡ 0 (mod aj) then

2.1.3.6.1. di = d
(aj)
i , ei = 0(aj)

2.1.3.6.2. k1 = k1/aj, k1 = k1/aj
2.1.3.6.3. break
2.1.3.7. else k1 = k1 + di
2.2. if j > J then
2.2.1. r = k2 (mod 2)w

2.2.2. if 0 < r ≤ m then ei = r
2.2.3. else if m < r ≤ (3m− 4s) then ei = r − 2w−1

2.2.4. else if (3m− 4s) < r < 22 then ei = r − 2w

2.2.5. k2− = ei
2.2.6. r = k1 (mod 2)w

2.2.7. if 0 < r ≤ m then di = r
2.2.8. else if m < r ≤ (3m− 4s) then di = r − 2w−1

2.2.9. else if (3m− 4s) < r < 22 then di = r − 2w

2.2.10. k1− = di
2.2.11. for l = 1 to J do
2.2.11.1. if ((k1 == 0 (mod al))and(k2 == 0 (mod al))) then

2.2.11.1.1. di = d
(ak)
i , ei = e

(ak)
i

2.2.11.1.2. k1 = k1/ak, k2 = k2/ak
2.3. i = i + 1

3. Output (a1, . . . , aJ)NAFw,t(k1, k2) =

(
(d

(a1)
1 , . . . , d

(al)
l )

(e
(a1)
1 , . . . , e

(al)
l )

)
.

4 Performance analysis

We have studied performance of our algorithm according to the gen-
erally accepted framework described in [2]. That is, we consider certain
efficient representations of a group of points of an elliptic curve E over
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GF (p), express complexity of basic operations in E, such as addition, dou-
bling, tripling etc. in terms of multiplication in GF (p)), set a series of
experiments to determine average characteristics of our representation and
compute resulting complexity of the algorithm.

(2, 3)
−−−→
NAF 6 (2, 3)

←−−−
NAF 6 (2, 3)NAF6,8 (2, 3)NAF6,15

Jacobian coordinates 6117.5 6115.7 6405 6136.1
Inverted Edwards 4661.8 4986 4832.8 4659.9
Inverted twisted Edwards 4639.5 4736 4837.6 4657.6

Table 1: Average complexity of multi-scalar multiplica-
tion in E(GF (p)), p ≈ 2512

No wonder that our algorithm for a window w behaves generally like−−−→
NAFw. At the same time we are able to reduce memory costs twice, while
performance loss is about 4%.

We conclude that the algorithm presented enjoys nice performance char-
acteristics, allows for reduced memory cost and is, in general, more suited
for implementation than the original variants of joint multibase NAF.
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A Timing Attack On CUDA Implementations Of
An AES-Type Block Cipher

Denis Fomin

Abstract

This work presents a timing attack against an AES-type block cipher CUDA
implementation. Our experiments show that it’s possible to extract a secret AES
128-bit key with complexity of 232 chosen plaintext encryptions. It’s easy to show
that all results can be applied for AES with other key sizes and even more: for any
block cipher with a linear transform that is a composition of two types of a linear
transformations on a substate.

Keywords: AES, Kuznyechik, Grasshopper, timing attack, cache attack, soft-
ware timing attacks, CUDA, GPU

1 Introduction

A timing attack is a variant of a side-channel attack when an attacker
exploits a correlation between the running times of the implementation of
a cryptographic algorithm and the values of its input data (plaintext and
key) to recover the secret key. Such attacks have been widely studied by
researchers recently (for example: [1–4]).

Till now no timing attacks against GPU implementations of ciphers
have been published. But there are a lot of different cache-timing attacks
against CPU implementation. There exist two publications [8, 9] about
timing attacks on CUDA implementations of AES and Blowfish, but the
outcome of these works is that this type of attack is impossible, but at
the same time these results show that information about bank conflicts
in shared memory of NVIDIA GPU may leak some information about the
data. In this work we use the same ideas to exploit our attack.
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We show an attack against an AES-type block cipher CUDA implemen-
tation and also a theoretical possibility of this type of attacks. This attack
is based on a NVIDIA GPU architecture, that differs from CPU architec-
ture. In section 2 we explain CUDA architecture and the core idea of the
attack. In section 5 we show experimental results for the implementation
of our attack on AES-128 block cipher.

2 CUDA in brief

CUDA is a software and hardware architecture developed by NVIDIA
company. It allows to produce non-graphical computing using GPUs.

Architecture of modern GPUs is different from CPU architecture. Every
modern GPU has several streaming multiprocessors (from 2 to 30 SMX)
with 192 CUDA cores (32 in old GPUs) in each of them. Each CUDA core
works at low clock frequencies (< 1 GHz), has a register file (256KB in
Kepler architecture GPUs or less in the older one) and three different cash
types: texture, global (L2) and constant.

CUDA architecture uses their own model of parallelism called SIMT
(single instructions multiple thread). Virtually all threads work in parallel
and have the same priority of memory access. Threads are grouped into
blocks. The global synchronization between threads in different blocks is
generally impossible, and for one block of threads is performed through a
special memory called shared memory. All threads in a block are divided
into groups of 32 called warps. All threads in a warp at the same time
perform the same instruction.

There are six types of memory in CUDA architecture: global, shared,
registers, constant, texture and local.

Global memory is the largest memory in GPU: from 128MB to more
than 20GB in Tesla K80. All GPUs have low access speed to this type of
memory and cached in L2 global cache when accesses this type of memory.
This type of memory is frequently used for data transfers between GPU
and RAM.

Texture memory is a global memory with specific attributes, addressing
to texture memory is produced with a special texture cache. It is good for
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working with textures and for big arrays with random access.
Shared memory is much faster than local and global memories. It is

allocated per thread block, so all threads in the block have access to the
same shared memory and it is always used as a user cache.

To achieve high memory bandwidth for concurrent accesses, shared
memory is divided into equally sized memory modules (banks) that can
be accessed simultaneously.

Shared memory of modern GPU has 32 banks consisting of successive
32 or 64 bits words. Each bank has a bandwidth of a word (32 or 64 bit
long) per two clock cycles. If b > 1 addresses of memory requests fall
in the same memory bank, there is a bank conflict and the access has to
be serialized and takes b times longer. On the other hand, shared memory
features a broadcast mechanism whereby a word can be read and broadcast
to several threads simultaneously when servicing one memory read request.
This reduces the number of bank conflicts when several threads read from
an address within the same 32-bit word. A common conflict-free case is
when all threads of a warp read from an address within the same word [5].

On devices with compute capability 2.x and 3.x each multiprocessor
has 64KB of on-chip memory that can be partitioned between L1 cache
and shared memory. For devices with compute capability 2.x, there are
two settings, 48KB shared memory / 16KB L1 cache, and 16KB shared
memory / 48KB L1 cache, on device with compute capability 3.x each
multiprocessor also has settings with 32KB shared memory / 32KB L1
cache. By default the 48KB shared memory setting is used. This can be
configured during runtime API.

Constant memory has a capacity of 64KB, and cached in a special cache
of 8KB. Constant memory has short latency and high bandwidth when all
threads access the same location. It is used for constant variables and can
be read from each thread.

Registers is the fastest memory and have only thread scope. They are
physically stored in each multiprocessor and can’t be indexing. Local mem-
ory does not physically exist and is put in a global memory by the compiler
in case a lot of registers or arrays in register memory are used. It is much
slower than register memory. Therefore, the program must use a limited
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number of variables in order to run faster.

3 Description of AES-type ciphers

In this work we assume that an internal state of an AES-type block
cipher is represented by two-dimensional arrays of words (like AES repre-
sentation in [6]). Every internal state consists of N rows and N columns
of words. Also we denote AES-type cipher as a block cipher with the
following transformations:

• X – round key addition (AddRoundKey1),

• S – non-linear bijective transform – permutation (SubBytes1),

• L – linear transformation. Moreover L is a composition of rows trans-
formation (ShiftRows1) and columns transformation (MixColumns1).

The core feature of a linear transformation is that it can be decomposed
into two linear transformations. Further we consider AES with 128-bit key,
but our technique is also applicable to AES with other key size.

Let N be equal to 4 and the internal state is a square matrix of bytes,
that is stored row by row:

x00 x01 x02 x03
x10 x11 x12 x13
x20 x21 x22 x23
x30 x31 x32 x33


Consider the following property of the linear transformation.

Proposition 1. Let x0,0, . . . , x3,3 – an internal state of AES block cipher
after the first AddRoundKey transformation and a00, . . . , a33 is an internal
state after the first round — before the second AddRoundKey. Also let we
set one value from {ai,0, i = 0, . . . , 3} and any three values from the set
{xi,i, i = 0, . . . , 3}. Then there exist only one value for the other variable
xi,i for these fixed values.

1in AES description [6]
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Proof. Without loss of generality we set values for a0,0 and x0,0, x1,1, x2,2
and assume that there can be two x′3,3 6= x′′3,3 values for x3,3. Let π be a non-
linear byte-permutation for S-transform and l – a matrix of MixColumns

transformation. Let

(π(x0,0), π(x1,1), π(x2,2), 0) l = (a0, a1, a2, a3)

and (
0, 0, 0, π(x′3,3)

)
l = (a′0, a

′
1, a
′
2, a
′
3)(

0, 0, 0, π(x′′3,3)
)
l = (a′′0, a

′′
1, a
′′
2, a
′′
3).

So a0 ⊕ a′0 = a0 ⊕ a′′0 = a0,0 and(
0, 0, 0, π(x′3,3)⊕ π(x′′3,3)

)
l = 0.

The last equation is impossible because x′3,3 6= x′′3,3 and l is an invertible
linear transformation.

In terms of proposition 1 we have 224 values for ai,0 for any fixed value
i if we can set x0,0, x1,1, x2,2, x3,3 values.

Apparently we can do the same operation with other sets:
can set any value in one of: when set values:
{ai,0, i = 0, . . . , 3} {x0,0, x1,1, x2,2, x3,3}
{ai,1, i = 0, . . . , 3} {x0,1, x1,2, x2,3, x3,0}
{ai,2, i = 0, . . . , 3} {x0,2, x1,3, x2,0, x3,1}
{ai,3, i = 0, . . . , 3} {x0,3, x1,0, x2,1, x3,2}

and can do it in 224 different variants.

4 CUDA implementations of a block cipher

A GPU program generally consists of three major parts:

1. loading data to internal memory of the GPU;

2. evaluation on the GPU;

3. loading data from internal memory of the GPU.
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Modern CUDA architecture makes it possible to remove the first and the
third points of this list if using unified memory or page-locked host memory
on some devices. But the implementation of an algorithm generally consists
of these three parts.

To achieve maximal throughput of a block cipher implementation t-box
lookup tables are used (merged an s-box and a linear transform) [7, 11–
13]. This tables can be placed in a shared memory, texture memory or
constant memory. Generally, the best place for lookup tables is a shared
memory because a thread has a high access speed to this type of memory.
Sometimes, when lookup tables can’t be placed in a shared memory (they
are too large) the implementation with texture memory can make the most
efficient implementation [7].

Shared memory access has one important property. When we encrypt
random data we have to read random data from the memory, so throughput
of the implementation with a shared memory might be faster without bank
conflicts. If we can reduce bank conflicts we can expand throughput of our
implementation. For example in table 2 we present encryption throughput
of three types of encryption:

• the same block encryption multiple times — without bank conflicts;

• random data encryption — a lot of bank conflicts;

• counter encryption — less bank conflicts than random data encryption
because the highest bit of counter is changed very seldom.

In table 1 we present hardware and software specification that we used
in this work for experiments.

In this article we propose that encryption time is a kernel working time
(without moving data between GPU memory and RAM). As we can see in
table 2 throughput of a counter mode encryption less than random data
encryption in CBC mode and moreover evaluation time is different for
this two modes of operations. The core idea of this work is based on the
same idea: we can encrypt selected data and find a secret key, when the
encryption takes less time.
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Table 1: Hardware and software specification

OS OpenSUSE 13.1
CUDA compiler nvcc ver. 6.0
Graphics accelerator NVIDIA GTX 285 NVIDIA GTX Titan
CUDA-cores 240 2688
GPU memory 1 GB 6 GB
Processor clock (MHz) 1 476 876
CPU Intel Core i7-4770K

Table 2: Encryption throughput of different modes of encryption (GTX Titan), MB/sec

Algorithm Constant encryp-
tion

Random data en-
cryption

Counter encryp-
tion

AES 128 31113 12878 14195
AES 256 26489 10960 11867

5 A timing attack on AES-128 block cipher

In [8, 9] authors show that bank conflicts may leak some information
about the data. Also they say, that there exists a way to avoid it:

If the lookup tables are small enough (as in the case of AES) we
can create multiple copies of them in the cache and stripe them
across bands to make sure that there is always one entire copy of
the table available through each bank.([9])

From our point of view one could face the following problems while
implementing this approach: the first one is that threads in a bank can
evaluate only the same instructions at a time. The second one is the expan-
sion of evaluation time. And the third one is that for 32 · 4 tables (without
last round) we need 128KB of shared memory (32 is a bank quantity) more
than have the latest GPUs.

There are a lot of implementations of AES block cipher with different
encryption data, keys, t-box allocation, see [9, 11–13]. The fastest one has
parameters that are presented in table 3.
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Unfortunately we can’t use ideas from [10] because for faster implemen-
tation we must use a lot of threads and we’ll be allowed to use only several
32-bit registers. CUDA architecture doesn’t allow to use 128-bit registers
(only as a built-in vector of four 32-bit registers).

Table 3: The best AES implementation parameters

T-box allocation Shared memory
Data allocation Registers
Round keys allocation Shared memory
Size of data in thread 128 bit/thread — each thread encrypts full data block

Timing attacks can be implemented when we can establish some sort of
a correlation between the running times of the algorithm and the nature of
the key and possibly data. This typically happens when the same operation
takes different times for different inputs. As we showed earlier, data reading
from a shared memory takes different amounts of time and it takes less time
when there are no bank conflicts.

Let K = {ki,j, i, j = 0, . . . , 3} be a secret key. Assume that k0,0 =
0, k1,1 = 0, k2,2 = 0, and k3,3 = 0. In this way (in terms of proposition
1) we showed in section 3 that we can choose x0,0, x1,1, x2,2, x3,3 values 224

times to set a0,0 = 0 (value and indexes presented as an example). So
we can set encryption data array Pt as follows. Let array size equals
to M plaintext blocks. Each byte of the plaintext block we set up by a
random value except the first one. Each first byte we’ll choose in such
way that a0,0 = 0. In this way the first byte in each block after the second
AddRoundKey transformation will be the same and the encryption time will
diminish because in each warp all threads of a warp read from an address
within the same word (see section 2). So we can get 32 bits of the key K:
k0,0 = 0, k1,1 = 0, k2,2 = 0, k3,3 = 0 if the encryption time will be less than
the encryption of M random plaintext blocks.

Let α, β, γ, δ ∈ GF
(
28
)
. If we add α, β, γ, δ to each plaintext in Pt as

follows:
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add α to (0, 0) byte
add β to (1, 1) byte
add γ to (2, 2) byte
add δ to (3, 3) byte

we can specify 32 bits of a key K = {ki,j, i, j = 0, . . . , 3}: k0,0 = α, k1,1 =
β, k2,2 = γ, k3,3 = δ. So we can find 32 bits of a key if we can encrypt our
array Pt (that is chosen for each encryption) 232 times and find in what
step the encryption time is the least. The number of the step with the
minimal encryption time corresponds to the right choice of α, β, γ, δ for 32
bits of the key.

Apparently, we can find other 12 bytes of the key independently and
find all bytes of the key only for 3 · 232 array encryptions. So we can find
all 128 bits of the key with complexity 4 ·232 array encryptions. More than
that we can find all 128 bits of the key with only 232 data encryptions, if
we can encrypt specially a0,0 = 0, a0,1 = 0, a0,2 = 0, a0,3 = 0 for each of
four key parts.

In table 4 we present the size of data array and encryption time with
broadcast (Pt array in key find case) and without it (random data encryp-
tion time). Encryption time is a kernel working time (without moving data
between GPU memory and RAM). As we can see in table 4 the minimum
possible time to encrypt one array is about 2 ms.

To employ this attack an attacker must know the evaluation time. We
propose that he has the access to the computer by malware or in some other
manner but hasn’t got a key. Also we propose that he can encrypt any data
with an unknown AES key. 2014 year presents some new software bugs
like Shellshock that can allow an attacker to gain unauthorized access to a
computer system [14]. In our opinion it isn’t too difficult to know a kernel
working time (if you have access to a computer) because, for example,
we can evaluate any program from NVIDIA Visual Profiler. There is no
need to have root privileges to run a program from it and furthermore the
profiler can be used in a command-line mode.

We run an experiment to find a secret key in the following way: we
proposed that we knew 15 bytes of a key and tried to find the rest of it.
We encrypted data with Pt array size that equals M = 33 554 432 on GTX
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Table 4: Encryption time for different M with broadcast and without it, sec

GPU encryption time by GTX Titan encryption time by GTX 285
M the wrong

choice of
α, β, γ, δ

the right choice
of α, β, γ, δ

the wrong
choice of
α, β, γ, δ

the right choice
of α, β, γ, δ

524 288 — — 0.00196643 0.00196088
1 048 576 0.00224006 0.0022334 0.00374532 0.00373562
2 097 152 0.00436898 0.00435408 0.00730337 0.00728249
4 194 304 0.00862449 0.00859434 0.0144648 0.0144242
8 388 608 0.0142342 0.0141866 0.02874 0.0286593

16 777 216 0.0283605 0.0282638 0.0572906 0.057132
33 554 432 0.0566222 0.0564296 — —
67 108 864 0.113143 0.112767 — —

134 217 728 0.226171 0.225415 — —

Titan and M = 16 777 216 on GTX 285. We tried to find (3, 3) byte of the
key. As presented in figures 1 and 2 we could find the shortest encryption
time and find the right key.

As we can see it is quite easy to implement this attack.
On February 2015 an attack recovering all 128 bits of a key were im-

plemented on eight NVIDIA Tesla K10.G2.8GB that were allowed by the
NVIDIA Technology Center. The whole key was recovered in less than 12
days.

6 Comparison with other LSX-block ciphers

As presented in this article we use the specific properties of AES block
cipher: it has small lookup tables and easy linear transformation: it is
a good property for implementations. If we have an LSX-block cipher
with MDS-linear transform like in Kuznyechik (Grasshopper) [15] we can’t
use this attack: to set any value in the second round after the second X
transform we must define all 16 bytes of internal state. But for AES we
must set only 4 bytes. So, if we want to know the first 128-bit round key of
Kuznyechik we must encrypt a specific array 2128 times and if we want to
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Figure 1: Timing attack on GTX 285 (256MB array size)

know the first 128-bit round key of an AES block cipher we must encrypt
a specific array only 232 times.

On the other hand if a linear transform of a LSX block cipher may be
represented as a composition of two or more linear transforms on substate
space the attack might be employed.

7 Conclusions

It this article we have shown a possibility of a timing attack on an
AES-type block cipher CUDA implementations. We’ve shown that we
can recover a secret 128-bit key with the complexity of 232 specific data
encryptions. We use specific properties of an AES block cipher: it has
small lookup tables and a simple linear transformation. Also we analyse
GPU architecture to show a theoretic capability of this type of attacks.

This attack can be applied also for AES with other key sizes and more
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Figure 2: Timing attack on GTX Titan (512MB array size)

than that: for any AES-type block cipher. But if we have an LSX-block
cipher with MDS-linear transform like in Kuznyechik [15] we can’t mount
this attack.
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Fault Analysis of Kuznyechik

Riham AlTawy Onur Duman Amr M. Youssef

Abstract

Kuznyechik is an SPN block cipher that has been chosen recently to be stan-
dardized by the Russian federation as a new GOST cipher. In this paper, we present
two fault analysis attacks on two different settings of the cipher. The first attack is
a differential fault attack which employs the random byte fault model, where the at-
tacker is assumed to be able to fault a random byte in rounds seven and eight. Using
this fault model enables the attacker to recover the master key using an average of
four faults. The second attack considers the cipher with a secret sbox. By utilizing
an ineffective fault analysis in the byte stuck-at-zero fault model, we present a four
stage attack to recover both the master key and the secret sbox parameters. Our
second attack is motivated by the fact that, similar to GOST 28147-89, Kuznyechik
is expected to include the option of using secret sbox based on the user supplied
key to increase its security margin. Both the presented attacks have practical com-
plexities and aim to demonstrate the importance of protecting the hardware and
software implementations of the new standard even if its sbox is kept secret.

Keywords: Kuznyechik, Differential fault analysis, Ineffective fault anal-
ysis, GOST-Grasshopper.

1 Introduction

A draft for a new block cipher called Kuznyechik (Grasshopper in Rus-
sian) was presented at CTCrypt 2014 [19]. This new cipher is the result
of a project for a new standard for block cipher encryption algorithm [2]
published by the Russian Federation. Kuznyechik is intended to accom-
pany the current Russian encryption standard GOST 28147-89 [1] as a new
member of the GOST family of ciphers [2]. Although the current standard
is considered a lightweight cipher [17], and only theoretical attacks on the
full round cipher have been presented [12, 10], it operates on 64-bit blocks
of data which is not sufficient for the current requirements [19]. Hence, the
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need arose for a new standard with a larger block length which is intended
to supersede the current GOST 28147-89 cipher in the future. Recently, a
meet in the middle attack on a reduced round version of Kuznyechik was
presented in [4]. In this paper, we analyze the resistance of the cipher to
fault analysis attacks where the standard sbox is used in the first case and
a secret sbox is employed in the second one.

Fault analysis is an implementation dependent attack where the attacker
applies some kind of physical intervention during the computation of the
internal state of the primitive which corrupts random or known bits in the
state. Consequently, the attacker observes the correct and faulty outputs
and performs her analysis to gain non negligible information about the
secret material embedded in the hardware. Fault injection can be done in
many ways which include power glitches, clock pulses, and laser radiation
[20, 9].

Fault analysis was first introduced when Boneh et al. showed how the
private key of the RSA-CRT-algorithm can be successfully recovered by
observing the correct ciphertext and then injecting a fault and acquiring the
faulty ciphertext [6]. Afterwards, the idea was generalized by Biham and
Shamir with the introduction of differential fault analysis (DFA) [5]. DFA
combines fault analysis with differential cryptanalysis where the difference
between faulty and genuine ciphertexts is exploited. DFA attacks have
been widely used for the analysis of block ciphers and hash functions (e.g.,
see [11, 21, 14, 3]). In particular, AES has received a lot of attention
with regards to DFA where some of the works used fault injection in the
encryption process [21, 11], and others attacked the key schedule [13].

Contrary to DFA, ineffective fault analysis (IFA) [8] is another form of
fault analysis which deduces information about the secret material when
the induced fault has no effect on the output. In other words, we consider a
fault injection successful when both the faulty and original ciphertexts are
equal. Accordingly, one knows that the value of the faulted data is similar
to the genuine one. The use of IFA is particularly interesting because a
common countermeasure to detect fault injections is the use of dual ex-
ecution branches where the encryption process is executed twice and the
output is withheld if a difference in the two ciphertexts is detected. Ac-
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cordingly, using IFA in our analysis easily bypasses this countermeasure
because we gain knowledge of a fault injection only when the two cipher-
texts are equal, which is the case that is not detected by the use of dual
execution branches. Additionally, the stuck-at-zero fault model assumes
that multiple bits are reset to zero by a fault injection. The practical
feasibility of bit-reset fault injections has been demonstrated in a set of ex-
periments [18, 15]. In fact, during experimenting with laser fault injection,
the rate of occurrence of multiple bit-reset faults was reported to be much
higher than that of bit-flip faults [18].

In addition to its use in the analysis of IDEA [7], IFA has been used
to reverse engineer AES with secret parameters in [8]. The idea of reverse
engineering using fault analysis to recover the adopted secret sbox has
also been applied to the current Russian standard GOST 28147-89 [22],
where the authors presented three algebraic fault analysis attacks to recover
different combinations of its secret parameters.

Fault analysis attacks vary in the number of required faults depending on
the employed fault model. Generally, all models assume that the attacker
has access to the physical device, and is able to reset it to the same unknown
initial settings as often as needed. Furthermore, different assumptions with
respect to the amount of control the attacker has over the position and the
Hamming weight of the induced faults are employed.

In this work, we present two fault analysis attacks on Kuznyechik. The
first attack is a differential fault analysis attack that adopts the random
byte fault model which is considered the most practical fault model. Using
this model, the attacker is assumed to be able to fault a random state byte
in rounds seven and eight. In this attack, we adapt the attack presented on
AES in [16] to analyze Kuznyechik by using an equivalent representation
of the last round which enables us to bypass the optimal diffusion effect of
the last linear transformation. Our tweak enables a practical and efficient
retrieval of the last round key and hence, one can peel off the last round
and retrieve the round key used in the second to last round. The knowledge
of the last two round keys allows us to invert the key schedule and recover
the master key. The second attack is an ineffective fault analysis attack
that considers Kuznyechik with a secret sbox. This attack employs a stuck-
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at-zero fault model where the attacker is assumed to be able to rest the
value of a state byte to zero and observe the output of the cipher. Accord-
ingly, one can verify that the value of the genuine state byte is zero when
both the faulty and original outputs are equal. Our attack utilizes some of
the approaches used to analyze AES with secret parameters [8]. However,
unlike AES where the sbox is derived by utilizing the relations between dif-
ferent round keys, we propose a four stage approach where we employ an
iterative stage in which we efficiently solve a system of linear equations in
GF (28) to retrieve multiple sets of candidate parameters. Afterwards, for
each candidate set we recover the first two round keys which subsequently
enables the retrieval of a set of candidate master keys. Finally, we filter
the acquired set of master keys by testing them with a known plaintext-
ciphertext pair to recover the right master key and the secret sbox entries.
Our second attack demonstrates that trying to increase the security of im-
plementations by having transformations with private parameters is not an
adequate measure for protecting the implementation against fault analysis
attacks. This fact is particularly interesting for Kuznyechik which, similar
to GOST 28147-89, is expected to allow deployment with a secret sbox.

The rest of the paper is organized as follows. In the next section, the
description of the Kuznyechik block cipher along with the notation used
throughout the paper are provided. Afterwards, in section 3, we provide a
detailed description of our differential fault analysis of the cipher. Our four
stage ineffective fault analysis attack on Kuznyechik with a secret sbox is
given in section 4. Finally, the paper is concluded in section 5.

2 Specification of Kuznyechik

Kuznyechik [19, 2] is an SPN block cipher that operates on a 128-bit state.
The cipher employs a 256-bit key which is used to generate ten 128-bit
round keys. As depicted in Figure 1, the encryption procedure updates
the 16-byte state by iterating the round function for nine rounds. The
round function consists of:

• SubBytes (S): A nonlinear byte bijective mapping.
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• Linear Transformation (L): An optimal diffusion operation that oper-
ates on a 16-byte input and has a branch number = 17. This trans-
formation can also be seen as a row left multiplication by a 16 × 16
byte matrix whose coefficients αi,j denote the coefficient at row, i, and
column, j, for i, j = 0, 1, · · · , 15.

• Xor layer (X): Mixes round keys with the encryption state.

Figure 1: Encryption procedure

Additionally, an initial XOR layer is applied prior to the first round. The
full encryption function where the ciphertext C is evaluated from the plain-
text P is given by:

C = (X[K10] ◦ L ◦ S) ◦ · · · ◦ (X[K2] ◦ L ◦ S) ◦X[K1](P )

In our first attack, we use an equivalent representation of the last round
function. The representation exploits the fact that both the linear trans-
formation, L, and the Xor operation, X, are linear and thus, their order
can be swapped. One has to first Xor the data with an equivalent round
key, then apply the linear transformation, L, to the result. We evaluate
the equivalent round key after the last round r by EKr+1 = L−1(Kr+1).
For further details regarding the employed sbox and linear transformation,
the reader is referred to [19].

Key schedule: The ten 128-bit round keys are derived from the 256-bit
master key by undergoing 32 rounds of a Feistel structure function. The
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first two round keys, K1 and K2, are derived directly from the master
key, K, as follows: K1 ‖ K2 = K. As depicted in Figure 2, each pair of
subsequent round keys is extracted after eight rounds of execution. During
each round, the same round function used in the encryption procedure is
applied to the right half of the input to the Feistel round. However, round
constants are used with the X operation instead of round keys. The 128-

Figure 2: Key schedule

bit round constants Ci are defined as follows: Ci = L(i), i = 1, 2, · · · , 32.
Let F [C](a, b) denote (LSX[C](a) ⊕ b, a), where C, a, and b are 128-bit
inputs. The rest of the round keys are derived from the first two round
keys, K1 and K2, as follows:

(K2i+1, K2i+2) = F [C8(i−1)+8] ◦ · · · ◦ F [C8(i−1)+1](K2i−1, K2i), i = 1, 2, 3, 4.

Notation The following notation is used throughout the paper:

• xi, yi, zi: The 16-byte state after the X, S, L operation, respectively,
at round i.

• xi[j]: The jth byte of the state xi, where j = 0, 1, · · · , 15, and the
bytes are indexed from left to right.

• ∆xi, ∆xi[j]: The difference at state xi, and byte xi[j], respectively.

• (C,C ′): A pair of ciphertexts where C denotes the original ciphertext
and C ′ denotes the faulty one.
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• P [j]: The jth byte of the plaintext.

3 A Differential Fault Analysis Attack on Kuznyechik

In this attack, we adopt a random byte fault model where the attacker
is assumed to be able to fault a random byte in the states before the
linear transformation in round eight to a random value. As depicted in
Figure 3, a successful fault injection occurs in either x8 or y8. The exact
position of the fault cannot be determined from the observed ciphertexts
due to the optimal diffusion properties of L and it has no added value to
the steps of the attack. The attack starts by building a table for all the

Figure 3: Fault injection in round eight

possible 16× 255 differences in z8 which result from propagating a random
error at any of the 16 byte positions in either x8 or y8 through the linear
transformation layer. Then using the observed ciphertext pair (C,C ′),
one guesses the last round key, and evaluates the difference at x9. The
evaluated difference is then checked against the differences in the stored
table. Successful key candidates result in a match and are consequently
stored in another table for further filtration with another (C,C ′) pair. Let
n denote the number of bytes in the state, then the expected number of
remaining candidate keys after trying N ciphertext pairs (C,C ′) is given by
256n(n×2551−n)N = 25616(16×255−15)N [16]. Accordingly, two ciphertext
pairs are required to retrieve the last round key. A naive implantation of
this attack requires guessing the 128-bits of the last round key when testing
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the first ciphertext pair which renders its complexity unpractical. However,
if the last round does not contain a linear transformation, one can guess
independent key bytes which reduces the complexity as in the case AES and
Khazad [16]. Kuznyechik employs a linear transformation in its last round.
Accordingly, as depicted in Figure 3, we adopt an equivalent representation
by which we evaluate an equivalent key, EK10 = L−1(K10) and swap the
order of the linear transformation and the key mixing operations. Hence,
we can apply a two fault practical attack and recover the master key. In
what follows, we give the steps of the attack.

1. Store in a table T all the possible 16× 255 differences in z8.

2. Consider two ciphertext pairs (C1, C
′
1), and (C2, C

′
2), for each cipher-

text pair, compute ECi = L−1(Ci), and EC ′i = L−1(C ′i), for i = 1, 2.

3. For each value of the possible 216 values of EK10[0]||EK10[1], compute

S−1(X[EK10[0]||EK10[1]](EC1[0]||EC1[1]))⊕ S−1(X[EK10[0]||EK10[1]](EC ′1[0]||EC ′1[1])),

S−1(X[EK10[0]||EK10[1]](EC2[0]||EC2[1]))⊕ S−1(X[EK10[0]||EK10[1]](EC ′2[0]||EC ′2[1])).

Match the resulting two differences from both ciphertext pairs with
the two left most bytes of the differences in T . If a match occurs, add
EK10[0]||EK10[1] to another table Tk.

4. For each EK10[0]||EK10[1] in table Tk:

• Remove EK10[0]||EK10[1] from Tk and extend it by one byte
EK10[2].

• For all the 28 values of EK10[2], compute

S−1(X[EK10[1]||EK10[2]](EC1[1]||EC1[2]))⊕ S−1(X[EK10[1]||EK10[2]](EC ′1[1]||EC ′1[2])),

S−1(X[EK10[1]||EK10[2]](EC2[1]||EC2[2]))⊕ S−1(X[EK10[1]||EK10[2]](EC ′2[1]||EC ′2[2])).

• Match the resulting two differences from both ciphertext pairs
with the second and third bytes of the differences in T . If a
match occurs, add EK10[0]||EK10[1]||
EK10[2] to Tk.

5. Repeat step 4 until the length of the candidate keys in Tk is 16 bytes.
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6. Using the two equivalent ciphertext pairs, exhaustively verify which
of the remaining keys in Tk produces a difference that matches any of
the ones in the precomputed table T .

We have simulated the procedure for the last round key recovery using 100
randomly generated keys. The use of two faults resulted in an avarage
of 462.86 remaining candidates in Tk after step 5 of the above procedure.
Then the remaining keys were exhastively tested using the same original-
faulty ciphertext pairs to recover K10. The attack requires two faults in-
jected in either x8 or y8 to recover K10. Afterwards, using the knowledge of
K10, one can peel off the last round and repeat the attack by injecting an
additional two faults in either x7 or y7 to recover K9. Finally, the knowl-
edge of K9 and K10 allows us to invert the key schedule and compute the
master key.

4 Ineffective Fault Analysis Attack on Kuznyechik

with a Secret Sbox

In this analysis, we consider the case when Kuznyechik is deployed with
a secret sbox. Additionally, we assume that the same sbox is used in the
key schedule operation. A similar setting is employed with the current
standard GOST 28147-89 and it is expected that users will be allowed to
use secret sboxes with Kuznyechik as well. Utilizing secret parameters is
assumed to increase the security margin of the employed primitive and
makes it harder to cryptanalyze. For that reason, customized primitives
with secret parameters are used in military products, gaming systems, and
pay TV.

Our attack applies an ineffective fault analysis using stuck-at-zero faults
on Kuznyechik. The adopted fault model assumes that the attacker is able
to reset a given state byte to zero, hence the attacker can verify if the
original byte is zero or not by checking if both the original and faulty
ciphertexts are equal. In other words, a successful fault injection takes
place when the observed genuine and faulty ciphertexts are similar (i.e.,
C = C ′).
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Our attack recovers the master key and the sbox secret parameters in
four stages. The first stage recovers the value of K1 relative to the value of
S−1(0). Afterwards, in the second stages, we form a system of equations
and derive the values of 216 candidates for the right sbox corresponding
to all the possible values of S−1(0)||K2[0]. In the sequel, using the 216

candidate sboxes, we recover the values of 216 candidates for K2 in the
third stage . Finally, in the fourth step, we filter the 216 candidate master
keys and their corresponding sboxes using a known plaintext-ciphertext
pair. In what follows we give the details of our four stage approach.

Recovery of K1 ⊕ S−1(0): This stage recovers the value of the ith byte on
K1[i] up to the constant value S1(0), for i = 0, 1, · · · , 15, as follows:

1. Iteratively exhaust P [i] and fault byte y1[i] until an ineffective fault is
observed. The occurrence of the IF indicates that the original value
of y1[i] = 0.

2. Accordingly, the value of K1[i]⊕ S−1(0) = P [i].

Applying the above two steps for all the values of i, we recover all of the
bytes of K1 up to the constant S−1(0). This step requires about 28× 16 =
212 fault injections.

Retrieving 216 candidates for the sbox: In this stage, we iteratively assumes
all the possible values S−1(0) and K2[0] to derive the values of the secret
parameters of 216 candidate sboxes. The procedure for each S−1(0) and
K2[0] guess is described as follows:

1. Let a = S−1(0) and hence S(a) = 0.

2. Evaluate the candidate value of K1 by Xoring the value of K1[i] ⊕
S−1(0) recovered in the first stage of the attack, by the guessed value
of S−1(0).

3. Repeat the following steps 28 times.

(a) Let P [0] = m0+K1[0], P [1] = a+K1[1], and P [i] = K1[i]+S
−1(0),

for i = 2, 3, · · · , 15.
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(b) Iteratively exhaustm0 and fault byte y2[0] until an ineffective fault
is observed. The occurrence of the IF indicates that the original
value of y2[0] = 0.

(c) Accordingly, after applying the X[K1], S, L, and X[K2] transfor-
mations, the value of the first byte of x2 is given by α0,0S(m0) +
α1,0S(a) +K2[0].

(d) Due to the IF which resulted by the current choice of m0, we know
that the value of x2[0] = S−1(0). Accordingly, one can compute
the value of S(m0) by

S(m0) = [K2[0] + S−1(0) + α1,0S(a)]α−1
0,0

(e) Set a = m0, and go to step 3 to find another m0.

The obtained equations from the above procedure correspond to a linear
system of equations over GF (28) where the unknowns are the sbox entries.
According to our experimental results, the system obtained using P [0] and
P [1] (or any other pairs) is not a full rank and exhaustively enumerating
all its possible solutions is computationally prohibitive. However, because
of its structure, we are able to evaluate the values of the sbox entries that
are uniquely determined by these equations using the above iterative pro-
cedure. When we use three pairs, the system was full rank for 99 out of 100
experiments. Consequently, to recover all the 256 entries of the candidate
sbox, the above algorithm is repeated with three different plaintext byte
positions. More precisely, after exhausting P [0] and iteratively setting P [1]
to the recovered value of a for 28 times, we repeat the exact procedure with
P [0] and P [2], and finally with P [1] and P [2]. However, in the latter two
cases, we start the procedure from step 3, so we use the last recovered
value of a and not the first point of entry as the first procedure. All in all,
for the 216 candidate sboxes, the attack requires 3× 216 ≈ 217 faults and a
time complexity of 216(3× 216) ≈ 233.

Recovering the rest of K2: The previous two stages resulted in 216 candi-
date sboxes with their corresponding candidate K1 and K2[0] values. Ac-
cordingly, in this stage, for each sbox out of the retrieved 216 candidates,
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we recover the remaining fifteen bytes of K2 as follows: for each byte i, for
i = 1, 2, · · · , 15.

1. Let P [0] = m0 +K1[0], and P [i] = K1[i] + S−1(0).

2. Iteratively exhaust m0 and fault byte y2[i] until an ineffective fault
(IF) is observed. The occurrence of the IF indicates that the original
value of y2[i] = 0.

3. Evaluate K2[i] = α0,iS(m0) + S−1(0).

This stage requires 28× 15 ≈ 212 fault injections and a time complexity of
216 × 28 × 15 ≈ 228 to recover the 216 candidate for the remaining fifteen
bytes of K2.

Recovering the master key: In this stage, we test the 216 candidate sets
parameters, where each set consists of an sbox and its corresponding mas-
ter key K1||K2 against a known plaintext-ciphertext pair. More precisely,
using a candidate sbox and its corresponding K1||K2, one can encrypt a
given plaintext and compare the computed ciphertext to the one generated
by the attacked device. This stage requires a time complexity of 216.

Our four stage approach has a practical complexity which was verified
by our simulation where the retrieval of the secret parameters of the sbox
and corresponding keys require about 212 +217 +212 ≈ 217 ineffective faults
and a time complexity of 212 + 233 + 228 + 216 ≈ 233. This complexity is
justified considering that the use of a secret 8-bit sbox and a 256-bit key
increases the size of the secret information to about 1940 bit. Indeed, the
security level of Kunyechik in this setting is expected to be very high and
consequently the practicality of our attack proves its worthiness.

5 Conclusion

In this paper, we have presented fault analysis attacks on the new draft
of the Russian encryption standard, Kuznyechik, in two different settings.
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Our first attack is a differential fault analysis attack that utilizes the ran-
dom byte fault model. In this attack, we employ an equivalent representa-
tion of the last round by which we bypass the effect of the optimal diffusion
of the last linear transformation. This tweak enables an efficient and prac-
tical recovery of the master key using four faults. Our second attack is a
four stage ineffective fault analysis of Kuznyechik when employing secret
sbox. We first recover several sets of candidate secret sbox parameters and
their corresponding master key. In the sequel, we filter these sets by testing
them against a known plaintext-ciphertext pair to recover the right secret
sbox and master key.

Our attack works when we assume that the same secret sbox is used
in the key schedule operation. It is interesting to investigate how this
approach can be extended in different cases where different sboxes are
employed for each byte position, or when the sbox used in the key schedule
is different than the one used in the encryption process.

While these attacks may not present direct threat to the theoretical se-
curity of Kuznyechik, they serve as a cautionary example to demonstrate
the importance of protecting different implementations of the new stan-
dard, even if its sbox is not publicly known.
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vol. 2523 of Lecture Notes in Computer Science, Springer, pp. 2–12.

CTCrypt 2015 R. AlTawy, O. Duman, A. M. Youssef 316



Fault Analysis of Kuznyechik

[21] Tunstall, M., Mukhopadhyay, D., and Ali, S. Differential
fault analysis of the Advanced Encryption Standard using a single
fault. In Information Security Theory and Practice (2011), C. Ardagna
and J. Zhou, Eds., vol. 6633 of Lecture Notes in Computer Science,
Springer, pp. 224–233.

[22] Zhao, X., Guo, S., Zhang, F., Wang, T., Shi, Z., and Gu,
D. Algebraic fault analysis on GOST for key recovery and reverse
engineering. In IEEE workshop on Fault Diagnosis and Tolerance in
Cryptography (2014), pp. 29–39.

CTCrypt 2015 R. AlTawy, O. Duman, A. M. Youssef 317



An Attack on 6 Rounds of Khazad

An Attack on 6 Rounds of Khazad

Dmitry Burov Boris Pogorelov

Abstract
This paper reports new attacks on the 64-bit block cipher Khazad. These attacks

use some structural properties of round function. As a result we find 14 new classes
of weak keys for 5 and 6 rounds of Khazad. Particularly we show that Khazad has 7
classes of weak keys for 5 and 6 rounds. The cardinality of each class is 264. The time
complexity of weak keys recovering is 235 S-box lookups for 5 rounds and 243 S-box
lookups for 6 rounds and the data complexity is 232 chosen plaintexts. We also show
that Khazad has 7 classes of weak keys for 5 and 6 rounds. The cardinality of each
class is 264. The time complexity of weak key recovering is 235 S-box lookups for 5
rounds and 243 S-box lookups for 6 rounds and the data complexity is 232 chosen
ciphertexts.

Keywords: block cipher, Khazad, invariant subspaces, reducible linear trans-
formation.

1 Description of Khazad

Khazad is an 8-round SP-network with 64 bit block length and 128 bit key
length [1]. It was proposed by V. Rijmen and P. Barreto specially for the
NESSIE project and was chosen as its finalist.

We represent the field GF
(
28
)
as GF (2) [x] / p(x), where p (x) = x8 ⊕

x4⊕x3⊕x2⊕1 − a primitive polynomial over GF (2). A polynomial a (x) =
a0⊕ a1x⊕ . . .⊕ a7x7 ∈ GF (2) [x], where ai ∈ GF (2) for all i ∈ {0, . . . , 7},
is denoted by a numerical value

∑7
i=0 ai2

i, and written in decimal notation.
Further a 64-bit cipher state is represented as a vector in V8

(
28
)
.

Round function fk consists of three transformations: s̃, h, vk.
Function s̃ : V8

(
28
)
→ V8

(
28
)
consists of a parallel of application of a

nonlinear involution substitution box s : GF
(
28
)
→ GF (28):

s̃ : (a0, . . . a7) 7→ (as0, . . . , a
s
7) ,
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where ai ∈ GF
(
28
)
for all i ∈ {0, . . . , 7}.

The diffusion layer is presented as a multiplication by matrix h = ‖|hi,j‖| ∈
GL8(2

8):

h =



1 3 4 5 6 8 11 7
3 1 5 4 8 6 7 11
4 5 1 3 11 7 6 8
5 4 3 1 7 11 8 6
6 8 11 7 1 3 4 5
8 6 7 11 3 1 5 4
11 7 6 8 4 5 1 3
7 11 8 6 5 4 3 1


.

The linear transformation h is an involution.
The key addition vk : V8

(
28
)
→ V8

(
28
)
is a bitwise addition of a key

vector k ∈ V8
(
28
)
:

vk : α 7→ α⊕ k.
The key schedule expands the cipher key k = (k−2, k−1) ∈ V16

(
28
)
into

a sequence of round keys k0, . . . , k8, where ki ∈ V8
(
28
)
for all i ∈ {0, . . . , 8}.

The sequence of round keys is evaluated by means of a Feistel iteration:

ki = (ki−1)
s̃h ⊕ ci ⊕ ki−2,

where ci = (ci,0, . . . , ci,7) defined as

ci,j = (8i+ j)s, i ∈ {0, . . . , 8} , j ∈ {0, . . . , 7} .

A round function is given as

fk : α 7→ αvks̃h.

The full encryption function for r iteration is defined as

gk0,...,kr = fk0 · . . . · fkr−2vkr−1 s̃vkr .

CTCrypt 2015 D.A. Burov, B.A. Pogorelov 319



An Attack on 6 Rounds of Khazad

2 Previous results on Khazad

Several attacks where applied on Khazad in a single-key model. There is
an integral attack on 4 rounds of Khazad [1]. The attack requires 29 chosen
plaintexts and has time complexity 291. In [2] Biryukov finds a class of 264

weak keys for which Khazad can be broken with 243 S-box lookups using
238 chosen plaintexts. An attack on 5 rounds of Khazad was proposed by
Muller [5]. This attack requires 264 known plaintexts and have the time
complexity 291. In [10] attack on 6 rounds of Khazad is presented. The data
complexity is 264 chosen plaintexts and the time complexity is not presented.

In [3] attack on 7 rounds of Khazad in the related-key model and attack
on 8 rounds in the chosen-key model are presented.

Note that single-key attacks are more powerful than related-key and chosen-
key attacks.

3 Structural properties of Khazad round function

In this section we investigate some properties of Khazad round function.
These properties are caused by reducibility of the linear transformation h.
Note that the transformation h is an optimal diffusion transformation. In-
variant subspaces under s̃ and h are described in proposition 1.

Let G be a group generated by the linear transformation h and the group
{vα|α ∈ V64}. The properties of the group G must influence on choice of
S-box. Otherwise a round function may be approximated by imprimitive
transformations [7], [8] or isometric transformations [6], [9]. Also a round
function may save any subspaces [4]. This fact is used to attack Khazad.

Proposition 1. The following subspaces are invariant under s̃ and h:

1. W (1) =
{
(a, a, b, b, e, e, d, d) |a, b, e, d ∈ GF

(
28
)}

;

2. W (2) =
{
(a, b, a, b, e, d, e, d) |a, b, e, d ∈ GF

(
28
)}

;

3. W (3) =
{
(a, b, b, a, e, d, d, e) |a, b, e, d ∈ GF

(
28
)}

;

4. W (4) =
{
(a, b, e, d, a, b, e, d) |a, b, e, d ∈ GF

(
28
)}

;
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5. W (5) =
{
(a, b, e, d, b, a, d, e) |a, b, e, d ∈ GF

(
28
)}

;

6. W (6) =
{
(a, b, e, d, e, d, a, b) |a, b, e, d ∈ GF

(
28
)}

;

7. W (7) =
{
(a, b, e, d, d, e, b, a) |a, b, e, d ∈ GF

(
28
)}

;

8. U (1) =
{
(a, a, a, a, b, b, b, b) |a, b ∈ GF

(
28
)}

;

9. U (2) =
{
(a, a, b, b, a, a, b, b) |a, b ∈ GF

(
28
)}

;

10. U (3) =
{
(a, a, b, b, b, b, a, a) |a, b ∈ GF

(
28
)}

;

11. U (4) =
{
(a, b, a, b, a, b, a, b) |a, b ∈ GF

(
28
)}

;

12. U (5) =
{
(a, b, a, b, b, a, b, a) |a, b ∈ GF

(
28
)}

;

13. U (6) =
{
(a, b, b, a, a, b, b, a) |a, b ∈ GF

(
28
)}

;

14. U (7) =
{
(a, b, b, a, b, a, a, b) |a, b ∈ GF

(
28
)}

;

15. Z(1) =
{
(a, a, a, a, a, a, a, a) |a ∈ GF

(
28
)}

.

Proof. The proof is straightforward.

Further we assume W ∈ {W (i), U (i), Z(1)|i ∈ {1, . . . , 7}}. The existence
of s̃h-invariant subspaces may be a potentially weakness of a block cipher.
Only transformation vk doesn’t save this invariance. However W vk = W , if
k ∈ W .

4 An attack on 5 rounds of Khazad

In this section we describe new weak keys classes for 5 rounds.
From the key schedule it follows that there are exactly |W |2 encryption

keys such that round keys k1, k2 belong to subspaceW . We have k0 ∈ W⊕c2,
k3 ∈ W ⊕ c3 because k2=k1s̃hvc2 ⊕ k0 ∈ W , k1, k2 ∈ W and W s̃h=W . Hence,

(W ⊕ c2)fk0fk1fk2vk3=W ⊕ c3.

For any set X ⊂ V8(2
8) and for each i ∈ {0, . . . , 7} we define a multiset

Xi = {a ∈ GF (28)|(x0, . . . , xi−1, a, xi+1, . . . , x7) ∈ X}.
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In this context a multiset is a set where a value is allowed to appear several
times. For each multiset Xi, i ∈ {0, . . . , 7}, we define vectors µ (Xi) =(
µa (Xi) |a ∈ GF

(
28
))

and ν (Xi) = (n0(Xi), n1(Xi), . . . ,n28(Xi)), where

µa (Xi) = |{x ∈ Xi| x = a}| ,

nj(Xi) =
∣∣{a ∈ GF (28) | µa (Xi) = j

}∣∣ .
Suppose

A=(W ⊕ c3)s̃h = {αi = (ai,0, . . . , ai,7) | i ∈ {0, . . . , |W | − 1}} .

It is evident that a vector µ (Ai) is equal accurate within permutation
to a vector µ

((
Avk4 s̃vk5

)
i

)
for all i ∈ {0, . . . , 7}, k4, k5 ∈ V8

(
28
)
. Using

computer calculations we find that µa (Ai) 6= µb (Ai) for all i ∈ {0, . . . , 7},
a, b ∈ GF

(
28
)
such that a 6= b. Hence we have that µx (Ai) = µa (Bi) if and

only if (x⊕ k4,i)s ⊕ k5,i = a.
Algorithm 1.
Input: vectors µ (Ai) for all i ∈ {0, . . . , 7}, set B={αgk0,...,k5 |α ∈ W⊕c2}.
Output: keys k4, k5.
Step 1. For all i ∈ {0, . . . , 7} do next steps.
Step 2. Choose arbitrary a, b ∈ GF

(
28
)
such that a 6= b.

Step 3. Find x, y ∈ GF (28) such that µa (Bi)=µx(Ai), µb (Bi)=µy(Ai).
Step 4. Find k4,i, k5,i ∈ GF

(
28
)
by solving the following system of

equations {
(x⊕ k4,i)s ⊕ k5,i=a,
(y ⊕ k4,i)s ⊕ k5,i=b.

(1)

If system (1) has more than one solution, then we can choose c ∈ GF
(
28
)
,

c /∈ {a, b}, and z such that µc (Bi) = µz (Ai). Further we can add a new
equation to system (1) for discarding wrong keys.

The time complexity of this method equals to the time complexity of
computing vectors µ (Ai) for all i ∈ {0, . . . , 7}. This time complexity is
8 · |W | S-box lookups. The data complexity is |W | chosen plaintexts. Hence,

1. if W ∈
{
W (i)|i ∈ {1, . . . , 7}

}
, then the time complexity is 235 S-box

lookups, the data complexity is 232 chosen plaintext and we have 264

weak keys;
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2. if W ∈
{
U (i)|i ∈ {1, . . . 7}

}
, then the time complexity is 219 S-box

lookups, the data complexity is 216 chosen plaintexts and we have 232

weak keys;

3. if W=Z(1), then the time complexity is 211 S-box lookups, the data
complexity is 28 chosen plaintexts and we have 216 weak keys.

If W ∈
{
W (i)|i ∈ {1, . . . , 7}

}
, then the time complexity and the data

complexity of this method is less than the time complexity and the data
complexity of the method represented in [2]. Moreover we have 7 weak keys
classes opposed against 1 weak keys class in [2].

5 Membership tests for weak keys

In this section we present membership tests for weak keys of section 4.
Membership tests are attacks designed not to recover the unknown key, but
to determine if the key is a member of a set of weak keys. Notice that there
is no membership test for weak keys in [2].

In this section we suppose that W ∈
{
W (1), U (1)

}
for simplicity. For

other subspaces from proposition 1 all results are true accurate within indices.

Proposition 2. Assume i ∈ {0, 1, 2, 3}. If W = W (1), then

A2i = A2i+1. (2)

If W = U (1), then
A0=A1=A2=A3, (3)

A4=A5=A6=A7. (4)

Proof. Let ϕ, ϕ′ be transformations from V4(2
8) to GF (28). By definition,

put ϕ : (a, b, e, d) 7→ x, ϕ′ : (a, b, e, d) 7→ x′, where

x = (a⊕ c3,0)sh0,2i ⊕ (a⊕ c3,1)sh1,2i ⊕ (b⊕ c3,2)sh2,2i ⊕ (b⊕ c3,3)sh3,2i⊕
⊕(e⊕ c3,4)sh4,2i ⊕ (e⊕ c3,5)sh5,2i ⊕ (d⊕ c3,6)sh6,2i ⊕ (d⊕ c3,7)sh7,2i,

x′ = (a⊕ c3,0)sh0,2i+1 ⊕ (a⊕ c3,1)sh1,2i+1 ⊕ (b⊕ c3,2)sh2,2i+1⊕
⊕(b⊕ c3,3)sh3,2i+1 ⊕ (e⊕ c3,4)sh4,2i+1 ⊕ (e⊕ c3,5)sh5,2i+1⊕
⊕(d⊕ c3,6)sh6,2i+1 ⊕ (d⊕ c3,7)sh7,2i+1.
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From the definitions ofA2i andA2i+1 it follows that (V4(28))ϕ = A2i, (V4(28))ϕ
′
=

A2i+1. Note that for all j ∈ {0, 1, 2, 3} we have h2j,2i = h2j+1,2i+1. Hence for
all vectors (a, b, e, d) ∈ V4(28) we have

(a, b, e, d)ϕ = (a⊕ c3,0 ⊕ c3,1, b⊕ c3,2 ⊕ c3,3, e⊕ c3,4 ⊕ c3,4, d⊕ c3,6 ⊕ c3,7)ϕ
′
.

Therefore we prove equality (2). Equalities (3) and (4) can be proved simi-
larly.

From proposition 2 the next corollary is followed.

Corollary 3. For all i ∈ {0, 1, 2, 3} , k4, k5 ∈ V8(28) we have

ν
((
Avk4 s̃vk5

)
2i

)
= ν

((
Avk4 s̃vk5

)
2i+1

)
.

Based on corollary 3 we present the following algorithm for identification
of weak keys.

Algorithm 2.
Input: set B={αgk0,...,k5 |α ∈ W (1) ⊕ c2}.
Output: unconclusive (key is weak with great probability) or no (key

is not weak).
Step 1. For all i ∈ {0, 1, 2, 3} check

ν (B2i)=ν (B2i+1) . (5)

Step 2. If for some i ∈ {0, 1, 2, 3} (5) is not satisfied, then output: «key
is not weak», otherwise output «unconclusive».

The time complexity of algorithm 2 is 235 S-box lookups. If algorithm 2
gives us an unconclusive answer, then the key is weak with great probability.

Vectors ν (Ai) may be computed for Khazad easily. Therefore algorithm
2 may be improved.

Algorithm 3.
Input: setB={αgk0,...,k5 |α ∈ W⊕c2}, vectors ν (Ai) for all i ∈ {0, . . . , 7}.
Output: unconclusive (key is weak with great probability) or no (key

is not weak)..
Step 1. For all i ∈ {0, . . . ,7} compute vectors ν(Bi).
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Step 2. If there is i ∈ {0, . . . , 7} such that ν (Bi) 6= ν (Ai), then output:
«key is not weak», otherwise output «unconclusive».

The time complexity of algorithm 3 is 235 S-box lookups. If algorithm 3
gives us an unconclusive answer so the key is weak with probability greater
than such in algorithm 2.

6 An attack on 6 rounds of Khazad

In this section we describe an attack on 6 rounds of Khazad. This attack
is similar to the attack of section 4.

The attack uses the property of the set A=(W ⊕ c3)s̃h.
The next result may be obtained by computer computation.

Proposition 4. Assume that W ∈ {W (i)|i ∈ {1, . . . , 7}}. For all a, b ∈
GF (28), j ∈ {0, . . . , 7} we have

µa (Aj) ≡ µb (Aj) mod 2. (6)

Note that proposition 4 is not true for W ∈ {U (i), Z(1)|i ∈ {1, . . . , 7}}.
Suppose

C=Avk4 s̃hvk5={γi=(xi,0, xi,1, . . . ,xi,7)|i ∈ {0, . . . ,232−1}}.
Proposition 5. For all j ∈ {0, . . . , 232 − 1} we have

232−1∑
i=0

xi,j=0, (7)

Proof. It is clear that equality (7) doesn’t depend on k5.
Suppose

Y = Avk4 s̃ = {(yi,0, yi,1, . . . , yi,7)|i ∈ {0, . . . , 232 − 1}}.
The sum (7) can be represented in the form

232−1∑
j=0

xi,j =
232−1∑
i=0

7∑
t=0

yi,tht,j =
7∑
t=0

ht,j

232−1∑
i=0

yi,t.

From proposition 4 it follows that the sum
∑232−1

i=0 yi,t is equal to 0 for all
t ∈ {0, . . . , 7}.
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Suppose

D= {αgk0,...,k6 |α ∈ W ⊕ c2} = {δi= (di,7, . . . ,di,0), i ∈ {0, . . . ,232−1}}.

Using proposition 5 we present the following algorithm for recovering key k6
for 6 rounds of Khazad.

Algorithm 4.
Input: the set D.
Output: the set of possible keys k6 containing the right key.
Step 1. For all i ∈ {0, . . . , 7} do the following steps.
Step 2. For all k6,i ∈ GF (28) check

232−1∑
j=0

(dj,i ⊕ k6,i)s
−1
= 0. (8)

Step 3. If (8) is not satisfied, then k6,i is wrong, otherwise k6,i is a
possible variant for the right key byte.

Algorithm 4 doesn’t discard 28 keys on average. The data complexity of
algorithm 4 is 232 chosen plaintexts and the time complexity is 243 S-box
lookups, the probability of discarding the right key is equal to 0.

7 Chosen ciphertext attacks

In this section we show that chosen ciphertext attacks can be applied
similarly above-stated chosen plaintext attacks.

Suppose W ∈ {W (i), U (i), Z(1)|i ∈ {1, . . . , 7}}. In the same way we have
k6 ∈ W ⊕ c6, k3 ∈ W ⊕ c5, if k4, k5 ∈ W , and k5 ∈ W ⊕ c5, k2 ∈ W ⊕ c4, if
k3, k4 ∈ W . There are exactly |W |2 encryption keys such that k4, k5 ∈ W .
There are exactly |W |2 encryption keys such that k3, k4 ∈ W . Using chosen
ciphertext W ⊕ c5 instead of chosen plaintext W ⊕ c2 we can apply attacks
similar to attacks in sections 4, 5. Using computer computations we obtained
that proposition 4 is also true for the sets (W ⊕ c5)s̃ where W ∈ {W (i)|i ∈
{1, . . . , 7}}. Therefore using chosen ciphertext W ⊕ c6 instead of chosen
plaintext W ⊕ c2 we can apply attacks similar to attacks in sections 6.

Hence for 5 rounds of Khazad we have:
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1. there are 7 classes of weak keys with cardinality 264, the time complexity
is 235 S-box lookups, the data complexity is 232 chosen ciphertexts;

2. there are 7 classes of weak keys with cardinality 232, the time complexity
is 219 S-box lookups, the data complexity is 216 chosen ciphertexts;

3. there is 1 class of weak keys with cardinality 216, the time complexity
is 211 S-box lookups, the data complexity is 28 chosen ciphertexts.

For 6 rounds of Khazad we have that there are 7 classes weak keys, cardi-
nality of each of them is 264. The time complexity is 243 S-box lookups, the
data complexity is 232 chosen ciphertext.

8 Comparison of weak keys

In this section we compare the described classes of weak keys for 5 rounds
with a class of weak keys from [2]. We briefly describe the idea of the method
from [2]. The encryption function of 5 rounds of Khazad can be represented
in the form

gk0,...,k5=vk0 s̃vk′1hs̃hvk2 s̃vk′3hs̃hvk4 s̃vk5,

where k′1 = kh1 , k′3 = kh3 . Suppose k2 = k′3. Since s̃, h are involutions
the transformation hs̃hvk2 s̃vk′3hs̃h is an involution. This property is useful
to apply slide attack for 5 rounds of Khazad. So the method from [2] uses
property k2 = kh3 . It is clear that k2, k3 belong to the same coset over
subspace W . On the other hand for our weak keys we have k2 ∈ W , k3 ∈
W ⊕ c3, c3 /∈ W (chosen plaintext) and k3 ∈ W , k2 ∈ W ⊕ c4, c3 /∈ W
(chosen ciphertext).

Therefore our sets of weak keys for 5 rounds don’t intersect with the set
from [2].

9 Conclusions

In this paper we investigated structural properties of the round function
of Khazad. As a result we found 14 new weak key classes for 5 and 6 rounds.
The cardinality of each class is 264. For recovering weak keys from 7 of
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14 classes we need 232 chosen plaintexts. The time complexity is 235 S-box
lookups for 5 rounds and 245 S-box lookups for 6 rounds. For recovering
weak keys from other 7 classes we need 232 chosen ciphertexts. The time
complexity is the same. Moreover we obtained the subclasses of these weak
keys classes. For recovering weak keys from these subclasses less data and
operations are required.
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