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Abstract—Let H be a Hilbert space over the field C, and let B(H) be the ∗-algebra of all linear
bounded operators in H. Sufficient conditions for the positivity and invertibility of operators
from B(H) are found. An arbitrary symmetry from a von Neumann algebra A is written as the

product A−1UA with a positive invertible A and a self-adjoint unitary U from A. Let ϕ be the weight
on a von Neumann algebra A, let A ∈ A, and let ‖A‖ ≤ 1. If A∗A− I ∈ Nϕ, then |A| − I ∈ Nϕ and,
for any isometry U ∈ A, the inequality ‖A − U‖ϕ,2 ≥ ‖|A| − I‖ϕ,2 holds. If U is a unitary operator
from the polar expansion of the invertible operator A, then this inequality becomes an equality.
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1. INTRODUCTION {ssec1:x350}
Let H be a Hilbert space over the field C, and let B(H) be the ∗-algebra of all linear bounded operators

in H. Searching for sufficient conditions for the positivity and invertibility of operators from B(H) is one
of the problems of operator theory; see, for example, [1]–[7] and the bibliography therein. Let us describe
the results obtained.

Let A,B ∈ B(H)+, let B be invertible, let f : R
+ → R

+ be an operator-monotone function with

f(0) = 0, and let limt→+∞ f(t) = +∞. Then the operator f(f−1(A) + B)−A belongs to B(H)+ and is
invertible (Theorem 1; the positivity of the operator B is important here). Let A,B ∈ B(H), and let A be

left-invertible; let (λ − λ2)|A|2 ≥ 2|B|2 for some number 0 < λ < 1. Then the operator |A + B|2 − |B|2
belongs to B(H)+ and is invertible (Theorem 2). For unital C∗-algebras A and S ∈ A, the equivalence
of the following conditions was established in [8, Corollary 1]:

(i) S2 = I;

(ii) S = T−1UT for an invertible operator T and a Hermitian unitary U from A. For a von Neumann
algebra A, the operator T can be chosen positive (Theorem 4).

The study of traces and weights on operator algebras is an important part of the work on the theory
of noncommutative integration (see [9]–[11]) and constantly attracts the attention of researchers; see,
for example, [12]–[15] and bibliography therein.

Let ϕ be the weight on a von Neumann algebra A, A ∈ A, and let ‖A‖ ≤ 1. If A∗A − I ∈ Nϕ, then
|A| − I ∈ Nϕ and, for any isometry U ∈ A, the following inequality holds:

‖A − U‖ϕ,2 ≥ ‖|A| − I‖ϕ,2.

If the operator U is a unitary operator from the polar expansion of the invertible operator A, then this
inequality becomes an equality (Theorem 5). Let ϕ be a finite weight on the unital C∗-algebra A, A ∈ A,
and let U ∈ A be an isometry. Then

‖A − zU‖2
ϕ,2 ≥ ‖A‖2

ϕ,2 − ϕ(I)−1|ϕ(U∗A)|2 for all z ∈ C

(Theorem 6).
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2. DEFINITIONS AND NOTATION {ssec2:x350}

The left (respectively, right) ideal of the algebra A is a vector subspace J in A such that

A ∈ A and B ∈ J =⇒ AB ∈ J (respectively, BA ∈ J ).

By a C∗-algebra we mean a complex Banach ∗-algebra A such that

‖A∗A‖ = ‖A‖2 for all A ∈ A.

For the C∗-algebra A, we let Aid, Asa, and A+ denote its subsets of idempotents (A = A2), Hermi-

tian (A∗ = A) elements, and positive elements, respectively. If A ∈ A, then |A| =
√

A∗A ∈ A+ and
Re{A} = (A + A∗)/2 ∈ Asa. If I is the unit in the algebra A, then the formula SP = 2P − I defines the

bijection between Aid and the set Asym of all symmetries (S2 = I) in A. By Ainv and Au we denote the
subsets of invertible elements and unitary (A∗A = AA∗ = I) elements, respectively. An element A ∈ A
is called an isometr if A∗A = I.

By a weight on C∗-algebra A we mean a mapping ϕ : A+ → [0,+∞] such that

ϕ(X + Y ) = ϕ(X) + ϕ(Y ), ϕ(λX) = λϕ(X) for all X,Y ∈ A+, λ ≥ 0

(here 0 · (+∞) ≡ 0). A weight ϕ is sad to be exact if ϕ(X) = 0 ⇒ X = 0, X ∈ A+. For the weight ϕ,
we define (see [16, Chap. II, II.6.7.3], [11, Chap. 2, Sec. 11])

• M
+
ϕ = {X ∈ A+ : ϕ(X) < +∞}, M

sa
ϕ = linR M

+
ϕ ;

• Nϕ = {A ∈ A : A∗A ∈ M
+
ϕ } is a left ideal of A;

• ‖A‖ϕ,2 =
√

ϕ(A∗A) (A ∈ Nϕ) be seminorm (norm for exact ϕ) to Nϕ.

The restriction ϕ|
M

+
ϕ

can be extended by linearity to a functional on Mϕ = linC M
+
ϕ , this restriction will

be denoted by the same letter ϕ. Such an extension allows us to identify finite weights (i.e., ϕ(X) < +∞
for all X ∈ A+) with positive functionals in A.

Let H be a Hilbert space over the field C, let B(H) be the ∗-algebra of all linear bounded operators
in H, and let σ(A) be the spectrum of the operator A ∈ B(H). Any C∗-algebra can be realized as a
C∗-subalgebra of B(H) for a Hilbert space H (Gelfand–Naimark; see [17, Theorem 3.4.1]). A locally
convex topology in B(H), defined by the semi-norms X 7→ ‖Xξ‖ (ξ ∈ H), is called a strong operator
topology (so-topology). By the commutator of a set X ⊂ B(H) we mean the set

X ′ = {Y ∈ B(H) : XY = Y X for all X ∈ X}.
By a von Neumann algebra acting in a Hilbert spaceH, we mean a ∗-subalgebraA of the algebraB(H),
for which A = A′′. For a von Neumann algebra A, we let Apr denote its lattice of projectors
(A = A∗ = A2). For an operator X ∈ A, by rp(X) we will denote its rank projector, i.e., the projector
onto the closure of the range of the operator X; we have rp(X) ∈ Apr. For dimH = n < ∞ the
algebra B(H) is identified with the complete matrix algebra Mn(C).

Let I ⊆ R be an interval. A function f : I → R is said to be

• matrix monotone of order n or n-monotone if, for all A,B ∈ Mn(C)sa with σ(A), σ(B) ⊆ I ,
the inequality A ≤ B means f(A) ≤ f(B);

• operator-monotone, If it is n-monotone for all n ∈ N.

If f is 2-monotone, then f ∈ C1(I) and f ′ > 0 for f 6= const. A function f : R
+ → R

+ is
operator-monotone if and only if it is operator concave, i.e.,

f(λA + (1 − λ)B) ≥ λf(A) + (1 − λ)f(B) for all A,B ∈ B(H)+

and 0 ≤ λ ≤ 1. Examples:

1) f(t) = tp, 0 ≤ p ≤ 1;

2) f(t) = (t − 1)/ log(t), f(0) := 0, f(1) := 1; see [18, Sec. 2].
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26 BIKCHENTAEV

3. ON THE INVERTIBILITY OF THE OPERATORS
{ssec3:x350}{lem1:x350}

Lemma 1. Let f : R
+ → R

+ be an operator-monotone function with f(0) = 0, limt→+∞ f(t) =
+∞, and let t0 > 0. Then

∀ ε > 0 ∃ δ = δ(ε) > 0 ∀ t ∈ [0, t0] (f(t + ε) ≥ f(t) + δ).

Proof. By [19, Chap. VII, Theorem 4], a 2-monotone function f , f 6= const, can be expressed in the

form f(t) =
´ t
0

dx/c(x)2 , where the function c(x) > 0 is also concave for all x > 0. Let us rewrite the

inequality f(t + ε) ≥ f(t) + δ in the form
´ t+ε
0

dx/c(x)2 ≥
´ t
0

dx/c(x)2 + δ, i.e.,
ˆ t+ε

t

dx

c(x)2
≥ δ. (1) {eq1:x350}

Let us prove that the function 1/c(x)2 decreases. Suppose that 1/c(x)2 is strictly increasing on an
interval (a, b) ⊂ R

+. Then the function

f(t) =

ˆ t

0

dx

c(x)2

will be strictly convex on (a, b), which is impossible, because every operator-monotone function on R
+

is concave. It is now clear that the number δ = ε/c(t0 + ε)2 satisfies inequality (1).
{th1:x350}

Theorem 1. Let A,B ∈ B(H)+, where B is invertible, and let f : R
+ → R

+ be an operator-mono-
tone function with f(0) = 0 and limt→+∞ f(t) = +∞. Then

operator f(f−1(A) + B) − A ∈ B(H)+ and invertible.

Proof. Since f−1(A) + B ≥ f−1(A), holds in view of the fact that the function f is operator-monotone,

we have f(f−1(A) + B) − A ≥ 0. In view of the inequality B ≥ 0, where B is invertible, there exists a
number ε > 0 such that B ≥ εI. Then

f(f−1(A) + B) ≥ f(f−1(A) + εI) (2) {eq2:x350}

because the function f is operator-monotone. Let us prove that there exists a number δ = δ(ε) > 0 such
that

f(f−1(A) + εI) ≥ A + δI. (3) {eq3:x350}

To do this, we use the spectral theorem in the form of multipliers (for the operator A) and Lemma 1
with a sufficiently large parameter t0, because inequality (3) is in a “commutative” setting. In this case,
the operator A is regarded as a nonnegative essentially bounded measurable function on a measure
space (Ω,Σ, µ), which is the direct sum of spaces with finite measures. Now, from (2), (3), we obtain

f(f−1(A) + B) − A ≥ δI, as required.

For the function f(t) =
√

t , t ≥ 0, the choice of the number δ = δ(ε) > 0 can be made without

using Lemma 1. Let us take a number δ > 0 such that ε ≥ 2δ‖A‖ + δ2. Then

εI ≥ 2δ‖A‖I + δ2I ≥ 2δA + δ2I, A2 + εI ≥ A2 + 2δA + δ2I = (A + δI)2;

thus, (3) is established, because the f function is operator-monotone.
{ex1:x350}

Example 1. The positivity of the operator B is essential in Theorem 1. In M2(C),

for A =
1

2

(

3 1

1 1

)

we have A2 =
1

2

(

5 2

2 1

)

.

For an invertible matrix

B =
1

2

(

−4 −1

−1 0

)

,
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INVERTIBILITY OF THE OPERATORS ON HILBERT SPACES 27

the matrix

A2 + B =
√

A2 + B =
1

2

(

1 1

1 1

)

is a projector. Therefore, the matrix

√

A2 + B − A =

(

−1 0

0 0

)

≤ 0

is invertible.
{th2:x350}

Theorem 2. Let A,B ∈ B(H), let A be left-invertible, and let

(λ − λ2)|A|2 ≥ 2|B|2 for some number 0 < λ < 1. (4) {eq4:x350}

Then the operator |A + B|2 − |B|2 ∈ B(H)+ is invertible.

Proof. The operator A ∈ B(H) is left-invertible if it is bounded below, i.e.,

∃ ε > 0 ∀ ξ ∈ H (‖Aξ‖ ≥ ε‖ξ‖).
Then

〈A∗Aξ, ξ〉 = 〈Aξ,Aξ〉 = ‖Aξ‖2 ≥ ε2‖ξ‖2 = ε2〈Iξ, ξ〉 for all ξ ∈ H,

i.e., A∗A ≥ ε2I. We have

|A + B|2 − |B|2 = (1 − λ)|A|2 + λ|A|2 + A∗B + B∗A +
1

λ
|B|2 − 1

λ
|B|2

= (1 − λ)|A|2 +

∣

∣

∣

∣

√
λA +

1√
λ

B

∣

∣

∣

∣

2

− 1

λ
|B|2

≥ (1 − λ)|A|2 − 1

λ
|B|2 ≥ 1 − λ

2
|A|2 ≥ (1 − λ)ε2

2
I.

{ex2:x350}

Example 2. Condition (4) is essential in Theorem 2. For an arbitrary number 0 < ε < 1/10 in M2(C),
let us put

A =
1

2

(

1 + ε 1 − ε

1 − ε 1 + ε

)

,

and let B =

(

1 0

0 0

)

. We have

|A|2 =
1

2

(

1 + ε2 1 − ε2

1 − ε2 1 + ε2

)

≥\
(

2 0

0 0

)

= 2|B|2,

i.e., condition (4) does not hold for all 0 < λ < 1. The operator

|A + B|2 − |B|2 = (A + B)2 − B2 =
1

4

(

6 + 4ε + 2ε2 4 − 2ε − 2ε2

4 − 2ε − 2ε2 2 + 2ε2

)

is invertible and has a negative eigenvalue.
{lem2:x350}

Lemma 2. Let {An}∞n=1 ⊂ B(H)+, and let the series
∑∞

n=1 An so-converge. Let {λn}∞n=1 ⊂ R
+, and

let

0 < a = inf
n≥1

λn ≤ sup
n≥1

λn = b < ∞.

Then the series
∑∞

n=1 λnAn so-converges and

∞
∑

n=1

An invertible ⇐⇒
∞
∑

n=1

λnAn invertible.
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28 BIKCHENTAEV

Proof. The series
∑∞

n=1 λnAn so - converges due to [20, Theorem 2]. Note that

1) a
∑∞

n=1 An ≤ ∑∞
n=1 λnAn ≤ b

∑∞
n=1 An;

2) A ∈ B(H)+ is invertible ↔ ∃ ε > 0 such that A ≥ εI.

{th3:x350}

Theorem 3. Let A,B ∈ B(H), and let λ, µ > 0. Then

(i) if the operator A∗B + B∗A is invertible then so is λA∗A + µAA∗:

(ii) if A ≥ 0 and AB∗ + BA is invertible then so is λA + µBAB∗.

Proof. By virtue of Lemma 2, we can put λ = µ = 1. Let X ∈ B(H)+, Y ∈ B(H)sa, and let
−X ≤ Y ≤ X. If Y is invertible, then so is X [21, Corollary 2].

(i) Since (A ± B)∗(A ± B) ≥ 0, we have

−A∗A − B∗B ≤ A∗B + B∗A ≤ A∗A + B∗B.

(ii) Since (
√

A ± B
√

A )(
√

A ± B
√

A )∗ ≥ 0, we have

−A − BAB∗ ≤ AB∗ + BA ≤ A + BAB∗.

4. SYMMETRIES AND IDEALS IN VON NEUMANN ALGEBRAS
{ssec4:x350}

For the unital C∗-algebras A and S ∈ A, the equivalence of the following conditions was established
in [8, Corollary 1]:

(i) S2 = I, i.e., S ∈ Asym;

(ii) S = T−1UT for some T ∈ Ainv and U ∈ Au ∩ Asa.

Let us prove that, for a von Neumann algebra A, the operator T can be chosen to be positive.
{th4:x350}

Theorem 4. Let A be a von Neumann algebra, and let S ∈ A. Then the following conditions are
equivalent:

(i) S2 = I;

(ii) S = A−1UA for some A ∈ A+ ∩ Ainv and U ∈ Au ∩Asa.

Proof. (i) ⇒ (ii) Formula SP = 2P − I defines the bijection between the sets Aid and Asym. If P ∈ Aid,

then there exists a T ∈ Ainv such that

Q ≡ T−1PT ∈ Apr

[22, Lemma 16]. If T−1 = V |T−1| be polar expansion of the operator T−1, then V = T−1|T−1|−1 ∈ Au

and T = |T−1|−1V ∗ by virtue of the theorem about the converse of the product of operators. Now

P = TQT−1 = |T−1|−1V ∗QV |T−1| = A−1RA c A = |T−1| ∈ A+ ∩ Ainv

and R = V ∗QV ∈ Apr. Therefore,

S = 2P − I = 2A−1RA − I = A−1(2R − I)A

and we can put U = 2R − I.
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{lem3:x350}

Lemma 3. Let J be a left (or right) ideal in a unital C∗-algebra A, and let A ∈ A+, I − A ∈ J .
Then

(i) I − A1/2n ∈ J for all n ∈ N;

(ii) if A is a von Neumann algebra and A ≤ I, then I − rp(A) ∈ J ; for so-closed J , the
condition A ≤ I can be omitted.

Proof. (i) Let J be a left ideal in a unital C∗-algebra A. Since

(I +
√

A )(I −
√

A ) = I − A ∈ J

and the element I +
√

A is invertible, we have I −
√

A ∈ J . Since

(I + A1/4)(I − A1/4) = I −
√

A ∈ J

and the element I + A1/4 is invertible, we have I − A1/4 ∈ J . Continuing this process, we obtain the
required result.

(ii) Suppose that A is a von Neumann algebra, and A ≤ I. Since rp(A) ≥ A, it follows that I − A ≥
I − rp(A) ≥ 0 and rp(A)A = A rp(A) = A. If X,Y ∈ A+ and X ≤ Y , then there exists a Z ∈ A with

‖Z‖ ≤ 1 such that
√

X = Z
√

Y [23, Chap. 1, Sec. 1, Lemma 2]. Therefore,
√

I − rp(A) = I − rp(A) = Z
√

I − A

for some Z ∈ A with ‖Z‖ ≤ 1. By virtue of the spectral theorem in the form of multipliers, we have

I − rp(A) =
√

I − rp(A) =
√

(I − rp(A))(I − A) = (I − rp(A))
√

I − A

= Z
√

I − A ·
√

I − A = Z(I − A) ∈ J .

Now let the left ideal J be so-closed. Since J is a convex subset in A, by [9, Chap. II, Sec. 2,
item (iv) of Theorem 2.6], it follows that J is σ-weakly closed. Therefore, by virtue of [9, Chap. II,
Sec. 3, Proposition 3.12] J contains a single projector E such that J = AE. Let X ∈ A for which
I − A = XE. Then

I − rp(A) = I − A − rp(A)(I − A) = (I − rp(A))(I − A) = (I − rp(A))XE ∈ J
and the lemma is proved.

{th5:x350}

Theorem 5. Let ϕ be the weight on a von Neumann algebra A, A ∈ A, and let ‖A‖ ≤ 1. If
A∗A − I ∈ Nϕ, then |A| − I ∈ Nϕ and, for any isometry U ∈ A, the following inequality holds:

‖A − U‖ϕ,2 ≥ ‖|A| − I‖ϕ,2. (5) {eq5:x350}

If the operator U is a unitary operator from the polar expansion of the invertible operator A, then
the equality is achieved in (5).

Proof. Since |A| =
√

A∗A and Nϕ is a left ideal of A, we have |A| − I ∈ Nϕ by virtue of item (i) of
Lemma 3. To prove inequality (5) without loss of generality, it suffices to consider the case of an arbitrary
isometry U ∈ A, for which A−U ∈ Nϕ. Let B = |A| − I; then the polar representation of the operator A
can be expressed as A = W (I + B), where W is a unitary operator. Let V = W ∗U ; then V is an isometry
and

‖A − U‖2
ϕ,2 = ‖I + B − V ‖2

ϕ,2 = ϕ((B + I − V )∗(B + I − V )).

Therefore,

‖A − U‖2
ϕ,2 = ϕ(B2) + ϕ(D), (6) {eq6:x350}

where

D = 2I + 2B − V − V ∗ − BV − V ∗B ∈ M
sa
ϕ .
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Let us prove that D ≥ 0. Since ‖A‖ ≤ 1, we have |A|2 ≤ |A|. Then

D = 2I + |A| − I − V − V ∗ − |A|V ∗ + V ∗ − V |A| + V

= I + |A| − |A|V − V ∗|A| = (|A| − V )∗(|A| − V ) + (|A| − |A|2) ≥ 0,

as the sum of two nonnegative operators, and (5) holds due to (6) and the fact that the function

f(t) =
√

t , t ≥ 0, is monotone.

Let U be a unitary operator from the polar expansion of the operator A, i.e., U = A|A|−1. Then

‖A − U‖2
ϕ,2 = ϕ((A − A|A|−1)∗(A − A|A|−1))

= ϕ(|A|2 − |A|−1|A|2 − |A|2|A|−1 + |A|−1|A|2|A|−1)

= ϕ(|A|2 − 2|A| + I) = ϕ((|A| − I)2) = ‖|A| − I‖2
ϕ,2,

i.e., in (5), equality is achieved.

For A = B(H), ϕ = tr, and the unitary operator U , the assertion of Theorem 5 was obtained in [24,
Chap. VI, Lemma 3.1] and it was shown that, in this particular case, the equal sign in (5) is realized if
and only if U is a unitary operator from the polar expansion of an invertible operator A.

{lem4:x350}
Lemma 4. For the numbers a, c > 0 and b ∈ C, let us define a function f : C → R, assuming that

f(z) = c|z|2 − 2ℜ{zb} + a for all z ∈ C. Then

min
z∈C

f(z) = f

(

b

c

)

= a − |b|2
c

.

Proof. For all z ∈ C, we have

f(z) =

(√
c z − b√

c

)(√
c z − b√

c

)

− |b|2
c

+ a =

∣

∣

∣

∣

√
c z − b√

c

∣

∣

∣

∣

2

− |b|2
c

+ a.

{th6:x350}

Theorem 6. Let ϕ be the weight on a unital C∗-algebra A, A ∈ A, and let U ∈ A be an isometry.
Then

(i) A ∈ Nϕ ⇔ UA ∈ Nϕ and ‖UA‖ϕ,2 = ‖A‖ϕ,2;

(ii) if ϕ is finite, then ‖A − zU‖2
ϕ,2 ≥ ‖A‖2

ϕ,2 − ϕ(I)−1|ϕ(U∗A)|2 for all z ∈ C.

Proof. (i) We have

‖UA‖2
ϕ,2 = ϕ(A∗U∗UA) = ϕ(A∗A) = ‖A‖2

ϕ,2.

(ii) The extension of a finite weight ϕ to the whole algebra A will be denoted by the same letter ϕ.

Since ϕ(X∗) = ϕ(X) and ϕ(Re{X}) = ℜ{ϕ(X)} for all X ∈ A, it follows that, for all z ∈ C,

‖A − zU‖2
ϕ,2 = ϕ((A∗ − zU∗)(A − zU)) = ϕ(A∗A) − ϕ(2Re{zU∗A}) + |z|2ϕ(I)

= ‖A‖2
ϕ,2 − 2ℜ{zϕ(U∗A)} + |z|2ϕ(I).

The minimum of this expression (for fixed A and U ) is attained at the point z = ϕ(I)−1ϕ(U∗A), and it is

equal to ‖A‖2
ϕ,2 − ϕ(I)−1|ϕ(U∗A)|2; see Lemma 4.

From Theorem 5 and Theorem 6 with z = 1, we obtain the following statement.
{cor1:x350}

Corollary 1. Let ϕ be finite weight on a von Neumann algebra A, A ∈ A with ‖A‖ ≤ 1, and let
U ∈ A be an isometry. Then

‖A − U‖2
ϕ,2 ≥ max{‖|A| − I‖2

ϕ,2, ‖A‖2
ϕ,2 − ϕ(I)−1|ϕ(U∗A)|2}.
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{ex3:x350}

Example 3. Suppose that the positive functional ϕ : M2(C) → C is given by the density matrix Sϕ =
diag(t + s, t − s) with fixed t > 0 and 0 ≤ s ≤ t. Then

ϕ(X) = tr(SϕX) = (t + s)x11 + (t − s)x22 for all X = [xij ]
2
i,j=1 ∈ M2(C).

Let us put A := diag(1, 0), U := diag(1,−1). Then

‖A − U‖2
ϕ,2 = ‖|A| − I‖2

ϕ,2 = t − s

and, in the inequality of Theorem 5, the equality is achieved for all 0 ≤ s ≤ t. We have ϕ(I) = 2t and

‖A‖2
ϕ,2 = ϕ(U∗A) = ϕ(A) = t + s,

because A is a projector. Inequality in item (ii) of Theorem 6 becomes

t − s ≥ t + s − (t + s)2

2t
=

t

2
− s2

2t

and, for s = t, this inequality becomes an equality. Thus, for s = t, the inequality of Corollary 1 also
becomes an equality.
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