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Abstract—The paper deals with the study of solvability to geometrically nonlinear boundary value
problem for elastic inhomogeneous isotropic shallow shells with free edges within S. P. Timoshenko
shear model. The problem is reduced to one nonlinear equation relative to deflection of shell in
Sobolev space. Solvability of equation is proved with the use of contracting mappings principle.
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INTRODUCTION
The solvability of nonlinear problems of equilibrium for thin elastic shells is currently sufficiently fully

studied in the framework of the Kirchhoff–Love model (see [1–5] and by the quoted literature). The
questions of existence of solutions of nonlinear problems of equilibrium within the more general models
of the theory of the shells, not based on hypotheses of Kirchhoff–Love were included into the known
list of unresolved problems of the mathematical theory of shells [1] and until recently they remained
open. Today there is a number of works [6–15] in which the solvability of nonlinear problems are studied
within the shear model of S. P. Timoshenko. The studies in [6–15] are based on integral representations
for generalized displacements. The integral representations contain the arbitrary holomorphic functions.
The holomorphic functions are defined so that the generalized displacements satisfy the given boundary
conditions. For their construction two approaches are used. The first approach is based on application
explicit representations of solutions of a problem of Riemann–Hilbert for the holomorphic functions in
a unit disk. Therefore the flat domain which is homeomorphic to middle surface of shell, or is supposed
by a unit disk [6, 7, 9, 10, 13], or conformally mapped onto a unit disk [8]. The second approach for
determine the holomorphic functions uses the theory of integrals of Cauchy type with the real density.
These densities are defined as the solutions of system of one-dimensional singular integral equations
[11, 12, 14, 15]. In the present work, the second approach is used. Work is a direct development of the
works [11, 12, 14] to the case of shallow shells with variable principal curvatures, which significantly
сomplicates a obtaining of necessary and sufficient conditions for the solvability of the problem.
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1. STATEMENT OF THE PROBLEM

In a simply connected bounded flat domain Ω we consider a system of nonlinear differential equations

T iλ
αλ +Ri = 0, i = 1, 2,

T λ3
αλ + kλT

λλ + (T λμw3αμ)αλ +R3 = 0,

M iλ
αλ − T i3 + Li = 0, i = 1, 2, (1)

under the conditions

T j1dα
2

ds
− T j2dα

1

ds
= P j(s), j = 1, 2,

T 13dα
2

ds
− T 23dα

1

ds
+ T 11w3α1

dα2

ds
− T 22w3α2

dα1

ds
+ T 12

(
w3α2

dα2

ds
− w3α1

dα1

ds

)
= P 3(s),

M j1dα
2

ds
−M j2dα

1

ds
= N j(s), j = 1, 2, (2)

on its boundary Γ. In (1) and (2) the following notations is accepted:

T ij ≡ T ij
γ (a) = Dijkn

0 γ0kn, M ij ≡ M ij
γ (a) = Dijkn

2 γ1kn, a = (w1, w2, w3, ψ1, ψ2),

Dijkn
m =

h0/2∫
−h0/2

Bijkn(α1, α2, α3)(α3)mdα3, B1111 = B2222 =
E

1− ν2
, B1122 =

νE

1− ν2
,

B1212 =
E

2(1 + ν)
, B1313 = B2323 =

Ek2

2(1 + ν)
, γ0jj = wjαj − kjw3 +

w2
3αj

2
(j = 1, 2),

γ012 = w1α2 + w2α1 + w3α1w3α2 , γ1jj = ψjαj (j = 1, 2), γ112 = ψ1α2 + ψ2α1 ,

γ0j3 = w3αj + ψj (j = 1, 2), γ033 = γ1k3 ≡ 0, k = 1, 3; (3)

the remaining Bijkn are zero; αj = αj(s) (j = 1, 2) are equations of the curve Γ, variable s is the length
of the arc of the curve Γ, subscript αλ in (1)–(3) and further means differentiation with respect to αλ,
λ = 1, 2.

System (1), together with boundary conditions (2), describes the equilibrium state of an elastic
shallow isotropic inhomogeneous shell with free edges within Timoshenko shear model [16, pp. 168–
170, 269]. Herewith T ij are the stresses, M ij are the moments; γkij (i, j = 1, 3, k = 0, 1) are the strain
components of middle surface S0 of the shell, where S0 is homeomorphic to Ω; wj (j = 1, 2) are the
tangential displacements of points of S0, w3 is the normal displacement of points of S0; ψi (i = 1, 2)
are the rotation angles of the normal cross-sections of surface S0; a is the generalized displacement
vector; Rj , P j (j = 1, 3), Lk, Nk (k = 1, 2) are the components of external forces acting on the shell; ν
is the Poisson ratio; E is the Young modulus; kj = kj(α

j) (j = 1, 2) are the principal curvatures; k2 is
the shear coefficient; h0 = const is the shell thickness; α1,α2 are Cartesian coordinates of points of the
domain Ω.

In (1)–(3) and further, on repeated Latin indices summation is carried out from 1 to 3, on repeated
Greek indices summation is carried out from 1 to 2.

System (1) in the generalized displacements takes the form

(D1111
0 w1α1 +D1122

0 w2α2)α1 + [D1212
0 (w1α2 + w2α1)]α2 − (D11μμ

0 kμw3)α1 = f1,

[D1212
0 (w1α2 + w2α1)]α1 + (D1122

0 w1α1 +D2222
0 w2α2)α2 − (D22μμ

0 kμw3)α2 = f2,
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D1313
0 w3α1α1 +D2323

0 w3α2α2 +D1313
0α1 w3α1 +D2323

0α2 w3α2

+(D1313
0 ψ1)α1 + (D2323

0 ψ2)α2 + kλT
λλ
e (a) = f3,

(D1111
2 ψ1α1 +D1122

2 ψ2α2)α1 + [D1212
2 (ψ1α2 + ψ2α1)]α2 −D1313

0 (w3α1 + ψ1) = f4,

[D1212
2 (ψ1α2 + ψ2α1)]α1 + (D1122

2 ψ1α1 +D2222
2 ψ2α2)α2 −D2323

0 (w3α2 + ψ2) = f5, (4)

where

fj ≡ fj(w3) = −(Djjμμ
0 χ0

μμ)αj − (D1212
0 χ0

12)α3−j −Rj , j = 1, 2,

f3 ≡ f3(a) = −kλT
λλ
χ − (T λμw3αλ)αμ −R3, f4 = −L1, f5 = −L2;

T ij
e = Dijδβ

0 e0δβ , T ij
χ = Dijδβ

0 χ0
δβ , T ij = T ij

e + T ij
χ ; (5)

e0δβ and χ0
δβ denote linears and nonlinear summands of the strains components γ0δβ : γ0δβ = e0δβ + χ0

δβ ,
δ, β = 1, 2.

Problem (4), (2). Find a solution of system (4) satisfying the boundary conditions (2).
We study the boundary value Problem (4), (2) in the generalized setting. Let the following conditions

be satisfied:
(а) the elastic characteristics Bijkn(α1, α2, α3) are the even functions of a variable α3 ∈ [−h0/2,

h0/2] and Bijkn ∈ W
(1)
p (Ω)× L1[−h0/2, h0/2];

(b) kj ∈ W
(1)
p (Ω), j = 1, 2;

(c) Rj (j = 1, 3), Lk (k = 1, 2) ∈ Lp(Ω); P
j (j = 1, 3), Nk (k = 1, 2) ∈ Cβ(Γ);

(d) Ω is an arbitrary simply connected domain with boundary Γ ∈ C1
β ;

(e) the external load is self-balanced.
Here and further: 2 < p < 4/(2 − β), 0 < β < 1.
Definition 1. A vector a = (w1, w2, w3, ψ1, ψ2) is called a generalized solution of Problem

(4),(2) if a ∈ W
(2)
p (Ω), satisfies the system (4) almost everywhere and satisfies the boundary

conditions (2) pointwise.

Here W
(i)
p (Ω) (i = 1, 2) are the Sobolev spaces. By the embedding theorems for the Sobolev spaces

W
(2)
p (Ω) with p > 2, a generalized solution a ∈ C1

α(Ω). Here and further α = (p − 2)/p. Let us notice
what if the condition 2 < p < 4/(2 − β) is satisfied, then inequality α < β/2 is holds.

2. CONSTRUCTION OF INTEGRAL REPRESENTATIONS
FOR GENERALIZED DISPLACEMENTS

Let us introduce the two complex-valued functions ωj = ωj(z) = D1111
2(j−1)(fj1α1 + fj2α2) +

iD1212
2(j−1)(fj2α1 − fj1α2) (j = 1, 2), z = α1 + iα2, f1j = wj , f2j = ψj , j = 1, 2. Relatively of functions

ωj(z) (j = 1, 2) and normal displacement w3(z) we consider the equations

ωjz = ρj, j = 1, 2, D1313
0 w3α1α1 +D2323

0 w3α2α2 = ρ3, (6)

where ρ1 = ρ1 + iρ2, ρ2 = ρ4 + iρ5, ρ3 ≡ ρ3 are arbitrary fixed functions belonging to space Lp(Ω);
ωjz = (ωjα1 + iωjα2)/2.

The first two equations in (6) are inhomogeneous Cauchy–Riemann equations. Therefore, their
general solutions are given by formulas [17, p. 29]

ωj(z) = Φj(z) + Tρj(z), Tρj = − 1

π

∫∫
Ω

ρj(ζ)

ζ − z
dξdη, j = 1, 2, ζ = ξ + iη, (7)
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where Φj(z) are arbitrary holomorphic functions belonging to the space Cα(Ω).

It is known [17, p. 29] that T is a completely continuous operator in spaces Lp(Ω) and Ck
α(Ω) and he

carry out mapping these spaces in Cα(Ω) and Ck+1
α (Ω), respectively. In addition, there exist generalized

derivatives

∂Tf

∂z̄
= f,

∂Tf

∂z
≡ Sf = − 1

π

∫∫
Ω

f(ζ)

(ζ − z)2
dξdη, (8)

where S is a linear bounded operator in Lp(Ω), p > 1 and in Ck
α(Ω).

In turn, using the functions ω0
1 = w2 + iw1, ω0

2 = ψ2 + iψ1, the relations (7) can be written in the
form of the inhomogeneous Cauchy–Riemann equations

ω0
jz̄ = i(d1jωj + d2jωj) ≡ idj [ωj], dkj =

1

4

(
1

D1111
2(j−1)

+
(−1)k

D1212
2(j−1)

)
, j, k = 1, 2.

The general solution of Cauchy–Riemann equations has the form

ω0
j (z) = Ψj(z) + iTdj [ωj](z), j = 1, 2, (9)

where Ψj(z) are arbitrary holomorphic functions of the space C1
α(Ω).

The third equation in (6), taking into account D1313
0 = D2323

0 , we presented in the form

w3zz̄ = ρ̃3/2, ρ̃3 = ρ3/(2D
1313
0 ), w3z = (w3α1 − iw3α2)/2.

Wherefrom we obtain the representation w3z = Φ0(z) + T ρ̃3(z)/2, where Φ0(z) is an arbitrary holomor-
phic function of the space Cα(Ω).

By integrating the last relation with respect to z, we will have

w3(z) = ReΦ3(z)− T̃ ρ̃3, T̃ ρ̃3 = − 1

π

∫∫
Ω

ρ̃3(ζ) ln

∣∣∣∣1− z

ζ

∣∣∣∣ dξdη, (10)

where Φ3(z) ∈ C1
α(Ω) is an arbitrary holomorphic function.

Relations (9) and (10) are the desired integral representations for generalized displacements. For
their first-order partial derivatives, from (9) and (10), taking into account (6), (7) and (8), we will obtain

fkjαj = Reωk/
(
2D1111

2(k−1)

)
− (−1)j Im

{
Ψ′

k(z) + iSdk[ωk](z)
}
, ωk = Φk(z) + Tρk(z),

fkjαn = Re
{
Ψ′

k(z) + iSdk[ωk](z)
}
+ (−1)j Imωk/

(
2D1212

2(k−1)

)
, k, j, n = 1, 2, j �= n,

f1j = wj , f2j = ψj ; w3αj = Re
{
ij−1[Φ′

3(z) + T ρ̃3(z)]
}
, j = 1, 2. (11)

The generalized displacements wj (j = 1, 3), ψ1, ψ2 and their derivatives defined by formulas (9), (10)
and (11) we will represent in form convenient for further studies:

wj = w1
j + w2

j , ψk = ψ1
k + ψ2

k, wjαn = w1
jαn + w2

jαn , ψkαn = ψ1
kαn + ψ2

kαn ,

j = 1, 3, k, n = 1, 2,

where the summands with a superscript ”1” contain only the functions ρ = (ρ1, ρ2, ρ3), and the
summands with a superscript ”2” contain only holomorphic functions Φ = (Φ1,Φ2,Φ3,Ψ1,Ψ2).
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3. SOLUTION OF PROBLEM (4), (2)

Integral representations (9) and (10) for generalized displacements a = (w1, w2, w3, ψ1, ψ2) contain
arbitrary holomorphic functions Φj(z) (j = 1, 3), Ψk(z) (k = 1, 2) and arbitrary functions ρj(z) (j =

1, 3). We find them so that the generalized displacements satisfy the system (4) of equilibrium equations
and the boundary conditions (2). For this purpose, we substitute relations (9), (10), and (11) into (4)
and (2). As a result, the system of equations (4) takes the form

ρj(z) + hj1(ρ)(z) + hj2(Φ)(z) = f j(z), j = 1, 3, (12)

where

h1j = D1212
0α2 wj

2α1 −D1212
0α1 wj

2α2 + i
(
D1212

0α1 wj
1α2 −D1212

0α2 wj
1α1

)
− (D11μμ

0 kμw
j
3)α1 + i(D22μμ

0 kμw
j
3)α2

2
,

h2j = D1212
2α1 ψj

2α1 −D1212
2α1 ψj

2α2 + i
(
D1212

2α1 ψj
1α2 −D1212

2α2 ψj
1α1

)
−

D1313
0

[
ψj
1 + wj

3α1 + i(ψj
2 + wj

3α2

]
2

,

h3j = D1313
0α1 wj

3α1 +D2323
0α2 wj

3α2 +
(
Dμ3μ3

0 ψj
μ

)
αμ

+ kλT
λλ
e (aj), aj = (wj

1, w
j
2, w

j
3, ψ

j
1, ψ

j
2), j = 1, 2;

f1 = (f1 + if2)/2, f2 = (f4 + if5)/2, f3 ≡ f3; hj1 ≡ hj1(ρ), hj2 ≡ hj2(Φ), j = 1, 3.

The boundary conditions (2) are transformed to the form

Re
{
ij [t

′
+ (−1)jt′]a2k−1(t)ωk(t)− ij−1a2k(t)t

′[Ψ′
k(t) + iSdk[ωk]

+(t)]
}

+ (2− k)lj(w3)(t) = ϕj+3(k−1)(t), j, k = 1, 2,

D1313
0 Im

{
t′[Φ′

3(t) + T ρ̃3(t)]
}
+ l3(ψ)(t) = ϕ3(a)(t), (13)

where

lj(w3)(t) = (−1)jDjjμμ
0 kμw3

dα3−j

ds
, j = 1, 2,

l3(ψ)(t) = D1313
0 ψ1

dα2

ds
−D2323

0 ψ2
dα1

ds
, ψ = (ψ1, ψ2);

ϕj(t) = P j(s) + (−1)j
[
Djjμμ

0 χ0
μμ

dα3−j

ds
−D1212

0 χ0
12

dαj

ds

]
, j = 1, 2

ϕ3(a)(t) = P 3(s)−
{
T 11w3α1

dα2

ds
− T 22w3α2

dα1

ds
+ T 12

(
w3α2

dα2

ds
− w3α1

dα1

ds

)}
,

ϕ4(t) = N1(s), ϕ5(t) = N2(s); a2j−1 =
1

4

(
1 +

D1122
2(j−1)

D1111
2(j−1)

)
, a2j = 2D1212

2(j−1),

ωj(t) = Φj(t) + Tρj(t), j = 1, 2; Φk(t) ≡ Φ+
k (t), Ψ′

k(t) ≡ Ψ′+
k (t), k = 1, 2, Φ′

3(t) ≡ Φ′+
3 (t).

Here and below, the symbol Ψ+(t) denotes the limit of a function Ψ(z) as z → t ∈ Γ from the interior of
the domain Ω.

Thus, to determine the functions ρj ∈ Lp(Ω), j = 1, 3, Φk(z) ∈ Cα(Ω), k = 1, 2, Φ3(z), Ψk(z) ∈
C1
α(Ω), k = 1, 2, we have the system of equations (12) and (13). We will find the holomorphic functions

in the form of Cauchy type integrals with real densities:

Φj(z) = θ(μ2j−1)(z), Ψ′
j(z) = θ(μ2j)(z), j = 1, 2,
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Φ′
3(z) = iθ(μ5)(z), θ(f)(z) =

1

2πi

∫
Γ

f(τ)dτ

τ ′(τ − z)
, (14)

where μj(t) ∈ Cα(Γ) (j = 1, 5) are arbitrary real functions, τ ′ = dτ/dσ, dσ is an element of the arc
length of the curve Γ.

For functions (Ψj(z) (j = 1, 2), Φ3(z)), we have representations:

Ψj(z) = − 1

2πi

∫
Γ

μ2j(τ)

τ ′
ln

(
1− z

τ

)
dτ + c2j−1 + ic2j ≡ Ψj(μ2j)(z) + c2j−1 + ic2j , j = 1, 2,

Φ3(z) = − 1

2π

∫
Γ

μ5(τ)

τ ′
ln

(
1− z

τ

)
dτ + c5 + ic6 ≡ Φ3(μ5)(z) + c5 + ic6, (15)

where cj (j = 1, 6) are arbitrary real constants, under ln(1 − z/τ) we mean a one-valued branch that
vanishes when condition z = 0.

Using formulas of Sokhotsky [18, p. 66], we find Φj(t), Ψ′
j(t), j = 1, 2, Φ′

3(t), t ∈ Γ. We substitute
their expressions, as well as (15) in (12) and (13), taking into account representation

Sdj [ωj]
+(t) = −1

2
(t

′
)2dj [Φj(t)]−

d1j(t)

2πi

∫
Γ

τ − t

(τ − t)2
Φj(τ)dτ −

d2j (t)

2πi

∫
Γ

Φj(τ)

τ − t
dτ

− 1

π

∫∫
Ω

d1j (ζ)− d1j (t)

(ζ − t)2
Φj(ζ)dξdη −

∫∫
Ω

d2j(ζ)− d2j(t)

(ζ − t)2
Φj(ζ)dξdη + Sdj [Tρ

j ]+(t), j = 1, 2.

Representation for Sdj [ωj]
+(t) is obtained using relations (7) and (8), formulas (4.7) and (4.9) from [17,

p. 28] and formulas of Sokhotsky. As a result, after simple transformations, we arrive at a system of
equations with respect to functions ρ = (ρ1, ρ2, ρ3) ∈ Lp(Ω) and μ0 = (μ1, μ2, μ3, μ4, μ5) ∈ Cα(Γ) :

ρj(z) + hj1(ρ)(z) + hj2(μ0)(z) = f j(z)− hj3(c)(z), z ∈ Ω, j = 1, 3,

5∑
k=1

⎧⎨
⎩ajk(t)μk(t) + bjk(t)

∫
Γ

μk(τ)

τ − t
dτ

⎫⎬
⎭ +Kjμ0(t) +Hjρ(t) = gj(a)(t), t ∈ Γ, j = 1, 5. (16)

In system (16) accepted of notations:

h13(c)(z) = −c5

[
(D11μμ

0 kμ)α1 + i(D22μμ
0 kμ)α2

]
/2, h23(c)(z) = −(c4 + ic3)D

1313
0 /2,

h33(c)(z) = c4D
1313
0α1 + c3D

2323
0α2 + kμT

μμ
e (c), hj2(μ0)(z) ≡ hj2(Φ(μ0))(z), j = 1, 2;

Kjμ0(t) = −aj(t)

2π
Re

⎛
⎝t′

∫
Γ

μj(τ)

τ − t
dσ

⎞
⎠+

aj(t)

2π

∫
Γ

μj(τ)

τ − t
dτ − ãj(t)Re

⎛
⎝ t′

2πi

∫
Γ

μ̃j(τ)

τ − t
dσ

⎞
⎠

− Re
{
inja2mj (t)t

′K0mjμ2mj−1(t)
}
+ l̃j2(μ5)(t), j = 1, 4,

K0jμ2j−1(t) =
d2j(t)

2πi

∫
Γ

ψ0(τ, t)− ψ0(τ, τ)

τ − t
μ2j−1(τ)τ

′dτ −
d1j (t)

2πi

∫
Γ

ψ(τ, t) − ψ(t, t)

τ − t
Φj(μ2j−1)(τ)dτ

− 1

π

∫∫
Ω

d1j (ζ)− d1j (t)

(ζ − t)2
Φj(μ2j−1)(ζ)dξdη − 1

π

∫∫
Ω

d2j (ζ)− d2j (t)

(ζ − t)2
Φj(μ2j−1)(ζ)dξdη, j = 1, 2,
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ψ0(τ, t) =
1

2πi

∫
Γ

ψ(τ, τ1)

τ1 − t
dτ1, ψ(τ, t) =

τ − t

τ − t
, ψ(t, t) =

dt

dt
= (t

′
)2;

Φj(μ2j−1)(z) ≡ θ(μ2j−1)(z);

K5μ0(t) =
D1313

0

2π
Im

⎛
⎝t′

∫
Γ

μ5(τ)

τ − t
dσ

⎞
⎠+ l3

(
ψ2(Φ(μ0))

)
(t),

Hjρ(t) = Re
{
inj [t

′
+ (−1)jt′]a2mj−1(t)Tρ

j(t)− inja2mj (t)t
′Sdj [Tρ

j ]+(t)
}
+ l̃j1(ρ3)(t), j = 1, 4,

H5ρ(t) = D1313
0 Im(t′T ρ̃3) + l3(ψ

1(ρ))(t); gj(a)(t) = ϕj(w3)(t)− lj3(c)(t), j = 1, 2,

gj(a)(t) = ϕ1+j(t), j = 3, 4, g5(a)(t) = ϕ3(a)(t)− l3(c)(t); (17)

where

lj3(c)(t) = (−1)jc5kλD
jjλλ
0

dα3−j

ds
, j = 1, 2, l3(c)(t) = c4D

1313
0

dα2

ds
− c3D

2323
0

dα1

ds
;

l̃j2(μ5)(t) ≡ lj
(
w2
3(Φ3(μ5))

)
(t) at j = 1, 2 and l̃j2(μ5)(t) ≡ 0 at j = 3, 4;

l̃j1(ρ3)(t) ≡ lj
(
w1
3(ρ3)

)
(t) at j = 1, 2 and l̃j1(ρ3)(t) ≡ 0 at j = 3, 4;

ψk = (ψk
1 , ψ

k
2 ), k = 1, 2;

ã2j−1 = a2j , ã2j = 1, μ̃2j−1 = μ2j, μ̃2j = μ2j−1, n2j−1 = 1, n2j = 0, j = 1, 2;m1 = m2 = 1,m3 = 2,

m4 = 2, a12 = −a2
2
, a21 = −a1

2
, a34 = −a4

2
, a43 = −a3

2
, a55 =

D1313
0

2
,

bjj = − aj
2π

, j = 1, 4;

the remaining aij(t), bij(t) are equal to zero; aj(t) (j = 1, 4) and ϕj(t) (j = 1, 5) are defined in (13).

Lemma 1. Let conditions (a), (b), (c), (d) be satisfied. Then:

1) hj1(ρ) (j = 1, 3) are linear completely continuous operators in Lp(Ω);

2) hj2(μ0)(t) (j = 1, 3) are linear completely continuous operators from Cν(Γ) in Lp(Ω), where
ν is any number from the interval (0,1);

3) Kjμ0(t) (j = 1, 5) are linear completely continuous operators from Cν(Γ) in Cα′(Γ) ∀α′ < α
and are bounded operators from Cν(Γ) in Cα(Γ);

4) Hjρ(t) (j = 1, 5) are linear completely continuous operators from Lp(Ω) in Cα′(Γ) ∀α′ < α
and are bounded operators from Lp(Ω) in Cα(Γ);

5) the have place inclusions f j(z), hj3(c)(z) ∈ Lp(Ω), j = 1, 3; gj(a)(t) ∈ Cα(Γ), j = 1, 5;
ajk, bjk ∈ Cα(Γ).

Proof. It is known [17, pp. 26–27] that the Cauchy type integral θ(f)(z) in (14) is a bounded
operator from Cα(Γ) in Cα(Ω) and its derivative θ′(f)(z) is a bounded operator from Cα(Γ) in Lq(Ω),
1 < q < 2/(1 − α). In addition, can easily be shown that θ(f) is a completely continuous operator from
Cα(Γ) in Lp(Ω) ∀p > 1 and in Cα′(Ω) ∀α′ < α. Since ψ(τ, t) ∈ Cβ(Γ)× Cβ(Γ) [18, pp. 28–32] then
takes place ψ0(τ, t) ∈ Cβ−ε(Γ)×Cβ(Γ) [18, pp. 61–62] (ε > 0 is arbitrarily small number). It follows
from condition (a) that dkj (t) ∈ Cα(Γ) holds. Then it is easily shown that K0j(μ2j−1)(t) (j = 1, 2)

are the linear completely continuous operators from Cν(Γ) in Cα′(Γ) ∀α′ < α and bounded operators
from Cν(Γ) in Cα(Γ) (ν is any number from the interval (0,1)). Now we will obtain the validity of
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Lemma 1 immediately from (17), if we also take into account the estimate [18, pp. 31–32, 55–56]
|Im(t′/(τ − t))| ≤ c|τ − t|α−1, the properties of the operators T , S in (7), (8) and the representation

Sdj [Tρ
j]+(t) = T

(
∂

∂ζ
dj [Tρ

j]

)
(t)− 1

2
(t

′
)2dj [Tρ

j](t)− 1

2πi

∫
Γ

dj [Tρ
j](τ)

τ − t
dτ .

Representation for Sdj [Tρ
j]+(t) is obtained using formulas (8.20) from [17, p. 58] and formulas of

Sokhotsky.
We investigate the solvability the system of equations (16) in the space Lp(Ω)× Cα′(Γ), α′ < α.

Note that, by virtue of Lemma 1, the solution (ρ, μ0) ∈ Lp(Ω)× Cα′(Γ) of system (16) belongs to the
space Lp(Ω)×Cα(Γ). Using the expressions for ajk(t), bjk(t) in (17), we calculate det(a(t) + πib(t)) =

D1313
0 a1a2a3a4/8 �= 0, t ∈ Γ, where a = (ajk)5×5, b = (bjk)5×5 are fifth-order matrices. Then for the

index of system (16) we have

æ =
1

2π

[
arg

det(a− πib)

det(a+ πib)

]
Γ

= 0

(here, the symbol [argϕ]Γ means the increment of function argument ϕ when traversing the curve Γ
once in the positive direction). Consequently, the Fredholm alternative is applicable to system (16).
Let (ρ, μ0) ∈ Lp(Ω)× Cα′(Γ) is a solution of system (16) with f j − hj3(c) ≡ 0, j = 1, 3, gj(a) ≡ 0,
j = 1, 5. To solution (ρ, μ0) by formulas (14) and (15), where the constants cj (j = 1, 6) are zero,
correspond to the holomorphic functions Φj(z) (j = 1, 3), Ψk(z) (k = 1, 2). Functions Φj(z) (j = 1, 3),
Ψk(z) (k = 1, 2) together with ρ(z), in turn, the determine generalized displacements wj (j = 1, 3),
ψk (k = 1, 2) using formulas (9) and (10). It is easy to see that these displacements satisfy the
homogeneous system of linear equations (fj ≡ 0, j = 1, 5) in (4) and the homogeneous linear boundary
conditions

T j1
e

dα2

ds
− T j2

e

dα1

ds
= 0, j = 1, 2, T 13dα

2

ds
− T 23dα

1

ds
= 0, M j1

e

dα2

ds
−M j2

e

dα1

ds
, j = 1, 2.

We multiply these equations in the system (4) onto w1, w2, w3, ψ1, ψ2, respectively, integrate the result-
ing relations over the domain Ω and add up the results of integrations. Taking into account homogeneous
boundary conditions, we obtain system e0λμ = 0, γ1λμ = 0, γ0λ3 = 0, λ, μ = 1, 2, the solution of which,

taking into account Ψ2(0) = 0, w3(0) = 0, we obtain in the form w1 = −c0α
2 + c1, w2 = c0α

1 + c2,
w3 = ψk = 0, k = 1, 2, where c0, c1, c2 are arbitrary real constants. Then ω1(z) = 2ic0D

1212
0 , ω2(z) ≡ 0

and from (6) and (10) it follows that

ρ1(z) = 2ic0D
1212
0z , ρ2(z) ≡ 0, ρ3(z) ≡ 0. (18)

Using formulas (7), (10) and relations ω0
jz = Ψ′

j(z) + iSdj [ωj](z), j = 1, 2, obtained from (9) by
differentiation with respect to z, we find

Φ1(z) = c0α0(z), Ψ′
1(z) = c0β

′
0(z), Φ2(z) = Ψ′

2(z) = Φ′
3(z) ≡ 0,

α0(z) =
1

π

∫
Γ

D1212
0 (t)

t− z
dt, β′

0(z) =
1

2πi

∫
Γ

dt

t− z
.

Substituting the found expressions in (14), we obtain

μ1(t)/t
′ − 2ic0D

1212
0 (t) = F−

1 (t), μ2(t)/t
′ − c0(t

′
)2 = F−

2 (t), μj(t)/t
′ = F−

j (t), j = 3, 5,

where F−
j (t) are the boundary values of the function F−

j (z), which is holomorphic function in the

exterior Ω and disappears at infinity. Therefore, for the function F−
j (z) in the exterior Ω, we arrive

at the Riemann–Hilbert problem with the boundary condition Re
[
it′F−

j (t)
]
= f−

j (t), j = 1, 5, where

f−
1 (t) = 2c0D

1212
0 (t)Re(t′), f−

2 (t) = c0 Re(it′), f−
j (t) = 0, j = 3, 5. The solution to this problem has
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the form [19, p. 253] F−
j (z) = c0f

0
j (z) + β0jf

1
j (t), j = 1, 2, F−

j (z) = β0jf
1
j (t), j = 3, 5; here fk

j (z) are
the known holomorphic functions in the exterior Ω, c0, β0j are arbitrary real constants. Then for the
functions μj(t), we obtain equalities

μj(t) = c0μ
0
j(t) + β0jμ

1
j(t), j = 1, 2, μj(t) = β0jμ

1
j(t), j = 3, 5, (19)

in which μk
j (t) are the known real functions.

Solutions (18) and (19) show that the homogeneous system of equations (16) has six linearly
independent solutions. Then the system of equations adjoint with system (16) will also have six linearly
independent solutions. To derive the adjoint system, we multiply the real and imaginary parts of the
left parts of the equations in (12) onto the real functions v1, v2, v3, v4, v5 ∈ Lp(Ω), respectively, and
integrate over the domain Ω; we will multiply the left parts of the equations in (13) onto the real functions
ν1, ν2, ν3, ν4, ν5 ∈ Cα(Γ) and integrate the result over curve Γ. After this, we sum them and we equate
to zero. Replacing the holomorphic functions Φj(z) (j = 1, 3), Ψk(z), Ψ′

k(z) (k = 1, 2), Φ3(z), Φ′
3(z) by

their expressions from (14) and (15) with constants equal to zero, interchanging the order of integration
in the obtained repeated integrals, after simple but cumbersome transformations, we arrive to the desired
adjoint system of equations

vj(z) + (−1)jTdj [Sjv](z) + 2θ(τ ′νj)(z) = 0, j = 1, 2,

2D1313
0 v3(z) + Re

[
Tp2(v)(z) + 2θ(τ ′D1313

0 ν3)(z)
]
+ T̃ ∗p1(v)(z) + T̃Γp3(ν)(z) = 0, z ∈ Ω,

Re
{
iTdj [Sjv](t) + 2(−1)j iθ−(τ ′νj)(t)

}
= 0, j = 1, 2,

Re
{
T
[
a2ζv

1 + 2(d110 − d220 )v3

]
(t)− 2θ−(τ ′a2ν

1)(t)
}
= 0,

Re
{
T 0

(
2D1313

0ζ
v3 −

1

2
D1313

0 v2
)
(t) + T (a4ζv

2)(t) + 2T 0
Γ(τ

′D1313
0 ν3)(t) − 2θ−(τ ′a4ν

2)(t)

}
= 0,

Re
{
T 0p1(v)(t) + Tp2(v)(t) + 2iT 0

Γp3(ν)(t) + 2θ−(τ ′D1313
0 ν3)(t)

}
= 0, t ∈ Γ, (20)

where we use the notations
S1v(z) = S(a2ζv

1 + 2(d110 − d220 )v3)(z)− 2θ′(τ ′a2ν
1)(z)− a2zv

1(z) + 2(d110 + d220 )v3(z),

S2v(z) = T

(
2D1313

0ζ
v3 −

1

2
D1313

0 v2
)
(z)− S(a4ζv

2)(z) − 2D1313
0 v3(z) + a4zv

2(z)

+2θ′(τ ′a4ν
2)(z)− 2θ(D1313

0 τ ′ν3)(z),

T 0f(z) = − 1

π

∫∫
Ω

f(ζ) ln

(
1− ζ

z

)
dξdη, T̃ ∗f(z) = − 1

π

∫∫
Ω

f(ζ) ln

∣∣∣∣1− ζ

z

∣∣∣∣ dξdη,

T 0
Γf(z) = − 1

2πi

∫
Γ

f(τ) ln
(
1− τ

z

)
dσ, T̃Γf(z) = − 1

π

∫
Γ

f(τ) ln
∣∣∣1− τ

z

∣∣∣ dσ,

θ′(f)(z) =
1

2πi

∫
Γ

f(τ)dτ

τ ′(τ − z)2
; p1(v)(z) = d110α1v1 + d220α2v2 + kλkμD

λλμμ
0 v3,

p2(v)(z) = d110 v1 + id220 v2 − 2D1313
0z v3 +

1

2
D1313

0 v2, p3(ν)(τ) = ijdjj0 (τ ′ + (−1)jτ ′)νj(τ),

djj0 =
1

2
Djjμμ

0 kμ, j = 1, 2; v1 = v1 + iv2, v2 = v4 + iv5, ν1 = ν1 + iν2, ν2 = ν4 + iν5;
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v = (v1, v2, v3), ν = (ν1, ν2, ν3); (21)

θ−(f)(t) are the boundary values of the function θ(f)(z) as z → t ∈ Γ from the exterior of the domain
Ω; the operators Tf, Sf, θ(f) are defined in (7), (8) and (14), respectively.

As was already noted, the system of equations (20) has six linearly independent solutions. Let us
obtain their explicit representations. Further we will treat v = (v1, v2, v3) ∈ Lp(Ω), ν = (ν1, ν2, ν3) ∈
Cα(Γ) as some solution to the system of equations (20). Note that the operators T, T 0, T 0

Γ in (21)
determine the functions Tf(z), T 0f(z), T 0

Γf(z) that are holomorphic in the exterior of the domain Ω
and vanish at infinity. The functions θ(f)(z) have the same properties. Therefore, the equalities in (20)
are the boundary conditions of the Riemann–Hilbert problem with zero index for functions holomorphic
outside Ω and vanishing at infinity. It is well known that such a problem has only the zero solution.
Therefore, they are transformed to the form

Tdj[Sjv](z) + 2(−1)jθ(τ ′νj)(z) = 0, j = 1, 2,

T
[
a2ζv

1 + 2(d110 − d220 )v3

]
(z)− 2θ(τ ′a2ν

1)(z) = 0,

T 0
(
2D1313

0ζ
v3 − (D1313

0 v2)/2
)
(z) + T (a4ζv

2)(z) + 2T 0
Γ(τ

′D1313
0 ν3)(z)− 2θ(τ ′a4ν

2)(z) = 0,

T 0p1(v)(z) + Tp2(v)(z) + 2iT 0
Γp3(ν)(z) + 2θ(τ ′D1313

0 ν3)(z) = 0, z ∈ Ω1 ≡ C\Ω, (22)

where C is the complex plane.

The inclusion vj (j = 1, 5) ∈ Cα(Ω) follows from (20). Passing in the first two equalities in (20) to
the limit as z → t ∈ Γ from the interior of the domain Ω and in the first two equalities in (22) from the
exterior of the domain Ω, taking into account the continuity of the functions Tdj [Sjv](z) (j = 1, 2) on
C, and using the Sokhotskii formulas, we obtain

vj(t) = −2νj(t), t ∈ Γ, j = 1, 2. (23)

Similarly, passing in the third equality in (20) to the limit as z → t ∈ Γ from the interior of the domain
Ω, and subtracting the last equality in (20) from the resulting equality, taking into account relations
T̃ ∗p1(t) = ReT 0p1(t), T̃Γp3(t) = 2Re(iT 0

Γp3(t)) and the formulas of Sokhotskii, we obtain

v3(t) = −ν3(t), t ∈ Γ. (24)

Now we differentiate the first two equalities in (20) with respect to z. Taking into account relations (8),
we obtain

vjz(z) + (−1)jdj [Sjv](z) = 0, j = 1, 2,

whence for Sjv(z) we will have

Sjv(z) = (−1)j−1
[
D1111

2(j−1)(v3j−2,α1 + v3j−1,α2) + iD1212
2(j−1)(v3j−1,α1 − v3j−2,α2)

]
, j = 1, 2. (25)

The relations (25) we again differentiate with respect to z, and the third equality in (20) with respect to
z and z. Then, after simple transformations, we come to the conclusion that functions v1, v2, 2v3, v4, v5
satisfies a homogeneous system of linear equilibrium equations (4) under conditions fj ≡ 0, j = 1, 5.

Further, in relations (25) we pass to the limit as z → t ∈ Γ from the interior of the domain Ω; the
last three equalities in (22) first we differentiate with respect to z, then in them we pass to the limit as
z → t ∈ Γ from the exterior of the domain Ω; the third equality in (20) we differentiate with respect to z,
then we pass to the limit as z → t ∈ Γ from the interior the domain Ω. Then, we use the equalities on
curve Γ obtained in this way, the relations (23), (24) and equality

(Sf)+(t)− (Sf)−(t) = −f(t) · (t′)2, θ′+(τ ′f)(t)− θ′−(τ ′f)(t) = ft + ft · (t
′
)2, t ∈ Γ,

where Sf, θ′(f) are the operators, defined in (8), (21), ft = ∂f/∂t, ft = ∂f/∂t. As a result, after
simple transformations, we obtain that the functions v1, v2, 2v3, v4, v5 also satisfy homogeneous linear
boundary conditions.
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Thus, the functions v1, v2, 2v3, v4, v5 are solutions homogeneous system of linear equilibrium
equations satisfying homogeneous boundary conditions. Then, acting in the same way as in deriving
relations (18) and (19), we obtain for vj (j = 1, 5) the expressions

v1 = c4[k̃2(α
2)− k11(α

1)]− c5α
2k01(α

1) + c6k
0
1(α

1)− c0α
2 + c1,

v2 = −c4α
1k02(α

2) + c5[k̃1(α
1)− k12(α

2)] + c6k
0
2(α

2) + c0α
1 + c2,

v3 = −c4α
1/2− c5α

2/2 + c6/2, v4 = c4, v5 = c5,

where

kmj (αj) =

αj∫
0

xmkj(x)dx, m = 0, 1, k̃j(α
j) =

αj∫
0

k0j (x)dx, j = 1, 2;

cj are arbitrary real constants.

Functions νj(t) (j = 1, 5) are expressed through functions vk (k = 1, 5) according to formulas (23)
and (24). Therefore, the solution (v, ν), v = (v1, v2, v3, v4, v5), ν = (ν1, ν2, ν3, ν4, ν5) of the adjoint
system (20) can be represented in the form (v, ν) = c0γ1 + c1γ2 + c2γ3 + c4γ4 + c5γ5 + c6γ6, where
γk = (γk1, γk2, ..., γk10) (k = 1, 6) are linearly independent solutions of the system (20). Then, for the
solvability of system (16), it is necessary and sufficient that conditions∫∫

Ω

{
Re[(f1 − h13)(γk1 − iγk2)] + Re[(f2 − h23)(γk4 − iγk5)] + (f3 − h33)γk3

}
dα1dα2

+

∫
Γ

{g1γk6 + g2γk7 + g5γk8 + g3γk9 + g4γk10} ds = 0, k = 1, 6,

be satisfied. After simple transformations, these conditions take the form∫∫
Ω

Rjdα1dα2 +

∫
Γ

P jds = 0, j = 1, 2,

∫∫
Ω

(R1α2 −R2α1)dα1dα2 +

∫
Γ

(P 1α2 − P 2α1)ds = 0,

∫∫
Ω

[R1k01(α
1) +R2k02(α

2) +R3]dα1dα2 +

∫
Γ

[P 1k01(α
1) + P 2k02(α

2) + P 3]ds = 0,

∫∫
Ω

[R1(k̃2(α
2)− k11(α

1))−R2α1k02(α
2)−R3α1 + L1 +R1w3]dα

1dα2

+

∫
Γ

[P 1(k̃2(α
2)− k11(α

1))− P 2α1k02(α
2)− P 3α1 +N1 + P 1w3]ds = 0,

∫∫
Ω

[R1α2k01(α
1)−R2(k̃1(α

1)− k12(α
2)) +R3α2 − L2 −R2w3]dα

1dα2

+

∫
Γ

[P 1α2k01(α
1)− P 2(k̃1(α

1)− k12(α
2)) + P 3α2 −N2 − P 2w3]ds = 0, (26)

where Rj , P j (j = 1, 3), Lk, Nk (k = 1, 2) are the components of external forces acting on the shell.
If conditions (26) are satisfied, then the general solution of system (16) can be represented in the form

ρj(z) = Fj(f(w3)− fc)(z) + ρ̃j(z), j = 1, 3,
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μk(t) = Fk+3(f(w3)− fc)(t) + μ̃k(t), k = 1, 5, (27)

where

ρ̃1(z) = 2ic0D
1212
0z , ρ̃2 = ρ̃3 ≡ 0, μ̃j(t) = c0μ

0
j(t) + β0jμ

1
j(t), j = 1, 2,

μ̃j(t) = β0jμ
1
j(t), j = 3, 5,

f(w3) = (f1, f2, f3, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5), fc = (h13(c), h23(c), h33(c), l13(c), l23(c), l3(c), 0, 0);

Fj (j = 1, 3) and Fk (k = 4, 8) are linear bounded operators from Lp(Ω)×Cα(Γ) in Lp(Ω) and in Cα(Γ),
respectively; c0, β0j are arbitrary real constants; functions μk

j (t) are defined in (19); f j , ϕk, hj3(c), lj3(c),
l3(c) are defined in (12), (13), and (17).

If we substitute the representations for μk(t) from (27) in (14) and (15), then we obtain

Φj(z) = Φj(w3)(z) + Φjc(z), j = 1, 3, Ψk(z) = Ψk(w3)(z) + Ψkc(z),

Ψ′
k(z) = Ψ′

k(w3)(z) + Ψ′
kc(z), k = 1, 2, Φ′

3(z) = Φ′
3(w3)(z) + Φ′

3c(z), (28)

where the notations

Φj(w3)(z) = θ(F2j+2(f(w3)))(z), Φjc(z) = −θ(F2j+2(fc))(z) + c0α̃j(z), j = 1, 2;

α̃1(z) = α0(z), α̃2(z) ≡ 0; Φ3(w3)(z) = Φ3(F8(f(w3)))(z),

Φ3c(z) = −Φ3(F8(fc))(z) + c5 + ic6;

Ψk(w3)(z) = Ψ(F2k+3(f(w3)))(z), Ψkc(z) = −Ψk(F2k+3(fc))(z) + c2k−1 + ic2k,

Ψ′
k(w3)(z) = θ(F2k+3(f(w3)))(z), Ψ′

kc(z) = −θ(F2k+3(fc))(z), k = 1, 2;

Φ′
3(w3)(z) = iθ(F8(f(w3)))(z), Φ′

3c(z) = −iθ(F8(fc))(z)

are accepted; here the operators θ(f), Ψk(f), Φ3(f) are defined in (14) and (15).

Now if we substitute the expressions for ρj(z) from (27) and (28) in (7), (9), and (10), then Problem
(4), (2) reduce to a system of equations for generalized displacements w1, w2, w3, ψ1, ψ2:

ω0
j (z) = ω0

j (w3)(z) + ω0
jc(z), j = 1, 2, w3 −Gw3 = w3c, ω0

1 = w2 + iw1, ω0
2 = ψ2 + iψ1,

(29)

where

ω0
j (w3)(z) = Ψj(w3)(z) + iTdj [ωj(w3)](z), ω0

jc(z) = Ψjc(z) + iTdj [ωjc](z),

ωj(w3) = Φj(w3)(z) + Tρj(w3)(z), ωjc = Φjc(z) + Tρjc(z), j = 1, 2;

ρk(w3) = Fk(f(w3))(z), ρkc (z) = −Fk(fc)(z) + ρ̃k(z), k = 1, 3; Gw3 = ReΦ3(w3)− T̃ ρ̃3(w3),

w3c = ReΦ3c(z)− T̃ ρ̃3c(z); ρ̃3(w3) = ρ3(w3)/(2D
1313
0 ), ρ̃3c = ρ3c/(2D

1313
0 ).

We note that functions ω0
jc(z), j = 1, 2, w3c are solutions of a homogeneous system linear of

equilibrium equations and also satisfy homogeneous linear boundary conditions. Therefore, for them,
as above, explicit expressions can be obtained. In particular, for function w3c we have w3c = −c4α

1 −
c5α

2 + c6, where c4, c5, c6 are arbitrary real constants.

Let us study the solvability of the third equation in (29) in the space W
(2)
p (Ω), which we write in the

form

w̃3 − G̃w̃3 = 0, (30)

where G̃w̃3 = G(w̃3 + w3c), w̃3 = w3 −w3c.
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Using the relations in (5), (11), the representations for tangential displacements ω0
1 and for rotation

angles ω0
2 and expression of operator G in (29), easily to show that G̃ is a nonlinear bounded operator in

W
(2)
p (Ω). Moreover, for any w̃j

3 ∈ W
(2)
p (Ω), (j = 1, 2) belonging to the ball ||w̃3||W (2)

p (Ω)
< r, we have

the estimate ∣∣∣∣∣∣G̃w̃1
3 − G̃w̃2

3

∣∣∣∣∣∣
W

(2)
p (Ω)

≤ q
∣∣∣∣w̃1

3 − w̃2
3

∣∣∣∣
W

(2)
p (Ω)

,

where q = c
[
||R1||Lp(Ω) + ||R2||Lp(Ω) + (r + |c4|+ |c5|)(1 + r) + c24 + c25

]
; c is the known positive con-

stant, depending on the physico-geometric characteristics of the shell; c4, c5 are the constants included
in the expression of function w3c.

Suppose that the radius r of the ball, the external forces Rj(j = 1, 2), and the constants c4, c5 are
such that inequalities

q < 1, ||G̃0||
W

(2)
p (Ω)

< (1− q)r (31)

are satisfied. Then we can apply the contraction mappings principle [20, p. 146] to equation (30); as a
result, in the ball ||w̃3||W (2)

p (Ω)
< r, for fixed constants c4, c5 using conditions (31), equation (30) has

a unique solution w̃3 ∈ W
(2)
p (Ω), which can be represented as w̃3 = RG̃0, where R is the resolvent of

operator G̃w̃3 − G̃0. Therefore, the deflection w3 has the formw3 = w̃3 +w3c. Knowing w3, according to
the first two formulas in (29) we find the tangential displacements ω0

1 and the rotation angles ω0
2 , which,

as can be easily verified, belong to the space W
(2)
p (Ω). As a result, we obtain the generalized solution

a = (w1, w2, w3, ψ1, ψ2) of Problem (4), (2), which can be written as

a = a0 + a∗, (32)

where a0 is the vector with components Imω0
1(w̃3), Reω0

1(w̃3), w̃3, Imω0
2(w̃3), Reω0

2(w̃3); a∗ =
(w1∗, w2∗, w3∗, ψ1∗, ψ2∗) is the vector with components determined by the formulas

ω0
j∗ = ω0

j (w3c) + ω0
jc, j = 1, 2, w3∗ = w3c,

where ω0
1∗ = w2∗ + iw1∗, ω0

2∗ = ψ2∗ + iψ1∗.

Let us notice that a∗ is the vector of rigid displacements of the shell as an absolutely rigid body, i.e. it
sets to zero the components of strains γkij , i, j = 1, 3, k = 0, 1. For the components of the vector a∗, one
can obtain explicit expressions that have the form

w1∗ = c4[k̃2(α
2)− k11(α

1)]− c5α
2k01(α

1) + c6k
0
1(α

1)− c0α
2 + c1 − c24α

1/2− c4c5α
2,

w2∗ = c5[k̃1(α
1)− k12(α

2)]− c4α
1k02(α

2) + c6k
0
2(α

2) + c0α
1 + c2 − c25α

2/2,

w3∗ = −c4α
1 − c5α

2 + c6, ψ1∗ = c4, ψ2∗ = c5,

where cj are arbitrary real constants.

Note that in the last two conditions in (26), w3 means w3 = w̃3 +w3∗. In the case of linear problems,
these summands containing w3 are absent.

It is easy to see that conditions (26) are not only sufficient, but also necessary conditions for the
solvability of Problem (4), (2). Note that they mean that external load acting on the shell is self-balanced.

Thus, we have proved the theorem.

Theorem 1. Assume that conditions (a), (b), (c), (d), (e) and inequalities (31) are satis-
fied.Then it is necessary and sufficient for the solvability of the Problem (4), (2) that conditions
(26) be satisfied. If they are satisfied, then Problem (4), (2) has a generalized solution a =

(w1, w2, w3, ψ1, ψ2) ∈ W
(2)
p (Ω), 2 < p < 4/(2− β), of the form (32) up to rigid displacements a∗ of

the shell as an absolutely rigid body.
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