
Differential Equations, Vol. 36, No. 7, 2000, pp. 1109-1111. Translated from Differentsial'nye Uravneniya, Vol. 36, No. 7, 2000, pp. 998-999. 
Original Russian Text Copyright (~ 2000 by Karchevskii. 

S H O R T  

C O M M U N I C A T I O N S  

T h e  F u n d a m e n t a l  W a v e  P r o b l e m  

f o r  C y l i n d r i c a l  D i e l e c t r i c  W a v e g u i d e s  
E. M.  K a r c h e v s k i i  

Kazan State University, Kazan, Russia 
Received December 4, 1998 

A nonlinear spectral problem for a system of singular integral equations was constructed in [1] 
for the numerical solution of the fundamental wave problem for cylindrical dielectric waveguides on 
the basis of the representation of unknown functions via single layer potentials. The present paper 
is a continuation of [1] and deals with the investigation of qualitative properties of the spectrum. 

The problem of finding propagation constants for fundamental waves in cylindrical dielectric 
waveguides can be reduced (e.g., see [2]) to finding the values of a complex parameter fl for which 
the system 

Au+x~( f l )u=O,  Av + X~(/3)v = 0, M E S S ,  j = 1,2, (1) 

has nontrivial solutions satisfying the transmission conditions 

U + - u -  ---- 0, V + - v -  ~ 0 ,  

x72(#)  (# o~/o~ + c , ~  o ~ - / o ~ )  - x ~ ( # )  (# Ov/a~ + ~ o~+ /o~)  = o, 

xT:(#) (# Ou/a~ - ~o~ o~-/o~) - x;:(#)  (# Ou/O~ - ~o~ o~ § = o, M E F ,  

(2) 

and the corresponding condition at infinity. Here $1 is the domain bounded by the contour F, 
$2 = R2\S1, Ou/Ou (respectively, Ou/OT) is the normal (respectively, tangent) derivative on F, 
u-  (respectively, u +) is the limit value of a function u from the interior (respectively, the exterior) 
of r, x~(#) = 2 2 kon3 _ f12, k~ = w2~0P0, ~0 is the dielectric constant, /to is the magnetic constant, 
w > 0 is the frequency of electromagnetic oscillations, nl, n2 > 0 are the refraction coefficients of 

2 the waveguide and the ambient medium (n2 < hi) ,  and s3 = ~0n3. 
Following [3], we assume that the functions u and v satisfy the partial condition at infinity, i.e., 

can be represented in the form 

o o  o o  

u = ~ a~H (') (x2r)exp(in~), v ---- Z a / n H ( n l ) ( x 2 r ) e x p ( i n ~ )  (3) 
n~--o0 n=--(~ 

for sufficiently large r, where r and ~ are the polar coordinates of the point M and H~ (1) is the 
first-kind Hankel function of order n. 

We seek nontrivial solutions of problem (1)-(3) with a twice continuously differentiable contour 
F in the class of functions continuous and continuously differentiable in $1 and $2 and twice 
continuously differentiable in $1 and $2. Following [4, p. 228], we can' readily show that the 
spectrum of problem (1)-(3) lies in the set A that is the intersection of the Riemann surfaces A3 of 
the functions In Xj (fl), j = 1, 2. (The spectrum is the set of values of/3 E A for which problem (1)-(3) 
has nontrivial solutions.) By A0 we denote the intersection of the principal (physical) sheets of the 
surfaces A j; we also write 

A~-={ /3EAo:  I m x ~ < 0 } ,  j = 1 , 2 ,  A + = { / 3 E A o :  I m x 2 > 0 ,  I m f l # 0 } ,  

G = {fl E Ao: Imx2 > 0, Im~  = 0, kon2 < I/3l < konl}. 

T h e o r e m .  The spectrum of problem (1)-(3) consists only of isolated points. 
of problem (1)-(3) on A0 can lie only on G U A~ U A +. 
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Proof .  The second assertion of the theorem follows from Theorem 45 in [4, p. 230]. Note that  
the values/3 E GUA + correspond to surface waves (u and v exponentially decay as r -~ c~), and the 
values/3 E A 2 correspond to leaking waves (u and v exponentially grow as r --* c~). 

To prove the first assertion of the theorem, we reduce problem (1)-(3) to the spectral problem for 
a Fredholm holomorphic operator function. Let the contour F be specified parametrically: r -- r(t), 
t E [0, 2~-]. Using the representations of u and v in the domains Sj by single layer potentials with 
densities ~3, r  E C ~ respectively (C o'" is the space of H61der continuous functions), we readily 
obtain the nonlinear spectral problem 

A(/3)z = (C(/3) + R(/3))z  = O, 
A(/3) : H --+ H, H = C O," x C O," x C O," x C ~ /3EA, 

(4) 

where the operators R and C are 

R(/3)z = (L-IR~I)(/3)xI + L-1 

L-1R~I>(/3)yl + L -1 

given by the relations 

(R~l ' ( /3 ) -  R~l)(/3))x2, 

(R~ ' ) ( /3 ) -  R~l)(/3))Y2, 

-- 0JE2X2 2 n~ 2) (/3)Xl -~-/3X2 2R(3) (/3)Yl - (.d (ElXl 2R~ 2) (/3) Jr- ~2X2 2R~ 2) (/3)) x 2 

+/3 (x72<3)(/3) - y,, 

/3x;2R?(/3)xl + +/3 (x12R?)(/3)- 

C ( / 3 ) z  = (Xl, Yl, r176 "{-/3X22~cyl - ~0 (ElXl 2 + ~'2X22) x 2 "-{-/3 (X12 - X22) S y 2 ,  

/3x~2Sx~ - wpoXg2yl +/3 (X-[ 2 - X~ 2) Sx2 + W#o (X-[ 2 + X~ -2) Y2), 

Z = (Xl,Yl,X2, y2), Xl(t) = ((ill(M) - ~o2(M))[r'(t)[, 

y l ( t ) = ( r 1 6 2  x2(t) 
2~r 21r 

, o ,  Sx  = cot ~ x  (to)dto + 
0 0 
21r 

1 f h~a, R~k)(/3)x= ~ (/3;t, to)x( to)dto,  k =  1,2,3, 

0 

= ~I (M)Ir ' ( t )  I , y2(t) = r  
27r 

1 f i n  s i n t - t ~  L x -  2rr ~ 1  x ( t~176  
0 

j = 1, 2, 

ha(. 1) (/3; t, to) = 2rr(I)j (/3; M, Mo) + In [sin ((t - to)/2)1, 

ha(. 2) (/3; t, to) =4rr[r'(t)[OOj(/3;M, Mo)/OVM, 

h(a) Oh~ 1) t, to)/O'rM j (/3;t, to)----2[r'(t)] (/3; -- i ,  

(I)~ (/3; M, Mo) = (i/4)H~ 1) (X~ I M - Mol). 

The operator L : C ~ ~ C 1'" (where C 1'" is the space of HSlder continuously differentiable 
functions) is continuously invertible [5, p. 10]. The operators R~l)(/3): C ~ ~ C 1'" and R~k)(/3) : 
C ~ --* C ~ k = 2,3, j = 1,2, are compact for any/3  E A; consequently, R(/3) : H --* H is a 
compact operator. Using the fact that  S : C o," --* C O," is a compact operator (e.g., see [6, p. 118]), 
we can readily show that  the operator C(/3) : H ~ H is continuously invertible for any/3 E A. 
Therefore, A(/3) is a Fredholm operator function. The functions h~ k) (/3; t, to), k = 1, 2, 3, j = 1, 2, 
are analytic in A for each point (t, t0) E [0,2~] • [0,2~r]. Consequently [7, p. 71], A(/3) is a 
holomorphic operator function in A. 

Let us show that  there exist /3 E A such that  A(/3) is invertible. To this end, we study the 
relationship between problems (1)-(3) and (4). Let us introduce the following four problems: find 
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the values of the parameter t3 E A such that there exist nontrivial solutions of the Helmholtz 
equation Au + X~.U = 0, M E Si, i , j  = 1,2, which are continuous in S~, twice continuously 
differentiable in S~, satisfy the homogeneous Dirichlet boundary conditions on the contour F and, 
if M E $2, the partial condition. We denote the interior problems by D~ j) and the exterior problems 
by D~ ~). The sets of t3 E A for which the problems D~ j) have nontrivial solutions are denoted 

by a "-'(D~J)), i , j  = 1,2. It is known that the sets a (D~ ~)) consist only of isolated points lying 
on the imaginary axis and a closed interval (-k0ny, kon~) of the real axis. It follows from [8, 9] 

that the sets a (D~ J)), j -- 1, 2, consist only of isolated points. Moreover, the points of the 
% 

\ f 

spectrum a (D~ ~)) in A0 can lie only on A;,  j = 1,2. Following [8], we can readily show that if 

(Ui=a,2er (D~J))), then an arbitrary solution u, v o f  problem (1)-(3)can be represented E A\ 

in the domain $3, j = 1,2, by single layer potentials with kernel Oj and densities ~ j , r  E C ~ 

respectively; furthermore, if a single layer potential vanishes on Sj for some /3 E A\a  (D~3) ,  

then its density identically vanishes on F. Hence if problem (4) has a nontrivial solution for some 
~ E  A\  (a (D~ ' ) )Ua(D~2) ) ) ,  then problem (1) - (3)has  a nontrivial solution for the same 

Conversely, if problem (1)-(3) has a nontrivial solution for some 13 E A\ (U~,3=,,2 a (D~J))), then 

problem (4) has a nontrivial solution for the same /3. Therefore, problems (1)-(3) and (4) are 
equivalent everywhere in A except for a discrete set of points. Now it follows from the second 
assertion of the theorem and the Fredholm property of the operator function A(/3) that A(~) is 

A o \ ( G U A 2 U A + U a ( D ( 2 1 ) ) U a ( D ~ 2 ) ) ) .  Consequently [10], the spectrum of invertible for 

problems (4) and (1)-(3) can consist only of isolated points. The proof of the theorem is complete. 
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