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Abstract

Background: Escherichia coli (E. coli) has been increasingly implicated in the pathogenesis of Crohn’s disease (CD).
The phylogeny of E. coli isolated from Crohn’s disease patients (CDEC) was controversial, and while genotyping
results suggested heterogeneity, the sequenced strains of E. coli from CD patients were closely related.

Results: We performed the shotgun genome sequencing of 28 E. coli isolates from ten CD patients and compared
genomes from these isolates with already published genomes of CD strains and other pathogenic and non-pathogenic
strains. CDEC was shown to belong to A, B1, B2 and D phylogenetic groups. The plasmid and several operons from the
reference CD-associated E. coli strain LF82 were demonstrated to be more often present in CDEC genomes belonging to
different phylogenetic groups than in genomes of commensal strains. The operons include carbon-source induced
invasion GimA island, prophage I, iron uptake operons I and II, capsular assembly pathogenetic island IV and propanediol
and galactitol utilization operons.

Conclusions: Our findings suggest that CDEC are phylogenetically diverse. However, some strains isolated from
independent sources possess highly similar chromosome or plasmids. Though no CD-specific genes or functional
domains were present in all CD-associated strains, some genes and operons are more often found in the genomes of
CDEC than in commensal E. coli. They are principally linked to gut colonization and utilization of propanediol and other
sugar alcohols.
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Background
Crohn’s disease (CD), one of the major forms of
inflammatory bowel disease (IBD), is a chronic gen-
eralized inflammation of the gastrointestinal tract.
The histological picture of Crohn’s disease includes
thickened submucosa, transmural inflammation, fis-
suring ulceration, and non-caseating granulomas.
The common complications in the intestine are
presented by strictures, abscesses, fistulas and, in the
long run, colon cancer. Extraintestinal complications

include arthritis, erythema nodosum, uveitis, and
primary sclerosing cholangitis.
Many factors, both genetic and environmental, are

regarded to contribute to the CD pathogenesis. It is a
general notion that CD is a result of abnormal
immune response of genetically susceptible individuals
to the imbalance in the intestinal microbiota
(reviewed in [1, 2]). Host susceptibility factors include
intestinal barrier dysfunctions (decreased levels of
antimicrobial peptides defensins, discontinuous tight
junctions and aberrant mucin assembly) and defects
in innate immunity, autophagy, and phagocytosis.
Polymorphisms in certain genes, e. g. NOD2,
ATG16L1, and IRGM) involved in these processes
have been reported to be associated with CD
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(reviewed in [1]). There are at least 71 susceptibility
loci identified by genome-wide association studies,
that are considered to be involved in the pathogenesis
of Crohn’s disease [3].
Among dysbioses in CD patients 10–100 fold increase

in abundance of Escherichia coli is often observed as
compared to healthy individuals [4–8], so this led to sev-
eral studies of E. coli isolated from those patients. The
obtained strains were defined as pathotype adherent-
invasive E. coli (AIEC) due to their ability to adhere and
invade epithelial cells of the intestine [9, 10]. They are
also able to survive and replicate within macrophages,
and are selectively favored by impaired autophagy to
replicate intracellularly [11]. In comparison with com-
mensal E. coli, AIEC are more often resistant to antibi-
otics [12], and are strong biofilm producers [13]. Some
of the isolated strains were shown to induce chronic
inflammation by colonizing mice intestine [14, 15]. An
adhesion-invasion model was proposed, according to
which interaction between bacterial porin OmpC (outer
membrane protein C) and human CEACAM6 (carci-
noembryonic antigen related cell adhesion molecule 6)
receptor were a key step in the pathogenesis [16].
Published observations on the phylogenetic diversity

of the AIEC group are controversial. In some indepen-
dent studies performed using various techniques inclu-
ding genomic hybridization assays, RAPD-PCR and
serotyping, and phylotyping by a multiplex PCR proto-
col, E. coli strains from different patients were shown to
be highly heterogeneous and were assigned to several
phylogroups (A,B1,B2,D) [5, 13, 16–24]. The ribotyping
analysis on the contrary leads to the suggestion that the
majority of CDEC have evolved from the same ancestral
strain from phylogroup B2 [4], perhaps by acquisition of
additional virulence factors via mobile elements transfer
or insertion of a pathogenicity island(s) into the bacterial
chromosome [25, 26].
Results of whole-genome shotgun sequencing sup-

ported the single ancestor hypothesis. To date, four
complete genomes of E. coli isolated from CD patients
have been sequenced. They all belong to phylogroup B2.
Although, these isolates were obtained from independent
clinics (NRG857c from Canada [27], LF82 from
Germany [28], UM146 from France [29], and HM605
[30] from United Kingdom), their genomes showed
considerable sequence similarity and synteny (more than
99% sequence identity at 93–99% genome coverage).
Several pathogenic islands were observed in these
genomes [27, 28] as well as plasmids homologous to those
from Klebsiella and Salmonella [28, 29]. However, no
comparative analysis of these plasmids was performed.
In a recent paper B2-phylogroup E. coli genomes from

CD patients were compared with 25 strains from pa-
tients with ulcerative colitis (UC) and non-IBD, and the

phylogenetic heterogeneity of AIEC and CD strains was
established [31]. No gene common to all, or even a ma-
jority of AIEC was identified. Previously, genes encoding
polyethylene glycol utilization and iron acquisition were
reported to be overrepresented in AIEC relative to
nonpathogenic E. coli [32].
In the present paper we report whole-genome se-

quences of 28 E. coli isolates from the ileum and
feces of ten CD patients. The comparative analysis of
these genomes and previously published strains re-
vealed their high phylogenetic diversity as a group,
high homogeneity within a single inflamed intestine,
and specific genome features.

Methods
Patient selection
Patients were selected from two clinical centers (Central
Scientific Institute of Gastroenterology and State
Scientific Center of Coloproctology) in Moscow, Russian
Federation, from 2012 to 2014.
Ten patients (seven males and three females, 23–

47 years old, mean age 33, who met the eligibility criteria
were enrolled in the study (Table 1). The inclusion
criteria were the following: age above 18, endoscopically
and radiologically diagnosed, and histologically con-
firmed Crohn’s disease. The exclusion criteria were signs
of indeterminate colitis, infectious diseases, anamnesis
of total colectomy, presence of stoma, and recent
antibiotic treatment.

Diagnosis and treatment
Duration of the disease was from four months to eight
years. Two patients had acute disease (less than six
months), eight patients had chronically relapsing disease.
All patients had the confirmed Crohn’s disease three
months before enrolment or earlier. Seven patients had
ileocolitis (L3), two of them with perianal disease, two
patients had ileitis (L1), and one patient had colitis (L2)
[33]. At the enrolement, three patients had clinically severe
disease (Crohn’s Disease Activity Index, CDAI > 450), one
patient had moderate disease (CDAI = 320), five – mild
disease (CDAI 150–220), and one patient was in clinical
remission (CDAI = 110) [34]. Most patients received im-
munosuppressive therapy, five of them with infliximab.
Two patients received steroids. None of the patients re-
ceived antibiotics at the moment of enrolment in this study
and two months prior to it.

Study procedures
Three types of samples were collected for the purpose
of this study. Fecal samples were collected prior to
preparation for endoscopy. Bowel preparation was
performed with polyethylenglycol solution. Patients
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underwent ileocolonoscopy at clinical centers. During
this procedure samples of two types were collected,
ileum liquid content was aspirated from the ileum,
mucosa biopsy was taken by sterile biopsy forceps
from the ileum, caecum and sigmoid (inflamed tissue
near ulcers).

Strains and cell culture
Isolation of E. coli was performed as follows: liquid
aspirates were diluted approximately ×106 fold with
sterile PBS (phosphate saline buffer). Approximately
0.05 ml volume of feces were placed into 0.5 ml of
sterile PBS, vortexed to homogeneity, an aliquot was
diluted approximately ×106 fold. Biopsy samples were
vortexed in 0.2 ml of sterile PBS. For all samples,
0.1 ml of the resulting liquid was spread onto the
Luria-Bertani agar plates. After overnight incubation
on 37 °C, isolated colonies were identified with the
Matrix Assisted Laser Desorbtion/Ionization (MALDI)
Biotyper software (Bruker Daltonics, Germany) using
the Microflex LT mass spectrometer (Bruker Daltonics,
Germany). For DNA extraction, all E. coli strains were
grown in the Luria-Bertani broth at 37 °C with shaking
(200 RPM) overnight and collected by centrifugation.
Samples and corresponding E. coli isolates are listed
in Table 1.

The testing of susceptibility to ampicillin/sulbactam,
ceftriaxone, cefotaxime, ceftazidime, cefepime, imipe-
nem, meropenem, gentamicin, levofloxacin, and cipro-
floxacin (all from Bio-Rad, USA) was performed by
the disc-diffusion method using the Mueller-Hinton
agar plates. The E. coli strain ATCC 25922 was used
as a control. Current CLSI and EUCAST criteria were
used for interpretation.

Genome sequencing
Genomic DNA from individual cultures was extracted by
the QIAamp DNA Mini Kit (Qiagen) according to the
manufacturer’s protocol. Extracted DNA (100 ng for each
sample) was disrupted into 200–300 bp fragments by
Covaris S220 System (Covaris, Woburn, Massachusetts,
USA). The barcode shotgun library was prepared by Ion
Xpress™ Plus Fragment Library Kit (Life Technologies).
PCR emulsion was performed by Ion PGM™ Template
OT2 200 Kit (Life Technologies). DNA sequencing was
performed by Ion Torrent PGM (Life Technologies) with
the Ion 318 chip and Ion PGM™ Sequencing 200 Kit v2
(Life Technologies).

Genome assembly and annotation
Genomes were assembled using Mira 4.0 with standard
parameters for the Ion technology.

Table 1 Samples and patients

patient
№

sex age disease isolate name and origin number of
isolates

clinic assembly

localisation clinical
activity

endoscopic
activity

biopsy aspirate from ileum
lumen

feces

1 M 33 ileitis low 10 RCE01–01 RCE01–02
RCE01–03 (ileum)

RCE01–04 RCE01–05 RCE01–06 6 C RCE01

2 M 23 ileocolitis low 13 RCE02–01 RCE02–02
RCE02–03

3 C RCE02

3 F 37 ileocolitis medium 14 RCE03–01 RCE03–02
RCE03–03
(ileum, caecum, sigmoid)

3 C RCE03

4 F 40 ileocolitis-
perianal

high 0 RCE04–01 (caecum) RCE04–02 RCE04–03
RCE04–04 RCE04–05
RCE04–06

6 C RCE04

5 M 32 ileitis-
jejunitis

high 9 RCE05 1 C RCE05

6 M 47 ileocolitis low 15 RCE06–01 RCE06–02
RCE06–03 RCE06–04
RCE06–05

5 C RCE06

7 M 32 ileocolitis remission 3 RCE07 1 C RCE07

8 F 29 ileocolitis-
perianal

low 6 RCE08 1 S RCE08

9 M 25 colitis low 5 RCE10 1 S RCE10

10 M 29 ileocolitis high 8 RCE11 1 C RCE11

Total isolates number 28

C - Central Scientific Institute of Gastroenterology, Moscow
S - State Scientific Center of Coloproctology, Moscow
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To correct Ion Torrent homopolymer errors, which
could result in assembly errors [35] and artificial frame
shifts in coding sequences (CDS), our HomoHomo tool
was applied (freely available at www.github.com/paraslo-
nic/HomoHomo). In short, the method consists of the
following steps: mapping reads to an assembly; searching
for positions with indel polymorphisms in the mapped
reads; BLASTN [36] search of the assembly region
around found positions; and selecting the sequence vari-
ant which is consistent both with the best BLAST hit
and reads. This method reduces artificial indels in the
assembly by the factor of about 2.5. The estimation is
based on comparing assemblies of Ion Torrent reads be-
fore and after correction with reads from more accurate
sequencing technologies such as Illumina, SOLID, and
Sanger.
To produce meta-assemblies, reads from different

colonies obtained from the same patient were assembled
together and processed as described above.
The obtained genome sequences were annotated using

PROKKA 1.7 [37].
The draft genomes are available in GenBank with the

following accession numbers: RCE01 (JUDV00000000),
RCE02 (JUDW00000000), RCE03 (JUDX00000000),
RCE04 (JUDY00000000), RCE05 (JWJZ00000000),
RCE06 (JWKA00000000), RCE06 (JWKA00000000),
RCE07 (JWKB00000000), RCE08 (LAXB00000000),
RCE10 (LAXA00000000), RCE11 (LAWZ00000000).

Genome analysis
Several phylogenetic methods were used in order to
verify the results. Two methods based on multiple
alignment and maximum likelihood: assembly-free
method with the use of precalculated groups of
orthology (OG), method with de-novo assembly, an-
notation and OG construction.

Comparison of individual colonies by an all-vs-all method
First, we utilized reference-free approach to examine
relationships among the sequenced strains. Assemblies of
individual colonies were used as a reference. All-vs-all
mapping was done with the bowtie2 tool. SNPs (single
nucleotide polymorphisms) were calculated with the
samtools mpileup tool [38] and filtered using vcftools [39]
with a p-value threshold of 10−5, 90% frequency threshold,
and minimum coverage of four reads. The distance be-
tween samples was calculated as the SNP count divided by
the length of the referenсe (the total length of all nucleo-
tides with at least 4× genome coverage). The Neighbour
Joining tree was build using the distance matrix by the ape
package for R [40]. Scripts are available at Github
(https://github.com/paraslonic/Rakitina_etal_Crohn_paper/
tree/master/snpSimilarity) [41].

Phylogenetic analysis by an assembly-free method
To assign the sequenced isolates to E. coli phylogroups,
orthology groups (OGs) from 32 phylogenetically diverse
E. coli and Shigella strains were taken from [42]. Align-
ments of proteins within each universal group (OGs
with single-copy genes present in all analyzed genomes)
were produced with ClustalW version 2.1 [43]. Consen-
sus sequences were generated from the resulting
alignments with the EMBOSS package ver. 6.6.0 [44].
These consensuses were then used as a reference for
read mapping with bowtie2 ver. 2.1.0 [45]. The reads
from each isolate were mapped individually, and the
consensus for each OG for a particular isolate was
generated with samtools [32]. The resulting consensus
sequences were added to the OGs, and the groups were
realigned. Alignments of all universal OGs were
concatenated, all columns with gaps were removed, and
the final alignment was used to construct a phylogenetic
tree with PhyML v. 3.0 [46] (with 100 bootstrap replicas,
the tlr optimization parameter). Previously sequenced
CD-associated strains, uropathogenic (UPEC) strain
JJ1886, E. albertii strain KF1 (GeneBank ID: CP007025),
and E. fergusonii strain ECD227 (GeneBank
ID:CM001142) were added in a similar manner, but in-
stead of reads, nucleotide sequences of genes were used.

Phylogenetic analysis based on assemblies and de-novo
OG construction
Additionally, we evaluated whether E. coli isolated in
the present study arose from the strains with similar
lifestyles, e.g. commensal or pathogenic. For this pur-
pose a larger ML phylogenetic tree was built without
bootstraps. E. coli genome sequences obtained in our
experiments were compared with all available
complete and some unfinished E. coli genomes from
GenBank. Only unfinished genomes that were top
BLASTN hits for each CD-associated isolate were
selected (the complete list is in Additional file 1). All
selected genomes were assigned to one of the follo-
wing groups: Crohn, genomes sequenced in this study;
CrohnLit, publicly available genomes associated with
CD [27–30], Non-pathogenic, commensal and labora-
tory cultivated non-pathogenic strains; Pathogenic,
strains associated with diseases other than CD; and
Other, with no reliable phenotype information. To
avoid artificial differences resulting from different
annotation pipelines, genomes from GenBank were
reannotated with PROKKA 1.7 [37]. OGs were
obtained using the OrthoFinder software [47, 48] with
default parameters. Universal groups were selected
and OGs with large gene length variation (more than
80% of the median length) were filtered out. Nucleo-
tide sequences of genes from selected OGs were
aligned by ClustalW [39]. Aligned sequences were
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concatenated by strain, and a Maximum Likelihood
(ML) tree was built using the dnaml tool from the
Emboss package [44]. All scripts for tree construction
from OGs are available at GitHub https://github.com/
paraslonic/Rakitina_etal_Crohn_paper/tree/master/
phylogeny [41].
Multilocus sequence typing (MLST) characterizes iso-

lates of microbial species using the DNA sequences of
internal fragments of multiple housekeeping genes [49].
A MLST group was assigned by web service: mlst.war-
wick.ac.uk/mlst/dbs/Ecoli.

Comparison of the gene and domain content
Principal component analysis of PFAM domains and fam-
ilies was performed in order to find Crohn-enriched genes
and domains. For domain and domain-family annotation
we applied the pfam_scan.pl v. 1.5 script [50] to annotated
proteins from all strains. Annotation results were com-
bined and binarized. For each strain a pandomain profile
was obtained, defined as the vector of presence/absence
values attributed to each studied genome. The length of
this vector is the number of domains present in at least
one strain. Bray-Curtis similarities were calculated and
used to build multidimensional scaling (MDS) plot with
custom R script available at GitHub [41] https://github.
<?A3B2 twb.?>com/paraslonic/Rakitina_etal_Crohn_paper/
tree/master/pfamProfiles.
To identify over- or under-represented OGs in certain

groups of strains, the two-way Fisher test was used sep-
arately for each domain or OG. The comparison of the
Crohn group with the Commensal group was performed.
The Crohn group contained 10 assemblies from 10
patients involved in the current study (multiple genomes
from one patient assembled together), and 17 previously
published genomes [27–31]. The Commensal group
included only strains isolated from healthy individuals
[51–54] (Additional file 1 (B)). For the OG content ana-
lysis, E. coli genomes were reannotated. The Holm
method was applied to adjust for multiple comparisons
[55]. The retention index which is an indicator of
consistency between a feature (i.e. the OG composition)
and a tree was calculated for each domain based on the
large ML tree (see Phylogenetic analysis based on
assemblies and de-novo OG construction) using the
phangorn package for R. Functions to OGs and domains
were assigned using PFAM, Uniprot, and KEGG databases
[50, 56, 57].

Detection of plasmids
The contig was considered as a candidate plasmid, if
it had no links with any other contigs of the same
assembly (no reads were mapped both to an edge of
this contig and to an edge of another contig), and its

coverage was at least twice as high as the average
coverage of the genome. All candidate contigs were
then aligned with blastn against a database containing
the results of the query “plasmid[title]” from NCBI
nucleotide database Contigs with at least 80% nucleo-
tide identity and 75% length coverage of a reference
plasmid sequence were considered as potential
plasmid contigs.
Candidate plasmid contigs were realigned with plasmid

sequences with Mauve 2.4.0 [58] and visualized with geno-
plotR R package. In addition, the presence of a particular
plasmid was identified by read mapping. Reads from each
of 28 isolates left after mapping on universal OGs were
then mapped with bowtie2 ver2.1.0 (local alignments)
to the studied plasmids: plLF82 (NC_011917) and
pJJ1886_1–5 (NC_022661, NC_022649, NC_022662,
NC_022650, NC_022651). The per-nucleotide coverage
was extracted with bedtools ver. 2.18.2.

Bacteriocin production test
CDEC strains were tested for bacteriocin production by
the method from [59] with minor modifications. Bacte-
rial cells were used for inoculation of liquid TY medium
containing tryptone 8 g/L, yeast extract 5 g/L, and
sodium chloride 5 g/L. The 1.5% TY agar plates were
subsequently inoculated by a needle stab with fresh
broth cultures and the plates were incubated at 37 °C for
48 h. Bacteria were killed using chloroform vapours for
10 min. Each plate was overlaid with a 5 ml of a warm
soft agar (0.7% TY agar, w/v) containing 107 cells/mL of
an indicator strain (K12 or MG1655). The plates were
then incubated at 37 °C overnight. The assessment of
bacteriocin production was based on the diameter and
intensity of growth inhibition or lysis zone. The indica-
tor strains were obtained from an in-house collection of
strains. Five minutes ultraviolet-C irradiation was used
as an inductor of bacteriocin expression.
The intensity of inhibition was evaluated as “strong” (a

clear lysis zone), or “weak” (an opaque zone, indicating
some growth inhibition).

Phages resistance test
E. coli strains were tested for phage resistance (virulent,
temperate, Salmonella-specific and male-specific) by the
cross-streak and spot-test methods as described in [60].
All phages were taken from the collection of the
Laboratory of Bacterial Genetics (Gamaleya Institute for
Epidemiology and Microbiology).

Results
E. coli Strains cultivated from an inflamed intestine of a
CD patient are closely related
Genome assemblies were obtained for 28 E. coli isolates
from 10 Crohn’s disease patients (Table 1). SNP analysis
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of these genomic sequences (all-vs-all method) revealed
that bacteria isolated from one patient tend to cluster
together, even when these bacteria are isolated from
different parts of the intenstine, such as in the case of
patients RCE01, RCE03, and RCE04 (Fig. 1, Table 1,
Additional files 2 and 3). The number of SNPs within a
patient was negligible (less than 200) as compared to the
interpatient diversity (on average more than 28,000).
Alignment of genome sequences from different intestine
parts of one patient revealed some deletions (usually a
deletion of one of the smaller contigs, probably a
plasmid), and minor heterogeneity (Mauve analysis,
Additional file 4A). This suggested that the whole in-
flamed intestine of a CD patient is colonized by a single
strain of E. coli. Basing on this conclusion we were able
to merge E. coli genomes from each patient into a meta-
assembly, and use the latter to compare strains from
different patients.

CDEC is a polyphyletic group
The phylogenetic analysis by two methods (SNP analysis
of de novo genome assemblies and alignment of
concatenated conserved proteins from 653 universal
orthologous groups) shows that isolates from different pa-
tients fall into different phylogroups of E. coli (Figs. 2 and
3, Additional file 4B). E. coli from patients RCE04, RCE07,
RCE11, and RCE01 belong to phylogroup A, the RCE02
isolate to phylogroup B1, the RCE05 isolate is close to
phylogroup D, while RCE06 and RCE10 are placed in phy-
logroup B2 along with previously published genomes of
CDEC strains. Isolates from patient RCE03 were shown to
be more distant from E. coli BL21 than E. fergusonii. How-
ever, similarly to all E. coli it was resistant to lphi7S1, a
phage, to which all S. typhimurium are susceptible and all
E. coli are resistant (see below Additional file 5). The set
of RCE03 genes was similar to other E. coli (see below the
comparison of orthologous gene groups). The disease
symptoms and clinical course of the patient RCE03 were
also quite typical for CD (Additional file 2).
Hence CDEC do not form a single phylogenetic group

sharing a common ancestry. The same conclusion could
be drawn from the MLST typing (Additional file 6). The
CD-associated strains from ten patients sequenced here
fall into nine different STs including one unknown
(RCE04 genome). Only ST131 has two representatives
(RCE06, RCE10). This ST has been described as the
fastest spreading among the B2 group [61].
At the same time, some CDEC isolates from indepen-

dent sources are very similar (Figs. 2 and 3). Two classic
AIEC strains from France (LF82) and Germany
(O83:H1) share more than 99% sequence identity
(chromosome coverage 98%) [27, 28]. Here, we revealed
the high level of identity by the BLASTn alignment of

chromosome sequences of two strains (patients RCE06
and RCE10) isolated in different clinics - 99% sequence
identity at 94% of chromosome coverage. Weaker but
pronounced similarity is observed for strains RCE07 -
RCE11 (99% sequence identity at 92% of chromosome
coverage). Notably, eight of the ten examined CDEC
strains appeared to be phylogenetically closest to patho-
genic E. coli (Additional file 2).

CDEC genomes contain plasmids from pathogenic strains
Bacterial plasmids often carry genes associated with
pathogenicity. To search for candidate plasmid contigs
we analyzed individual CDEC isolates independently. In
24 assemblies from one to three plasmids of various
length (5–100 kb) and origin were detected. Some of
them had plasmids of pathogenic bacteria, e.g. uropatho-
genic E. coli and Salmonella, as the closest homologs,
but most had high sequence identity (more than 80%
coverage, 95–99% similarity) with genomes of
commensal E. coli isolated from healthy individuals
(Additional file 2). Two plasmids were found to be
specific for CDEC strains.
Plasmid contigs identified in isolates from three pa-

tients (RCE01, RCE02, RCE04) (Fig. 4a) were highly
similar to the previously published reference AIEC strain
LF82 [28] (Additional files 2 and 7A). Regions of plLF82
that are common for all meta-assemblies contain 99
CDS. The latter are mostly represented by phage
proteins, proteins involved in DNA maintenance and
conjugation, and possible virulence determinants such as
enterotoxins, outer membrane proteins, resistance
proteins, etc. (Additional file 7B).
A candidate plasmid detected in isolates from patient

RCE02 and three previously published CDEC genomes
[31] were found to be similar to plasmid pJJ1886_4 from
the fatal urosepsis E. coli isolate JJ1886 (Fig. 4b,
Additional files 2 and 7A). Genomes of two other iso-
lates (RCE06 and RCE10) were closely related to the
genome of the JJ1886 strain [30, 62]. Predicted functions
of proteins shared by the CD isolates and the JJ1886
UPEC plasmid are plasmid DNA maintenance, type IV
secretion, and resistance (Additional files 2 and 7C).
Plasmids plLF82 and pJJ1886_4 have no homologs in

commensal or non-pathogenic E. coli (Additional file 7D).
Plasmids with considerable similarity exist in Yersinia pes-
tis (plLF82), multidrug-resistant E. coli from hospitals
(pJJ1886_4), Salmonella enterica, and Klebsiella pneumo-
niae (both) (Additional file 7E, F). plLF82 has been sug-
gested to be acquired by E. coli via horizontal gene
transfer from Yersinia or Salmonella [28].
No sequence similarity was observed between plasmids

plLF82 and pJJ1886_4, but functional analysis revealed
some common functions, such as plasmid DNA mainten-
ance and conjugation, and a few enterotoxins, outer

Rakitina et al. BMC Genomics  (2017) 18:544 Page 6 of 17



membrane proteins, and multidrug-resistance proteins
(Additional file 7B,C).

There are no domains or genes found only in CDEC
genomes
In order to identify potential virulence domains, we com-
pared CDEC with other pathogenic and non-pathogenic
E. coli. The principal component analysis of PFAM
domains and families shows that CDEC do not cluster to-
gether (Fig. 5), and are scattered among pathogenic and
nonpathogenic strains. Thus, CDEC as a group can not be
attributed to pathogenic or non-pathogenic E. coli on the
basis of their pandomain profile.
In order to identify genes that could influence CDEC

virulence, we compared the protein composition of CDEC
(27 genomes) with commensal E. coli strains isolated from
healthy individuals (24 genomes) [29, 30, 51–54]. The
complete list of strains is given in Additional file 1. In
total, 143 orthologous groups (OGs) are overrepresented
in the CDEC group, and 237 OGs are underrepresented
(Fisher test p-value ≤0.05, Additional file 8). No difference
was significant after adjustment for multiple testing (the
Holm correction), even for those that were 10 times more
often in CDEC genomes (Additional file 8). That can be
partially explained by a small size of the analyzed E. coli
dataset (51) compared to the number of regarded OGs
(11,886 OGs). Hereinafter, those OGs are referred to as
enriched in CDEC or commensal E. coli genomes.

OGs enriched in CDEC genomes tend to fom operons
Most genes from CDEC-enriched or commensal-enriched
OGs are located on the chromosome, and moreover, 156

of them form operons with certain finctions (Figs. 6 and
7). In the reference CDEC strain LF82 all CD-enriched op-
erons are present, while the commensal-enriched operons
are not. Six operons from LF82, namely glyoxilate metab-
olism - gcx part of ptn-cgl-gcx-ibe operon, capsular
assembly PAI IV LF82, iron uptake operon I, sorbose up-
take and utilization, prophage I LF82, and propanediol
utilization operon, showed the number of enriched OGs
above random probability level (Additional file 9, Fig. 7),
therefore their enrichment in CDEC genomes is valid..
Genes of CD-specific plasmids did not pass Fisher’s test.
OGs overrepresented in CDEC are involved in

metabolism, horizontal gene transfer (HGT), and
virulence (Fig. 6).
OGs with functions associated with metabolism are

mainly enriched in commensal strains (aromatic
compounds degradation, fatty acid biosynthesis, and
glycerolipid metabolism). The only metabolic function
of CDEC-enriched OGs was utilization of sugar alco-
hols (propanediol, galactitol, glycerol). This function
in CDEC is represented by the propanediol (15 genes)
and galactiol (7 genes) utilization operons (Fig. 7).
Enrichment in OGs associated with HGT was pre-

viously reported to be characterictic of pathogenic
strains leading to accumulation of pathogenic genes
[49]. In our comparison, however, OGs with such
HGT functions as “transposases” (transposon pro-
teins), and “foreign DNA transfer” were enriched in
commensal strains (Fig. 6). OGs with function of
“foreign DNA resistance” were also enriched in the
commensal group, due to the CRISPR-Cas locus
(Figs. 6 and 7). The maindifference observed in HGT
category is a presence of distinct prophages: Mu-like

Fig. 1 Genomic similarity of E. coli from individual colonies. Heatmap colors represent the number of SNPs per nucleotide (all-vs-all method).
Lighter colors mean higher sequence similarity
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prophages tend to occur in commensal strains, while
lambda-like prophage I from LF82 is specific for
CDEC (Figs. 6 and 7). However, the phage resistance
test of CDEC revealed that the presence or absence
of a particular prophage in a genome cannot be dir-
ectly interpreted as the evidence of the strain sensiti-
vity (or resistance) to this phage (Additional file 5).
OGs involved in carbohydrates metabolism and uptake

have equal amount of representatives among CD-
enriched and commensal-enriched OGs (Fig. 6). Most of
the CD-enriched OGs are rather involved in invasion,
than metabolism (see below).
OGs responsible for adhesion-invasion are more com-

mon in commensal E. coli (Fig. 6), and are represented by

the type III secretion system locus. At the same time, in
CDEC this function is represented by the GimA island,
containing three carbohydrate and glycerol metabolism
operons (ptn, cgl and gcx) and one invasion ibe operon
(Fig. 7). This island was first identified in meningitis-
causing E. coli and proved to be responsible for carbon-
source induced invasion of the blood-brain barrier [63].
In the commensal group enriched OGs asocciated

with toxins are represented by the microcin operon,
while in the CD group – by one gene from type II toxin-
antitoxin system.
Other potentially pathogenic functions enriched in

CDEC are iron uptake (Fig. 6), presented by chu
operon and enterobactin gene clusters (iron uptake

Fig. 2 Phylogenetic analysis of E. coli strains. The phylogenetic tree of all universal single-copy genes was constructed by the maximum-likelihood
algorithm with 100 bootstrap replicates for E. coli isolates from ten patients (this study), 32 E. coli and Shigella strains from [42] from phylogroups
A (yellow), B1(light green), B2 (green), D(cyan), E (blue), S (violet), previously published [27–30] CD-associated strains (red), and uropathogenic strain
JJ1886. Escherichia albertii KF1 and Escherichia fergusonii ECD227 were used as outgroups
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operons I and II, Fig. 7), and lipid A biosynthesis (3
separate OGs).
OGs encoding membrane, fimbrial proteins, trans-

porters and those involved in cell wall/envelope
assembly, are present in both commensal-enriched
and CD-enriched groups (Fig. 6).

CDEC are resistant to varying antibiotics
The antibiotic susceptibility test confirmed interpati-
ent heterogeneity (Additional file 10). All tested E.
coli strains expressed different phenotypes. Isolates
recovered from patients RCE01 and RCE03 were pan-
susceptible. Isolates from three other patients (RCE04,

Fig. 3 Genomic comparison of 14 CD-associated strains with pathogenic and non-pathogenic E. coli genomes. Maximum likelihood
unrooted tree is based on the core genes. Strains from this study are colored black (here and on the images below indicated as Crohn);
previously published CDEC (here and on the images below indicated as CrohnLit) are grey; nonpathogenic, green; pathogenic, pink; strains
of undetermined pathogenicity, white. Derivatives of one laboratory strain are merged. Strains containing a plasmid homologous to plLF82
and pJJ1886 are indicated. Pdu operons from LF82 are marked with red
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RCE05 and RCE06) were resistant to three or more
antibiotics, thus being multidrug-resistant. All studied
isolates were susceptible to ampicillin and carbape-
nems (imipenem and meropenem).

CDEC produce bacteriocins, inhibiting the growth of
other E. coli strains
Four CDEC strains (isolates from RCE04, RCE06, RCE10
and RCE11) were tested for the bacteriocin production
by the method of Kohoutova [59] with slight modifica-
tions. All strains showed bactericidal effects on indica-
tors (Additional file 11). RCE04 had the weakest
bactericidal ability, showing only a weak effect on the
most susceptible indicator. At that, the RCE04 strain
was isolated from the ileal lumen and caecal biopsy (six
isolates altogether) of one patient, suggesting it colo-
nised the whole intestine. One may conclude that either
bacteriocins are not necessary for E. coli to dominate the
intestine, or that the expression of the RCE04 bacte-
riocin has not been induced in the cultivation
conditions.

Discussion
Several studies have attempted to establish whether CD-
affected intestine is colonized by a single or multiple
strains of E. coli. Indeed, different strains could abide in
mucosa and lumen, within lesions and in non-affected
sites (reviewed in [2]). Our analysis shows that complete
genome sequences obtained from a given patient have a

very low SNP rate, confirming genetic homogeneity of E.
coli within the same intestine. Even the genomes of E.
coli from caecum biopsy, ileum lumen and feces (pa-
tient RCE01) demonstrate high similarity, indicating
that all parts of the inflamed intestine are colonized
by a single strain.
Since the time the CDEC group had been defined, its

phylogeny had been debated. It has been suggested [24]
that this group might have evolved from a common
commensal ancestor, that has become pathogenic by ac-
quisition of virulence factors via horizontal gene transfer
from related pathogenic organisms (Klebsiella, Shigella
and Yersinia) [28]. Because of that, recent studies
concentrate mostly on the phylogroup B2 [31]. However,
in other cases high heterogeneity of CDEC serotypes
and MLST groups has been observed implying, that
there are only functional similarities between CDEC,
and no common origin [16].
The results of our study suggest a combination of the

above hypotheses. Here, high interpatient heterogeneity
has been demonstrated with isolated CDEC attributed to
several distinct phylogroups (Fig. 2). On the other hand,
some independently isolated strains (LF82 and O83:H1,
RCE06 and RCE10) are highly similar and likely share a
common origin. Strains with similar chromosomes may
contain unrelated plasmids and vice versa. For example,
chromosomes of LF82 and O83:H1 share more then
99% homology, but their plasmids have no homologous
genes. On the other hand, chromosome of RCE03 is

Fig. 4 Full-length alignment of plasmids shared by CDEC strains from the present study: E. coli LF82 plasmid (a), and JJ1886 plasmid 4 (b). The
first row in each case represents the plasmid map; other rows show homologous regions and rearrangments (MAUVE 2.4.0, default parameters)
between the plasmid of interest and meta-assemblies for specific patients. Each homologous region is shown by a specific color
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more distant from LF82 than E. fergusonii (Fig. 2), while
the identity between their plasmids exceeds 98% at 86%
coverage. This supports the hypothesis that the CD-
associated phenotype could have arisen by horizontal
gene transfer (plasmid or phage), possibly from non-E.
coli bacteria.
Another question concerning E. coli and Crohn’s

disease is whether it is a pathogen, or just a survivor.
The mechanism of strain domination has to be
discovered, one possibility being that it is due to a
bactericidal effect on other E. coli strains. Indeed, all
tested CDEC demonstrated some bactericidal activity.
However, in co-cultivation experiments at standard

conditions, CD-isolates failed to outcompete isolates
from healthy individuals (Additional file 12). Another
explanation of the increased abundance of CDEC in
microbiota may be better fitness in the acute inflam-
mation conditions. This hypothesis is supported by
the observed proliferation of AIEC during severe ile-
itis in non-sterile mice, initially induced by chemicals
or protists [64].
AIEC role in CD pathogenesis is supposed to be

mediated by the bacterial cell surface proteins (porins,
pili, membrane proteins, glycoproteins and proteins
complexes with lipopolysachharides) [2]. In that re-
gard it is interesting that many OGs overrepresented

Fig. 5 Multidimensional scaling plot of distances between the PFAM-domain content in CDEC, pathogenic, non pathogenic, and commensal E.
coli. The colors of strains are as in Fig. 3
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or underrepresented in CDEC have those functions.
This suggests possible differences between CD- and
commensal E. coli cells outer surface – membrane
proteins repertoire and polysaccharide composition.
Our study provides evidence that CDEC as a group is

closer to pathogenic E. coli than to commensal one. The
genomes of some CDEC strains share more than 99%
identity with defined pathogenic strains and/or contain
plasmids closely related to those of defined pathogenic
strains (Additional file 2). While no universal pathogenic
feature was found in the genomes of the analyzed
strains, several protein functions were more prominent
in the CD-associated group of E. coli, and that could be
relevant to the possible pathogenicity of these strains.
One of the functions of genes enriched in CDEC is

propanediol utilization (similar results were obtained in
[12]). It is interesting that the propanediol utilization
operons in CDEC are of diverse origins: the operon from
LF82 (O83:H1, four strains from the present study and 7
CD strains from [31]) has homologs in pathogenic E. coli
strains, E. albertii, and Shigella sp. The operon from two

other CD strains (UM146 and RCE10) is similar to the
pathogeniсity island II from E. coli 536 strain. The
operon from the RCE11 strain is similar to that of
Citrobacter and Klebsiella spp. This provides additional
support to the suggestion that CD-specific features in E.
coli strains are not specific genes, but functions, pro-
bably obtained from independent sources via horizontal
gene transfer (Fig. 8). Indeed, in many cases these genes
form operons flanked by genes encoding transposases or
recombination proteins (Fig. 8).
Recent publications show that the utilization of 1,2-pro-

panediol is closely linked to intestinal proliferation and
virulence of Listeria monocytogenes, enteropathogenic E.
coli (EPEC), Salmonella enterica and Enterococcus faecalis
(reviewed in [65]). Further, the genes required for 1,2-pro-
panediol degradation are necessary for Salmonella replica-
tion within macrophages [66]. 1,2-propanediol utilization
is important for the growth in host tissues since its pre-
cursor, fucose is found in glycoconjugates of intestinal
cells involved in host-parasite interactions [67]. 1,2-propa-
nediol can be utilized by members of Enterobacteriaceae

Fig. 6 Functions of overrepresented OGs (Fisher’s test p-value <0.05 prior to Holm’s correction). The number of overrepresented OGs with a
given function is shown on the horizontal axis for commensal strains (grey, left panel) and CDEC (yellow, right panel)
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via aerobic and/or anaerobic pathways [68]. A normal
condition in the intestine is anaerobic, whence the aerobic
pathway is much more efficient. So, the inflamed intestine
would provide bacteria possessing this pathway with both
an abundant substrate and the conditions for its optimal
utilization. At that, Salmonella typhimurium has been
suggested to induce acute inflammation in the intestine to
provide aerobic conditions for ethanolamine utilization
(a pathway close to the propanediol utilization) [69]. One
could speculate that a similar mechanism forms a base for
the CD pathogenesis.
Of 14 strains containing the pdu operon similar to

that of LF82, nine are positioned close to the galacti-
tol utilization locus (Fig. 8). These genes are

functionally analogous to the gat operon that is
common to all E. coli, however without any sequence
similarity. The closest relatives of the CD-specific
galactiol catabolism operon from LF82 are found in
Klebsiella sp. Salmonella enterica, Enterobacter spp.,
and Listeria monocytogenes. Previously, the sets of
genes for the galactitol catabolism in Enterobacteria-
ceae were reported to be involved in horizontal gene
transfer and recombination events [70]. It is hard to
tell whether the additional galactitol operon has any
specific function, but this pathway is connected with
the gut colonization. For example, genes involved in
the galactitol catabolism are induced in E. coli by
growth on mucus [71] and show differential

Fig. 7 Operons and gene groups enriched in CDEC (yellow) and commensal E. coli (grey) (Fisher test p-value <0.05 prior to Holm’s correction).
OGs form horisontal rows, strains – vertical columns. Genomes with similar OG patterns were clustered together using a custom R script (see
Methods). that can be achieved at GitHub repository https://github.com/paraslonic/Rakitina_etal_Crohn_paper/tree/master/ogEnrichment [41].
Phylogroups of strains are indicated (A, B2, B1, D)
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expression during biofilm formation [72]. Also, mul-
tiple mutations in those genes rapidly occur in la-
boratory strains of E. coli transferred from the
minimal growth media to the mouse gut, suggesting
they are under specific selective pressure in natural
conditions [73].
The above observations suggest that CD-enriched

genomic features of CDEC presumably provide bacteria
with an increased ability for intestine colonization.
These genes are organized in clusters that are likely
acquired by E. coli from other members of Enterobacte-
riaceae via horizontal gene transfer.
Hence it seems that CDEC are not just commensal

strains able to survive the acute inflammation. They
have some characteristics of pathogenic E. coli. None
of these are as straightforward as the Shiga toxin. All
of them have been reported to improve colonization
and to increase survival and fitness. It is possible that

while persisting in the intestine, certain E. coli strains
accumulate more and more of such improvements
until taken together they may push the strain from
commensality to pathogenesis.
Common CD-factors, if any, may not be specific

genes or proteins, but rather functions performed by
different genes in different strains. The heterogeneity
of CDEC does not exclude the possibility that differ-
ent groups of CDEC can possess different mecha-
nisms for the survival in the inflamed intestine and
therefore for the development of Crohn’s disease re-
sponse in a patient, suggesting that specific treatment
might be required in each case.

Conclusions
Our findings suggest that CDEC are of diverse phyl-
ogeny. However, some strains isolated from independent
sources possess highly similar chromosomes or plasmids.

Fig. 8 Schematic representation of the propanediol and galactitol operons in CDEC genomes. For each operon the reference strain and the
percent of genomes containing it is indicated (CDEC vs commensal)
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No CD-specific genes or functional domains were found
to be present in all CD-associated strains. However,
some genes and operons are more often found in the ge-
nomes of CDEC than in commensal E. coli. They are
mainly linked to the gut colonization and utilization of
propanediol and other sugar alcohols.
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