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Abstract. The study of structure and dynamics of particles in liquid magnesium at the two
thermodynamical states (at the temperature T = 953 K and T = 1063 K) has been performed by
computer simulation molecular dynamics with the `glue' interparticle potential. The calculated
equilibrium terms are compared with the experimental data on X-ray scattering. The results
of comparative analysis to show adequacy of choice of the interparticle potential for liquid
magnesium. The study of collective properties of the magnesium particles on the basis of the
dynamic structure factor, S(k, ω), for eight wave-numbers k = 0.5, 0.7, 0.9, 1.1, 1.4, 1.6, 1.8 è
2.0 �A−1 are carry out. The theoretical analysis of S(k, ω) by Zwanzig-Mori's memory-function
formalism on the basis of N.N. Bogoliubov's ideas about reduced description of statistical
systems and the hierarchy of relaxation time-scales are executed. The results of theoretical
calculations are in a good agreement with computer simulation molecular dynamics data.

Keywords: molecular dynamics, microscopical dynamics, collective excitations, dynamic
structure factor.

1. Introduction
The fundamental investigations of physical mechanisms of collective excitations in liquids are
one of the most interesting tasks in the physics of condensed matter [1, 2]. It is well-known, that
collective properties of liquid metals outside the strict hydrodynamic region are characterized
some speci�c features. For example, the dynamic structure factor, S(k, ω), has three-peak
structure, so called, Rayleigh-Mandelshtam-Brillouin triplet (RMB). The similar triplet was
detected in many other liquids by INS experiments [3, 4, 5] and inelastic coherent X-ray scattering
[6, 7, 8, 9]. Furthermore, nonlinear increasing the speed of sound with wave-number, k, changes
(so called `positive dispersion' of the sound velocity), and another e�ects are observed. The
registration of these features is cause of rapid development the experimental research as well as
theoretical one (see review [10]). At the present time, there are several theoretical approaches to
description RMB-like triplet of the dynamic structure factor, S(k, ω), in microscopic dynamics
region. Approach, which developed in the framework of Zwanzig-Mori's memory-function
formalism [11, 12, 21, 14] on base of self-consistent presentation of third order memory function,
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by way of second order memory function [15]; approach based on the semi-empirical modi�ed
hydrodynamical model [16]. Recently, the authors of [17] developed new approach for description
RMB-like triplet and `positive dispersion' of the sound velocity on base of the mechanism of
`two-canal' relaxation. First `canal' corresponded, so-called, thermal relaxation; second � is
connecting with viscous relaxation (see Ref. [17] for more the detail). In this work molecular
dynamics computer simulation with the purpose the testing interparticle potential [18] for the
description of microscopic structure and dynamics of particles in liquid magnesium was carried
out, and we develop new theoretical approach on base of the fundamental N.N. Bogoliubov's
ideas about reduced description of statistical systems and hierarchy of the relaxation time scales.

2. Details of computer simulation molecular dynamics
Computer simulation molecular dynamics of liquid magnesium at the two thermodynamical
states was carried out: near the melting point with the temperature T = 953 K (Tm = 923 K)
and numerical density n = 0.0383 �A−3 (mass density ρµ = 1.545 g/cm3) and at the temperature
T = 1063 K (n = 0.0355 �A−3, ρµ = 1.433 g/cm3). The studied system of N = 4000 particles
in a cubic cell with periodic boundary conditions. Particles interact through the so-called `glue'
potential [18]:

Epot = Epair + Eglue =
∑

i<j

ψ(rij) +
∑

i

U(ρi), (1)

ρi =
∑

j

ρij . (2)

Where ψ(r) � is the short-range pair potential, ρ(r) � is the function of atomic density, U(ρ) �
is the multi-particle `glue' function. The functions of ψ(r), ρ(r) and U(ρ) are shown in Fig. 1.

To reduce the time of calculations, we neglected particle interaction at a distance r ≥ rc,
where rc = 6.679 �A � is the cutting radius of the potential. For the numerical integration the
equation of motion we used the velocity Verlet algorithm [19] with time step 10−14 sec. 10000
time steps were executed to bring the system to an equilibrium state, and 50000 time steps were
executed to average the time correlation functions. The averaging procedure were executed over
the number of particle and time.

3. Theoretical framework
Let us consider the normalized time correlation function (NCF)

φk(t) =
〈δρk(t)δρ−k(0)〉

S(k)
(3)

of density �uctuations δρk(t) = 1/N
∑N

j=1 exp(ikrj(t)) in a liquid. Where S(k) = 〈|δρk(0)|2〉 �
is the static structure factor, k � is the wave-vector, and rj(t) � is the radius-vector of j-particle
position at the moment of time t. The function φk(t) to satis�ed the conditions of normalization
and attenuation of correlations:

lim
t→0

φk(t) = 1, lim
t→∞φk(t) = 0. (4)

In the framework of Zwanzig-Mori's memory function formalism [11, 12, 21, 14] we can to describe
the time evolution of the TCF φk(t) with follow kinetic equation:

d

dt
M

(i)
k (t) = −∆(i+1)

k

∫ t

0
M

(i+1)
k (t− τ)M (i)

k (τ)dτ, i = 0, 1, 2, ... . (5)
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Figure 1. Interparticle potential of liquid magnesium [18].

Where ∆(i)
k � is the frequency relaxation parameter with the dimension of the square of frequency,

M
(i)
k (t) � is the ith order of memory function (MF). In particular, with i = 0 we have

M
(0)
k (t) = φk(t). By solving the Eq. (5) with help Laplace-transformation

f̃(s) =
∫ ∞

0
dte−stf(t), (6)

we can to obtain the follow recurrent relation

M̃
(i)
k (s) = [s + ∆(i+1)

k M̃
(i+1)
k (s)]−1, i = 0, 1, 2, ... , (7)

where introduced the relaxation parameters ∆(i)
k , i = 1, 2, 3, ...,

∆(1)
k = ω

(2)
k ,

∆(2)
k =

ω
(4)
k

ω
(2)
k

− ω
(2)
k ,

∆(3)
k =

ω
(6)
k ω

(2)
k − ω

(4)2

k

ω
(4)
k ω

(2)
k − ω

(2)3

k

, (8)
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Figure 2. The equilibrium terms of liquid magnesium at the temperature T = 953 K and
T = 1063 K (the radial distribution function of two particles, g(r), and the static structure
factor, S(k)): solid line � is the computer simulation molecular dynamics results; (◦ ◦ ◦) � is
the experimental data on inelastic X-ray scattering [35, 36].

∆(4)
k =

ω
(8)
k −∆(1)

k

[(
∆(1)

k + ∆(2)
k

)3
+ 2∆(2)

k ∆(3)
k

(
∆(1)

k + ∆(2)
k

)
+ ∆(2)

k

(
∆(3)

k

)2
]

∆(1)
k ∆(2)

k ∆(3)
k

,

. . . ,

which connected with normalized frequency (spectral) moments ω
(2m)
k (m = 1, 2, 3, ...) of the

dynamic structure factor, S(k, ω) [20], i.e.

ω
(2m)
k =

∫∞
−∞ ω2mS(k, ω)dω∫∞
−∞ S(k, ω)dω

=
d2mφk(t)

dt2m

∣∣∣∣∣
t=0

. (9)

In the framework of the de�nition (9) we can to �nd the microscopic expressions for the frequency
moments ω

(2i)
k , i = 1, 2, 3, ...,

ω
(2)
k =

kBT

m

k2

S(k)
,
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Figure 3. Dynamic structure factor, S(k, ω), of liquid magnesium which obtained from
molecular dynamics computer simulation: (a-h) � at the temperature T = 953 K; (i-p) � at
the temperature T = 1063 K.

ω
(4)
k = 3∆(1)

k

kBT

m
k2 +

NkBT

m2V S(k)
k2

∫
drg(r)[1− cos(kr)]∇2

l Epot(r),

ω
(6)
k = 15

(
kBT

m

)2

k4 +
NkBT

m2V
k2

∫
drg(r)∇2

l Epot(r) + (10)

+6
NkBT

m2V
k

∫
drg(r)∇3

l Epot(r) sin(kr) +

+2
N

m2V

∫
drg(r)[∇∇lEpot(r)]2[1− cos(kr)] +

+
(

N

mV

)2 ∫
drdr′g3(r, r′)(∇∇lEpot(r))(∇′∇′lEpot(r′)),

. . . .

Here, subscript l to indicate on the longitudinal component, parallel vector k, g(r) � is the radial
distribution function of two particles, g3(r, r′) � is the three-particle distribution function, Epot(r)
� is the interparticle potential, k = |k| � is the wave-number, kB, T and m � are the Boltzmann
coe�cient, the temperature of the system and the atomic mass of magnesium, respectively.
The expressions of the senior order frequency moments has very complicated view and contains
many-particle distribution functions.
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Figure 4. Dynamic structure factor of liquid magnesium at the temperatures T = 953 K (a-c)
and T = 1063 K (d-f): (◦ ◦ ◦) � are the computer simulation molecular dynamic data; solid
line represent the results of the theoretical calculation by the equation (13).

The determination of analytic view of the TCF φk(t) [or its Laplace-transformation φ̃k(s)]
usually come to calculation the ith order memory function, M

(i)
k (t), [or M̃

(i)
k (s)] or search the

method of closing of the in�nite fraction (7). For closing of the equation (7) there were suggested
di�erent methods:
(i) the marko� approximation of the relaxation processes [21];
(ii) the model memory function method, when the ith order memory function M

(i)
k (t)

approximated some simple model function, for example, exponential or gaussian function,
hyperbolic secant [22, 23, 24, 25, 26];

(iii) the mode-coupling method [27], when the second order memory function, M
(2)
k (t),

approximated polynomial of the initial time correlation function φk(t).
In this paper we develop new approach the based on N.N. Bogoliubov's ideas about reduced

description of statistical systems and hierarchy of the relaxation time-scales [28], at the �rst
time suggested in the work [29]. Recently, this approach successfully used for description of
the dynamic structure factor spectra, S(k, ω), of liquid alkaline metals near its melting points,
which observed in experiments on inelastic X-ray scattering [30], and coherent neutron scattering
[31, 32]. In the framework of this approach, supposed, that on some of the relaxation level realized
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(◦ ◦ ◦); (¤ ¤ ¤) � are the MD results at the temperature T = 1063 K (n = 0.0355 �A−3); solid
line presents the theoretical results by equation (13).

the equalization of the time scales of the two neighbor relaxation processes, i.e. τ
(i)
k = τ

(i+1)
k ,

where τ
(i)
k =

∫∞
0 dtM

(i)
k (t) = M̃

(i)
k (s = 0) � is the time correlation of the ith order memory

function.
Applying this approach to the third relaxation level (i = 3) [29, 31] we obtained the expression

for the third order memory function

M̃
(3)
k (s) =

−s +
√

s2 + 4∆(4)
k

2∆(4)
k

. (11)

By substituting this expression in the equation (7) and taking into account the equation of the
dynamic structure factor, S(k, ω), which interrelated with Laplace-transformation of the time
correlation function of density �uctuation φk(t) [33]:

S(k, ω) =
S(k)

π
Reφ̃k(s = iω) (12)

we can to obtain the equation of form:

S(k, ω) =
S(k)
2π

∆(1)
k ∆(2)

k ∆(3)
k

√
4∆(4)

k − ω2

{(
∆(1)

k ∆(3)
k

)2

+ ω2

[
− 2∆(1)

k

(
∆(3)

k

)2

+

+
(

∆(1)
k

)2

∆(4)
k −

(
∆(1)

k

)2

∆(3)
k + 2∆(1)

k ∆(2)
k ∆(4)

k −∆(1)
k ∆(2)

k ∆(3)
k +

(
∆(2)

k

)2

∆(4)
k

]
+

+ω4

[(
∆(3)

k

)2

− 2∆(1)
k ∆(4)

k + 2∆(1)
k ∆(3)

k − 2∆(2)
k ∆(4)

k + ∆(2)
k ∆(3)

k

]
+

+ω6

[
∆(4)

k −∆(3)
k

]}−1

. (13)
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4. Conclusions and discussions
To study the structure and the equilibrium properties of liquid magnesium we calculated by MD
the radial distribution function of two particles

g(r) =
V

4πr2N

〈
N∑

j=1

∆nj(r)
∆r

〉
(14)

and the static structure factor

S(k) =
1
N

〈
N∑

j=1

e−ikrj(0)
N∑

l=1

eikrl(0)

〉
. (15)

Where ∆nj(r) � is the number of particles in the spherical layer ∆r at the distance r from the
jth particle. The calculation of the static structure factor, S(k), with reliable precision on basis
of the equation (15) usually take plenty computer time, therefore numerical computation of the
S(k) was executed on base of behavior of the radial distribution function of two particles g(r)
with the equation of form [34]:

S(k) = 1 + 4πn

∫ ∞

0
r2

(
g(r)− 1

)sin(kr)
kr

dr. (16)

Fig. 2 shows the functions of g(r) and S(k) for the liquid magnesium in comparison with
the experimental data on inelastic X-ray scattering [35, 36]. From the �gure we can to see,
that the computer simulation molecular dynamics with the `glue' interparticle potential for the
equilibrium characteristics are in a good agreement with experimental data. Consequently, the
potential given by Eq. (1) allow correctly to describe the microscopic structure of the liquid
magnesium at the thermodynamic states near the melting point.

To study of the dynamic properties of the liquid magnesium we calculated the dynamic
structure factor spectra, S(k, ω). In Fig. 3 we demonstrate the computer simulation molecular
dynamics results for the dynamic structure factor, S(k, ω), of the liquid magnesium at the
temperatures T = 953 K (Fig. 3 a-h) and T = 1063 K (Fig. 3 i-p) for eight wave-numbers, k, from
0.5 �A−1 to 2 �A−1. From the �gure we can to see that the positions and heights of the central and
side peaks with increasing of the wave-number endure noticeable changes. High-frequency peaks
in the dynamic structure factor spectra, which characterized collective dynamics of particles
in liquid the most distinctly expressed in the wave-number region from 0.5 �A−1 to 1.6 �A−1.
At the values k ≥ 1.8 �A−1, which corresponding approximately position of the �rst maximum
(k ∼ 2 �A−1) in the structure factor, S(k), these peaks entirely disappear. Therefore, high-
frequency collective excitations are observed only on the spatial scales (r ∼ 2π/k), corresponding
interatomic distances.

In Fig. 4 presents the theoretical results [equation of (13)] for the dynamic structure factor
spectra, S(k, ω), (solid line) are compared with molecular dynamics data (◦ ◦ ◦). The theoretical
results of S(k, ω) are seen to precisely reproduce the molecular dynamics computer simulation
data at the temperatures T = 953 K (Fig. 4 a-c) and T = 1063 K (Fig. 4 d-f) for the whole
studied wave-number region. A small discrepancy between the theory and the MD data, which
observed in the low-frequency region of the S(k, ω), are connected with errors in the Fourier-
transformation of the time correlation function of density �uctuations, φk(t), on the long-time
asymptotic. Frequency relaxation parameters ∆(i)

k (ãäå i = 1, 2, 3), which contains in the equation
(13), were computed by equations (8) and (10). Fourth frequency parameter ∆(4)

k was obtained
from comparison the theory and the molecular dynamics data. About good qualitative and
quantitative agreement for the both thermodynamic states of liquid magnesium we can also to
judge on the dispersion of the high-frequency peak ωc(k), which is presented in Fig. 5.

The results of this brief report can be summarized as follows:
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(i) The `glue' interparticle potential [18] allows adequately to describe the microscopic structure
and dynamics of magnesium particles at the thermodynamic states with the temperatures
T = 953 K and T = 1063 K;

(ii) In the spectra of the dynamic structure factor near and above the melting point are observed
the high-frequency excitements in the wave-number region k to the point of 1.6 �A−1,
corresponding the spatial scales and the lengths (r ∼ 2π/k), which are comparable with
the interparticle distances;

(iii) The theoretical model of the dynamic structure factor, developed on the N.N. Bogoliubov's
ideas about the reduced description of statistical systems and hierarchy of the relaxation time
scales in the framework of the Zwanzig-Mori's memory function formalism, allows correctly
to describe the relaxation processes and collective dynamics of the liquid magnesium on the
picosecond time scales and in the microscopic space regions.
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