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Abstract: The spectral characteristics of cyclosporin C (CsC) with the addition of Dy3+ ions in
acetonitrile (CD3CN) and CsC with Dy3+ incorporated into dodecylphosphocholine (DPC) micelle in
deuterated water were investigated by high-resolution NMR spectroscopy. The study was focused on
the interaction between Dy3+ ions and CsC molecules in different environments. Using a combination
of one-dimensional and two-dimensional NMR techniques, we obtained information on the spatial
features of the peptide molecule and the interaction between CsC and the metal ion. The non-uniform
effect of the metal ion on different NMR signals of CsC was observed. The paramagnetic attenuation
parameter was calculated for the amide, alpha, and beta protons of CsC upon the addition of Dy3+.
The metal ion was found to interact with the polar part of the DPC micelle, and the ion also has
a significant effect on the NMR signals of amino acid residues from Sar3 to D-Ala8. This pattern
is reproduced in both environments studied here and also agrees with earlier investigations of the
CsA–Dy3+ complex.
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1. Introduction

Cyclosporin A (CsA) is widely used to prevent graft rejection in organ transplants due
to its immunosuppressive pharmaceutical activity [1]. Cyclosporins can also effectively
treat diseases such as dry eye disease, hepatitis B and C, or atopic dermatitis [2–5]. However,
sometimes its use is limited because of severe side effects: administration of cyclosporin
may be accompanied by neurotoxicity, nephrotoxicity, hyperkalaemia, hypercalciuria,
and other side effects [6–8]. So, it is interesting to search for analogues of cyclosporin
A with strong immunosuppressive, antiviral, or anti-inflammatory properties among
similar molecules, most of which are different from CsA in one or two sites by a change
of amino acid or N-methylation state [9,10]. Cyclosporin C is one of those candidates.
CsC is a natural analogue of CsA, a cyclic undecapeptide in which aminobutyric acid
is replaced by threonine (Figure 1). The results of studies with CsC showed that it has
a solid immunosuppressive activity while being less nephrotoxic than CsA [11]. It is
known that the activity of cyclosporins depends on their structure and conformation,
which the environment can influence: interaction with membranes and micelles, metal ions,
or different solvents [12].

The study of the effect of metal ions on biologically active molecules and cell mem-
branes is relevant since the interaction of metal ions with organic compounds can lead
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to various biological effects through complex formation, covalent bonding, and stabiliza-
tion of certain conformations. Interactions with ions can also serve as an instrument for
studying the structures of macromolecules [13,14]. This work used the dysprosium ion,
which belongs to the yttrium subgroup of rare earth metals. It has similar characteristics to
other metal ions of the lanthanide group [15]. It is worth noting that in NMR spectroscopy,
dysprosium and its complexes are used as a shift reagent [16–19]. Other metal ions may
also form complexes with the peptide and influence the NMR spectra, but we should avoid
severe shortening of the T2 time since it would make recording 2D spectra impossible.
Dysprosium was chosen after we had tried several other metals (Co, Mn, and Gd).
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Figure 1. Chemical structure of cyclosporin C.

The pharmaceutical activity of cyclosporin depends on its membrane permeability,
which in turn can vary upon changing the conformation. The formation of cyclosporin–
metal ion complexes can significantly affect the structure of the peptide. It is also important
to note that cyclosporins bind differently to different metal ions: for example, CsA forms a
weaker complex with sodium than with calcium or magnesium [20], and the interaction
of CsH with lithium and sodium causes changes in the infrared absorption spectra much
weaker than in the case of CsA or CsC [21]. Cyclosporins can act as ionophores and
facilitate or inhibit the transport of metal ions across membranes [22]. So, studying how
these peptides interact with metal ions can be helpful in understanding why different
cyclosporins increase or decrease the rate of metal transport. In cases when the peptide
structure is altered negligibly, the paramagnetic effect of the ion on NMR spectra may be a
useful tool to study the complex formation.

Previously, other researchers performed experiments on CsA with Dy3+ ion in SDS
micelles and demonstrated the possibility of forming a stable structure in a micellar solu-
tion [23]. Surfactants such as SDS are also capable of interacting with organic molecules
and metal ions even below the critical micelle concentration [24], and hence, it is of interest
to compare the complex formation process in simple solvents and in micellar solutions.

This work used the DPC micelle to dissolve CsC in D2O and mimic the cell membrane.
The DPC-based micelle is a spherical aggregate of molecules in which the hydrophilic
heads are on the surface and in contact with water, and the hydrophobic tails of the fatty
acids of these molecules are inside the sphere and in contact only with each other or with
hydrophobic compounds co-dissolved with the lipid. It is usually used as a simplified
membrane model (Figure 2) [25,26].
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This work aims to study the binding of Dy3+ ions with CsC and the possible consequent
effect on the peptide structure in different environments such as acetonitrile and membrane-
mimicking DPC micelles. The influence of Dy3+ ions was characterised by the autoscaled
signal volume in the HSQC spectrum, based on the method described in [27–29]. Obtained
results can be compared in the future with experiments on other metal ions.

2. Results
2.1. NMR Spectroscopy of Cyclosporin C in Acetonitrile

Analysis of the set of 2D NMR spectra allowed obtaining a total assignment of 1H and
13C signals for the major conformer of CsC. The chemical shifts of CHα, CHβ, NH/NCH3,
and carboxyl C’ signals of the main conformer are presented in Table 1. Other conformers
with weaker signals were also detected, and TOCSY and HSQC spectra were used to
determine the chemical shifts of some signals of the minor conformer (an asterisk * next to
the amino acid name indicates whether it belongs to the minor conformer).

Table 1. 1H and 13C chemical shifts (ppm) of CsC in major conformer in acetonitrile (CD3CN).
Residue numbering corresponds to Figure 1. Underline in two columns for NCH3 indicate the
nucleus for which the chemical shift is given.

Cα Hα Cβ Hβ NH NCH3 NCH3 C’

Bmt1 58.94 5.229 73.15 3.925 32.91 3.378 170.0
Thr2 51.70 4.912 67.07 3.977 7.773 173.1

Sar3 49.85 4.670;
3.305 38.73 3.326 171.2

Mle4 54.96 5.302 35.59 1.828;
1.627 30.77 3.009 169.6

Val5 54.50 4.699 31.62 2.210 7.297 173.5

Mle6 54.80 5.042 36.88 2.007;
1.286 30.98 3.125 171.1

Ala7 48.83 4.260 15.55 1.339 7.458 170.8
Dal8 45.03 4.748 17.39 1.187 7.265 173.6

Mle9 48.26 5.648 38.69 2.049;
1.208 29.14 3.082 170.1

Mle10 57.08 5.047 40.64 2.049;
1.191 29.31 2.652 169.8

Mva11 57.60 5.162 28.77 2.114 29.58 2.655 173.2

The effect of adding dysprosium ion on the HSQC spectrum was examined by com-
paring HSQC spectra that have been recorded in the absence and the presence of Dy3+: the
fragment of superposed spectra is shown in Figure 3. Leucine Mle*4 CHα signal of the
second conformer was not observed, so the fragment of spectra includes CHα signals of
11 residues of the major conformer (written in black letters) and CHα signals of 10 residues
of the minor conformer (written in green letters). Unlabelled peaks can also be seen, in-
dicating the presence of other conformers: for instance, the signals of sarcosine Sar3 are
distinctly visible (Cα at 48.64 ppm and Hα1, Hα2 at 4.92, 3.67 ppm).

Adding dysprosium ions induces a slight broadening of CsC resonances and slightly
shifts the peaks. Upon the addition of Dy3+ ions, the CHα signals of all residues of the
main conformer remain, and the signal of leucine Mle*9 of the minor conformer disappears.
The signal intensities of these two conformers for free CsC and CsC–Dy3+ complex were
measured. In the major conformer, the intensity of the signals decreases to about half of
those observed in the absence of Dy3+ ions, except for leucine residues Mle9 and Mle10: the
integral intensities of these signals obtained in Sparky increase by about 1.5 times. In the
minor conformer, the signal intensities also decrease in all residues except Bmt1, Sar3, Val5,
and Mle6. It should be noted that some peaks of the minor conformer of the CsC–Dy3+

complex were not well resolved, and some inaccuracies in the results may be related to this.
In the spectral region of CHβ signals, the behaviour of the spectrum after the addition of
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Dy3+ ions is approximately the same: all signals are broadened and the resonances of some
residues are insignificantly shifted.
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Figure 3. Fragment of 1H-13C HSQC spectra (700 MHz, 298 K) of CsC in CD3CN with and without
the addition of Dy3+: purple peaks correspond to the spectrum recorded with the pure CsC sample;
red peaks, to the spectrum of the CsC–Dy3+ mix. * indicates the minor conformer.

To compare intensities of signals, autoscaled values Vi (i is the residue number) were
calculated:

Vi =
Ii

(1/n) ∑11
i=1 Ii

, (1)

where Ii is the measured intensity of the signal, and n is the number of residues (11 in CsC).
The results for both conformers are shown in Figure 4. In the major conformer before the
addition of dysprosium ion, the relative intensity of the signals is approximately the same
in all residues of CsC (light blue bars in Figure 4a).
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According to Figure 4, adding Dy3+ keeps intensities of residues Mle9, Mle10, and
Mva11 relatively high, while intensities of other CHα signals calculated using Equation (1)
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are several times lower and vary slightly. In the minor conformer, relative intensities of
CHα signals in all residues change significantly after the addition of the ion and do not
show any noticeable trend. These changes in the major conformer of CsC may indicate that
Dy3+ ions bind to the cyclosporin backbone so that it is placed closer to alpha protons in
residues 1, 3, 6, and 7.

Additional tests were carried out with CsC dissolved in dimethylformamide and
ions of Gd3+ (nitrate) and Mg2+ (chloride). One-dimensional 1H NMR spectra show
subtle changes (Figure S1). Signals slightly shift; their linewidth increases as more Gd3+

is added. Generally, NH signals stay in their positions, indicating that the pattern of
H-bonds in cyclosporin remains intact. Interestingly, NCH3 signals in the central group
at 3.3–3.4 ppm are redistributed upon the addition of diamagnetic magnesium salt. This
effect may be visible better just due to narrower peaks observed without the paramagnetic
compound added.

2.2. NMR Spectroscopy of CsC with DPC Micelles in Deuterium Oxide
1H NMR spectrum of the CsC–DPC system in D2O is presented in Figure 5. The

spectrum contains peaks of the DPC micelle (A, B, C, D, E, F, and G, see Figure 2) and several
groups of signals from CsC can be distinguished: NCH3, CHα, and sidechain groups.
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Signals of DPC are labelled by capital Latin letters.

1H NMR spectra of CsC–DPC with increasing Dy3+ ion concentration in the D2O solu-
tion were obtained subsequently (Figure S2). When increasing ion concentration, the fol-
lowing changes can be seen in the 1H NMR spectrum for the DPC micelle–noticeable broad-
ening of the signals C, F, and E, and shift of the signals A and B towards stronger fields.

Based on the obtained 1H NMR spectra in the presence of Dy3+ (1 and 2 mM), one can
see that CsC is also affected by Dy3+ when the peptide is embedded in the micelle [10]. As
in the previous section, 1H-13C HSQC NMR spectra were used to track the changes in the
spectra caused by the addition of the lanthanide (Figures 6 and S3).
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Figure 6. Fragment of 1H-13C HSQC NMR spectrum of CsC–DPC complex with different concentra-
tions of Dy(NO3)3 (red, 0 mM; grey, 1 mM Dy3+) in D2O (700 MHz, 298 K).

Complete signals were assigned for CsC with different concentrations of Dy(NO3)3
in the micellar solution in D2O (Tables 2 and S1). The initial HSQC spectrum of the CsC–
DPC–D2O sample was assigned by the previous results [10]. When Dy3+ ions were added
to the CsC–DPC–D2O system, it was found that the DPC micelle and CsC were affected by
the surrounding Dy3+ ions. Shifts of certain peaks in the HSQC spectrum and additional
line broadening can describe this influence. The influence of the ions was characterised
quantitatively based on measuring the signal volume in the HSQC spectrum and the
paramagnetic attenuation Ai as described before (see Equation (1) [27–29]).

Table 2. 1H chemical shifts of CsC with DPC micelles in D2O at 298 K. Chemical shifts with 1 mM
Dy3+ added are listed in parentheses ( ); with, 2 mM Dy3+, in square brackets [ ].

Hα Hβ Hγ Hδ NCH3

Bmt1 5.20 (5.23)
[5.25]

3.94 (3.94)
[3.92]

1.50 (1.38)
[1.21]

0.75 (0.62)
[0.46]

3.43 (3.48)
[3.54]

Thr2 4.86 (5.02)
[5.24]

4.03 (4.20)
[4.38]

1.04 (1.22)
[1.43]

Sar3
4.79; 3.52

(4.96; 3.70)
[5.15; 3.90]

3.19
(3.36)
[3.59]

Mle4
5.15

(5.10)
[5.05]

1.67; 1.57
(1.70; 1.61)
[1.76; 1.64]

1.40
(1.37)
[1.35]

0.85
(0.83; 0.61)
[0.43; 0.15]

2.94 (n/d) *

Val5 4.61 (n/d) * 1.99 (2.12)
[2.28]

0.89; 0.81
(0.60; 0.49)
[0.22; 0.12]

Mle6 4.97 (4.89)
[n/d] *

2.00; 1.17
(1.87; 0.97)
[1.68; 0.72]

1.47
(1.51)
[1.50]

0.84; 0.82
(0.60)

[n/d] *

3.03 (3.08)
[3.11]
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Table 2. Cont.

Hα Hβ Hγ Hδ NCH3

Ala7 4.32 (n/d) * 1.33 (1.46)
[1.62]

Dal8 4.78 (n/d) * 1.15 (1.18)
[1.27]

Mle9
5.55

(5.39)
[5.19]

2.08; 1.06
(1.99; 0.86)
[1.88; 0.61]

1.32
(1.33)
[1.31]

0.89; 0.81
(0.60; 0.49)
[0.22; 0.12]

3.00
(3.10)
[3.18]

Mle10
5.10

(4.97)
[4.83]

2.27; 0.90
(2.03; 0.62)
[1.75; 0.28]

1.43
(1.43)
[1.44]

0.62
(0.69)
[0.74]

2.63
(2.70)
[2.75]

Mva11
5.20

(5.28)
[5.36]

2.12
(2.28)
[2.44]

0.84; 0.79
(1.05; 0.96)
[1.26; 1.16]

2.65
(2.71)
[2.76]

* Signal disappears upon further addition of the salt.

Diagrams in Figures 7, 8 and S3 show changes in the chemical shifts of NCH3, Hα, and
Hβ protons upon the addition of dysprosium. The N-methyl signal of Mle4 disappears from
the HSQC spectra when the ion is added, and chemical shifts of other NCH3 resonances
increase (Figure 7). Protons of CHα groups show different trends: in residues 1, 2, 3, and
11, signals shift to the low-field region; in residues 4, 9, and 10, to the high-field region
(chemical shift decreases), and signals of residues 5, 6, 7, and 8 broaden so much that they
become unobservable (Figure 8). For Hβ protons of CsC, the chemical shift in amino acid
residues 2, 4, 5, 7, 8, and 11 increases, while in residues 6, 9, and 10, it decreases (Figure S4).
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Another way to estimate the effect of Dy3+ on the CsC–DPC complex is to calculate
the paramagnetic attenuation with increasing Dy3+ concentration [27–29]. The signal
volumes Vi were initially calculated from the 1H-13C HSQC spectra and normalized by the
average volume. The signal volumes without adding Dy3+ ions were designated as Vi

d, and
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with adding Dy3+ ions, Vi
p. Then the paramagnetic attenuation Ai was calculated using

Equation (2) [27], and diagrams of the change in signal volumes and the corresponding
paramagnetic attenuations were built (Figures 9, 10 and S5):

Ai = 2 −
Vp

i

Vd
i

(2)
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The Ai value can be used to assume the degree of influence of the ion on the compound.
A molecule fragment is more likely to be affected by the ion if the corresponding Ai value
differs from 1.0 at a given concentration [28,29]. If Vi

p < Vi
d, i.e., paramagnetic signal

broadening occurs, Ai increases from 1.0 to 2.0.
Evidently, in the system studied the sequence of amino acid residues from Val5 to

Dal8 is the most susceptible to the presence of the ion. Mle4 should probably also be
included in this set of residues. Based on the obtained results, a model was built in which
the CsC regions affected by Dy3+ ions are marked according to their Ai coefficients (see
Figure 11). The initial 3D structure underlying this model was taken from our previous
studies reported in [10].
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Figure 11. Paramagnetic attenuation effect of Dy3+ ions on cyclosporin C within DPC micelle in D2O:
(left), 1 mM, (right), 2 mM Dy(NO3)3. Ai is the attenuation factor given by Equation (2).

3. Discussion

Cyclosporins do not belong to the family of metal-binding peptides, typically con-
taining histidine, aspartic acid, glutamic acid, or sulphur-containing amino acids in their
composition [30,31]. Nevertheless, they can interact with various metal ions, and this
process is reflected in NMR spectra. The peptide–metal complex is expected to have a
low binding affinity, so using a lanthanide ion may provide reliable spectral indications of
complex formation.

Polar solvents such as DMF, DMSO, or acetone can dissolve cyclosporin, and at the
same time, lanthanide salts in these media dissociate into ions. We have chosen acetonitrile
due to this fact and also because cyclosporin forms only two or three conformers in this
solvent. Signal overlapping is not too severe in this case (unlike the case when cyclosporin
is dissolved in DMSO or DMF), which makes it possible to distinguish the conformers and
assign NMR signals of at least backbone atoms. Phospholipid micelle, on the other hand,
can dissolve cyclosporin in water; the micelle’s interior is where the peptide and ion can
stay together and form a more stable complex.

Dy3+ exerts a stronger effect on the 1H NMR signals of peptides than many other
metal ions, especially in terms of signal broadening and shifts [32,33]. This is due to its
larger ionic radius and specific coordination chemistry with peptides, which differs from
the behaviour of more common metal ions like Zn2+ or Mg2+ [34,35].

According to our findings, the influence of Dy3+ ions on NMR spectra is prominent in
amino acids Mle4 (NCH3 group), Val5, Mle6, Ala7, and D-Ala8 (CHα groups), and hence,
the ion in the complex reside close to this residue sequence. Coloured spots in Figure 11
demonstrate the positions of atoms whose NMR signals were analysed and revealed the
most prominent paramagnetic attenuation.
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The structure of the CsC–Dy3+ complex dissolved in acetonitrile turns out to be the
same, with residues from Mle4 to Ala7 being close to the ion (and their NMR signals the
most broadened), while the backbone site Mle9–Mva11 is affected the least. The complex
in acetonitrile is weaker and appears only for short periods, so the peptide is in exchange
between the metal-bound and free forms. Evidently, the exchange-averaged modification
of chemical shifts is too small to be visible, but the broadening effect can be observed. The
peptide molecule trapped by a micelle already has short T2 relaxation times and broad
NMR peaks. However, the effect of the paramagnetic ion is more substantial and is enough
to broaden the peaks even more and shift their resonance frequencies.

Observed spectral changes point to the formation of the peptide–ion complex, but
additional arguments are worth finding to reveal whether the structure of the molecule
changes. First of all, the chemical shifts of 13C backbone atoms are less sensitive to external
effects such as solvent composition, while changing the conformation should affect them
significantly. Signals in the HSQC spectrum in Figure 3 demonstrate clearly that the amino
acid residues differ not only by their δ(1H) values but also by δ(13C). At the same time, the
addition of the lanthanide causes a shift of the peaks mainly along the proton chemical
shift axis but does not affect δ(13C).

Second, we should clarify how subtle may be differences between two given molecular
structures so that we can say that they are two distinct conformers. Cyclosporin’s structure
is flexible, especially if we are concerned with side chains. Modifications of the backbone
include the formation of cis-peptide bonds in different sites. This process is much slower
and requires overcoming a high energy barrier, but it can be readily detected in experiments.
For example, NOE cross-peaks between adjacent alpha-protons indicate the cis-bond, and
it is formed in the site Mle9–Mle10 in the main conformer of CsC (as well as in many other
cyclosporins) and in the sites Mva11–Bmt1 and Thr2–Sar3 in the second conformer of CsA
in CD3CN (see Figure S6). Certainly, this type of conformational exchange causes further
modifications of the structure; for example, scalar coupling Bmt1(CHα–OHγ) is observed
in the major conformer but not in the second form, a strong NOE peak is present for the
atom pair Bmt1(CHα–CHβ) in the major form only, etc.

Comparison of 2D NOESY spectra of CsC in the same environment (micelles in water
or acetonitrile) recorded with and without the ion shows that the pattern of these NOE
peaks does not change. Thus, the general backbone conformation characterised by the
distribution of cis- and trans-peptide bonds is not altered by the metal ion. As an example,
two overlayed NOESY spectra recorded in acetonitrile are presented in Figures S7 and S8
and show a fragment of the NOESY spectrum obtained in the micellar solution in the
presence of dysprosium ions. Allowing for the changes in the chemical shifts and a general
signal broadening, one can see that the pattern of the NOEs typical of the main conformer
(including the Mle9Hα–Mle10Hα cross-peak) remains the same.

Finally, we also do not expect a substantial influence of the ion on the molecular
structure allowing for the dynamic character of the complex formation. Indeed, under
stoichiometric conditions (1:4 metal-to-ligand ratio), the interaction between Dy3+ ions
and cyclosporin (CsA) is limited by ligand availability. The stability constant for the
CsA–Dy3+ complex was found to be Kf = 104 in [23]. Calculation using KEV software
(https://k-ev.org/ accessed on 21 November 2024) [36] shows that at initial concentrations
of [Dy3+]0 = 2.0 mM and [Ligand]0 = 1.5 mM with the given stability constant, only 18.75%
of Dy3+ is bound in the complex. This is constrained by the insufficient ligand concentration
relative to metal requirements. In the presence of DPC micelles, cyclosporin is likely en-
capsulated within the micellar environment, reducing its accessibility for direct interaction
with Dy3+. Moreover, Dy3+ ions may preferentially interact with the hydrophilic micellar
surface rather than with cyclosporin. Consequently, the impact of Dy3+ on cyclosporin is
minimal under these conditions, particularly in the presence of DPC micelles. Without
considering micelle effects, the maximum concentration of the peptide–metal complex is
limited to 0.375 mM, determined by the available ligand.

https://k-ev.org/
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Our results agree with those reported in [23] for the CsA–Dy3+ complex. Furthermore,
vibrational circular dichroism spectroscopy of the CsC–Mg2+ complex [37] also shows
that the complex is formed without disrupting the intramolecular network of hydrogen
bonds, which also may happen without significant conformational changes. In addition,
we demonstrated that acetonitrile can be a convenient solvent for investigating the inter-
action of cyclosporin and metal, including the cases of the selective interaction of certain
conformers with the ion.

4. Materials and Methods

NMR measurements were carried out on a Bruker Avance III HD 700 spectrometer
(700 MHz for 1H, 175 MHz for 13C). All samples were prepared in standard 5-mm NMR
tubes. The solution volume was 0.6 mL; the temperature of 298 K was stabilized during
the experiments.

Cyclosporin C (CSC) was purchased from AvaChem Scientific (San Antonio, TX, USA).
CsC in the CD3CN samples were prepared by dissolving CsC in deuterated acetonitrile
(CD3CN, 99.8%) at a concentration of 1.4 mM. Dysprosium nitrate Dy(NO3)3·6H2O was
dissolved in acetonitrile, and some amount of this stock solution (<0.02 mL) was added
to the NMR sample. Dy3+ ions were added to achieve the relative ion:peptide molar ratio
of 1:4. Two-dimensional spectra (DQF-COSY, TOCSY, ROESY, 1H-13C HSQC, and 1H-13C
HMBC) were recorded before adding the ion, afterward the 1H-13C HSQC spectrum of
the CsC–Dy3+ complex was obtained. Correlation spectra were obtained in the echo/anti-
echo acquisition mode (pulse programs mlevetgp, hsqcetgpsi, and hmbcetgpnd); nuclear
Overhauser effect spectra were recorded using programs noesygpph or roesyph.2.

The CsC-DPC mixture was dissolved in deuterium oxide (D2O from Solvex-D, 99.8%;
DPC from Avanti Polar Lipids, Alabaster, AL, USA). The concentration of peptide was
1.5 mM; the concentration of DPC was 46.6 mM. A series of one-dimensional 1H and two-
dimensional 1H-13C HSQC NMR spectra were acquired with two Dy(NO3)3 concentrations
in the probe (1.0 and 2.0 mM).

Data acquisition and processing were carried out using TopSpin 3.5. Homo- and
heteronuclear 2D NMR techniques were used to assign the signals of CsC in CD3CN and
CsC–DPC in D2O without the addition of the ion, and another HSQC spectrum was used
for signal assignment of CsC–Dy3+ complex. The spectral analysis and peak integration in
HSQC spectra were made with the aid of the Sparky program [38]. Overlapping signals
were not taken into account in calculating volumes to avoid an incorrect calculation of the
paramagnetic attenuation.
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