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Abstract—We prove a Hermitian analog of the well-known operator triangle inequality for von Neu-
mann algebras. In the semifinite case we show that a block projection operator is a linear positive
contraction on a wide class of solid spaces of Segal measurable operators. We describe some
applications of the results.
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INTRODUCTION

In this paper we obtain inequalities which improve the operator “triangle inequalities” in the case
of Hermitian operators and are their analogs for Jordan algebras. Our results enable one to obtain
new proofs of known inequalities for the Hardy–Littlewood–Pólya weak spectral order. We show
that formula (3) defines a linear positive contraction Φ : X → X for normed ideal spaces X ⊂ S(M)
satisfying conditions (A) and (B). The proof of this fact is based on a new combinatorial lemma
(Lemma 2). We improve one result obtained by us in 1998 and generalize the result of F. Hiai and
H. Kosaki (1999) for an important particular case of the operator Y in a special form (see Corollary 5).

1. AN INEQUALITY FOR HERMITIAN OPERATORS

Let M be a von Neumann algebra of operators in a Hilbert space H. We denote its subsets of
Hermitian elements, positive elements, and projection operators by Msa, M+, and Mpr, respectively.
Let |X| = (X∗X)1/2 for X ∈ M, let I be the unit of M, and let P⊥ = I − P for P ∈ Mpr.

Theorem 1. Let M be a von Neumann algebra and let X ∈ Msa and Y ∈ M+ be such that
−Y ≤ X ≤ Y . Then 2|X| ≤ Y + UY U for some unitary U ∈ Msa.

Sketch of Proof. Let X ∈ Msa and let X = X+ − X− be its Jordan decomposition into positive
and negative parts. Then X+,X− ∈ M+, P := sr(X+) + sr(X)⊥ ∈ Mpr, and PX− = P⊥X+ = 0,
P⊥X− = X−. Here sr(Z) is the support of the operator Z ∈ Msa. For the pair {−X,Y } we have
−Y ≤ −X ≤ Y , hence

−PY P ≤ PXP ≤ PY P, −P⊥Y P⊥ ≤ −P⊥XP⊥ ≤ P⊥Y P⊥. (1)

Since U = P − P⊥ ∈ Msa is unitary and |X| = UX = XU = PXP − P⊥XP⊥, summing up the
inequalities in (1) termwise, we get

|X| ≤ PY P + P⊥Y P⊥ =
Y + UY U

2
.
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Corollary 1. If M is a von Neumann algebra, then for any A,B ∈ Msa there exists a unitary operator
U ∈ Msa such that

|A + B| ≤ |A| + |B| + U(|A| + |B|)U
2

. (2)

Sketch of Proof. The inequalities −|A| ≤ A ≤ |A| and −|B| ≤ B ≤ |B| give

−|A| − |B| ≤ A + B ≤ |A| + |B|.
Applying Theorem 1 to the operators

X = A + B ∈ Msa, Y = |A| + |B| ∈ M+,

we obtain formula (2). �

Corollary 2. Let τ be an arbitrary trace on a von Neumann algebra M and X,Y ∈ Msa. Then
τ(|X + Y |) ≤ τ(|X|) + τ(|Y |). If Y ∈ M+ and −Y ≤ X ≤ Y , then there exists Z ∈ M+ such that
|X| ≤ Z and τ(Y ) = τ(Z).

Remark 1. An analog of formula (2) holds true for any finite collection of operators from Msa.
Inequality (2) is valid for arbitrary (not necessarily Hermitian) operators if and only if the algebra M
is commutative.

2. IDEAL SPACES ON SEMIFINITE VON NEUMANN ALGEBRAS

Let τ be a faithful normal semifinite trace on M. The set S(M) of all measurable operators is an ∗-
algebra with respect to transition to the adjoint operator, multiplication by a scalar value, and operations
of strong addition and multiplication obtained as closures of usual ones [1]. We denote the subset of
positive operators and that of Hermitian ones of a family K ⊂ S(M) by K+ and Ksa, respectively. We
denote the partial order in S(M)sa generated by the proper cone S(M)+ as ≤; the expression Xi ↑ X

means that Xi ≤ Xj for i ≤ j and X = sup
i

Xi. If X ∈ S(M), then |X| = (X∗X)1/2 ∈ S(M)+. Let

L1(M, τ) be the Banach space of all τ-integrable operators [1] from S(M) with the norm ‖X‖1 =
τ(|X|).

One can extend statements of Theorem 1 and Corollaries 1 and 2 (with analogous proofs) to the
∗-algebra S(M) of measurable operators. In particular, our results enable one to obtain new proofs of
the inequalities known earlier for the Hardy–Littlewood–Pólya weak spectral order (see lemma 1 in [2]
and proposition 2.1 in [3]). Theorem 1 and Corollaries 1 and 2 were announced in [4]. They improve
the operator “triangle inequalities” [5, 6] in case of Hermitian operators and are their analogs for Jordan
algebras. The above said implies the following assertion.

Corollary 3 (cf. [5], [6]). For each finite collection {Xk}n
k=1 in S(M)sa there exists a unitary operator

U ∈ Msa such that

|X1 + · · · + Xn| ≤
|X1| + · · · + |Xn| + U(|X1| + · · · + |Xn|)U

2
.

Definition. A normed space E ⊂ S(M) is called a normed solid space (NSS) on (M, τ), if
(i) X ∈ E ⇒ X∗ ∈ E and ‖X∗‖E = ‖X‖E ;
(ii) X ∈ S(M), Y ∈ E , while |X| ≤ |Y | ⇒ X ∈ E and ‖X‖E ≤ ‖Y ‖E .

Corollary 4. Let M be a von Neumann algebra with a faithful normal semifinite trace τ , let E be
an NSS on (M, τ), and A,B,C,X, Y ∈ S(M)sa. If A,C ∈ E and A ≤ B ≤ C, then B ∈ E and
‖B‖E ≤

∥
∥ |A| + |C|

∥
∥
E . If Y ∈ E+ and −Y ≤ X ≤ Y , then X ∈ E and ‖X‖E ≤ ‖Y ‖E .
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Sketch of Proof. We have −|A| ≤ A ≤ B ≤ C ≤ |C|, therefore,

−|A| − |C| ≤ B ≤ |A| + |C|.
There exists (cf. Theorem 1) a unitary operator U ∈ Msa such that

|B| ≤ |A| + |C| + U(|A| + |C|)U
2

.

Consequently,

2‖B‖E ≤
∥
∥ |A| + |C| + U(|A| + |C|)U

∥
∥
E ≤ 2

∥
∥ |A| + |C|

∥
∥
E .

In [7] with the help of one nontrivial inequality from [8] one shows that the block projection operator

Φ(X) =
∞∑

k=1

PkXPk, {Pk}∞k=1 ⊂ Mpr, PkPm = 0 (k 
= m), (3)

is a positive linear contraction in M and L1(M, τ). This fact was used for the description of extreme
points of convex completely symmetric subsets in L1(M, τ) + M. From the theory of interpolation of
linear operators it follows that formula (3) defines a positive linear continuous operator Φ : X → X for
all Banach symmetric subspaces X ⊂ S(M) which are interpolation spaces between L1(M, τ) and M.

In this paper we show that formula (3) also defines a linear positive contraction Φ : X → X for a wide
class of normed subspaces X ⊂ S(M). The method is new even for the algebra M = B(H) equipped
with the canonical trace τ = tr. In this case the operator Φ was studied in [9] (Chap. II, § 5; Chap. III,
theorem 4.2; § 7, 6◦; theorem 8.7).

We say ([10], Chap. IV, § 3) that in an NSS E
— the norm is orderly continuous or condition (A) is fulfilled, if Xn ↓ 0 ⇒ ‖Xn‖E → 0;
— the norm is monotonically complete or condition (B) is fulfilled, if 0 ≤ Xn ↑, Xn ∈ E (n ∈ N),

sup
n

‖Xn‖E < ∞ ⇒ ∃X ∈ E : Xn ↑ X.

Theorem 2. Let 〈E , ‖ · ‖E〉 be an NSS on (M, τ) satisfying conditions (A) and (B). Then
formula (3) defines a linear positive continuous operator Φ : E → E with ‖Φ‖E→E ≤ 1.

The proof of this theorem is based on two lemmas. It is easy to prove the next assertion.

Lemma 1. Let 〈E , ‖ · ‖E〉 be an NSS on (M, τ), X ∈ E , and V,W ∈ M. Then V XW ∈ E and
‖V XW‖E ≤ ‖V ‖ ‖W‖ ‖X‖E .

Lemma 2. Let A be an arbitrary algebra and X,Vk, Yk ∈ A, k ∈ N. Let

Sn =
n∑

k=1

VkXYk, n ∈ N.

Then for each n ∈ N there exist 2n−1 collections t
(n)
j = {t(n)

jk }n
k=1 with t

(n)
jk ∈ {−1, 1}, k = 1, n,

j = 1, 2n−1, such that

2n−1Sn =
2n−1
∑

j=1

H
(n)
j XZ

(n)
j , H

(n)
j ≡

n∑

k=1

t
(n)
jk Vk, Z

(n)
j ≡

n∑

k=1

t
(n)
jk Yk. (4)

Proof. Let us prove the lemma by induction. For n = 1 we have t
(1)
1 = {1}. Let 2n−1 collections t

(n)
j

of the length n satisfy condition (4). The step of induction consists of obtaining two new collections of

the length n + 1 from each t
(n)
j by attaching −1 and 1, respectively, at the (n + 1)st position and using

the equality 2nSn+1 = 2 · 2n−1Sn + 2nVn+1XYn+1. The summands in the form Vn+1XYk or VkXYn+1,
k = 1, n, emerge in pairs and with the opposite signs.
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Sketch of Proof of Theorem 2. Let X ∈ E , then X∗ ∈ E in view of item (i) in the definition of an NSS.
Thus, Re X, Im X ∈ Esa. If Z ∈ Esa and Z = Z+ − Z−, then |Z| = Z+ + Z− and Z+, Z− ∈ E+ in view
of item (ii). Thus, the following representation takes place:

X = X1 − X2 + iX3 − iX4, Xm ∈ E+, m = 1, 4, i ∈ C, i2 = −1.

It suffices to prove the ‖ · ‖E-convergence of the series from (3) for X ∈ E+. By Lemma 2 with

Vk = Yk = Pk for each n ∈ N there exist 2n−1 collections t
(n)
j = {t(n)

jk }n
k=1 with t

(n)
jk ∈ {−1, 1}, k = 1, n,

j = 1, 2n−1, satisfying condition (4). Since |Z(n)
j | =

n∑

k=1

Pk, we have ‖Z(n)
j ‖ ≤ 1 and

‖2n−1Sn‖E ≤
2n−1
∑

j=1

‖Z(n)
j XZ

(n)
j ‖E ≤

2n−1
∑

j=1

‖X‖E = 2n−1‖X‖E (5)

by the triangle inequality and Lemma 1. Dividing (5) by 2n−1, we get ‖Sn‖E ≤ ‖X‖E , n ∈ N. Obviously,
0 ≤ Sn ↑. Since the norm in the NSS X is monotonically complete, there exists S ∈ E such that Sn ↑ S
(= Φ(X)). Since S − Sn ↓ 0, in view of condition (A) we get ‖S − Sn‖E → 0 as n → ∞. Thus, for
X ∈ E+ we have Φ(X) ∈ E+ and

‖Φ(X)‖E ≤ ‖X‖E . (6)

Since correlation (5) is valid for arbitrary X ∈ E , by the above reasoning inequality (6) is also valid for
such X ∈ E . Thus, ‖Φ‖E→E ≤ 1.

Corollary 5. Let τ be a faithful normal semifinite trace on a von Neumann algebra M. Assume

that X ∈ S(M)+, Y =
∞∑

k=1

bkPk ∈ S(M)sa, bk ∈ R, and the series converges τ-almost everywhere. If

Re (XY ) ∈ L1(M, τ), then X1/2Y X1/2 ∈ L1(M, τ) and ‖X1/2Y X1/2‖1 ≤ ‖Re (XY )‖1.

Sketch of Proof. We have τ(PkXPk) = τ(X1/2PkX
1/2) for all k ∈ N,

Φ(Re (XY )) =
∞∑

k=1

bk PkXPk, |Φ(Re (XY ))| =
∞∑

k=1

|bk|PkXPk,

X1/2Y X1/2 =
∞∑

k=1

bkX
1/2PkX

1/2, and the series ‖ · ‖1-converge. Therefore,

‖X1/2Y X1/2‖1 = lim
n→∞

∥
∥
∥
∥

n∑

k=1

bk X1/2PkX
1/2

∥
∥
∥
∥

1

≤ lim
n→∞

∥
∥
∥
∥

n∑

k=1

|bk|X1/2PkX
1/2

∥
∥
∥
∥

1

= lim
n→∞

∥
∥
∥
∥

n∑

k=1

|bk|PkXPk

∥
∥
∥
∥

1

= ‖Φ(Re (XY ))‖1 ≤ ‖Re (XY )‖1.

Remark 2. Corollary 5 improves theorem 3 in [11] and generalizes the result obtained in [12] for an
important particular case of the operator Y (not necessarily bounded) in the indicated form. Formula (3)
defines a linear positive contraction Φ : Z → Z for all Banach subspaces Z ⊂ S(M) which are the
interpolation spaces between two NSS X and Y on (M, τ) satisfying conditions (A) and (B).

Remark 3. Let M be an arbitrary von Neumann algebra, {Pk}n
k=1 ⊂ Mpr with

n∑

k=1

Pk = I. Then

N =
{ n∑

k=1

PkXPk : X ∈ M
}
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is a von Neumann subalgebra on M and the expression

Φ(X) =
n∑

k=1

PkXPk (X ∈ M)

defines the conditional expectation of Φ : M → N .
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