
Chapter 29
Laser Rangefinder and Monocular
Camera Data Fusion for
Human-Following Algorithm by PMB-2
Mobile Robot in Simulated Gazebo
Environment

Elvira Chebotareva , Kuo-Hsien Hsia , Konstantin Yakovlev ,
and Evgeni Magid

Abstract The paper presents a human-following algorithm for an autonomous
mobile robot, which is equipped with a 2D laser rangefinder (LRF) and a monocular
camera. As a rule, quality of a human tracking by a LRF is reduced in cluttered
environments. We used a monocular camera to increase a human-tracking reliabil-
ity. In contradiction with popular human-tracking algorithms that apply only a 2D
LRF, our algorithm does not impose any restrictions on a type of human’s clothes,
and our approach does not require a human head and an upper body to be located
within a monocular camera field of view. Several human trackers and variations of
our algorithm were compared in the Gazebo virtual experiments within a free corri-
dor and an office room environment. The virtual experiments demonstrated that our
method successfully improved a human-tracking quality being employed with the
human-following virtual PMB-2 robot.
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29.1 Introduction

The ability to follow a human is necessary for many types of assistant and companion
robots. Such robots are in demand in various areas of human life. A typical example
is a cargo robot that follows a human and helps to carry heavy objects, and a so-
called “robotic suitcases” are already being mass-sold [8]. The concept of a robotic
autonomous suitcase implies that the suitcase follows its owner, adapts to a walking
pace, and avoids obstacles [18]. In RoboCup@Home competitions within “Carry
My Luggage” test, a robot helps an operator to carry some luggage [24].

The ability to follow a person is important for search and rescue robots during
emergencies, where a robot could follow a firefighter, which chooses a safest and
easiest trajectory. Another socially significant example of human-following robots is
robotic wheelchairs [26]. A capability of following a person in wheelchair does not
need to be pushed,which allows an accompanyingperson towalk near thewheelchair,
maintaining communication and visual contact with a passenger. Moreover, the abil-
ity to follow a human is critically important for social robots that interact with people
through emotional communication [6].

Large number of static and dynamic objects in public spaces complicates
autonomous navigation of mobile robots [21]. Presence of pedestrians makes it diffi-
cult to choose a path and can lead to a target loss. A navigation algorithm of a mobile
cargo robot should simultaneously solve three problems: human detection, human
tracking, and human following. A trajectory of a robot is determined by a trajectory
of a target. In addition, the robot must navigate an environment, avoid collisions with
obstacles and, if necessary, return to a starting point of a route [1].

2D laser rangefinders (LRF) are often used for SLAMinmobile robotics, but LRFs
could also be used for human tracking. Since this tracking method is not always
reliable, LRFs can be used in conjunction with visual sensors. It is economically
attractive to use inexpensivemonocular cameras as onboard visual sensors of a robot,
which is already equipped with a LRF.

This paper presents our ongoing research on human-following problem for
autonomous mobile robot PMB-2. The human-following algorithm is based on a
joint use of monocular camera and LRF data. We assume that in a general case
only a lower part of a human body is located within the camera’s field of view. It is
important to emphasize that we avoid an approach, which assumes a strictly defined
type of a target human dress, allowing to clearly distinguish two legs of a human.
We also propose a universal approach of quantitative characteristics for evaluating
human-following algorithms that may be useful for comparing different algorithms.

A preliminary evaluation of a human-following algorithm performance could be
obtained in a simulation testing. A realistic simulator allows to reduce costs of early
stages of testing and effectively prepare for real-world experiments. In this paper,
for preliminary testing, we employ the 3D Gazebo simulator [17].
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29.2 Related Work

A significant number of works have been devoted to human-following autonomous
mobile robots [11]. Many models of autonomous mobile robots are equipped with
LRFs, which demonstrates popularity of people tracking methods using LRFs. 2D
LRF data are conveniently presented as a two-dimensional image. Since LRFs are
usually placed on a small height, many methods of human tracking are based on the
geometric features of searching for human legs on LRF data.

Several parameters, such as a distance between (segmented) images of two legs,
leg circumference, leg thickness can be used to track human legs. Authors in [14, 27]
presented methods of human detection and tracking based on a geometric approach.
This approach implies that in an image from a LRF, human legs are represented in a
form of two arcs or curves. Another group of methods is based on machine learning.
In this case, clustering of objects separating an image of legs from a background is
performed [2, 9, 20].

In addition to a LRF, various types of cameras are used for human tracking. In
[7], a stereo vision-based CNN tracker for human-following robot is proposed. The
work [16] is devoted to a human-following algorithm that is based on using LRF
and panoramic camera data. In [19], a system of human tracking and following for
robotic platformswithRGB-D camera is presented.Monocular cameras are also used
as onboard sensors of human-following robots. Authors in [4] proposed a hybridizing
image information basedmethod that combines color and shape data. In [15], a target
person was identified by using a combination of convolutional channel features and
online boosting. Yet, onboard monocular cameras have a number of disadvantages,
including limited visibility, ambiguity of scale, and detection errors. To increase the
accuracy and reliability of tracking, as well as to solve other problems that arise when
using service robots in cramped conditions, it is recommended to use a monocular
camera in a combination with a LRF.

29.3 Problems of Human-Following Algorithms
Implementation

Weconsider the following formulation of a human-following task. At a start, a human
is standing in front of a robot. At a randommoment, the human begins to move along
an arbitrary route. The robotmust follow the human at a safe distance. The robotmust
also avoid collisions with any obstacles. At any time, if necessary, the robot should
be able to return to the starting point. At the initial time, the robot does not have
information about an environment. We also assume that there are no other objects
between the robot and the human at the starting time and the human is a closest
visible object for the robot.

In this paper, we consider a human-following task for the PMB-2 robot by PAL
Robotics [23]. The robot PMB-2 is designed for an indoors transportation of goods
(up to 50kg). The robot PMB-2 is equipped with a Hokuyo URG-04LX-UG1 LRG.
For our research, we equipped PMB-2 with a monocular camera. The camera is
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located at a height of 40cm from the floor. The PMB-2 robot has a cylindrical shape
with 54cm diameter and 30cm height. Relatively small dimensions allow the robot
to move in rooms of various types, including office rooms (Fig. 29.1a). PMB-2 is
navigated by ROS. The robot velocity is controlled by the cmd_vel ROS package.
The navigation is carried out by using move_base ROS package [22].

We faced a fact that in practice, methods for detecting a human using 2D LRF
are not always reliable. As an example, consider a tracker in [20]. This tracker
shows good results in free spaces, but it might give false positives in cluttered spaces
(Fig. 29.1). In addition, our clothing might have a significant impact on a person’s
visibility for the tracker. Figure29.2 presents the data of the PMB-2 LRF as a 2D
image. In Fig. 29.2a, a person in trousers is in the LRF field of view. It is clearly seen
that the legs are represented as two arcs. In Fig. 29.2b, a person in a long skirt is in
the LRF field of view as well. Yet, in this case, trackers based on the representation
of human legs with two curves or one curve with two maximum points do not work.

Thus, in practice, there is a need to use additional sensors to track a human. The
most affordable visual sensors in this case are inexpensive monocular cameras. Tech-
nical specifications of mobile robots hardware often impose restrictions on computer
vision methods use. Besides, a configuration of cargo mobile robots imposes addi-
tional restrictions on a mounting height of a camera. This makes it difficult to obtain
a human’s full-height image. The head and upper body are important for a human
detection and identification. If a camera is located at a low height, then to capture
the human’s head, the camera should be positioned at an angle. But in this case, the
human disappears from camera’s field of view when moving away from the robot.
Placing the camera straight solves this problem, but in this case, at close distances,
the head and upper body are not visible.

Fig. 29.1 a PMB-2 robot in an office environment. b False positives of a leg tracker in the office
environment of room 1403, Laboratory of Intelligent Robotic Systems, Kazan Federal University
(KFU), 35 Kremlevskaya street, Kazan. Detected people are marked by cylinders with numerical
ID labels
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Fig. 29.2 a PMB-2 robot LRF data implemented as a two-dimensional image. Inside the green
square are legs of a person in trousers. The red point denotes the robot. b Inside the green square is
a person in a long skirt

Despite a large number of works that are devoted to human-following algorithms,
the algorithms evaluation and comparison are often complicated by the absence
of information about qualitative and quantitative parameters. In most of the works
devoted to human-following algorithms, experiments are conducted in open spaces,
empty rooms, or corridors. It is natural to assume that an environment, as well
as a presence of a large number of other people, can influence human-following
algorithms testing results. However, in practice, checking algorithm stable work in
various environments faces significant difficulties.

If tests are carried out in complex environments with people, there is a risk of
a collision with people and another objects. In real environments, it is not always
possible to ensure that test conditions are unchanged. Time and resources cost on the
early stages of testing could be reduced with a help of simulators.

The aim of our research is to develop an approach that allows to use LRF and
monocular camera data for human-following by the PMB-2mobile robot, taking into
account the problems that were described above.

29.4 Proposed Solution and Its Evaluation in Gazebo
Simulator

This section describes an approach that allows to track a human’s movement with a
mobile robot using a combination of a LRF and amonocular camera. Next, the results
of human-following algorithm simulation testing, which demonstrate our algorithm
performance, are presented.
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29.4.1 Evaluation of Human-Following Algorithms in
Gazebo

We suggest using the Gazebo simulator at early stages of human-following algo-
rithms development, including debugging and testing. Many popular robot models
are already featured in the Gazebo with publicly available simulation packages,
including the PMB-2 robot [25]. In addition, Gazebo allows creating new models
of robots, populating environments with static objects (walls, furniture, etc.) and
models of walking people. Therefore, Gazebo could be successfully used to test and
compare prototypes of human-following algorithms. Before testing an approach in a
real-world environment, we suggest constructing a model of the environment using
Gazebo and evaluating a human-following algorithm within the simulated environ-
ment.

For preliminary testing,we have built 3Dmodels of real environment of the second
study building of Kazan Federal University. For experiments, we have chosen a 2.4m
width corridor (Fig. 29.3a) and 8 × 8m room (Fig. 29.3b).We had planned two types
of a route for a human. In the first case, a humanmoved along the corridor (Fig. 29.4a).
In the second case, a human started his route inside the room, left the room, and kept
walking through the corridor (Fig. 29.4b). These routes contained pedestrian-specific
locomotion patterns—a rectilinear movement, turning around a corner, and passing
through a doorway. Each route had a length of 20 m.

To evaluate a human-following algorithm,we suggest paying a particular attention
a human’s velocity, a length of a successfully completed part of a route, a number
of target losses, a number of human tracker false positives, a number of performed
tests.

Fig. 29.3 Experiments with the real robot PMB-2 inside the second study building of KFU, 35
Kremlevskaya street,Kazan.a In the corridor of the 14-thfloor.b In the office room1403,Laboratory
of Intelligent Robotic Systems
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Fig. 29.4 a Gazebo model of Fig. 29.3a environment. b Gazebo model of Fig. 29.3b environment.
The long corridor corresponds to the real environment of Fig. 29.3a. The red arrow shows the
human’s route

29.4.2 Human Detection and Tracking

It is convenient to present LRF data in a form of a two-dimensional image (Fig. 29.2).
As it was shown above, we cannot use geometric features of human legs for people
in long clothes (e.g., a skirt or a coat).

We assume that at the algorithm initialization time, a target human is the closest
object to the robot, which allows to highlight in the LRF image a region of interest
(ROI) that contains a nearest curve in front of the robot. Then, this curve can be
tracked using any visual tracker. We present LRF data as a 2D image of 500 × 500
pixels. We connect the pairs of neighboring points by straight segments. Therefore,
at the initialization time, the human is presented as a single curved line. We select
the ROI so that this curve is located in its center. Knowing a scale and a position of
the ROI relatively to the robot, we can calculate coordinates of a target point of the
robot.

Two parameters affect the choice of a particular tracker—its accuracy and speed.
To track a human in LRF data, we have compared five trackers that are released in the
OpenCV library—KCF [10], TLD [13], Median Flow [12], MOSSE [5], and MIL
[3]. The five trackers were tested in the Gazebo simulation of the environment shown
in Fig. 29.4a. A total length of a path was 20m with a human speed of 0.2 m/s. We
conducted ten experiments for each tracker. KCF tracker immediately lost the object.
TLD tracker produced false positives to other objects. Median Flow showed lost the
object and produced false positives. The best results in this test were shown by MIL
and MOSSE trackers. Therefore, KCF, TLD, and Median Flow trackers were not
considered for further evaluation.

Next, we conducted virtual experiments on the same route with a human speed of
0.5 m/s. MOSSE tracker lost the target in ten cases out of ten, while MIL tracker suc-
cessfully passed all tests not only at a speed of 0.5m/s, but also at 1.08m/s. Table29.1
shows the quantitative parameters of virtual experiments results for MOSSE and
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Table 29.1 Tracker testing results

Tracker MOSSE MIL MIL MIL

Route Corridor Corridor Corridor Room

Average human
speed (m/c)

0.5 0.5 1.08 0.5

Average distance
travelled (m)

6.1 20 20 8.8

Number of losses 10 0 0 9

Tracker false
positives

0 0 0 9

Number of
experiments

10 10 10 10

Success rate (%) 0 100 100 10

Fig. 29.5 Tracking a human within LRF data usingMIL tracker [3] (top) and the environment map
constructed during the simulation in Gazebo (bottom). The tracked human legs are detected within
the green square

MIL trackers. When a virtual human in the simulation walked at a speed of 1.08
m/s, we added other pedestrians to the simulation scene. Figure29.5 presents LRF
data with the target human being tracked with MIL tracker. Figure29.5 presents the
environment map, which was built by the robot while it was moving. Figure29.6a
demonstrates the simulation in Gazebo.

In addition, we conducted virtual experiments for the route shown in Fig. 29.4b.
With the human speed of 0.5m/s in nine out of ten cases, the robot with MIL tracker
lost a human at corner points of the route or in a doorway. Only once the robot was
able to successfully overcome both corner points, exit the doorway, and follow the
human to the end of the route. The robot lost the human due to sharp turns of the
trajectory. False positives were also observed when the person passed near furniture
or walls.
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Fig. 29.6 a Simulation scene. b Examples of areas of ROI in LRF data based image L , ROI in
camera image A, initial view of the ROI in the camera image S, and the area in the camera image
that the tracker defined as the human B

The disadvantage of MIL tracker is a lack of information about an object loss.
Additionally, we cannot reliably determine a false positive of the tracker. Therefore,
we suggest using a monocular camera to control losses and false positives.

29.4.3 Joint Use of LRF and a Monocular Camera in a
Human-Following Algorithm

In the absence of occlusions,MIL tracker provides quite accurate tracking. To control
the reliability ofMIL tracker,we suggest using amonocular camera. If at initialization
a human simultaneously appears in the camera and LRD’s fields of view, then we
can fairly accurately determine the location of the person in the camera image. In
this case, there is no need in human detectors. Having captured the ROI in a from
a camera image, we can track the human using MIL tracker in a video stream, just
like we do it on LRF data.

To detect a position of a human in initial frames of a video stream, we propose
the following algorithm. In LRF data, we find a curve, which is the closest one to
the robot. Using the LRF data, we trace the ROI in the camera image (so-called
LRF data-based camera image area L) to keep this curve in the center. In the camera
image, we highlight the ROI (area A) that corresponds to the LRF based ROI. We
store the initial view of the ROI in the camera image (area S), and further, this image
will be used as a sample.

We associate the LRF ROI with a part of the camera image. This area will be a
kind of projection of the human tracker on the image from the LRF data. Thus, at
each step, we have four areas: L is the area on the image that is based on the LRF
and which is defined by the tracker as the area of the human’s location; A is the
projection of this area onto the camera image; B is the area in the camera image that
the tracker defined as the image of the human; S is the sample image of the human.
Figure29.6b demonstrates examples of A, B, S, and L areas. Our task is to timely
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detect errors of the tracker that determines a position of a human in an image from
the LRF. We also have a MIL tracker that tracks a human in the camera image. With
the help of two MIL trackers, we update the areas B and L . Knowing the L area, we
find the A area.

At each step of the algorithm, we calculate P(A = S) and P(A = B), where
P(A = S) is the probability that area A is a human image, P(A = B) is the proba-
bility that area A coincides with area B. In the simplest case, the correlation of the
images’ histograms can be taken as P(A = S) and P(A = B). If P(A = S) ≥ θ1,
where θ1 is a certain threshold, then we assume that the region L contains an image of
the target human. If P(A = B) ≥ θ2, where θ2 is a certain threshold, then we assume
that the area A coincides with area B. The human-following algorithm is represented
in Algorithm 1. According to results of the analysis of camera and LRF data, the
robot moves toward the human or begins a search of the human. Coordinates of the
human are calculated based on the coordinates of the area L . The route to the human
is built using a local planner.

Algorithm 1 Human-following algorithm
1: A = image of human
2: B = A
3: while not order to return do
4: update tracker for A
5: update tracker for B
6: if P(A = S) ≥ θ1 and P(A = B) ≥ θ2 then
7: calculate the human’s position
8: move to human
9: else
10: while P(A = S) < θ1 do
11: turn
12: A = image of the nearest object (or human)
13: end while
14: B = A
15: end if
16: end while

29.4.4 Simulation Results

We conducted two sets of ten virtual experiments demonstrating the algorithm per-
formance for data that was obtained using a LRF and amonocular camera. The simu-
lations were carried out for two routes (Fig. 29.4). Table29.2 presents the simulation
results for each route. For comparison, Table29.2 shows the results of simulations
when only the LRF was used for a human tracking. As we expected, in all cases, the
robot successfully completed not only the route in the corridor, but also the route
in the room and the corridor. Unlike previous experiments, we did not observe false
positives and target losses.
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Table 29.2 Simulation results

Used sensors Route LRF Camera and LRF

Corridor Room Corridor Room and
corridor

Average human speed (m/s) 0.5 0.33 0.5 0.33

Average distance travelled (m) 20 13 20 20

Number of losses 0 5 0 0

Tracker false positives 0 5 0 0

Number of experiments 10 10 10 10

29.5 Conclusion and Future Work

In this paper, we presented a human-following algorithm based on simultaneous
usage of laser rangefinder (LRF) and monocular camera data. We assumed that the
camera was installed at a target human’s legs level, which prevents constant tracking
of such standard features as a face, an upper body or a height of a human. At the same
time the algorithm does not place any restrictions on a human clothes type and is
suitable for long clothes that cover legs area. Several human trackers and variations
of our algorithm were compared in the Gazebo virtual experiments within a free
corridor and an office room environment. The virtual experiments demonstrated that
our method successfully improved a human tracking quality being employed with
the human-following virtual PMB-2 robot.

As a part of our future workwewill test the suggested human-following algorithm
with a real PMB-2 robot in real environments that correspond to the Gazebo virtual
environments, which were used in this paper.
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