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Abstract Analytical solutions for steady, confined and unconfined Darcian flows in aquifers
breached by “windows” in caprocks or bedrocks with applications to hillslope hydrology
are presented. As compared with classical Polubarinova-Kochina, Numerov and Pavlovsky
analytical solutions, the aquifers are sloping and the “window” is a finite-size isobaric seg-
ment, which due to the aquifer dip brings about a nonconstant head boundary condition.
The velocity hodograph, method of boundary value problems and conformal mappings are
used for obtaining solutions of essentially 2D seepage problems with Laplace’s PDE as a
governing equation and the nonlinear phreatic surface for an unconfined flow. The second-
order hydraulic theory with Picard’s iteration is used for deriving and solving a nonlinear
ODE with respect to the shape of the water table, that is, compared with standard Dupuit–
Forchheimer computations. The size of the “window,” incident flow parameters upstream of
the “window” and the angle of tilt determine the disturbance to a main aquifer, mundanely
normal “longitudinal” flow, which may completely dive or unexpectedly extravasate into a
commingled adjacent subjacent–superjacent layer.
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Abbreviations

BVP Boundary value problem
DF Dupuit–Forchheimer
PK Polubarinova-Kochina [reference to Polubarinova-Kochina (1977)]

I’mgoing to emerge then submerge.
GeorgeW. Bush

1 Introduction

Hydrogeologist, soil pedologists and reservoir engineers have recently recognized that the
old paradigm of layered aquifers, soil horizons and pays, derived from basic sedimentology,
often fails to explain the dynamics of fluids in commingled formations. Field distributions of
hydraulic heads, water table elevations, pore pressures, Darcian velocities, phase saturations,
ground-quality, soil-quality, water-quality tracer tests, among others, exhibit anomalies (e.g.,
sudden blips in the phreatic surface elevation), which cannot be explained by standard PEST-
MODFLOW massaging of hydraulic or geometrical characteristics of the posited layers.

In the “layer” paradigm, flow/transport is viewed as either 1D or quasi-1D. For example, in
classical groundwater hydrology, flow in a multilayered system of highly permeable alluvial
aquifers with sandwiched low-permeable aquitardsis “decoupled”: Strata of high/low perme-
ability are considered as zones where flow is along/across the formation, correspondingly,
with the so-called exchange (leakage) 1D fluxes between the highly conductive layers (see,
e.g., Hemker 1984). Aquicludes (formations of extremely low permeability) are modeled as
impervious bedrocks/ caprocks. Similarly, in standard oil reservoir management, shale layers
are conceptualized as an impermeable partitioning between the pays. Groundwater–oil engi-
neers, driven by a pragmatic interest to “pump out” a fluid, benchmarked flows in layered
systems against the seminal Theis model of 1D radial flow toward a vertical well, with a
Hantush-type leakage. In soil physics, pedon-evidenced ideal layering led to conceptualiza-
tion of 1D vertical saturated and saturated-unsaturated flows, with gravity and capillarity
playing a crucial role. Flow models of Green-Ampt and Philip were, again, aligned with a
practical motivation to describe rainfall- and irrigation-induced infiltration.

The real hydrostratigraphy in hydrogeology and pedogenesis occurred to be much more
complicated: The bedrocks–caprocks and interfaces between the soil horizons are not straight
(flat), hydraulic properties of porous massifs vary both “longitudinally” and “transversally”
with respect to the expected dominating flow-transport directions, and various hydraulic
encumbrances impede otherwise 1D flow, among others. This becomes especially important
in regional scale groundwater models (see, e.g., Toth 2009) and in hillslope hydrology (see,
e.g., Broda et al. 2011; Dusek and Vogel 2014; Gabrielli et al. 2012; George and Conacher
1993; Hardie et al. 2012; Harte and Winter 1995; Iwagami et al. 2010; Kacimov 2012; Kaci-
mov et al. 2015; Read and Volker 1993; Tromp-van Meerveld et al. 2007; Wang et al. 2014),
where the effect of gravity on flow topology and chemicals’ spread is intricately intertwined
with aquifers–aquitards–aquicludes heterogeneity, geometry of boundaries between hydros-
tratigraphic units and boundary conditions (e.g., constant head versus constant pressure) at
the inlets–outlets of composite groundwater or soilwater “flow tubes.”

In this paper we use the language of groundwater hydrology and present explicit analytical
solutions for steady, Darcian, unconfined and confined flows in an aquifer commingled with a
subjacent or superjacent layer via a finite-size “window” or “conduit” of much higher perme-

123

Author's personal copy



Analytical Solutions for Steady Phreatic Flow Appearing...

ability. This “window” represents faults in structural geology. Bense et al. (2013) noticed the
deficit of hydrogeologicalmodels, capable to describeflow in the vicinity of faults.Alongwith
faults, karst caves, highly fractured aquifer beds or man-made rock openings in shale (the so-
called fracking revolution, see, e.g., Gassiat et al. 2013) alter otherwise simple 1D flows and
make them inherently 2D or 3D. This calls for advanced mathematical techniques such as the
method of hodograph, Hilbert and Riemann boundary value problems and the Polubarinova-
Kochina (1977, hereafter abbreviated as PK) method of linear differential equations.

PK presented analytical solutions for unconfined groundwater flows in homogeneous soils
over bedrocks inclined at a constant slope. She considered a phreatic surface of a “normal” 1D
flow parallel to an impermeable bedrock disturbed by seepage from a zero-depth channel or
toward a Zhukovsky drain (her book pages 74–76, 233–239). The resulting 2D phreatic flow
from/to the channel/drain, which either supplements the incident flow or partially depletes
it, is topologically complex, similar to the confined losing–gaining–flow-through lakes of
Townley and Trefry (2000) and Kacimov (2007). PK used a 2D potential model and the-
ory of holomorphic functions for the analysis of the emerging multiple-connected and even
nonmonotonic phreatic surfaces. Another subsurface system addressed by PK in studies of
sloping unconfined aquifers involved a substratum of hydraulic conductivity contrasting with
that of the upper aquifer (her book, pages 389–390). In solving this problem for a composite
commingled aquifer, PK utilized the hydraulic theory, i.e., the Dupuit–Forchheimer’s (DF)
approximation. The classical DF hydraulic theory as presented in PK is of first order, that is,
a hydrostatic pressure distribution is assumed across the saturated thickness. This theory can
be expanded to any order of accuracy by iteration of the Cauchy–Riemann conditions using
Picard’s method (Castro-Orgaz et al. 2012; Castro-Orgaz and Hager 2014; Kacimov et al.
2015).

In this paper we extend the PK analysis. We consider a hillslope consisting of two hydros-
tratigraphic units: a highly permeable upper layer of hydraulic conductivity k1 and a subjacent
low-permeable layer of conductivity K2 (Fig. 1 represents a vertical cross section). The sec-
ond layer is bounded from below by a third layer (aquifuge) of almost zero conductivity K3

such that k1 � K2 � K3. Somewhere upstream the upper layer is naturally recharged dur-
ing rainfalls such that an unconfined steady-state flow of a saturated thickness B is formed
in the upper aquifer. Downstream in the valley, layers 1 and 2 are discharged into a river
(wadi channel) as base flow. The roots of hillslope vegetation are hydroecologically gaining
from the first layer as schematically depicted in Fig. 1. Bense et al. (2013) attributed distinct
ecotones of natural plants to sudden fault-caused drops of the water table.

We consider both layers in Fig. 1 having zones of a low hydraulic conductivity, λ1 � K2,
and high conductivity, k2 � k1, demarcated in Fig. 1 by dash-dotted segments. Conse-
quently, permeability in Fig. 1 varies longitudinally, along the prevailing flow direction from
the mountain recharge zone to the valley, and transversally. As result of this heterogeneity,
flow “dives” from the upper aquifer into the second one through a “window” GF of width
RF and re-emerges from the second aquifer back to the first one through a “window” AC
of a width r . The part of the upper aquifer above NFB2At remains dry. As Fig. 1 depicts,
the topology of flow, caused by interaction of the adjacent aquifers, and groundwater qual-
ity, which depends on residence time within each porous compartment of Fig. 1, become
intricately nontrivial. Two zones of Fig. 1, an unconfined aquifer 1, drained by the ”win-
dow” GF and a confined aquifer 2, with a vent through the “window” AC, are zoomed in
Figs. 2 and 5, respectively. It is noteworthy that groundwater flows like one in Fig. 1 and
Kacimov and Brown (2015) have been recently modeled in reconstruction of paleoground-
water hydrology of Mars (Marra et al. 2014) where the gravity constant g is different from
Earth.
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Fig. 1 Vertical cross section of two aquifers, commingled through two “windows”

2 Confined Flow with Losses to a Seepage Face in Caprock

In this section we study an analytic element (see Strack 1989 on the method of analytic
elements) near the “window” AC in Fig. 1 where Bush’s re-emergence (see the epigraph) of
groundwater from a subjacent confined aquifer takes place. In terms of Marra et al. (2014)
this is a “pressurized groundwater release.” Modeling of “windows” of a constant hydraulic
head and topological analysis of the gaining, losing and flow-through regimes in confined
aquifers without tilt has been carried by Aravin and Numerov (1953, see their Fig. 99, Ch.
5, Section 52). Similarly, PK-77 (see her Fig. 141, Ch. VI, Section 1) analyzed injection of
groundwater into a “window” of a constant recharge rate. In this paper we add to this analysis
two extra factors: the dipping nature of an aquifer and gravity, which is involved through an
isobaric (seepage face) condition along the “window” boundary.

The incident flow rate Q is partially intercepted by exfiltration through a caprock breach,
with k1 � K2 � λ1. Downstream of the breach the flow rate drops to 0 < q < Q. We zoom
the flow zone close to AC in Fig. 1 as Fig. 2a where we assume that the thickness b and the
slope απ , α < 1/2 are constant.

We introduce Cartesian coordinates xAy, with the origin A coinciding with the upper edge
of the breach (Fig. 2a). The bedrock B1E1 is an impermeable line tilted at an angle απ, 0 <

α < 1/2 with respect to the abscissa axis. The caprock B2E2 is parallel to B1E1 but consists
of three segments: The rays AB2 and CE2 are also impermeable but the segment AC (the
breach) is an isobaric line through which the main confined aquifer is in a hydraulic contact
with the upper aquifer of a much higher conductivity k1 � K2. Through AC groundwater
extravasates into the upper formation where an unconfined “plume” bounded by a phreatic
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Fig. 2 Confined aquifer discharging through a caprock window: physical flow domain (a), complex potential
domain (b), two auxiliary planes (c, d)

surface At P2 is formed. This plumehas a variable thickness de(x).We assume that the donated
quantity Q − q is small enough (i.e., r is small enough). Therefore, de(x) is relatively small
and along AtC pressure is almost atmospheric. There is a small “upwelling” tip, AAt , of the
phreatic surface in the first aquifer, which will be here ignored.

The curve Bs1Bs2 in Fig. 2a is a separatrix: It divides the incident flow in the main aquifer
into a part out-seeping into the upper aquifer and a part which continues its confined journey
to point E. The point Bs2 is a stagnation (bifurcation) point. Similar to Kacimov (2007)
and Townley and Trefry (2000), other topological regimes are possible. For example, for
large r Bs2 is located between points A and C , i.e., the breach AC is partially exfiltrating and
partially infiltrating, in terms of the Toth (2009) model, in which a “seepage face” ground
surface on a catchment scale is a distributed sink source with respect to the fully saturated
subsurface. The value of q can be negative if the breach is close to the downstream discharge
segment E2E1 in Fig. 1 and the head in the tailwater reservoir commands over the breach: In
this case water moves to AC both from the right and left in Fig. 2a. These “exotic” regimes
will not be addressed in this paper.

We introduce the hydraulic head h(x, y) which is a harmonic function in the flow domain
Gz (a tilted strip of the lower aquifer inFig. 2a).We introduce a complexpotentialw = ϕ+iψ ,
where ϕ = −K2h is the velocity potential and ψ is a stream function.

As we assumed that AC is a zero gauge pressure line, we count the head from a fiducial
point A where φ = 0, ψ = Q and stream function—from B1E1, along which, ψ = 0.
The value of Q is known but the value of q is not. At point P a piezometer is installed and
the hydraulic head there is measured as h = hP > 0. The distance from A to P along the
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caprock is rP . Far from the breach the piezometric line (Fig. 2a, dash-dotted line) is an almost
straight line, i.e., far upstream and downstream of the breach flow is 1D. Close to the breach
this line curves. Along the breach the peizometric line coincides with the breach boundary
(dashed line in Fig. 2a). Near point Bs2 the piezometric curve has a local maximum. If r = 0
(no breach) the piezometric surface is a straight line (bold-dotted in Fig. 2a).

Along AC ϕ + K2y = 0. The complex velocity, V (x, y), is an antiholomorfic function
V = dw/dz where the overbar stands for complex conjugation. Then, at point B upstream
of the window |V | = VB = Q/b. Similarly, at point E downstream |V | = VE = q/b. At
both points the velocity vector is parallel to the bedrock and caprock rays.

The complex potential domain Gw is shown in Fig. 2b. Here, the image of AC is an
unknown curve. There is a cut CBs2E2 in Gw.

Our main goal is to determine how q depends on aquifer’s geometrical characteristics:
α, b and the breach size r (Fig. 2a), the parameters of the incident flow, Q, hP , rP and
conductivity K2.

Wemap conformally the stripGz onto an auxiliary half plane ζ > 0, ς = ξ+ i η in Fig. 2c
with the correspondence of points E → 0, A → 1, B → ∞

z(ς) = b

π
eiπ(1−α) log ς. (1)

Then, point C is imaged as C → cr = e−πr/b. Similarly, for the piezometer point P → σ =
eπrP/b and for the stagnation point Bs2 → βs . Obviously, at points A and C the Darcian
velocity vector �V and complex velocity function V are infinite. At a certain point M in
between A and C the velocity attains a minimum magnitude VM . The affix of point M in the
ζ -plane is mr .

We have to solve the following mixed boundary value problem (BVP) for an analytic
function w(ζ ):

B1E1 : ψ = 0, y = −c − x tan πα,

E2C : ψ = q, y = −x tan πα,

CA : ϕ = −K2y(ξ), y = −x tan πα,

AB2 : ψ = Q, y = −x tan πα, (2)

where c = b cosπα and y(ξ) = (b/π) sin πα log ξ is taken from Eq. (1). It is noteworthy
that at points A and C the function w(ζ ) is finite and at points B and E it has the same
logarithmic singularity as z(ζ ).

We consider an auxiliary function

w0(ς) = q

π
log(−ς) − Q − q

π
log

(
m(ς) +

√
m(ς)2 − 1

)
, m(ς) = 1 + cr − 2ς

1 − cr
.

(3)

The branch of the first summand in Eq. (3) is fixed in the upper half of the ς-plane by
the condition −π < arg(−ς) < 0. The fixed branch of the second summand in (3) maps
conformally the upper half of theς-plane onto the half strip {ς : Reς < 0, 0 < Imς < Q−q}.
The imaginary part of w0(ξ) has jumps −q and −Q at the points ς = 0 and ς = ∞,
correspondingly; namely,

Im[w0(ξ)] = 0, −∞ < ξ < 0;
Im[w0(ξ)] = −q, 0 < ξ < cr ;

123

Author's personal copy



Analytical Solutions for Steady Phreatic Flow Appearing...

Re[w0(ξ)] = q/π log ξ, cr < ξ < 1;
Im[w0(ξ)] = −Q, 1 < ξ < ∞.

Hence, a function W (ς) = w(ς) + w0(ξ) is holomorphic in the upper half of the ς-plane
and satisfies the following boundary conditions:

ImW (ξ) = 0, ξ ∈ (−∞, cr ) ∪ (1,∞),

ReW (ξ) = q − k2b sin πα

π
log ξ = g(ξ), ξ ∈ (cr , 1). (4)

It is noteworthy that at points E and B the functionW (ς) does not have singularities, although
the functions w(ς) and z(ς) do. Similarly, at the transition points A and C , i.e., where the
boundary conditions (4) change, the behavior of W (ς) is regular.

The solution of problem (4), which is bounded at both transition points ς = Cr and ς = 1
as well as at infinity, is represented by the Signorini formula as the following singular integral
(see Gakhov 1966):

w(ς) =
√

(ς − cr )(1 − ς)

π i

1∫

cr

g(τ ) dτ√
(τ − cr )(1 − τ)(τ − ς)

− w0(ς), (5)

w(ς) =
√

(ς − cr )(1 − ς)

π2i

1∫

cr

(q − k2b sin πα) log τdτ√
(τ − cr )(1 − τ)(τ − ς)

+ Q − q

π
log

(
m(ς) +

√
m(ς)2 − 1

)
− q

π
log(−ς). (6)

We transform the integral in Eq. (6) as

1

π i

1∫

cr

log τdτ√
(τ − cr )(1 − τ)(τ − ς)

= 1

π i

1∫

cr

(log τ − log ς) dτ√
(τ − cr )(1 − τ)(τ − ς)

+ log ς

π i

1∫

cr

dτ√
(τ − cr )(1 − τ)(τ − ς)

.

The last integral is evaluated as:

1

π i

1∫

cr

dτ√
(τ − cr )(1 − τ)(τ − ς)

= 1√
(ς − cr )(1 − ς)

.

Finally, we get

w(ς) = (q − k2b sin πα)

√
(ς − cr )(1 − ς)

π2i

1∫

cr

(log τ − log ς) dτ√
(τ − cr )(1 − τ)(τ − ς)

−k2b sin πα

π
log ς + Q − q

π
log

(
m(ς) +

√
m(ς)2 − 1

)
+ iq. (7)

Note, that the integral term in Eq. (7) exists as a usual improper integral.
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Now we invert Eq. (1) as

ς = exp
(
−π zeiπα/b

)
, (8)

and put expression (8) into Eq. (7). This gives the expression w(z).
An alternative hodograph method is used below as well; namely, the hodograph domain

GV is shown in Fig. 3. GV has a cut CMA where M is the point at which the velocity
magnitude attains a minimum. The cut is perpendicular to the line AB2E2Bs2C and its
extension, the line MM1Me passes through the point Me where V = −ik2 and M1 is the
intersection of MMe with the straight line AC. The distance between points M and M1 is d .
Obviously, V = 0 at the stagnation point Bs2.

We get a mirror image Gω of GV with respect to the abscissa axis in Fig. 3. Obviously,
ω(z) = dw/dz is a holomorphic function, Gω and Gw are triangles. First, we use the
Schwarz–Chritoffel formula andmapconformallyGω onto the upper half ofς1-plane(Fig. 2d)
by the function

ω∗(ς1) = eiπα

(
k2 sin πα + d

/√
ς2
1 − 1

)
, (9)

where the radical’s branch is fixed in the upper half plane being negative at ς1 = ξ1 <−1.
This function gives the following correspondence of boundary points: (−∞, βs,−1, 0, 1, σ1,
β(d), ε(d, q)) → (M ′, Bs,C, M, A, P, B, E). Obviously, from Eq. (9) applied at point Bs

we have βs(d) = −√
1 + d2/(k2 sin πα)2.

Here, we save the same designations for the symmetric boundary points of the domains
G� and GV ,

ω∗(β(d)) = eiπαQ/b, ω∗(ε(d, q)) = eiπαq/b, i.e.

β = β(d) =
√

(Q − k2b sin πα)2 + b2d2

Q − k2b sin πα
> 1,

ε = ε(d, q) =
√

(q − k2b sin πα)2 + b2d2

q − k2b sin πα
> β. (10)
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Next, we use the Mőbius transformation to map the half plane in Fig. 1d onto one in Fig. 1c:

ς1(ς) = (ε − 1)βς − (β − 1)ε

(ε − 1)ς + 1 − β
, ς(ς1) = (β − 1)(ς1 − ε)

(ε − 1)(ς1 − β)
. (11)

Thus,
dw

dz
(ς) = ω(ς) = ω∗(ς1(ς)). (12)

Note that the preimages of the points C = ∞ and M = eiπα (k2 sin πα − id) in the ς-plane
are

cr = [(1 + ε)(β − 1)]/[(1 + β)(ε − 1)] and mr = ε(β − 1)/[β(ε − 1)], (13)

correspondingly.
In order to find q we use the physical conditions at point P: wP = i Q − k2rP sin απ and

at point C: wC = iq + r sin απ . The former follows from the piezometer readings and the
latter—from the third condition (2) and Fig. 2a, b where C is the rim point of the seepage
face.

We integrate Eq. (12) as:

w = i Q +
z∫

A

dw

dz
dz = i Q +

ς∫

1

dw

dz
(ς)

dz

dς
dς = i Q − be−iπα

π

ς∫

1

ω(ς)
dς

ς
. (14)

In Eq. (14) we have expressed dz/dς from Eq. (1) and dw/dz from Eq. (9) through Eq. (12).
At point C from Eq. (14) we get two relations:

q = Q − Im

⎡
⎣be−iπα

π

cr∫

1

ω(ς)
dς

ς

⎤
⎦ = Q − b

π

cr∫

1

Im
[
e−iπαω(ς)

] dς

ς
,

r sin πα = −Re

⎡
⎣be−iπα

π

cr∫

1

ω(ς)
dς

ς

⎤
⎦ = − b

π
k2 sin πα Log cr , (15)

where Re and Im are the real and imaginary parts. To derive the latter relation (15) we have
taken into account that ω(ς) maps the interval (cr , 1) onto a cut along the ray (CMA) (see
Fig. 3), i.e., Re

[
e−iπαω(ς)

] ≡ k2 sin πα for ς ∈ (cr , 1).
We evaluate the integral in the first Eq. (15) as:

cr∫

1

Im
[
e−iπαω(ς)

] dς

ς
= −d

cr∫

1

dς√
1 − ς1(ς)2ς

= d(ε−β)

1∫

−1

dς1√
1 − ς2

1 (β − ς1)(ε − ς1)

= d

π/2∫

−π/2

(
1

β − sin φ
− 1

ε − sin φ

)
dφ = πd

(
(β2 − 1)−1/2 − (ε2 − 1)−1/2) .

The last integral above was evaluated by formula (2.452, 10) from Gradshteyn and Ryzik
(1980).

Thus, the first Eq. (15) is reduced to the following one q = Q − bd((β2 − 1)−1/2−
(ε2 − 1)−1/2), which, in accordance with (10), is just the identity. The second relation (15),
due to (10), (13), gives the equation

[(1 + ε)(β − 1)]/[(1 + β)(ε − 1)] = exp (−πr/(K2b)) , or
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q − k2b sin πα +
√

(q − k2b sin πα)2 + b2d2

Q − k2b sin πα +
√

(Q − k2b sin πα)2 + b2d2
= exp

(
− πr

2k2b

)
. (16)

At the point P from Eq. (14) we get:

k2hP = be−iπα

π

σ∫

1

ω(ς)
dς

ς
. (17)

because wp = φP + i Q = −k2hP + i Q. Due to (9), (12) the last integral is evaluated as
follows

b

π

σ∫

1

(
k2 sin πα + d√

ς1(ς)2 − 1

)
dς

ς

= b

π

⎛
⎝k2 sin πα Log σ + d

σ1∫

1

(
1

ς1 − ε
− 1

ς1 − β

)
dς1√
ς2
1 − 1

⎞
⎠ .

After some algebra we get

σ1∫

1

(
1

ς1 − ε
− 1

ς1 − β

)
dς1√
ς2
1 − 1

=
Arccosh σ1∫

0

(
1

cosh φ − ε
− 1

cosh φ − β

)
dφ

= 2√
β2 − 1

ArcTanh

(√
β+1

β − 1

√
σ1 − 1

σ1 + 1

)
− 2√

ε2 − 1
ArcTanh

(√
ε+1

ε − 1

√
σ1 − 1

σ1 + 1

)
.

Here, σ1 = ς(σ ) and in accordance with (11)

σ1 − 1

σ1 + 1
= β − 1

β + 1

σ − 1

σ − cr
, σ = exp(πrp/b), cr = (ε + 1)(β − 1)

(ε − 1)(β + 1)
.

Thus, Eq. (17) becomes

k2π

b
(hP − rP sin πα) = 2(Q − k2b sin πα)

b
ArcTanh

(√
exp(πrp/b) − 1

exp(πrp/b) − exp(−πr/b)

)

− 2(q − k2b sin πα)

b
ArcTanh

×
(√

exp(−πr/b)
exp(πrp/b) − 1

exp(πrp/b) − exp(−πr/b)

)
. (18)

From (18) we express q through the physical and geometrical parameters.
We introduce dimensionless variables as (z∗, r∗, r∗

P , h
∗
P = z/b, r/b, rP/b, hP/b), (w∗,

q∗, Q∗) = (w/(k2b), q/(k2b), Q/(k2b)), (d∗, V ∗) = (d/k2, V/k2) and drop the subscript
* for the sake of brevity.

Figure 4 shows the graphs q(r) at Q = 0.2, rP = 1.0, hP = 1.0 and α = 0.08, 0.1 and
0.12 (curves 1–3). As we can see from these curves, the increase in the size of the window
significantly reduces the value of q . At r = 0.52, 0.19 and 0.08, calculated by the FindRoot
routine of Mathematica (Wolfram 1991), q vanishes, i.e., the flow regime in Fig. 2a is not
valid anymore at higher values of r , when a part of the “window” near point C becomes a
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1
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0.10

0.15

q

Fig. 4 Flow rate through a bedrock window for Q = 0.2, rP = 1.0, hP = 1.0 and α = 0.08, 0.1 and 0.12
(curves 1–3)

losing rather than gaining isobar as in Toth (2009). Therefore, the flow topology, hodograph
and complex potential domains shown in Figs. 2, 3 have to be changed.

3 Unconfined Flow with Losses to a Seepage Face in Bedrock

In this section we analyze a phreatic surface flow in the upper aquifer (Fig. 1), close to
the “window” GF through which groundwater is completely drained to aquifer 2 (Bush’s
submergence, see the epigraph). The corresponding analytic element is zoomed in Fig. 5a.

We introduce Cartesian coordinates xGy. Because k2 � k1 all water is freely drained into
the substratum and the breach GN is a seepage face for flow in aquifer 1. The locus of point
N is a part of solution as well as the shape of the free surface. The main question is: at which
magnitude of the incident velocity VI the inequality holds: RN < RF?

The flow domain Gz is bounded by an impermeable ray I1G, free surface I2N and isobar
GN. The magnitude of the Darcian velocity far upstream of the window is |VI | = k1 sin2 α

and the flow rate QI = BVI = k1B sin α where B is the normal depth of the incident flow
upstream of GN (see Kacimov et al. 2015 for definition of normal flow conditions). If QI

is small enough or the width of the window is large enough, then the whole incident flow is
intercepted by the seepage face. Otherwise, we will have both drainage through the whole
segment GF and a “thinner” flow downstream of F, with a separatrix similar to one in the
previous section. We will not analyze the latter regime.

The hodograph domain GV is depicted in Fig. 5b. It represents a circular triangle whose
side, the ray NG is perpendicular to the side I1G, which is also a ray. Obviously, NG passes
also through the point (0,−ik1) of the hodograph plane. The side I2N of GV is an arc of a
circle centered at the point (0,−ik1/2) and of diameter k1. Clearly, in GV the points I2 and
I1 merge into one point. At point G velocity is infinite as at points A and C in Figs. 2a and 3.

The complex potential domain Gw is shown in Fig. 5c. Gw is a half strip of width Q with
a curved side GN.

The BVP is:

I1G1 : ψ = 0, y = −x tan πα,

I2N : ϕ + k1y(ξ) = 0, ψ = QI ,
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-k1yN
G
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ξ
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φ
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Fig. 5 Unconfined aquifer discharging through a bedrock window: physical flow domain (a), hodograph
domain (b), complex potential domain (c), auxiliary plane (d)

GN : ϕ + k1y(ξ) = 0, y = −x tan πα. (19)

In terms of functions F(ς) = dw/dς and Z(ς) = dz/dς the boundary conditions (19)
applied in the upper half plane of an auxiliary ς-plane (Fig. 4d) are expressed as:

Im F(ξ) = 0, Im
[
eiπαZ(ξ)

]
= 0, −∞ < ξ < 0;

Im [i F(ξ) + k1Z(ξ)] = 0, Im
[
eiπαZ(ξ)

]
= 0, 0 < ξ < 1;

Im [i F(ξ) + k1Z(ξ)] = 0, Im F(ξ) = 0, 1 < ξ < ∞. (20)

Thus, for a vector function X(ς) = (F(ς), Z(ς)) we have a matrix Riemann boundary value
problem: Im

⌊
X(ξ)Mj

⌋ = 0, ξ ∈ l j , j = 1, 2, 3. Here, l1 = (−∞, 0), l2 = (0, 1),
l3 = (1,∞), and matrices are:

M1 =
∥∥∥∥
1 0
0 eiπα

∥∥∥∥ , M2 =
∥∥∥∥
i 0
k1 eiπα

∥∥∥∥ , M3 =
∥∥∥∥
i 1
k1 0

∥∥∥∥ .

Now we introduce new unknown vector functions

X1(ς) = X(ς)M1, X2(ς) =
{

X1(ς), Im ς > 0; X1(ς̄), Im ς < 0
}

(21)

and jump from the BVP (10) to the Hilbert BVP:

X+
2 (ξ) = X−

2 (ξ)L j , ξ ∈ l j , j = 1, 2, 3, (22)
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where matrices L j = M−1
1 MjM

−1
j M1 are

L1 =
∥∥∥∥
1 0
0 1

∥∥∥∥ , L2 =
∥∥∥∥

−1 0
2ksinπα 1

∥∥∥∥ , L3 =
∥∥∥∥
1 −2ieiπα/k1
0 ei2πα

∥∥∥∥ .

We use the matrix

S =
∥∥∥∥

−k1sinπα 0
k1sinπα 1

∥∥∥∥ (23)

and the substitution X2(ξ) = X3(ξ)S. We get the following Hilbert BVP for the vector
function X3 = (X31, X32): X+

3 (ξ) = X−
3 (ξ), −∞ < ξ < 0;

{
X+
31(ξ) = −X+

31(ξ)

X+
32(ξ) = X−

32(ξ)
, 0<ξ<1;

{
X+
31(ξ) = ei2παX−

31(ξ)

X+
32(ξ) = (

ei2πα − 1
)
X−
31(ξ) + X−

32(ξ)
, 1 < ξ < ∞.

(24)

This problem has to be solved in the class of holomorphic functions with integrable sin-
gularities at the points ς = 0, ς = 1, vanishing at infinity and satisfying the symmetry
condition:

X3(ς̄) ≡ X3(ξ). The last relation follows from the definition (21) and reality of the matrix
(23).

Note that if solution to the problem (24) is found, then a solution of the initial problem
(20) will follow from the relation X(ς) = X3(ς)SM−1

1 (see Eqs. (20), (22, (23)). Thus,

F(ς) = k1sinπα (X32(ς) − X31(ς)) , Z(ς) = e−iπαX32(ς). (25)

Let us consider the function

X31(ς) = c(−ς)−1/2(1 − ς)−1/2−α, (26)

a single-valued branch of which is fixed in the ς−plane with the cut along the positive part
of the real axis by the conditions −π < arg(− ς) < π, −π < arg(1 − ς) < π. It is clear
that X31(ς) meets all above required conditions if c is an arbitrary real constant. Due to Eqs.
(24), (26) the second component X32(ς), as a solution of the jump problem

X+
32(ξ) − X−

32(ξ) = (ei2πα − 1)X−
31(ξ), 1 < ξ < ∞,

is given now by the Cauchy-type integral

X32(ς) = −c sinπα

π

∞∫

1

τ−1/2(τ − 1)−1/2−α dτ

τ − ς

= −c sin πα

π

1∫

0

τα(1 − τ)−1/2−α dτ

1 − τς
. (27)

In order to derive the last integral representation, we took into account that X−
31(τ ) =

−ce−iπατ−1/2(τ − 1)−1/2−α for ς = τ > 1, and used the substitution τ → 1/ τ. The
integral in Eq. (27) can be expressed in terms of a hypergeometric function:

X32(ς) = 2c�(0.5 − α)√
π�(−α)

F(1, 1 + α; 1.5; ς)

= 2c�(0.5 − α)√
π�(−α)

(1 − ς)−1/2−αF(0.5, 0.5 − α; 1.5; ς), |ς | < 1. (28)
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Using analytical continuations of the hypergeometric function into vicinities of points ς = 1
and ς = ∞ we get

X32(ς) = c
�(−0.5 − α)√

π�(−α)
F(1, 1 + α; 1.5 + α; 1 − ς)

− c tan πας−1/2(1 − ς)−1/2−α, |ς − 1| < 1, (29)

X32(ς) = c
�(0.5 − α)√
π�(1 − α)ς

F(1, 0.5; 1 − α; 1/ς)

+ c(−ς)−1/2(1 − ς)−1/2−α, |ς | > 1, (30)

correspondingly. In Eqs. (28)–(30) F is a hypergeometric function 1F2, and � is the Gamma
function.

The required solutionof problem (19) is definednowviaEqs. (25)–(30). The real parameter

c is evaluated from the relation Im
1∫
0
F(ξ)dξ = Q1.

In accordance with Eqs. (16), (17), (19) we have

Im F(ξ) = −ck1sin πα ξ−1/2(1 − ξ)−1/2−α, 0 < ξ < 1.

Due to formula (8.380, 1) from Gradshteyn and Ryzik (1980), we get

Im

1∫

0

F(ξ) dξ =
1∫

0

Im F(ξ) dξ = −c
√

πk1sin πα �(0.5 − α)/�(1 − α);

then,
c = c(α) = −QI�(1 − α)/[k1√π sin πα�(0.5 − α)]. (31)

We introduce dimensionless variables as z∗ = zk1/QI and drop the subscript * for the sake
of brevity. Then, using Eqs.(18), (19) and (21), the parametric equations of the segment GN
become:

z(ς) = − �(1 − α)e−iπα

√
π sin πα�(0.5 − α)

ζ∫

0

X32(ς)dς, 0 < ς < 1. (32)

In particular, from Eq. (32) at ς = 1 we get zN . Then, RN = Im[zN / cosπα]. We use
Wolfram’sMathematica routinesHypergeometric2F1,Gamma,NIntegrate andParamet-
ricPlot. Figure 6 shows the graph RN (α). Consequently, if RF in Fig. 5a is less than what is
presented in Fig. 6 there will be a “phreatic tail” downstream of GN.

Obviously, at α → 0 we get the Pavlovsky limit RN = 0.5. In this case of a horizontal
bedrock, there is no “normal” undisturbed flow parallel to the bedrock, i.e., groundwater
at infinity is quiescent. The Pavlovsky’s phreatic surface is a parabola. At another limit
of α = 1/2, flow in Fig. 5a degenerates into a 1D vertical jet, within which pressure is
everywhere atmospheric and velocity is constant. Therefore, in this limit I1GN in Fig. 5a is
both a streamline and isobar, i.e., another phreatic surface. Hence, lim

α→1/2
RN → ∞, as is

evident from Fig. 6.
Next, for N I2 from Eq. (28)–(32) we get

z(ς) = zN − �(1 − α)e−iπα

√
π sin πα�(0.5 − α)

ζ∫

1

X32(ς)dς, ζ > 1. (33)
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Fig. 6 The size RN of GN in
Fig. 4a as a function of angle α of
sloping aquifer

0.0 0.1 0.2 0.3 0.4 0.5
α0.0

0.5

1.0

1.5

2.0

2.5

RN

Fig. 7 Phreatic surface and
distribution of the stream
function with x for α = 0.1

-

We used the Mathematica routines Re and Im and ParametricPlot to plot the phreatic
surface N I2 for α = 0.1 (Fig. 7) where the thick dashed line represents the isobaric window
GN. The thin dashed line in Fig. 7 shows the stream function ψ(x) which was evaluated by
integration of the first equation in Eq. (25).

4 Hydraulic Approximation for Flow in Two Commingled Aquifers

PK-62, 77 categorized models of phreatic flows as “hydrodynamic” and “hydraulic.” The
previous section dealt with the former and in this section we will produce a hydraulic, 1D
solutions for the phreatic surface flow in the upper aquifer (Fig. 1), close to the drainage
windowGF through which groundwater is completely drained to aquifer 2. This is a stringent
test case for 1D solutions, given the strongly curved free surface in Fig. 7 during the drainage
to aquifer 2. We produce the second-order hydraulic theory following Picard’s iteration,

123

Author's personal copy



Y. V. Obnosov et al.

Fig. 8 Notation for 1D flow solutions relevant to Fig. 4a

as used by Castro-Orgaz et al. (2012), Castro-Orgaz and Hager (2014) and Kacimov et al.
(2015).

We recall that the Cartesian velocity components u(x, y) and v(x, y) of the potential
flow (see Sects. 2, 3) obey the Cauchy–Riemann conditions (Bear 1972)

u = −∂φ

∂x
= −∂ψ

∂y
, v = −∂φ

∂y
= +∂ψ

∂x
, (34)

where the potential and stream functions are φ and ψ , respectively. The flow problem is
sketched in Fig. 8, where an upstream curved seepage of constant discharge Q is drained
progressively across a permeable window (shaded area). The saturated thickness is T (x) and
the local seepage flow rate N (x). The physical mechanism of such leakage can be different
from what we studied in Sect. 3, i.e., instead of a highly permeable substratum the window
can be made of a material less permeable than the main aquifer but more permeable than the
aquifuge (bedrock) upstream of point G (Fig. 4a).

Integration of the first of Eq. (34) in the vertical direction with x as constant and the
variable η(x, y) = y − z(x) as the vertical distance above the bottom yields

ψ = −
∫

udη + g (x) = −Uη − �(x) , (35)

where the bed condition for the stream functionψb = −Ω (x)was used to find the integration
function g(x). The depth-averaged velocity U = N/T is selected as a starting function in
Eq. (35). Using Eq. (35) v is

v = ψx = −Uxη −Uηx − �x . (36)

From Eq. (36) with f as arbitrary function of x we get

− φ =
∫

vdη + f (x) = −Ux
η2

2
−Uηηx − η�x + f (x) . (37)

Now,

u = −φx = −Uxx
η2

2
− (2Uxηx +Uηxx ) η −Uη2x + fx − �xxη − �xηx , (38)
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where fx remains unknown. Integration of Eq. (38) yields

ψ = −
∫

udη + β (x) = Uxx
η3

6
+ (2Uxηx +Uηxx )

η2

2
+Uη2xη − fxη

+�xx
η2

2
+ �xηxη + β (x) , (39)

where β(x) is an arbitrary function. Equation (39) is used to obtain fx subject to the boundary
condition of the stream function at the free surface and bed surfaces, that is,

ψs [η = T (x)] = −Q,

ψb [η = 0] = −�(x) . (40)

Inserting Eq. (40) into Eq. (39) gives

fx = U +Uxx
T 2

6
+ (2Uxηx +Uηxx )

T

2
+Uη2x + �xx

T

2
+ �xηx . (41)

Using (41) into Eq. (38) produces the velocity profile

u = U + (2Uxηx +Uηxx + �xx )

(
T

2
− η

)
+Uxx

(
T 2

6
− η2

2

)
. (42)

The velocity vector in seepage flow is assumed to follow Darcy’s law in isotropic and homo-
geneous porous media. Based on the definition of the hydraulic head h Eq. (37) is rewritten
as

− Kh = −Ux
η2

2
−Uηηx − �xη + f (x) . (43)

At the water table surface the pressure is atmospheric, so that (43) gives

− K (T + z) = −Ux
T 2

2
−UTηx − �x T + f (x) . (44)

This is solved for f and then back-substituted into (43) to provide

− Kh = Ux

2

(
T 2 − η2

) + (Uηx + �x ) (T − η) − K (T + z) . (45)

Equation (45) is differentiated to obtain the horizontal velocity component u as

u = −Khx = −K (Tx + zx ) + Uxx

2

(
T 2 − η2

)

+ (Uηxx +Uxηx + �xx ) (T − η) + (Tx − ηx ) (Uηx + �x ) +Ux (T Tx − ηηx ) .

(46)

Equation (42) at the water table yields

us = U − (2Uxηx +Uηxx + �xx )
T

2
−Uxx

T 2

3
, (47)

whereas from Eq. (46)

us = −K (Tx + zx ) + (Tx − ηx ) (Uηx + �x ) +UxT (Tx − ηx ) . (48)

Equaling (47) and (48) provides the ODE describing the water table to second-order accuracy
as
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U −
[(

UTxηx −Uη2x + Uηxx T

2

)
+
(
UxTxT +Uxx

T 2

3

)

+
(

(Tx − ηx )�x + �xx T

2

)]
+ K (Tx + zx ) = 0. (49)

Expressing U and η as a function of the variables N , T and z one finds

Ux = Nx

T
− NTx

T 2 , Uxx = Nxx

T
− NTxx

T 2 + 2
NT 2

x

T 3 − 2
NxTx
T 2 ,

ηx = −zx , ηxx = −zxx , (50)

and inserting the result into Eq. (49) gives

N

T

(
1 + Tx zx + z2x + T zxx

2
+ T Txx + T 2

x

3
− NxTxT

3N

−NxxT 2

3N
− (Tx + zx )

�x T

N
− �xx T 2

2N

)
+ K (Tx + zx ) = 0. (51)

Equation (51) reduces to the Dupuit–Forchheimer theory if Tx zx , z2x , T Txx , T zxx , T
2
x , NxTx ,

Ωx Tx , Ωxx T 2 and NxxT 2 are zero, leading to

N

T
+ K (Tx + zx ) = 0, (52)

which is presented in PK (Chapter X, Eq. 5.1). For constant discharge q = Q (no leakage
losses to aquifer 2) on a constant bed slope Eq. (51) reduces to

Q

T

(
1 + Tx zx + z2x + T Txx + T 2

x

3

)
+ K (Tx + zx ) = 0, (53)

which was solved by Kacimov et al. (2015). For the flow problem depicted in Fig. 8 conser-
vation of mass gives

N (x) = − (ψs − ψb) = Q − �(x) , (54)

from which follows
Nx = −�x , Nxx = −�xx . (55)

Inserting (55) into Eq. (51) gives the ODE

N

T

(
1 + Tx zx + z2x + T zxx

2
+ T Txx + T 2

x

3
+ NxxT 2

6N
+
(
2

3
Tx + zx

)
NxT

N

)

+ K (Tx + zx ) = 0, (56)

which is a generalization of the development of Kacimov et al. (2015).
To test the validity of 1D solutions in this limiting test case Eq. (56) was integrated

numerically using a fourth-order Runge–Kutta method (Press et al. 2007) for the same test
case previously presented in Fig. 7 (zxx = 0). Equation (56) was transformed into a system
of 2 ODEs for T (x) and Tx (x). The boundary section was taken at the first 2D point in Fig. 7,
and the values of T and Tx deduced from the 2D results at that section were taken for the 1D
solution. To give closure to Eq. (56)Ω(x)must be prescribed. Two-dimensional results forψb

in Fig. 7 are almost perfectly matched by a function proportional to x1/2. However, gradients
of Nx and Nxx would then tend to infinity at x = 0, breaking down 1D computations. Thus,
the simplest approach for 1D modeling was used assuming a linear distribution of ψb along
the drainage window. It automatically gives Nxx = 0 and a constant intensity Nx .
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Fig. 9 Comparison of 1D and
2D solutions

The results of the computation are presented in Fig. 9. It can be observed that in the
constant discharge domain (x < 0) the solution of Eq. (56) is in good agreement with 2D
data. Once the flow enters into the drainage window area the 1D simulations agrees with
2D data up to x = 0.2, roughly. After that point the interaction of Nx and (2/3Tx ) in Eq.
(56) provokes an excessive slope of the phreatic surface, that ultimately becomes vertical at
point N (see the hodograph in Fig. 4b) that violates the very premise of the hydraulic theory
(slope of the phreatic surface is “mild” in the sense of deviation from the bedrock slope, see
PK). In other words, the approximation breaks at about x = 0.35. It means that higher-order
expansions are needed in this flow zone of intense vertical motion. To elucidate the role of
Nx Eq. (56) was solved setting Nx and Nxx to zero. The equation was then solved with the
same method and subjected to identical boundary conditions, and the results are plotted in
Fig. 9 and labeled as “approximate Picard second-order solution.” It can be observed that
this computations is in agreement with the former Picard solution up to x = 0.2. In other
words, the effect of Nx is not significant upstream of that coordinate. In contrast, for x > 0.2
Fig. 9 suggest that Nx controls the shape of the solution. None of the computations succeed
in producing an accurate 1D flow profile, but this critical comparison suggests that a higher-
order solution with a more accurate treatment of Nx is needed. The standard DF theory given
by Eq. (52) was also solved, and the results are presented in Fig. 9. As observed, this theory
is not in agreement with 2D data in any part of the computational domain. Therefore, the
second-order hydraulic theory is an improvement over DF theory, given that a good solution
is found for x < 0.2. For 0.2 < x < 0.6, 1D solutions were found to diverge from the 2D
“exact” solution, and higher-order solutions are needed.

5 Conclusions

Groundwater flows in hillslope hydrology of commingled aquifers–aquitards are vitally
important for water deficient countries such as Oman where mountains (Jabel Shams, Jabel
Al-Akdar, Jabel Qara and others) serve as regional interceptors and condensers of rain-
fall which naturally replenishes strategic aquifers. We often encountered “strange” cases
when a ”normal”—in the sense of channel hydraulics (Chow 1959)—groundwater flow in a
seemingly simple aquifer with a constant slope suddenly disappears. Similarly, groundwater
re-emerges (sometimes as a spring, see, e.g., Al-Amri 2006) from below in a hydrostrati-
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graphic unit (e.g., a relatively dry soil layer), which few hundred meters upstream is dry.
This paper explains these anomalies by detouring a standard concept of layered aquifers–
aquitards–aquifuges having flat interfaces between the layers and no variations of hydraulic
properties along the layers.

In this paper, we extended the very concept of a hydrostratigraphic unit. In the past we
studied nonstandard aquifers, i.e., ones with slope changes, anticlines, groundwater falls,
imbedded lenses of contrasting permeability (Kacimov 2012; Kacimov and Obnosov 2000,
2008; Kacimov et al. 2015). Here, we assumed that the caprock or bedrock of a confined
or unconfined aquifer is not an impervious surface but has a breach of a finite width. This
tilted isobaric boundary serves as “window” through which groundwater either dives to a
subjacent aquifer or vents to a superjacent one. Groundwater flows in sloping aquifers are
commonly tackled by numerical codes (Broda et al. 2011; Dusek and Vogel 2014), with
MODFLOW or HYDRUS3D involved. Analytical solutions are available for DF (Youngs
and Rushton 2009; Rushton and Youngs 2010; Castro-Orgaz and Hager 2014) approxima-
tions (PK). In this paper we used and compared the results of a full potential 2D model based
on solution of the Laplace equation and extended 1Dmodel with extra terms added to the DF
approximation, where the governing nonlinear ODE is solved. We engaged a full spectrum
of analytical techniques: the hodograph method with conformal mappings, integral solutions
to the Riemann–Hilbert BVP and Picard iterations.

We generalized the classical Pavlovsky problem of phreatic flow to a Zhukovskii toe drain
placed on a horizontal bedrock, the problem of great importance in geotechnical engineering
of earth-filled dams (PK); namely, we found how the Pavlovsky parabola metamorphizes into
a bedrock-aligned curve when the bedrock is tilted at a constant angle. We also showed what
happens with the PK and Numerov solutions to the problem of inflow, outflow or through
flow from/to a constant head breach in a confined aquifer if the aquifer is inclined and the
breach is a seepage face rather than a constant head segment.
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