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Abstract
Resonant tunneling is studied theoretically for the planar asymmetrical double-barrier mag-
netic tunnel junction (DMTJ) when a dc bias field is applied. The spin-polarized conductance
and tunnel magnetoresistance (TMR) through the DMTJ have been calculated. In DMTJ
nanostructure the magnetization of middle ferromagnetic metal layer can be aligned parallel or
antiparallel with respect to the fixed magnetizations of the top and bottom ferromagnetic elec-
trodes. Analytical expression for the transmission coefficient of the DMTJ is received, which
is expressed through the single-barrier transmission coefficients taking into account the voltage
drop on each barrier and spin degrees of freedom of the electron. The dependencies of the tun-
nel conductance and TMR on the applied voltage have been calculated for the case of resonant
transmission.
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1 Introduction

High tunneling magnetoresistance (TMR) effect in magnetic nanostructures, where various fer-
romagnetic layers are separated by insulators, has attracted considerable interest due to their
important applications at room temperatures [1, 2]. The ways to get functionality in nanostruc-
tures are to manage transport properties by means of non-uniform magnetism and/or applied
voltage. High TMR, desired for magnetic read heads or sensors, is achieved using single MgO
barrier, however, it drops steeply with increasing the bias voltage, which limits its application
in the high bias-voltage region. Besides single-barrier, the double-barrier MTJs (DMTJs) have
also been extensively studied for novel physical phenomena and potential applications in spin-
tronic devices. The DMTJs were studied theoretically and experimentally as well with a special
emphasis to quantum well states in the middle metallic layer [4, 7, 8, 9, 10, 11, 12].

Our research is devoted to building of a consecutive theory of TMR adapted to planar asym-
metric DMTJs, which have the structure FMt/I1/FM

m/I2/FM
b, where FMt, FMm and FMb

are the top, middle and bottom ferromagnetic metal layers, while I1 and I2 are insulators as
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Figure 1: (Color online) Schematic drawing of the cross section of an asymmetric DMTJ. The
top (t) and bottom (b) ferromagnetic layers are electrodes of the junction. Lm is the thickness
of the middle ferromagnetic layer. The arrows (red and blue) show possible magnetization
directions of the ferromagnetic layers. The oblique arrow indicates the direction of the electron
conduction trajectory with the incidence angle measured from the z-axis.

shown in Fig. 1. The magnetization direction of the middle layer FMm can be aligned parallel
(P) or antiparallel (AP) with respect to the fixed magnetizations of the top FMt and bottom
FMb ferromagnetic electrodes. The DMTJ have ferromagnetic layers of thicknesses t, Lm and
b, respectively, separated by nonmagnetic insulators of thicknesses t1 and t2 of around dozen
of angstroms. Typical examples for the constituents of the junction are Co, CoCr, CoFeB, Fe,
and NiFe for ferromagnets, and Al2O3 and MgO for the insulating nonmagnetic barriers. Note
that in this paper we assume FMm layer having lower coercivity compared with the FMt and
FMb layers. If voltage is applied to the nanostructure FMt/I1/FM

m/I2/FM
b the spin-polarized

tunnel conductance arises. This conductance is induced by quantum tunneling through the bar-
riers. It is very small and decays exponentially with increasing the thickness of the insulators.
The FMm layer can be considered as a quantum well (QW). Then, the motion of electrons in
the FMm layer is quantized. For some parameters of the structure FMt/I1/FM

m/I2/FM
b, the

resonant conditions can be fulfilled. Then, the spin-polarized tunneling conductance rapidly
increases at specific values of the applied voltage. In the resonant tunneling regime transmission
coefficients through the double-barrier junction depend on its magnetic configuration and this
dependence gives rise to the TMR effect. Original feature of our approach is the self-consistent
treatment of dc bias on each barrier, depending on their thickness and dielectric permittivity
of the insulators. We assume that electron spin is conserved in the tunneling process through
the whole structure and also neglect any spin accumulation. Apart from this we analyze only
colinear configurations of the FM magnetizations, which allows us to consider each spin channel
separately. Electronic structure of the electrodes is approximated by a free-electron-like disper-
sion law, which for FM electrodes is spin-split due to an exchange field. We also assume that
the barriers are of rectangular shape which transforms into trapezoidal one when a bias voltage
V is applied to the DMTJ.
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2 Transmission coefficient and resonance condition

As a first step, we derive analytical expressions for the transmission coefficient and the resonance
condition in asymmetrical double-barrier structure with QW under a dc bias field. The dc bias
field applied to the nanostructure of sandwich type FMt/I1/FM

m/I2/FM
b changes the potential

energy landscape and the dispersion laws. The voltage drop on the top insulating layer I1 and
on the bottom insulating layer I2 are given by the following equations:

V1 =
ε2t1

ε1t2 + ε2t1
V, V2 =

ε1t2
ε1t2 + ε2t1

V, (1)

where V is the total applied voltage, ε1(2) are the dielectric permittivity of the barriers, respec-
tively.

The coefficient of transmission across the DMTJ can be derived from the electron wave
function with standard boundary conditions imposed on the wave function and its first deriva-
tive at the each electrode/barrier interface, see for example [10]. When the interfaces are flat,

the in-plane component k
∥
t,s of the electron wave vector is conserved in the tunneling processes.

Then, the transmission coefficient for an electron incident on the barrier from the top electrode,
and with the Fermi energy EF , measured from the bottom of the electron spin subbands of the
top electrode, can be written as a function of the normal component kt,s = ktF,s cos (θt,s) of the
electron wave vector. Here the angle θt,s is defined by a trajectory of an electron in the top
electrode on the direction towards the barrier, see Fig. 1. It is measured from the normal to
the contact plane. The absolute value of the Fermi wave vectors ktF,s corresponds to the spin

subband of the electrode FMt. The index s =↑, ↓ labels spin states of electrons in FMt(b) and
FMm. After a straightforward algebra, see also [3, 4], we received the transmission coefficient
of the asymmetrical DMTJ under the applied voltage:

T
P(AP)
2b,s =

[
T−1
1,s T

−1
2,s +

(
T−1
1,s − 1

) (
T−1
2,s − 1

)
+

+2
√

T−1
1,s

(
T−1
1,s − 1

)√
T−1
2,s

(
T−1
2,s − 1

)
cosΦV,s

]−1

,
(2)

which is expressed through the single-barrier transmission coefficients

T1 =
4m1mtmmktkmf2

1 /π
2

(β1 − γ1)
2
+ (χ1 + α1)

2 , T2 =
4m2mmmbkmkbf

2
2 /π

2

(β2 − γ2)
2
+ (χ2 + α2)

2 , (3)

taking into account the voltage drop on each barrier and spin degrees of freedom of the electron.
Here and further, for simplicity, we omit the spin index. In Eq. (2) the characteristic phase
difference under the applied bias is ΦV = ϕ1 + ϕ2 + 2kmLm, where ϕ1 and ϕ2 are the phase
shifts of the electron waves propagation from one barrier to another. These phases are defined
by the formulas

ϕ1 = arctan

[
2 (χ1γ1 + β1α1)

χ2
1 − γ2

1 + β2
1 − α2

1

]
, ϕ2 = arctan

[
2 (χ2β2 + γ2α2)

β2
2 − χ2

2 − γ2
2 + α2

2

]
. (4)
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In Eqs. (3), (4) we use the following notation for linear combinations of Airy functions:

αl = m2
l kt(m)km(b) {Ai [ql (0)] Bi [ql (tl)]− Bi [ql (0)] Ai [ql (tl)]} ,

βl = mlmm(b)kt(m)fl {Ai [ql (0)] Bi’ [ql (tl)]− Bi [ql (0)] Ai’ [ql (tl)]} ,
(5)

γl = mlmt(m)km(b)fl {Ai’ [ql (0)] Bi [ql (tl)]− Bi’ [ql (0)] Ai [ql (tl)]} ,

χl = mt(m)mm(b)f
2
l {Ai’ [ql (0)] Bi’ [ql (tl)]− Bi’ [ql (0)] Ai’ [ql (tl)]} ,

where Ai’ [ql] and Bi’ [ql] are the first derivatives of the Airy functions. The arguments ql (z) of
the Airy functions for our problem can be written as

ql (z) = fl

z +
h̄2tl

(
k
t(m)
F

)2

2mleVl
− tl (EF + Ul)

eVl

 , (6)

where the factor fl here and in Eqs. (3) and (5) have the form fl =
(
2mleVl/h̄

2tl
)1/3

, for the
subscript l = 1, 2. The basic mathematical background and the calculation details can be found
in article [10].

Next, let us investigate the resonance condition in the model studied here. Because of 0 <

T1 < 1 and 0 < T2 < 1, as seen from Eq. (2), it is understood that T
P(AP)
2b shows a local minimum

for cosΦV = 1, and a local maximum for cosΦV = −1. Then for ΦV = ϕ1 + ϕ2 + 2kmLm =
(2n+1)π (n = 0, 1, 2, ...) we obtain the local maximum value of the transmission coefficient by

T
P(AP)
2b,max =

[√
T−1
1 T−1

2 −
√(

T−1
1 − 1

)√(
T−1
2 − 1

) ]−2

. (7)

Thus, from the above functional dependencies we can calculate, for example, the bottom
barrier width t2 at fixed values of the top barrier width t1 and the well width Lm by the
equation ΦV = ϕ1+ϕ2+2kmLm = (2n+1)π, once the desired Fermi wave vectors for electrons
of spin subbands, the total applied voltage V are selected, and the values of the barrier heights,
U1 and U2, and the electron effective masses for all layers are given. Also, we can select at will
the voltage at which the unity resonant transmission coefficient can be obtained.

The dependences of a maximum values of the transmission coefficient vs applied bias across
the asymmetrical DMTJ for four spin conduction channel are shown in Fig. 2. The curves
were calculated by Eq. (7), with the following parameters of the structure: the values of the
Fermi wave vectors for electrons of the spin subbands of the FM layers are ktF,↑=1.1 Å−1,

ktF,↓=0.98 Å−1, kbF,↑=1.04 Å−1, kbF,↓=0.97 Å−1, and kmF,↑=0.99 Å−1, kmF,↓=0.96 Å−1, respec-
tively. The Fermi energy EF was determined by the values of wave vectors of the medial
FMm layer. The effective masses of conduction electrons in the ferromagnetic layers corre-
spond to the free electron mass me = mt = mm = mb. Two dielectric oxide layers have
lateral sizes comparable with the mean free path of conduction electrons. The thicknesses were
taken t1=15.0 Å, t2=19.0 Å, and heights of the energy potentials above the Fermi energy are
U1=0.24 eV, U2=0.18 eV. It is also assumed that the dielectric constants are ε1 =10.1, ε2=9.8
[6]. The effective masses of electrons in the barriers were assumed to be m1 = m2 = 0.4me. The
upward arrow indicates the spin subband of the majority electrons, and the downward arrow
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Figure 2: (Color online) Dependences of a maximum value of the transmission coefficient vs
applied bias in the asymmetrical DMTJ for four spin conduction channels is denoted by arrows
under the resonant conditions, cosΦV,s = −1.

indicates the spin subband of the minority electrons. For the P alignment of magnetizations of
the top and bottom ferromagnetic electrodes FMt(b), and the middle layer FMm, the electron
moves in the following spin subbands: s =↑ (↓), s′ =↑ (↓), s =↑ (↓). There are two spin chan-
nels of conduction. For the AP alignment the electron moves in the spin subbands s =↑ (↓),
s′ =↓ (↑), s =↑ (↓). These constitute another two spin channels of conduction.

Five transmission peaks appear in the range 0.0-1.0 V, for different spin conduction channels.
The first two peaks show a unity resonance transmission approximately at 0.13 V. Since the
eigenenergy levels in an asymmetrical double-barrier magnetic structures move lower under the
applied positive voltage, another peak (the third peak) appears for the spin conduction channel
(↑↑↑). We recognize at a glance that the third resonant peak in the transmission shows up at
0.25 V, and so on.

3 Spin-polarized conductance

The spin-polarized conductance through the magnetic tunneling nanostructures may be calcu-
lated in the frame of the quasi-classical theory [5, 14]. Having found the transmission coefficient
one can calculate the spin-polarized conductance through the planar asymmetric DMTJ with
the cross-sectional area of the radius a. When a bias voltage V is applied at room temperature
it is then given by the formula

GP(AP)
s = G0

(
k
t(b)
F,s a

)2

2

⟨
cos θt(b),sT

P(AP)
2b,s

(
V, cos θt(b),s

)⟩
, (8)

where G0 is the conductance quantum (G0 = 3.87 × 10−5 Ohm−1), T
P(AP)
2b,s

(
V, cos θt(b),s

)
is

the transmission coefficient of an electron as a function of applied voltage and the angle θt(b),s
of incidence of an electron. The index t or b is selected depending on polarity of the applied
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Figure 3: (Color online) The tunnel conductances vs applied bias across the asymmetrical
DMTJ in the parallel (solid line) and antiparallel (dashed line) magnetization configurations at
room temperature.

voltage V . The angular brackets denote averaging over the angles φ and θt(b),s. The angle φ
lies in the contact plane. The angle θt(b),s is defined by a trajectory of an electron in the top
or bottom electrodes in the direction to the barrier.

In Fig. 3, dependencies of the tunnel spin-polarized conductance on the applied voltage V are
shown for the P and AP alignment of the layer FMm magnetization with respect to the pinned

magnetizations of the top FMt and bottom FMb. The G
P(AP)
2b are the sums of the spin-up and

spin-down conductances G
P(AP)
↑ and G

P(AP)
↓ . In our numerical calculations we assumed that

the cross-sectional area of the structure DMTJ has the radius a = 20 nm. The thickness of the
middle FMm layer was taken 25.0 Å. Other parameters used in the calculations correspond to
Fig. 2. The bias voltage dependence of the conductance is asymmetric with respect to positive
and negative voltages when the magnetic electrodes are not identical and the barriers have
different thicknesses. Also the prominent broad valleys in conductance at 0.3 V and 0.7 V are
shown for P and AP configuration in DMTJ, respectively. This phenomenon may be attributed
to the creation of spin-dependent QW states in the middle FMm layer, which can lead to
discrete energy levels for the majority spins, whereas continuous energy levels for the minority
spins are realized [12]. Simultaneously, certain spin channels of conduction may be referred
to the consecutive non-resonant tunneling. The predominant elastic tunneling, where incident
electrons from one electrode tunnel to the opposite electrode through the double-barrier without
loss of energy, gives rise to a significant background to the conductance vs voltage.

4 The tunnel magnetoresistance

The TMR of the DMTJ is defined by the change of the conductance from P to AP alignment of
magnetization of the middle ferromagnetic layer FMm with respect to the fixed magnetizations

6



Magnetoresistance in Asymmetric Double-Barrier . . . Useinov and Tagirov

-1.0 -0.5 0.0 0.5 1.0
0

100

200

300

400

Voltage HVL

T
M

R
H%
L

Figure 4: (Color online) TMR in the case of resonant (solid line) and non-resonant (dash line)
tunnelling of electrons through the DMTJ. The parameters used in the calculations of the curves
correspond to Fig. 3 .

of the top FMt and bottom FMb ferromagnetic electrodes. It can be expressed as follows:

TMR =
GP

2b −GAP
2b

GAP
2b

· 100%. (9)

For the numerical calculation, FMt, FMb and FMm were assumed to be made of different
ferromagnetic metals. The two dielectric oxide layers I1 and I2 have a lateral size comparable
with the mean-free paths of the conduction electrons in the ferromagnetic layers. In Fig. 4
the dependence of TMR on the applied voltage V for the structures FMt/I1/FM

m/I2/FM
b is

shown. The solid line corresponds to the resonance conditions, cosΦV,s = −1, (formula (7) is

used for calculation of the conductance G
P(AP)
s ) when the tunneling of electrons is combined

with the interference of de Broglie waves at the boundaries of the energy barriers for each
spin channel of conduction. The dash-line curve was obtained using Eq. (2) for non-resonant
conditions.

Finally, we note that although our model does not take into account other complications
such as the multiband structure of the ferromagnetic electrodes and the complex band structure
of the insulator, or the electron-electron interactions, spin-wave emission and absorption, and
inelastic tunneling processes, Coulomb blockade, nevertheless, it provides a reasonable basis for
estimation of the spin-dependent tunneling in DMTJs.
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