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— ρa6b6c 
 {(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)};
— ρ0→a;1→b;2→c 
 {(0, a), (1, b), (2, c)};
— ρ0→a;1→∀ 
 {(0, a), (1, 0), (1, 1), (1, 2)};
— ρ0→a,b;1→∀ 
 {(0, a), (0, b), (1, 0), (1, 1), (1, 2)}.

Пусть σ2 
 ρ0→1;1→1;2→2, σ8 
 ρ0→2;1→1;2→0. Автор установил следующие
теоремы.

Теорема 3. [{b2}] =
= Pol(ρ0,1

1in3, ρ0→1;1→∀, ρ0→2;1→∀, ρ0→1,2;1→∀, ρsame→1;2, ρσ2, {2}).

Теорема 4. [{b7}] = Pol(ρ0,1
1in3, ρ

0,1
1in3,2→2, ρsame→0;2, ρ06261, {2}).

Теорема 5. [{b8}] = Pol(ρ0,1
1in3, ρ06162, ρσ8).

Из данного предикатного задания, в частности, следует, что минимальные
клоны [{b2}], [{b7}], [{b8}] предикатно описуемы.
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В данной работе рассматривается эффективная реализация квантового
хеширования. Квантовое хеширование позволяет проектировать эффектив-
ные по памяти квантовые алгоритмы и строить защищенные коммуникаци-
онные протоколы. Мы предлагаем алгоритм, позволяющий балансировать
между числом CNOT-гейтов (глубиной схемы) и точностью углов поворота.
Современные квантовые вычислители являются устройствами NISQ (Noisy
Intermediate-Scale Quantum) эры и чувствительны к точности углов.
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Квантовое хеширование

Квантовое хеширование впервые было определено в [1]. В данной работе
рассматриваются амплитудная [1] и фазовая [2] формы квантового хеши-
рования. В общем случае для x ∈ Zq n-кубитный хеш определяется как
|ψ(x)〉 = 1√

d

∑d−1
j=0 |j〉 (Ra (θj) |qn〉), где θj =

4πsjx
q и S = {s0, . . . , sd−1} ⊆ Zq —

набор параметров такой, что 1
d

∣∣∣∑d−1
j=0 e

i
2πsjx

q

∣∣∣ 6 ε. Заметим, что n = log d + 1

и d = O
(

log q
ε2

)
. Для амплитудной формы a = y, т. е. используются повороты

вокруг оси y, и |qn〉 = |0〉. Для фазовой формы a = z, т. е. используются
повороты вокруг оси z, и |qn〉 = |1〉.

Схема для реализации квантового хеширования

Схема для реализации квантового хеширования представлена на рисунке 1.
Кроме всего прочего, она состоит из n-кубитных контролируемых поворотов
целевого n-го кубита вокруг оси a, в которых первые n−1 кубитов задейство-
ваны в качестве контролирующих. Структура схемы такова, что повороты
осуществляются, используя всевозможные состояния контролирующих куби-
тов. Такая группа гейтов называется оператором равномерно контролируе-
мого поворота UCRn−1

a (uniformly controlled rotation). Наша задача сводится
к эффективному разложению гейта UCRn−1

a .

Рис. 1: Схема для реализации квантового хеширования.

Оптимизация схемы

Существует эффективная декомпозиция UCRn−1
a , изложенная в работе [3].

Она может быть получена путём рекурсивного применения схемы, представ-
ленной на рисунке 2. В этом случае для декомпозиции требуется d CNOT-
гейтов и d Ra-гейтов с точностью углов поворота O

(
1
d2d

)
. Видим, что здесь

фигурируют более чувствительные углы, так как изначальная точность была
O
(

1
2d

)
.



52 Зиннатуллин И. Г., Хадиев К.Р.

Рис. 2: Шаг рекурсивной декомпозиции UCRn−1
a .

Рассмотрим вспомогательную конструкцию, которая пригодится нам даль-
ше. Используя разложение [4, лемма 7.9], осуществляем декомпозицию кон-
тролируемых поворотов, представленную на рисунке 3. Стоит отметить, что
эта схема симметрична относительно вертикальной оси. Данная декомпози-
ция примечательна тем, что для дальнейшего разложения контролируемых
отрицаний Cn−2(X) кубит с номером n − 1 можно использовать в качестве
анциллы. Известно [4], что в этом случае требуется 24l − 52 CNOT-гейтов,
где l—число контролирующих кубитов.

Рис. 3: Декомпозиция контролируемо-
го поворота вокруг оси a. Рис. 4: Фрагмент схемы, реализующей

UCRn−1
a .

Нами предлагается применить к исходному гейту UCRn−1
a рекурсивно k

раз схему, изображенную на рисунке 2. После k итераций получаем схему, со-
держащую 2k CNOT-гейтов и 2k UCRn−k−1

a гейтов. Точность углов поворота
при этом возрастает до O

(
1

2d+k

)
. Далее для гейта UCRn−k−1

a строим разложе-
ние, в котором осуществляем перебор контролируемых поворотов, используя
код Грея. Использование кода Грея удобно тем, что соседние кодовые сло-
ва отличаются ровно в одной позиции, поэтому переход из одного состояния
контролирующих кубитов в другой осуществляется путём применения одно-
го отрицания. Различающаяся позиция определяет номер кубита, к которому
применяется отрицание.

Далее в получившейся схеме можно выделить 2n−k−2 фрагментов, изоб-
раженных на рисунке 4. Здесь мы для гейта R1 применяем декомпозицию,
представленную на рисунке 3, а для гейта R2 зеркальное отображение этой
же декомпозиции. В итоге получаем схему, которая представлена на рисун-
ке 5. Легко заметить, что обрамленные в рамку контролируемые отрицания
гасят друг друга.
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Рис. 5: Декомпозиция схемы на рис. 4.

Таким образом, общее число CNOT-гейтов равно 2k + 2n−1(24(n− k)− 97)
или 2k + d(24(log d − k) − 73). Отметим, что k 6 n − 5 = log d − 4. При
увеличении k глубина схемы уменьшается от O(log q log log q) до O(log q),
однако точность углов повышается от O (1/q) до O (1/(q log q)).

Исследование выполнено за счет гранта Российского научного фонда №
24-21-00406, https://rscf.ru/project/24-21-00406/.
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Постановка задачи

Пусть t(V,E) —дерево, содержащее n вершин, A = {1, 2, . . . , n}—множество
из n натуральных чисел. Взаимно однозначное отображение ϕ : V (t) → A
называется нумерацией вершин дерева t(V,E). При этом каждой вершине
vi ∈ V (t) ставится в соответствие номер ϕ(vi) ∈ A, каждому ребру
e = (vi, vj) —число ∆ϕ

e =| ϕ(vi)−ϕ(vj) |, а всему дереву t(V,E) соответствует
сумма ∆ϕ(t) =

∑
(vi,vj)∈E(t) | ϕ(vi) − ϕ(vj) |, где суммирование производится

по всем ребрам дерева t(V,E). Величина ∆ϕ(t) задает длину дерева t(V,E) на


