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Mono-, di- and triethanolamine in combination with methylmorpholinium and hydroxyethylmorpholinium surfactants
were investigated for their aggregation and solubilizing properties. A co-operative behavior of the solubilization by
mixed surfactant–ethanolamine systems is described. Ethanolamines strongly affect pH and lead to Orange OT phenolic
group deprotonation and subsequent increase in aqueous/micellar solubility. The morpholinium surfactant micelles reduce
the pKa of the Orange OT phenolic group, enabling its deprotonation at the earlier stages of medium alkalinization. The
obtained surfactant–ethanolamine mixtures can solubilize very large amounts of hydrophobic dye, which can then be
triggered to precipitate through acidification.

Keywords: pH/self-assembly/surface chemistry
Notations
Amin surface area per molecule
a polar head surface area
Cadditive, CHC, CMEA concentration
CMS(OH)–16 concentration of MS(OH)-16
CMS–16 concentration of MS-16
D optical density
Gmin minimal free energy of the interface
l optical path length
l surfactant tail length
l wavelength
NA Avogadro’s number
nc number of carbon atoms in the surfactant

tail
P surfactant packing parameter
R universal gas constant
S solubilization capacity
S1, S2 conductivity plot slopes before and after

the critical micellization concentration,
respectively

T absolute temperature
v surfactant molecule volume
b fraction of neutralized surfactant

counterions
g fraction of neutralized surfactant

counterions
Gmax surface excess
DGad free energy of adsorption
DGmic free energy of micelle formation
k conductivity
c mole fraction
1. Introduction
Solubilization of hydrophobic substances by surfactants is a
phenomenon that has been used in households, agriculture and
industry and has been extensively researched for many decades.1,2

Any surfactant can be used to solubilize hydrophobic molecules.
Some surfactants are more capacious, and others can solubilize
smaller amounts of the same compound. One of the promising types
of surfactants based on the head group of morpholinium has recently
been intensively studied. The presence of a heteroatom in the cyclic
head group provides opportunities for establishing additional bonds
in the processes of adsorption, micelle formation and solubilization.

Micellar systems based on morpholinium surfactants received much
attention due to their various functional activities that can be tailored
by both chemical modification of amphiphilic structures and admixing
with components capable of inducing morphological transitions, shift
in acid–base equilibrium and so on. One of the key directions of
research in this area has been the introduction of biodegradable
fragments into the structure of morpholinium surfactants.3–8 Chauhan
et al.3 showed that the introduction of an ester group in the
investigated surfactants decreases cytotoxicity toward C6 glioma cells
significantly. A morpholinium surfactant with an ester fragment was
used to form coacervates with sodium salicylate.4 A catanionic system
was formed at a constant concentration of a morpholinium surfactant
and a variable concentration of a hydrotropic additive (from 1 to
1000mM), which led to the transformation of spherical aggregates to
cylindrical ones, which were capable of encapsulating curcumin.
Vesicles spontaneously formed in an aqueous catanionic system based
on a morpholinium surfactant, 4-methyl-4-(2-(octyloxy)-2-oxoethyl)
morpholine-4-ium bromide, and sodium dodecyl sulfate have been
studied as a template for the synthesis of hollow silica nanospheres.5
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A series of surfactants with the same dodecyl tail and two ester bonds
in the spacer, but with different head groups (piperidinium,
pyrrolidinium, morpholinium and quaternary ammonium) was
obtained by Bhadani et al.6 Morpholinium gemini surfactants showed
a slightly higher critical micellization concentration (CMC) and lower
viscosity compared with other amphiphiles. Morpholinium surfactants
with an amide fragment showed CMC values lower than those of non-
functionalized analogs due to the possibility of the formation of an
intermolecular hydrogen (H) bond.7 An increase in the size of
aggregates and a decrease in aggregation numbers and packing
density with an increase in the length of the alkyl tail in the
octyl–dodecyl–hexadecyl series were shown. It was shown by
Bhadani et al.8 that at a concentration above 50wt%, a morpholinium
surfactant formed lyotropic liquid crystalline phases. Some studies
found that morpholinium surfactants are less toxic compared
with hexadecyltrimethylammonium bromide.9,10 Morpholinium
surfactants have also been comprehensively studied by the authors’
group in the past in terms of aggregation behavior and solubilization
activity in individual solutions11 and in the presence of additives
(hydrotropes12 and polymers13), catalytic effects14 in nucleophilic
substitution reactions, lipoplex formation,15 corrosion inhibition and
antimicrobial properties.16

An interesting research direction could involve combination of
morpholinium surfactants with amino alcohols. Due to their
buffering properties, some of them – monoethanolamine (MEA),
diethanolamine (DEA) or triethanolamine (TEA) – are widely used in
cosmetic products as acidity regulators, in the gas industry as carbon
dioxide (CO2) and hydrogen sulfide (H2S) removers, in metalworking
as corrosion inhibitors, in textile processing and in specialty cleaning
formulations.17 Their fatty acid salts and a number of other derivatives
are also used as surfactants and preservatives.18–20 For industrial
applications, MEA and TEA are mainly used as rust inhibitors.21

TEA is also utilized in cosmetics; however, instances of allergic
reactions to topical application of TEA are known, and DEA cannot
be used in cosmetics due to possible carcinogenicity.21 TEA is also
applied to modulate cement properties, by affecting the hydration
process of different mineralogical phases in cement.22 Due to high
basicity, MEA can also be used for the formation of biocompatible
2

salt forms of acidic drugs such as piroxicam or meloxicam, which are
characterized by increased solubility and bioavailability.20,23,24

Ethanolamines were used as counterions for anionic surfactants,
which were investigated for their ability to form liquid crystals.25

Another study showed that MEA at low concentrations (below
10–20 wt%) increased the area per surfactant molecule on the
air–water interface, which led to lower interface saturation with
amphiphilic molecules and less dense packing. At the same time,
at low MEA concentrations, a decrease in CMC was observed for
the studied imidazolium surfactant.26 Overall, aggregation studies
involving mixtures of surfactants and ethanolamines are rare.
However, considering the wide usability and applicability of
ethanolamines, their combination with morpholinium surfactants
may be of interest. In this work, the aim was to investigate
morpholinium surfactants N-hexadecyl-N-methylmorpholinium
bromide (MS-16) and N-hexadecyl-N-hydroxyethylmorpholinium
bromide (MS(OH)-16) in composition with ethanolamines
(Figure 1), to outline the physicochemical and self-assembly
aspects and potential applications of their combinations.
2. Experimental section

2.1 Materials
Orange OT (OOT) was obtained from ChemCruz; MEA, DEA and
TEA were obtained from Acros Organics; and Milli-Q ultrapurified
water (18.2MW cm) was obtained using a Millipore Direct-Q 5UV
apparatus. Morpholinium surfactants MS-16 and MS(OH)-16 were
synthesized as described in the paper by Yackevich et al.14

2.2 Tensiometry
The measurements were done using a Kruss K6 (Germany)
tensiometer using the Du Noüy ring detachment method. The
platinum (Pt) ring was rinsed with ethanol, and the ethanol was wiped
off and briefly left to evaporate before each measurement. Every
sample (10ml) was measured repeatedly to ensure value consistency
between at least four consecutive measurements. The temperature of
the samples was maintained as 25°C using a water-circulating jacket
attached to a thermostat. The instrumental error was within 0.3mN/m.
N-Hexadecyl-N-methylmorpholinium
bromide (MS-16)

N-Hexadecyl-N-hydroxyethylmorpholinium
bromide (MS(OH)-16)

Monoethanolamine Diethanolamine Triethanolamine Orange OT

Figure 1. Structures of the studied compounds
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2.3 Conductometry
The measurements were done using an InoLab Cond7110
conductometer, which was calibrated using a 0.01 potassium
chloride (KCl) solution. The temperature of the samples (10 ml)
was maintained as 25°C using a water-circulating jacket
attached to a thermostat. The data were approximated using an
antiderivative of a Boltzmann sigmoid as described in the paper
by Carpena et al.,27 which allowed extraction of the slopes of the
graph before and after CMC, as well as the CMC value.

2.4 Potentiometry
A freshly calibrated Hanna Instruments pH 211 apparatus was used.
Samples (10ml) under constant stirring (360 revolutions/min) were
probed with the pH-measuring glass electrode. Each sample was
equilibrated under stirring for exactly 4min before value recording.
The measurements were conducted at an ambient temperature of 25°C.

2.5 Spectrophotometry
Ultraviolet/visible absorption spectra were recorded on a Specord 250
Plus (Germany) device using thermostated cells controlled by Peltier
elements (Analytik Jena, Germany) at 25°C in quartz cuvettes. The
spectra were recorded using 1 nm monochromator slits in the
range 190–800 nm. For solubilization, excessive amounts of OOT
(15–30mg) were added to surfactant samples (2ml) of different
concentrations, which were then briefly vortexed (15–20min) and left
in the dark at ambient temperature for 48 h to reach equilibrium before
spectrophotometric analysis. At the time of measurement, Millipore
polytetrafluoroethylene syringe filters (0.22 mm pores) were used to
ensure complete separation of the liquid phase from any undissolved
OOT before the sample was placed in a cuvette. For strongly
absorbing samples, thinner cuvettes were used, and if necessary,
dilution in Milli-Q water was performed. Spectra were analyzed for
absorbance at 495 nm using an absorption coefficient of 17 400 lmol−1

l cm−1. Solubilization capacity values were determined as the slope of
the plot region after the CMC.28 For the evaluation of pH-dependent
OOT dissolution and precipitation, 100mM MEA and 2.7mM MS-
16 compositions were prepared, excessive OOT was added and the
mixture was equilibrated and filtered before spectrophotometric
analysis as described earlier.

2.6 Thermodynamic parameters
Tensiometric and conductometric data were used in combination to
derive thermodynamic parameter values. Tensiometric data provide
information to derive surface excess (Gmax) and equilibrium area per
surfactant monomer (Amin) by treating the descending part of the
surface tension isotherm with the Gibbs absorption equation:29

Gmax ¼ −
1

2:303nRT
� lim

C→Ccmc

ds
d logC1.

Here, n is equal to 2, R is the universal gas constant in joules per
mole per kelvin, T is the absolute temperature in kelvin and the limit
is found as the slope of surface tension isotherm in logC coordinates
at the closest point to the CMC. This yields the surface excess in
moles per 1000m2 if s is in millinewtons per meter. The surface
area per surfactant molecule at the interface can then be obtained:

Amin ¼ 1021

NAGmax2.

where NA is Avogadro’s number and Amin is in square nanometers.29

Conductometric data allow calculation of b, the fraction of
neutralized surfactant counterions that are bound to the micelles
as in the publication by Rosen:30

b ¼ 1 − S2=S13.

where S1 and S2 are conductivity plot slopes before and after the CMC,
respectively. The free energy of micelle formation can then be found as

DGmic ¼ RT 1 þ bð Þ ln CMC − 0:5RT ln 24.

where CMC is expressed as a molar concentration.31 Finally, the
free energy of surfactant adsorption on the air–water interface is
found as in the publication by Rosen:29

DGad ¼ DGmic − 6:023pCMCAmin5.

The minimum free energy was calculated using gCMC as surface
tension at CMC as described in the papers by Rub et al.:32,33

Gmin ¼ gCMCAminNA6.

The critical packing parameter was found as described by
Tanford:34

P ¼ v=ðlaÞ7.

where the surfactant molecule volume v in cubic nanometers is
calculated as v = 0.0274 + 0.0269nc and the surfactant tail length
in nanometers is l = 0.154 + 0.1265nc. nc is the number of carbon
(C) atoms in the surfactant tail. a is the polar head surface area,
which is critically dependent on solution conditions; most
commonly, it is taken equal to Amin.

3. Results and discussion

3.1 CMC and aggregation
Firstly, a basic tensiometric analysis of the surface activity of
morpholinium surfactants with and without any additives (Figure 2)
3
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was carried out. Among ethanolamines, TEA had the least effect on
the aggregation threshold: the CMC determined for MS(OH)-16 in
the presence of additives is within the CMC error determined for
individual MS(OH)-16 and is about 1.0mM (Figure 2(b)). In the
presence of MEA and DEA, a small decrease in the aggregation
threshold to 0.7–1.0mM is observed. This may be observed because
of co-operative accumulation of ethanolamines and surfactants on the
interface, as evident from the equilibrium molecule cross-sectional
area increase in Tables 1 and 2.

Some of the isotherms are shifted more to the left along the
concentration axis – for example, MEA and DEA isotherms. Such
data indicate more active adsorption of surfactants on the
water–air interface, which is also supported by the increase in
molecular areas. The most significant effect is observed for MEA
with hydroxyethylated MS(OH)-16, and in the case of TEA at
concentrations of 1 and 10 mM, this effect is minimal. In general,
4

surface tension at each concentration point is higher for individual
surfactants (square plot on top) than for mixtures. These data
suggest the presence of a certain degree of co-operativity in the
process of adsorption of surfactant molecules at the water–air
interface in the presence of MEA and DEA. Since these additives
themselves in the studied concentrations do not have a surface
activity comparable with the surface activity of typical surfactants
but at the same time decrease the surface tension in the presence
of surfactants, it is very likely that they can accumulate in the
surface layer, which leads to lower surface tension.

Other informative parameters of surfactants are the pC20 value,
which characterizes the surface activity, and minimal free energy
Gmin (Tables 1 and 2). The pC20 value is a characteristic
surfactant parameter that shows how much surfactant is needed to
lower the surface tension by 20 mN/m. pC20 slightly increases
with additives; the strongest effect is observed for MEA and
70
MS-16
MS-16 + 10 mM MEA

MS-16 + 10 mM TEA

MS-16 + 10 mM DEA
MS-16 + 1 mM TEA
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Figure 2. Surface tension isotherms of (a) MS-16 and (b) MS(OH)-16 with additives, 25°C
Table 1. Thermodynamic parameters of adsorption and micelle formation for the MS-16 surfactant with different additives
Composition
 DGmic: kJ/mol
 DGad: kJ/mol
 Gmin: kJ/mol
 Gmax: × 106mol/m2
 Amin: nm
2
 CMC:a mM
 pC20
 P
MS-16
 −31.4
 −43.9
 16.7
 2.45
 0.68
 1.0 ± 0.3
 6.39
 0.31

MS-16 + MEA 10mM
 −29.7
 −46.4
 22.4
 1.83
 0.91
 0.8 ± 0.3
 6.57
 0.23

MS-16 + DEA 10mM
 −31.6
 −49.8
 23.7
 1.67
 0.99
 1.0 ± 0.3
 6.60
 0.21

MS-16 + TEA 1mM
 −27.6
 −45.0
 23.9
 1.75
 0.95
 1.0 ± 0.3
 6.45
 0.22

MS-16 + TEA 10mM
 −30.8
 −48.3
 22.8
 1.74
 0.95
 1.0 ± 0.3
 6.58
 0.22
a The measurement error is estimated based on the character of the inflection on the surface tension isotherms
Table 2. Thermodynamic parameters of adsorption and micelle formation for the MS(OH)-16 surfactant with different additives
Composition
 DGmic: kJ/mol
 DGad: kJ/mol
 Gmin: kJ/mol
 Gmax: × 106mol/m2
 Amin: nm
2
 CMC:a mM
 pC20
 P
MS(OH)-16
 −30.0
 −45.3
 20.7
 1.99
 0.83
 1.0 ± 0.3
 6.45
 0.25

MS(OH)-16 + MEA 10mM
 −29.8
 −52.7
 30.0
 1.33
 1.24
 0.9 ± 0.3
 6.82
 0.17

MS(OH)-16 + DEA 10mM
 −33.6
 −52.5
 24.3
 1.62
 1.03
 0.7 ± 0.3
 6.76
 0.20

MS(OH)-16 + TEA 1mM
 −29.2
 −49.1
 27.6
 1.53
 1.08
 1.0 ± 0.3
 6.51
 0.20

MS(OH)-16 + TEA 10mM
 −30.8
 −50.9
 27.4
 1.52
 1.09
 1.0 ± 0.3
 6.66
 0.19
a The measurement error is estimated based on the character of the inflection on the surface tension isotherms
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DEA. The Gmin values for individual surfactants are lower
compared with those for mixtures with amino alcohols, while the
effect of the nature of additives is negligible.

As seen on the conductometric plots (Figure 3), while all the
obtained curves are characteristic of a very similar value of CMC,
those with MEA have the highest conductivity values, probably
due to highest mobility and basicity of the additive molecule.
TEA samples are at the same level as the individual surfactant,
with DEA taking an intermediate position (Table 3).

CMC values obtained using conductometry are slightly more accurate
than tensiometric ones due to the ease of data approximation, and
some comparisons can be made. Among the combinations with
MS-16, the lowest CMC is observed for the mixture with DEA at
0.9mM. The rest of the values are roughly in the range 1.1–1.2mM.
The lowest aggregation threshold for MS(OH)-16 is observed for a
mixture with TEA of about 1.1mM; the values for the remaining
mixtures are about 1.2–1.4mM. The highest CMC value is observed
for the individual MS(OH)-16 (1.40mM) and a mixture with MEA
(1.39mM). Considering tensiometric and conductometric CMC
measurements overall, it can be concluded that no significant
difference in the aggregation thresholds is present. This indicates that
on aggregate formation in mixed systems, the additives are not likely
participating in the self-assembly. If there were beneficial interactions
of the amino alcohols with surfactants, a significant effect on the
CMC or DGmic would have been observed for such systems.
The combination of tensiometric and conductometric data yields the
thermodynamic parameters of micellization and adsorption at the
air–water interface (Tables 1 and 2). Addition of any amino alcohol
leads to an increase in area per molecule Amin and a decrease in
surface concentration Gmax. The same was previously observed with
a different cationic surfactant.26 These values are obtained at the
same surfactant concentrations, since all surfactant mixtures with
ethanolamines have very similar CMCs. Therefore, a decrease in
surface concentration of surfactant monomers (Gmax) indicates an
increase in concentration in the bulk in the presence of
ethanolamines, which may be explained by a variety of possible
intermolecular interactions available for surfactants and amino
alcohols in the solution. The hydroxyethyl surfactant MS(OH)-16 is
characterized by larger Amin values compared with the MS-16,
which could be explained by a larger head group of MS(OH)-16,
and its better solubility in bulk due to an additional polar group.
Evaluation of packing parameter value (Tables 1 and 2) for each of
the compositions shows that in every studied mixture, the
surfactants are expected to form spherical micelles. The addition of
ethanolamines decreases the packing parameter for both surfactants
MS-16 and MS(OH)-16.

3.2 Solubilization of OOT
Using the hydrophobic dye OOT, studies of the solubilizing
ability of compositions based on morpholinium surfactants with
various additives toward the hydrophobic probe were carried out.
The results are shown in Table 3; plots and spectra can be seen in
Table 3. Summary of CMC and OOT solubilization capacity values for MS-16 and MS(OH)-16 surfactants and additives
Additive
 MS-16 CMCa conductometry: mM
 Sa for MS-16
 MS(OH)-16 CMCa conductometry: mM
 Sa for MS(OH)-16
—
 1.17 ± 0.26
 0.019 ± 0.002
 1.40 ± 0.40
 0.037 ± 0.007

MEA (10mМ)
 1.13 ± 0.18
 0.036 ± 0.004
 1.39 ± 0.18
 0.057 ± 0.004

DEA (10mМ)
 0.90 ± 0.46
 0.038 ± 0.005
 1.19 ± 0.12
 0.048 ± 0.005

TEA (1 mМ)
 1.17 ± 0.07
 0.043 ± 0.001
 1.28 ± 0.10
 0.034 ± 0.002

TEA (10mМ)
 1.09 ± 0.09
 0.044 ± 0.001
 1.10 ± 0.33
 0.040 ± 0.001
a The measurement error is standard deviation of approximation
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Figure 3. Conductivity plots of (a) MS-16 and (b) MS(OH)-16 with additives, 25°C
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Figures S1–S10 in the online supplementary material. Among the
compositions based on MS-16, the highest solubilization capacity
of 0.044 molOOT/molMS-16 is observed for compositions with the
addition of TEA at concentrations of 1 and 10 mM. The lowest
value corresponds to the individual solution of MS-16; the rest of
the additives are at the same level, increasing the solubilization
capacity to 0.031–0.038 molOOT/molMS-16. Thus, the use of all
additives increases solubilization for MS-16 by more than 60%,
and in the case of TEA, solubilization increases by 125% even
with the addition of only 1 mM TEA.

In the case of compositions with MS(OH)-16, the head group of
which has a hydroxyethyl fragment, the solubilization capacity
value for an individual surfactant solution is almost twice as high
as for a non-hydroxyethylated analog and is 0.037 molOOT/molMS

(OH)-16. This is due to the presence of a hydroxyl group, which
can participate in additional interactions with solubilized OOT. In
mixed compositions with MS(OH)-16, the highest solubilization
capacity was shown by a mixture with 10 mM MEA, reaching a
value of 0.057 molOOT/molMS(OH)-16, which is the maximum
among all the compositions studied in this work. Addition of
TEA at 1 or 10 mM insignificantly affects solubilization capacity,
and DEA increases it by 30% and MEA by 54%. These effects
correspond well to the basicity of each amino alcohol.

With MEA, the solubilization graphs (Figure 4) contain a characteristic
region at concentrations near the aggregation threshold, the slope of
which is steeper than that of the main part of the solubilization curve
(after CMC). This is typical evidence of joint aggregate formation as is
often observed for mixed systems and particularly surfactant–polymer
compositions.2 The early steep region of solubilization plots
characterizes the systems with very high solubilization capacity values
of around 0.1molOOT/molSurfactant, which is 2.5–3.0 times higher than
for the MS-16 individual surfactant. In this region, as few as ten
surfactant molecules are sufficient to solubilize one OOT molecule.
6

The slope of the solubilization plot also indicates some sort of
solubilizing aggregate presence for compositions in the concentration
range 0.1–0.5mM, which are more capacious for the substrate
compared with conventional micelles that start to form after 1mM of
surfactant concentration.

To evaluate the effect of ethanolamines on the solubilization capacity,
a different approach was also used, where the surfactants were fixed
at a concentration of 2.7 CMC and MEA concentrations were varied.
The main cause of solubilization increase is connected to the high
basicity of amino alcohols, and MEA, being the most basic of the
three, was chosen for further work. Solubilization of OOT was
checked at different concentrations of added MEA, and very high
solubilization capacities were observed (Figure 5).

3.3 pH-dependent OOT solubility in micellar solution
Further evaluation of the effect of MEA and TEA concentrations
on the solubilizing activity of MS-16 and MS(OH)-16 surfactants
was done, and a very strong effect was observed for MEA, but
not TEA. This is most likely due to higher basicity of MEA
(pKa = 9.5) against that of TEA (pKa = 7.8), which causes OOT
hydroxyl deprotonation. Under alkaline conditions, the substrate
molecule becomes an amphiphilic anion that readily participates
in aggregate formation with the cationic surfactant.2 Spectra of
solubilized OOT are shown in Figure 5(a). With the increase in
MEA concentration, the rise of a shoulder band at around 460 nm
can be observed. OOT spectra in solvents of different polarities
(hexane, ethanol, aqueous ethanol, and chloroform) do not
demonstrate such distant hypsochromic shifts (Figure S11 in the
online supplementary material), and pyrene fluorescent assay
showed that MEA addition has no effect on the micropolarity of
morpholinium surfactant micelles (Figure S12 in the online
supplementary material). The changes in the OOT absorption
spectrum are most likely caused by gradual formation of the OOT
anionic form and correspond to its changed electron structure in
4
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the deprotonated state. All of the above suggests that, although
some evidence of MEA participation in surfactant aggregation is
present, as described before, the nature of solubilization increase
is purely caused by OOT dissociation under alkaline conditions.

OOT absorption can be plotted in relation to pH, since its solubility
is connected to phenolic group deprotonation (Figure 6). Addition of
MEA or sodium hydroxide (NaOH) without micelles does not lead
to OOT dissolution (OOT absorption around 0.02–0.07). However, in
the presence of cationic micelles, a very high OOT solubility can be
achieved (absorption at 0.5–12 units). Hence, purely OOT
dissociation granted by an alkaline medium is not sufficient to cause
solubility at pH below 12, but the presence of cationic surfactants
allows OOT molecules to act as a surfactant counterion and to form
joint aggregates. It can be seen that an upward trend is observed
much earlier for micellar OOT solutions, where a significant
solubility increase starts at pH = 10, whereas for aqueous OOT,
alkalinization only slightly increases its solubility after pH 11.5. It is
noteworthy that under basic conditions (pH > 9), solubilization
occurred very rapidly, and liquid-phase coloration was observed after
15min, in contrast to the slow process of OOT solubilization under
neutral conditions, which takes more than 1 day to equilibrate.

Such a system can be manipulated into releasing the dissolved OOT
with addition of acid. As expected, a small amount of hydrochloric
acid (HCl) causes immediate clouding and precipitation of dye
content, since the pH is lowered farther from OOT pKa (Figure 7).
At low hydrochloric acid concentrations (to the left of dashed line 1),
precipitation happens very quickly, reaching more than 50%. Before
the equilibrium point (dashed line 2), a slow increase in precipitated
OOT is observed, after which (to the right of dashed line 2) the
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graph reaches a plateau. At this point, the pH is normalized;
however, leftover dissolved micellar OOT is still more concentrated
than what was observed for pure micellar solution. This may be
explained by mixed aggregate formation of OOT molecules with
MS-16 molecules, as was previously suggested.35 Incomplete OOT
precipitation is indirect evidence that mixed aggregates do form,
which makes it possible to oversaturate cationic micelles with
solubilized dye, most of which, on consecutive protonation, remains
in the micellar phase without precipitation, leading to excessive OOT
solubilization at a given pH. Further structural studies using
microscopic or scattering methods are required to confirm directly
that, however. Additional experimental work involving different
cationic surfactant and hydrophobic substrate combinations with
regard to pH conditions can be a promising route to discover novel
application areas where cationic surfactants can be indispensable.

4. Conclusion
A morpholinium surfactant and its hydroxyethylated analog were
investigated for their aggregation properties in the presence of
ethanolamines – common industrial and cosmetical additives. No
significant disruption of aggregate formation was observed with the
addition of ethanolamines, and critical micelle concentration remained
close to 1mM for all the studied systems. Co-operative solubilization
of OOT was observed with MEA addition for both surfactants MS-16
and MS(OH)-16. A very strong solubilizing effect toward the OOT
hydrophobic probe can be achieved by MS-16 in the presence of
100mM MEA, making it possible to dissolve 1mol of OOT per
4mol of the surfactant in aqueous solution due to probe deprotonation
and mixed aggregate formation. The obtained compositions also
showed responsiveness toward acidic stimuli, which allows temporary
dissolution of OOT and release of more than half of it as precipitate
with as low as 20mol% of acid in relation to MEA concentration.
This leads to formation of oversaturated mixed cationic micelles with
leftover solubilized hydrophobic dye. All of the above suggests the
potential of the cationic morpholinium surfactants to enhance the
solubility of hydrophobic organic weak acids, which can find
application in industry or cosmetics. By analogy, the same
solubilization increase is expected in systems with anionic surfactants
and basic poorly soluble organic substrates at acidic pH, which,
however, requires experimental confirmation.
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