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В работе исследована космологическая модель с неминимальной кинетической связью скаляр-
ного поля с кривизной, а также идеальной двухкомпонентной жидкостью и космологической по-
стоянной. Показано, что рассматриваемая модель хорошо описывает основные эпохи эволюции
Вселенной, включая первичную инфляцию, радиационно-доминированную стадию, материально-
доминированную стадию, и стадию современного ускоренного расширения (вторичную инфляцию).
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Аннотация. В работе исследуется сила самодействия на статический заряд, являющийся источником мас-
сивного неминимально связанного с кривизной скалярного поля, в области пространства-времени, называ-
емой длинной горловиной.

1 Введение
Изучение силы самодействия имеет длинную историю. Оригинальные исследования сосредотачивались на
самоускорении электрически заряженных точечных частиц в плоском пространстве-времени [1]. Позже Де-
Витт, Брем и Хоббс [2] изучили влияние силы самодействия на заряд в искривленном пространстве-времени.
В отличие от случая с плоским пространством-временем эта сила может быть не нулевой даже для стати-
ческих зарядов в искривленном пространстве.

Было проанализировано некоторое количество статических конфигураций, в том числе самовоздействие
в пространстве-времени черной дыры Шварцшильда [3, 4], черной дыры Керра [5], черной дыры Керра-
Ньюмана [4] и в статическом симметричном поле Бранса-Дикке [6]. Аналитические приближения силы са-
модействия были получены для скалярного заряда, покоящегося в осесимметричном пространстве-времени
[7]. Сила самодействия может быть не нулевой для статической частицы в плоском пространстве-времени
топологических дефектов [8].

В искривленном пространстве-времени с нетривиальной топологической структурой исследования этого
типа имеют дополнительные интересные особенности [9, 10].

Эффект самовоздействия связан с нелокальной структурой безмассового поля, источником которого
является заряженная частица. Например, сила самодействия скалярного заряда это [11]

fµ = q2
[
1

3

(
ȧµ − a2uµ

)
+

1

6

(
Rνµuν +Rνγu

νuγuµ
)

+
1

12
(6ξ − 1)Ruµ + lim

ϵ→0

∫ τ−ϵ

−∞
∇µGret

(
x, x′) dτ ′

]
(1)

где uµ - это 4-скорость заряда, aµ - это 4-ускорение, ȧµ = ∂aµ/∂τ - это производная 4-ускорения по соб-
ственному времени τ заряда, Gret(x, x′) - это запаздывающая скалярная функция Грина и ξ константа связи
скалярного поля с кривизной.
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Существуют такие ситуации, в которых эффект самодействия определяется локальной геометрией ис-
кривленного пространства-времени. Например, такая ситуация имеет место для статического заряда в гор-
ловине кротовой норы, если длина этой горловины гораздо больше, чем ее радиус. В качестве примера
таких кротовых нор можно рассматривать пространство-время с метрикой

ds2 = −dt2 + dρ2 +

(
r0 + ρ tanh

ρ

ρ0

)2 (
dθ2 + sin2 θ dφ2) (2)

или

ds2 = −dt2 + dρ2 +

(
r0 + ρ coth

ρ

ρ0
− ρ0

)2 (
dθ2 + sin2 θ dφ2) , (3)

где r0, ρ0 - константы (r0 - радиус горловины, ρ0 - параметр, который описывает длину горловины) и
r0
ρ0

≪ 1. (4)

Эффект самодействия в области ρ<∼ ρ0 не зависит от геометрии пространства-времени за пределами этой
области, и мы будем называть эту область длинной горловиной (точное определение длинной горловины
см. ниже).

На протяжении всей работы мы используем единицы c = G = 1.

2 Общие принципы
Рассмотрим уравнение для скалярного безмассового поля с источником

ϕ;µ
;µ − (ξR+m2)ϕ = −J = −4πq

∫
δ(4)(x− x0(τ))

dτ√
−g(4)

, (5)

где ξ - константа связи скалярного поля массы m с кривизной R, g(4) - детерминант метрики gµν , q -
скалярный заряд и τ - его собственное время. Мировая линия заряда определяется функциями x̃µ(τ).

Метрика статического пространства-времени может быть представлена в виде:

ds2 = gtt(x
i)dt2 + gjk(x

i)dxjdxk, (6)

где i, j, k = 1, 2, 3. Это означает, что можно написать уравнение поля следующим образом:

1
√−gtt

√
g(3)

∂

∂xj

(√−gtt
√
g(3)gjk

∂ϕ(xi; x̃i)

∂xk

)
− (ξR(x) +m2)ϕ(xi; x̃i)

= −4πqδ(3)(xi, x̃i)√
g(3)

, (7)

где g(3) = det gij и мы примем во внимание, что dτ/dt =
√
gtt для покоящейся (статической) частицы.

Процедура оценки силы самодействия требует перенормировки скалярного потенциала ϕ(x; x̃), который
расходится в пределе x → x̃ (см., например, [13, 14]).

Эта перенормировка может быть достигнута путем вычитания из ϕ(x; x̃) контрчлена ДеВитта-Швингера
ϕDS(x; x̃) и затем устремляя x → x̃ [15]:

ϕren(x) = lim
x̃→x

[ϕ(x; x̃) − ϕDS(x; x̃)] , (8)

где

ϕDS(x
i; x̃i) = q

(
1√
2σ

+
∂gtt(x̃)

∂x̃i
σi

4gtt(x̃)
√

2σ
−m

)
, (9)

σ - половина квадрата расстояния между точками x и x̃ вдоль кратчайшей геодезической, соединяющей их.

σ =
gij(x̃)

2
σiσj (10)

- это половина квадрата расстояния между точками x̃i и xi вдоль кратчайшей геодезической, соединяющей
их, и (см., например, [16, 17])

σi = −
(
xi − x̃i

)
− 1

2
Γijk

(
xj − x̃j

)(
xk − x̃k

)

−1

6

(
ΓijmΓmkl +

∂Γijk
∂x̃l

)(
xj − x̃j

)(
xk − x̃k

)(
xl − x̃l

)
+O

(
(x− x̃)4

)
, (11)
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символы Кристоффеля Γijk вычисляюься в точке x̃.
Наконец сила самодействия, действующая на статический заряд это

fi(x) = − q

2
∇iϕren(x). (12)

3 ВКБ аппроксимация для силы самодействия
Метрика статического сферически симметричного пространства-времени рассматривается ниже

ds2 = −f(ρ)dt2 + dρ2 + r2(ρ)
(
dθ2 + sin2 θ dφ2) . (13)

В этом пространстве-времени уравнение (7) может быть переписано в виде

[
∂2

∂ρ2
+

(
f ′

2f
+

(r2)′

r2

)
∂2

∂θ2
+ cot θ

∂

∂θ
+

∂2

∂φ2
− (ξR+m2)

]
ϕ(ρ, θ, φ; ρ̃, θ̃, φ̃)

= −4πqδ(ρ, ρ̃)δ(θ, θ̃)δ(φ, φ̃)

r2 sin θ
. (14)

Благодаря сферической симметрии рассматриваемой задачи, мы представляем потенциал в виде

ϕ(xα; x̃α) = q

∞∑

l=0

(2l + 1)Pl(cos γ)gl(ρ, ρ̃), (15)

где cos γ ≡ cos θ cos θ̃ + sin θ sin θ̃ cos(φ− φ̃) и gl(ρ, ρ̃) удовлетворяют уравнению

g′′
l +

(
f ′

2f
+

(r2)′

r2

)
g′
l −
[
l(l + 1)

r2
+m2 + ξR

]
gl = −δ(ρ, ρ̃)

r2
. (16)

В этом выражении и ниже штрихом обозначена производная по ρ. Однородные решения этого уравнения
будем обозначать через pl(ρ) и ql(ρ). pl(ρ) — это выбранное решение, которое хорошо ведет себя при ρ = −∞
и расходится при ρ → +∞. ql(ρ) — это выбранное решение, которое расходится при ρ → −∞ и хорошо себя
ведет при ρ = ∞. Таким образом,

{
d

dρ2
+

(
f ′

2f
+

(r2)′

r2

)
d

dρ
−
[
l(l + 1)

r2
+m2 + ξR

]}{
p l(ρ)

ql(ρ)

}
= 0, (17)

gl(ρ, ρ̃) = Clp l(ρ<)ql(ρ>) = Cl
[

Θ(ρ̃− ρ)p l(ρ)ql(ρ̃)

−Θ(ρ− ρ̃)p l(ρ̃)ql(ρ)] , (18)

где Θ(x) - ступенчатая функция Хевисайда, т.е., Θ(x) = 1 при x > 0 и Θ(x) = 0 при x < 0, Cl - константа нор-
мировки, которая может быть включена в определение p l и ql. Нормировка gl достигается интегрированием
(16) один раз по ρ от ρ̃− δ до ρ̃+ δ и стремлением δ → 0. Это приводит к условию на Вронскиан

Cl

(
p l
dql
dρ

− ql
dp l
dρ

)
= − 1

r2
. (19)

ВКБ-приближение для радиальных мод p l и ql получается заменой переменных

p l =
1√

2r2W
exp

(∫ ρ

Wdρ

)
,

ql =
1√

2r2W
exp

(
−
∫ ρ

Wdρ

)
. (20)

Подстановка этих выражений в (19) показывает, что условие на Вронскиан выполняется, если

Cl = 1. (21)
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Подстановка в выражение на моду (17) дает следующее уравнение для W :

W 2 =
l(l + 1) +m2r2 + 2ξ

r2
+

(
W 2
)′′

4W 2
− 5

(
W 2
)′2

16W 4
+

(r2)
′′

2r2

− (r2)
′2

4r4
+
Wf ′

2f
+

(r2)
′
f ′

4r2f
+

(W 2)
′
f ′

8W 2f

+ξ

(
−2

(r2)
′′

r2
+

(r2)
′2

2r4
− (r2)

′
f ′

r2f
− f ′′

f
+
f ′2

2f2

)
. (22)

Это уравнение может быть решено методом итераций, если метрическая функция r2(ρ) меняется мед-
ленно, то есть,

εWKB = L⋆/L ≪ 1, (23)
где

L⋆(ρ) =
r(ρ)√

2ξ +m2r2(ρ)
, (24)

и L - характерный масштаб изменения r(ρ) и f(ρ):

1

L(ρ)
= max

{∣∣∣∣
r′

r

∣∣∣∣ ,
∣∣∣∣
f ′

f

∣∣∣∣ ,
∣∣∣∣
r′

r

√
|ξ|
∣∣∣∣ ,
∣∣∣∣
f ′

f

√
|ξ|
∣∣∣∣ ,
∣∣∣∣
r′′

r

∣∣∣∣
1/2

,

∣∣∣∣
f ′′

f

∣∣∣∣
1/2

, . . .

}
. (25)

Мы будем называть область пространства-времени, где метрические функции r(ρ) и f(ρ), медленно
меняются, длинной горловиной.

Нулевой порядок ВКБ решения уравнения (22) соответствует пренебрежению членами с производными
в этом уравнении

W 2 = Ω ·
(

1 +O(ε2WKB)
)
, (26)

где

Ω(ρ, l + 1/2) =
l(l + 1) +m2r2 + 2ξ

r2
=

1

r(ρ)2

[(
l +

1

2

)2

+ µ2

]
, (27)

и
µ2 = 2ξ − 1

4
+m2r2. (28)

Ниже предполагается, что

µ2 > 0. (29)

Подчеркнем, что Ω - это точное решение уравнения (22) в пространстве-времени с метрикой ds2 =
−f0dt2 + dρ2 + r20(dθ

2 + sin2 θ dφ2), где f0, r0 - константы.
Подставляя решение (26) в (20) и (28), и пренебрегая членами второго порядка и выше по отношению к

εWKB, мы можем получить следующее выражение для приближения нулевого порядка ВКБ аппроксимации
для ϕ(xα; x̃α) при условиях θ = θ̃, φ = φ̃ и ρ̃ = ρ+ δρ > ρ

ϕ(ρ, θ, φ; ρ̃, θ, φ) =
q

r(ρ)r(ρ̃)

∞∑

l=0

(
l +

1

2

) exp

(
−
ρ+δρ∫
ρ

√
Ω

(
ρ′, l +

1

2

)
dρ′
)

4

√
Ω

(
ρ, l +

1

2

)
Ω

(
ρ̃, l +

1

2

) . (30)

Сумма по l может быть вычислена с помощью метода суммирования Плана (см., например, [19])

ϕ(ρ, θ, φ; ρ̃, θ, φ) =
q

r(ρ)r(ρ̃)
lim
ϵ→0





∞∫

ϵ

exp
(
−
∫ ρ+δρ
ρ

√
Ω(ρ′, x)dρ′

)

4
√

Ω(ρ, x)Ω(ρ̃, x)
xdx

+

ϵ∫

ϵ−i∞

exp
(
−
∫ ρ+δρ
ρ

√
Ω(ρ′, z)dρ′

)

4
√

Ω(ρ, z)Ω(ρ̃, z) (1 + ei2πz)
zdz

−
ϵ+i∞∫

ϵ

exp
(
−
∫ ρ+δρ
ρ

√
Ω(ρ′, z)dρ′

)

4
√

Ω(ρ, z)Ω(ρ̃, z) (1 + e−i2πz)
zdz



 . (31)
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Первый интеграл в этом выражении может быть переписан следующим образом

q
r(ρ)r(ρ̃)

∞∫
0

exp
(

−
∫ ρ+δρ

ρ

√
Ω(ρ′,x)dρ′

)

4
√

Ω(ρ,x)Ω(ρ̃,x)
xdx

=
q√

r(ρ)r(ρ̃)

∞∫
0

x exp
(

−
∫ ρ+δρ
ρ

√
x2+µ(ρ′)2dρ′/r(ρ′)

)

4
√
x2+µ(ρ)2 4

√
x2+µ(ρ̃)2

dx

=
q√

r(ρ)r(ρ̃)

∞∫
0

x dx
4
√
x2+µ(ρ)2 4

√
x2+µ(ρ̃)2

· exp

[
−
√
x2 + µ(ρ)2δρ

r(ρ)
(32)

+
r′(ρ)
2r(ρ)2

√
x2 + µ(ρ)2δρ2 − m2r(ρ)2r′(ρ)

2r(ρ)2
√
x2 + µ(ρ)2

δρ2 +O
(
δρ3
)]

=
q√

r(ρ)r(ρ̃)

∞∫
0

x dx√
x2+µ(ρ)2

exp

[
−
√
x2 + µ(ρ)2δρ

r(ρ)

+
r′(ρ)
2r(ρ)2

√
x2 + µ(ρ)2δρ2 − m2r(ρ)2r′(ρ)

2r(ρ)2
√
x2 + µ(ρ)2

δρ2 +O
(
δρ3
)]

− q√
r(ρ)r(ρ̃)

∞∫
0

xm2r(ρ)r′(ρ)δρ
2(x2+µ(ρ)2)3/2 · exp

[
−
√
x2 + µ(ρ)2δρ

r(ρ)
+O

(
δρ2
)]

dx

=
q√

r(ρ)r(ρ̃)

∞∫
0

x dx√
x2+µ(ρ)2

·

exp

[(
− δρ
r(ρ)

+
r′(ρ)
2r(ρ)2

δρ2

)√
x2 + µ(ρ)2 − m2r′(ρ)δρ2

2
√
x2 + µ(ρ)2

+O
(
δρ3
)]

− q√
r(ρ)r(ρ̃)

m2r(ρ)r′(ρ)δρ
2µ(ρ)

=
q√
r(ρ)

∞∫
0

x dx√
x2+µ(ρ)2

· exp

[(
− δρ
r(ρ)

+
r′(ρ)
2r(ρ)2

δρ2

)√
x2 + µ(ρ)2

]
·

{
1 − m2r′(ρ)δρ2

2
√
x2 + µ(ρ)2

+O
(
δρ3
)}

+O
(
δρ2
)

=
q√
r(ρ)

exp

[
−
(
δρ

r(ρ)
− r′(ρ)

2r(ρ)2
δρ2

)
µ(ρ)

]

δρ

r(ρ)
− r′(ρ)

2r(ρ)2
δρ2

−qr′(ρ)m2δρ2

2r(ρ)

∞∫
0

x dx exp

[
−
(
δρ

r(ρ)
− r′(ρ)

2r(ρ)2
δρ2

)
µ(ρ)

]

x2 + µ(ρ)2
+O (δρ) (33)

=
q√
r(ρ)

exp

[
−
(
δρ

r(ρ)
− r′(ρ)

2r(ρ)2
δρ2

)
µ(ρ)

]

δρ

r(ρ)
− r′(ρ)

2r(ρ)2
δρ2

(34)

и разложен в ряд по δρ
∞∫

0

exp
(
−
∫ ρ+δρ
ρ

√
Ω(ρ′, x)dρ′

)

4
√

Ω(ρ, x)Ω(ρ̃, x)
xdx

=
q

r(ρ)

[
r(ρ)

δρ
− µ(ρ) +

r′(ρ)

2
+O (δρ)

]
. (35)

Следующие два интеграла в (31) не расходятся при δρ → 0

lim
ϵ→0





ϵ∫

ϵ−i∞

exp
(
−
∫ ρ+δρ
ρ

√
Ω(ρ′, z)dρ′

)

4
√

Ω(ρ, z)Ω(ρ̃, z) (1 + ei2πz)
zdz

−
ϵ+i∞∫

ϵ

exp
(
−
∫ ρ+δρ
ρ

√
Ω(ρ′, z)dρ′

)

4
√

Ω(ρ, z)Ω(ρ̃, z) (1 + e−i2πz)
zdz




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= r(ρ) lim
ϵ→0





iϵ+∞∫

iϵ

xdx√
µ2 − x2 (1 + e2πx)

+

−iϵ+∞∫

−iϵ

xdx√
µ2 − x2 (1 + e2πx)

+O (δρ)





= 2r(ρ)

∫ µ

0

xdx√
µ2 − x2 (1 + e2πx)

+O (δρ) . (36)

Таким образом, нулевой ВКБ порядок приближения ϕ есть

ϕ(ρ, θ, φ; ρ̃, θ, φ) =
q

δρ
+

q

r(ρ)

(
−µ+ 2

∫ µ

0

xdx√
µ2 − x2 (1 + e2πx)

)

+O
(
δρ
)
. (37)

Контрчлен ДеВитта-Швингера ϕDS(x; x̃) в пределе θ = θ̃, φ = φ̃ может быть легко вычислен с помощью
метрики (13):

2σ = δρ2 +O
(
δρ4) ,

ϕDS(ρ, θ, φ; ρ̃, θ, φ) = q

(
1√
2σ

+
∂gtt(x̃)

∂x̃i
σi

4gtt(x̃)
√

2σ
−m

)

= q

(
1

δρ
+
f ′

4f
−m+O (δρ)

)
. (38)

Таким образом, ϕren(x) это

ϕren(x) = lim
δρ→0

[ϕ(ρ, θ, φ; ρ̃, θ, φ) − ϕDS(ρ, θ, φ; ρ̃, θ, φ)]

= qm+
q

r(ρ)


−µ+ 2

µ∫

0

xdx

(1 + e2πx)
√
µ2 − x2




·
(

1 +O(ε2WKB)
)
, (39)

и единственная ненулевая компонента силы самодействия есть

fρ(ρ) = − q

2

∂ϕren

∂ρ
= − q2

2r2
dr

dρ


µ − 2

µ∫

0

xdx

(1 + e2πx)
√
µ2 − x2

−4πm2r2
µ∫

0

e2πxdx

(1 + e2πx)2
√
µ2 − x2



(

1 +O(ε2WKB)
)
. (40)

При f = 0 и m = 0 получаем:

fρ(ρ) =


− q2

2r2
dr

dρ


µ − 2

µ∫

0

xdx

(1 + e2πx)
√
µ2 − x2





(

1 +O(ε2WKB)
)
, (41)

что совпадает с выражением для силы самодействия покоящегося скалярного заряда в длинной горловине
ультрастатического сферически симметричного пространства-времени [21].

Мы можем численно оценить

F (µ) = µ − 2

µ∫

0

xdx

(1 + e2πx)
√
µ2 − x2

(42)

G(µ) =

µ∫

0

e2πxdx

(1 + e2πx)2
√
µ2 − x2

(43)



ТРУДЫ МЕЖДУНАРОДНОГО СЕМИНАРА - ШКОЛЫ - 2013 15

Рис. 1: Кривая представляет собой функцию F (µ).

Рис. 2: Кривая представляет собой функцию G(µ).

Отметим, что если использовать r в качестве новой радиальной координаты

ds2 = −f(ρ)dt2 +

(
dρ

dr

)2

dr2 + r2(ρ)
(
dθ2 + sin2 θ dφ2) , (44)

выражение (40) может быть записано в виде:

fr = fρ
dρ

dr
=

[
− q2

2r2
F (µ) + 2πq2m2G(µ)

]

·
(

1 +O(ε2WKB)
)
. (45)

4 Пример
В качестве примера, рассмотрим пространство-время

ds2 = −dt2 + dρ2 +

(
r0 + ρ tanh

ρ

ρ0

)2 (
dθ2 + sin2 θ dφ2) , (46)

где параметр r0 характеризует радиус горловины кротовой норы, а ρ0 – её длину. Приближение длинной
горловины (23) справедливо в области r < ρ0, если

r0 ≪ ρ0. (47)

В этом случае выражение для (40) имеет вид

fρ
q2

= − 1

2

(
r0 + ρ tanh

ρ

ρ0

)2




tanh
ρ

ρ0
+

ρ

(
1 − tanh

(
ρ

ρ0

)2
)

ρ0




·

[
F (µ) − 4πm2

(
r0 + ρ tanh

ρ

ρ0

)2

G(µ)

](
1 +O(ε2WKB)

)
(48)
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Рис. 3: Кривая представляет собой функцию fρ.

5 Заключение
В работе получено приближенное выражение для силы самодействия на статический заряд, являющийся
источником массивного неминимально связанного с кривизной скалярного поля, в пространстве-времени,
называемом длинной горловиной.

Дан пример вычисления силы самодействия покоящегося скалярного заряда на себя в заданной длинной
горловине кротовой норы.

Работа поддержана Российским фондом фундаментальных исследований гранты № 11-02-01162-а и 13-
02-00757-a.
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